Uni-3D: A Universal Model for

Xiang Zhang*!
1UC San Diego

Zeyuan Chen”

Panoptic 3D Scene Reconstruction

! Fangyin Wei? Zhuowen Tu !

2 Princeton University

{x12z102, zec0l6}Rucsd.edu, fweilprinceton.edu, ztuGucsd.edu

Abstract

Performing holistic 3D scene understanding from a
single-view observation, involving generating instance
shapes and 3D scene segmentation, is a long-standing chal-
lenge. Prevailing works either focus only on geometry or
segmentation, or model the task in two folds by separate
modules, whose results are merged later to form the final
prediction. Inspired by recent advances in 2D vision that
unify image segmentation and detection by Transformer-
based models, we present Uni-3D, a holistic 3D scene pars-
ing/reconstruction system for a single RGB image. Uni-
3D features a universal model with query-based represen-
tations for predicting segments of both object instances and
scene layout. In Uni-3D, we also introduce a single Trans-
former for 2D depth-aware panoptic segmentation, which
offers queries that serve as strong shape priors in 3D. Uni-
3D seamlessly integrates 2D and 3D in its architecture and
it outperforms previous methods significantly.

1. Introduction

Humans have a remarkable ability to infer 3D shapes and
scene layouts accurately from limited or single-view obser-
vations, which is attributed to the efficient representations
that encode the 3D world for 2D projection. In computer
vision and graphics, understanding the 3D world from a
single-view 2D observation is a longstanding task, which
plays an essential role in multiple downstream applications
such as autonomous driving, augmented reality, and robotic
systems.

Notable breakthroughs have been made recently in ad-
dressing this challenge, thanks to the advancements in neu-
ral networks and the rapid growth of data quantity. 3D shape
reconstruction methods [45, 48, 24, 17] aim to predict 3D
models of instances in images and have exhibited impres-
sive reconstruction quality. Another category of methods,
including [41, 10], performs scene reconstruction by di-
rectly recovering the geometric structure of the 3D scene
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Figure 1. Pipeline comparison between (a) previous work (e.g. [8])
and (b) our proposed universal 3D reconstruction framework (Uni-
3D). Uni-3D integrates panoptic segmentation and depth estima-
tion in 2D for shared knowledge and unifies thing and stuff in-
stances in 3D, which is a universal pipeline for panoptic 3D scene
reconstruction.

captured by 2D images. The aforementioned approaches
demonstrate the capability of deep neural networks to learn
shape priors from training data and recover the 3D world
from 2D observations during inference. However, they fo-
cus solely on 3D shapes and silhouettes of instances or en-
tire scenes and do not extract 3D semantic information nec-
essary for scene understanding.

Factored3D [42] is a pioneering work that not only re-
covers 3D shapes but also performs scene understanding
by predicting the layout of instances in scenes. Huang et
al. [21] propose a holistic scene understanding system that
unifies the estimation of 3D object poses, camera pose, and
scene layout, providing a comprehensive understanding of
the input scene. Total3D [37] further incorporates mesh re-
construction into the 3D scene understanding system. In
summary, these models have approached 3D scene under-



standing from three aspects: 1) instance reconstruction; 2)
scene geometric structure prediction; and 3) 3D layout. We
are interested in an all-in-one system that integrates all three
aspects and provides all estimations in a single run. Liu
et al. [31] developed a two-stage system that can perform
3D scene parsing and reconstruction for a single in-the-wild
image, as well as an end-to-end system for 3D scene recon-
struction. The work most relevant to our target is Pano-
Re [8]. It tackles the tasks of single-image geometric re-
construction, 3D semantic segmentation, and 3D instance
segmentation simultaneously, which is named by them as
panoptic 3D scene reconstruction. However, it lifts 2D in-
stance features back to 3D and embeds 2D instance seg-
mentation maps as priors to link the two dimensions, which
only handles instances in 2D without stuff information so
that the 3D part of its network is only informed by instance
priors.

Taking inspiration from the trend of unifying 2D se-
mantic and instance segmentation via Transformers such as
Mask2Former [4], we introduce a universal system called
Uni-3D that addresses the task of 3D scene understanding
in a holistic manner. Specifically, we first introduce a depth-
aware panoptic segmentation architecture based on Trans-
formers, which integrates all 2D predictions in a unified
paradigm. Benefiting from this, the query embeddings of
our 2D Transformers are informative, effectively learning
multiple properties of the input scene, such as layout, in-
stance silhouettes, category labels, and depth. We then build
a query-based architecture for the 3D part, where 3D seg-
ments of both object instances and stuff layout are predicted
individually with the guidance of corresponding 2D queries.
This query-based design seamlessly integrates learned 2D
features and priors into 3D, offering more flexibility and ro-
bustness.

Our contribution is summarized as follows:

e We introduce Uni-3D, a universal model that integrates
3D instance and semantic segmentation as a panoptic
one by learning segment representations for both in-
stances and stuff layout. Each 3D segment is learned
with the guidance from its corresponding 2D query
which serves as a strong 2D prior.

e In Uni-3D, we develop a 2D Transformer for unifying
2D panoptic segmentation and depth estimation. This
approach facilitates interactions between the two tasks,
offering shared knowledge from both tasks to features
and learnable queries that serve as shape priors for pro-
ducing 3D segments.

Uni-3D outperforms previous methods by a large margin
both in quantitative and qualitative evaluations.

2. Related Work

2D panoptic segmentation. The panoptic segmentation
task is first proposed in [25]. The task is to assign each
image pixel a semantic label and instance id, where the
instance id is ignored for stuff classes, which unifies in-
stance (“thing” classes) segmentation and semantic (“‘stuff”
classes) segmentation, allowing a holistic understanding of
the image. Earlier literature [9, 27, 28, 47, 25, 29] typically
addresses instance and semantic segmentation in separate
branches, and merge the results via either heuristics-guided
or learnable approaches. Recently, DEtection TRansform-
ers (DETR) [2] further pushes the boundary for detec-
tion and segmentation tasks by formulating such tasks as
set-prediction problems. Subsequent DETR family mod-
els [5, 4, 30] benefit from this formulation and treat thing
and stuff classes as image segments to achieve unified and
end-to-end learning for both instance and semantic segmen-
tation, enabling universal image segmentation that performs
well on both types of classes.

Other work explores depth-aware panoptic segmenta-
tion, which accomplishes monocular depth estimation be-
sides panoptic segmentation. While a straightforward solu-
tion is to add a depth regression head sharing the backbone
feature with panoptic segmentation, as in [38, 40], Panop-
ticDepth [15] mutually enhances the two tasks through a
unified model. As both segmentation and depth provide
strong 2D priors necessary for adequate 3D understanding,
we propose a depth-aware panoptic segmentation model in
the 2D part, where the two tasks have knowledge of and
benefit from each other.

Single-view 3D reconstruction. 3D shape reconstruction
from a single-view observation input is a long-standing
problem in computer vision. Traditional methods extract
multi-modal information from 2D image observations for
reconstructing shapes, including shading [20, 1, 39], tex-
ture [44], and silhouettes [6]. Recent learning-based ap-
proaches have demonstrated impressive performance boosts
in reconstruction quality. To reconstruct a single object
from monocular observation, methods have been investi-
gated employing different representations including voxel
grids [7, 46], point clouds [12], mesh [43], and implicit
functions [35]. Other methods have advanced to predicting
multiple shapes [17] and even with layout [23, 26]. More
recently, Gkioxari et al. [18] proposes a method that uses
only 2D supervision during training for single-view 3D re-
construction during inference.

3D scene understanding and panoptic reconstruction.
The primary goal of 3D Scene Understanding is to predict
3D shape instances, as well as estimate instance properties
including their layouts and category labels. IM2CAD [23]
is one of the pioneering works in this field. It leverages in-
formation from 2D object detection information to generate
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Figure 2. Overview of the proposed framework. In the 2D/2.5D parts, a Transformer encoder generates multi-scale features from the back-
bone, which are fed into the panoptic segment decoder and depth decoder for panoptic segmentation and depth estimation simultaneously.
The features utilized to generate segmentation masks and depth maps, along with estimated depth, semantic masks, and multi-scale features
from the Transformer encoder are back-projected into 3D volumes. A 3D U-Net processes multi-scale feature volumes, with a geometry
head predicting the truncated distance field for the entire scene. Query embeddings from the panoptic segment decoder are projected as
convolution kernels that associate features from the U-Net, yielding unified 3D segments for object instances (things) and layouts (stuff).

3D layouts and optimize 3D CAD models. Holistic3D [22]
introduced the Holistic Scene Grammar module, which rep-
resents the 3D scene structure by capturing image contexts
and geometric constraints. Mask2CAD [26] achieved a
CAD-based 3D representation by learning a joint embed-
ding space between 2D detection results and CAD mod-
els. These methods have produced impressive reconstruc-
tion quality. However, their retrieval-based pipelines can
sometimes generate 3D models that are not consistent with
2D inputs. Total3D is an end-to-end learning approach that
simultaneously detects object categories, poses, 3D models,
and room layouts.

The panoptic 3D scene reconstruction task, introduced
by Dahnert et al. [8] and Liu et al. [31], aims to predict 3D
scene models along with the semantic labels of all instances
and stuff in the scene. Liu ef al. [31] proposed a stage-wise
panoptic 3D parsing system that can perform reconstruction
on images in the wild. Dahnert et al. [8] presented a voxel-
based sparse neural network that predicts scene geometry,
semantic, and instance segmentation using parallel network
heads.

3. Method

We present a novel system that performs 2D panoptic
segmentation, 2.5D depth estimation, and 3D scene under-
standing and reconstruction concurrently. The overall ar-
chitecture is shown in Figure 2. Our approach comprises
two components responsible for 2D and 3D respectively.
We first propose a Transformer-based architecture that si-
multaneously addresses panoptic segmentation and depth
estimation, and elaborate on our 3D network for panoptic

reconstruction, which takes in back-projected multi-scale
features and transforms them into 3D segments with query
embeddings for the reconstruction output.

3.1. Depth-aware Panoptic Segmentation

Our 2D panoptic segmentation is primarily based on
Mask2Former [4], where panoptic segmentation is formu-
lated as a mask classification task. Given an image, we need
to partition it into IV regions represented by binary masks
(segments) {m;|m; € [0,1]7*W}. Each mask is associ-
ated with a distribution p; over (K + 1) categories, where
the extra category is for no-object class @. Such formula-
tion is appropriate for both instance and semantic segmen-
tation due to its unified representation for thing and stuff
classes.

To enable monocular depth estimation with the panoptic
segmentation framework, instead of adding another sepa-
rate network after the backbone, we argue that the two tasks
can benefit from the shared knowledge of each other, lead-
ing to a unified solution to 2D and providing better features
for 3D reconstruction. Inspired by architectures such as
PanopticDepth [15], we introduce a depth decoder, parallel
to the original panoptic segment decoder in Mask2Former.
The details are illustrated in Figure 3. Both the decoders
have their own NN learnable query embeddings, denoted as
a7, qP respectively, where i is the index for each segment.
The four-level feature maps produced by the Transformer
encoder, with scale 1/32,1/16,1/8,1/4 of the input im-
age, are denoted as I, I, F3, Fy, respectively. The output
segmentation mask 7; and the depth map within the mask
d; are simply



n; = Sigmoid (P5(Fy) - ¢F)

: ()
d; = Dynax Sigmoid (PP (Fy) - ¢°)

where Dy,ax is the depth scale. PS and PP are learnable
projection functions that maps the largest encoder feature
F, into different spaces. In decoder layer [, masks from
layer [ — 1 are resized and binarized with threshold 0.5,
where cross-attention is restricted within features where
masks are valid. Fy, Fy, F3 from the encoder are fed into
the 9 decoder layers in a round-robin fashion to leverage
multi-level features.

To further enhance the interaction between the two
decoders and facilitate knowledge sharing, we introduce
cross-decoder query association. In this module, both the
segment query and depth query belonging to the same seg-
ment ¢ are updated as (with skip connection omitted)

q{ = Self-Attention (q = q{, k=1[q,qP),v =7, qiD]) (2)

where j = Sor D.

During training, bipartite matching is performed be-
tween G ground truth labels and N predicted segments
(G < N), such that an injective function o : [G] — [N]
can be found. The matching cost between j-th ground truth
and ¢-th prediction is

C(j,3) = —pi(cj) + Lomask (i, m;) (3)

where Lk is the mask loss, and c; is the class label for j-
th ground truth. Note for the simplicity of the notation, we
ignore the weights before each loss term unless otherwise
mentioned. The loss for the panoptic segment decoder is

Esegment = Las + ]l{ielm(a)}ﬁmask (mu m071(i)) C))

where classification loss Les = —log p;(c,—1(;))-

For the depth decoder, we use the same matching o
obtained from the panoptic segment decoder. Following
[38], the loss between j-th ground truth depth map and -
th (¢ = o(7)) matched prediction comprises scale-invariant
logarithm error [1 1] and relative square error [16], specifi-
cally

1 k ONIE
Laeptn = L{icim(o)} {n Z <logd§. ) —log d! )) -
k
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where k is the index for each pixel. We only calculate the
depth loss within the region for each segment, as demar-
cated by the ground truth mask m;.

Panoptic segmentation and depth estimation are trained
jointly with the loss defined in Equations (4) and (5). The

same inference strategy in MaskFormer [5] is utilized for
panoptic segmentation, where each pixel [h, w] is assigned
one of the NV segments via arg max; ., < p;(¢;) - m;[h, w].
¢; is the most likely class label ¢; = arg max. p;(c). The
segments are filtered out if most of the mask confidence is
lower than 0.5. Multiple segments belonging to the same
stuff class are merged. The depth for each pixel is extracted
from the depth map d; accordingly, if it belongs to the i-th
segment 77; in panoptic segmentation.
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Figure 3. Illustration of the dual decoders for panoptic segmenta-
tion and depth estimation. Each decoder takes in its own query
embeddings and performs masked cross-attention with image fea-
tures (F1, F2, or F3) from the Transformer encoder, where masks
are generated from the previous decoder output. A subsequent
cross-decoder query association layer enables the communication
between segment and depth queries belonging to the same seg-
ment, followed by a typical self-attention layer. Multiple decoder
layers are stacked for gradual refinement of the outputs.

3.2. Panoptic 3D Scene Reconstruction
3.2.1 Multi-scale Feature Lifting

Following [8], we back-project 2D feature maps P (F}),
PP(Fy), along with 2D depth and semantic segmentation
map into a 2563 3D volumetric grid containing the camera
frustum using the estimated depth. The features are encoded
as a truncated distance field (TDF) along the view direction
with truncation 7 = 3. A 3D generative U-Net, as in [&],
takes in the 256% volumetric feature and generates repre-
sentations of smaller scales. In order to leverage the rich
semantics from multi-scale features, we also back-project
features F3, I, F; taken from the Transformer encoder into
the same camera frustum, but with voxel sizes doubled be-
tween levels, thus yielding 1283, 642, 323 feature volumes.
These features are then fused into encoded features from the
U-Net encoders of the respective scale.
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Figure 4. Qualitative comparison of panoptic 3D reconstruction on 3D-Front [14]. Different colors represent separate instances.  denotes
that the models adopt official weights without fine-tuning on 3D-Front.

3.2.2 2D Queries as Strong Priors

Analogous to the 2D case, we formulate the panoptic 3D
segmentation as dividing the camera frustum into N re-
gions represented by 3D binary masks (segments) {s;|s; €
[0, 1]H*WxDP1Y " as opposed to the per-voxel classification
paradigm in [8]. This bridges the gap between 2D and
3D, where 2D and 3D segments have one-to-one corre-
spondence. And therefore the 3D network can leverage the
strong 2D priors via segment query embeddings g7, which
are learned in the 2D panoptic segment decoder and con-
tain abundant information about stuff and thing segments.
Each segment s; can be obtained from query embeddings
and decoded feature I/ from U-Net, as follows

s; = Sigmoid (K (g} ) = F") (6)

where K is a learnable projection function. The projected
queries K (g) serve as 1 x 1 kernels that convolve feature
F’, which is geometry-aware, as a separate geometry head
is attached to F” and its output is supervised by the trun-

cated distance field for the entire scene. Here query embed-
dings from the last Transformer decoder layer are utilized.

3.2.3 3D Reconstruction Outputs

We utilize the coarse-to-fine prediction strategy, which con-
tains three levels of volumes, namely 643, 1283, 2563. Each
level outputs IV 3D segments, with a separate head predict-
ing the occupancy for the entire scene. The occupancy grid
is thresholded at 0.5 and used to prune the current-level fea-
tures before passing them onto the next level. A geometry
head operates on the last feature level to predict the trun-
cated distance field. The training loss for the 3D network is

L= Lgeometry + Z Eéeg(gi, so—l(i)) + ’C(l)ccupancy (M
l

where Lgeomerry denotes the L-1 loss between predicted
TDF and ground truth, Eseg and Loccupancy are binary cross-
entropy loss for 3D segments and occupancy respectively.



The latter two are summed over scale /. The matching func-
tion o remains the same as 2D, which is obtained from the
2D predictions of the last decoder layer.

In the inference phase, we adopt a similar approach to
the 2D case. Specifically, we assign each voxel [z,y, 2] a
segment via arg max; ., 2o p;(¢;) - si[x, y, 2], with low con-
fidence segments filtered. Afterward, for each voxel within
the distance threshold 7, in the TDF prediction but not be-
longing to any segment, we assign it the most likely seg-
ment regardless of the mask confidence for that segment.

4. Experiments
4.1. Datasets

For main results, we use the 3D-Front dataset built
in Pano-Re [8], which is a synthetic dataset containing
18,797 indoor scenes with randomized 3D shapes from
the 3D-Future [14] dataset. 3D-Front includes wall and
floor as two stuff classes and 9 different instance (thing)
classes. 2D ground-truth information, i.e. RGB image,
depth, instance segmentation, and semantic segmenta-
tion, is also provided. We adopt the same train/val/test
split, with 4,389/489/1,206 images respectively. Follow-
ing Pano-Re [8], we also evaluate the single-scale Uni-
3D on the real-world dataset Matterport3D [3], which con-
tains 34,737/4,898/8,631 train/val/test images for 61/11/18
scenes respectively.

4.2. Implementation Details

Depth-aware panoptic segmentation Transformer. For
the panoptic segment decoder and Transformer encoder,
we adopt the same settings as [4], with ResNet-50 [19]
backbone, 9 decoder layers, and 100 queries. The mask
loss Lmask comprises binary cross-entropy loss L. and dice
loss [360] Lgice- We set loss weights as Aee = 5.0, Agice =
5.0, Acis = 2.0. For efficiency, K = 12, 544 points are ran-
domly sampled during bipartite matching to calculate the
matching cost, while the identical number of points are im-
portance sampled for the mask loss following the practice
in [4].

In terms of the depth decoder, we set Ageptn = 2.0, and no
extra weight is used to balance the scale-invariant logarithm
error and relative square error. As the 2D depth estimation
is a regression problem, the sampling strategy used in the
panoptic segment decoder is not applicable. To maintain
pixel-wise accuracy while capping the computational cost,
We down-sample the ground truth via nearest neighbor in-
terpolation to the size of predicted depth maps, which is 1/4
of the original image size.

The 2D network is optimized with AdamW [34] opti-
mizer, with initial learning rate 10~*. A polynomial-based
learning rate scheduler multiplies the base learning rate with
(1 —i/N)°9, where i and N denote the current iteration

and the total number of iterations respectively. On Front-
3D [13] dataset, the model is trained for 160k iterations,
with batch size 16. In terms of data augmentation, the in-
put image is randomly scaled from the range 0.5 to 2.0 of
the original size 320 x 240 followed by a fixed-size crop
to size 240 x 240. Color augmentations introduced in [32]
are also employed. For the evaluation of real-world per-
formance, the model is then fine-tuned on Matterport3D [3]
for another 120k iterations, with the same polynomial-based
learning rate scheduling.

3D panoptic reconstruction network. We load and freeze
the weights of the 2D network obtained in the previous step.
The input size is fixed as 320 x 240, without any cropping.
Adopting the empirical loss weights in [8], we set them as
Ageometry = 9.0, Aeg = 25.0 for three-levels of 3D segment
losses, and Aoccupancy = 950.0,25.0,10.0 for occupancy at
level 643, 1283, 2563, respectively. The network is trained
for another 110k iterations with a step learning rate sched-
ule and batch size 8. The initial learning rate remains 10~*
and decreases by a factor of 10 at the 80k iteration. On
Matterport3D [3], we combine 3D weights trained on 3D-
Front [13] with 2D weights already fine-tuned on Matter-
port3D, and train the network for another 100k iterations
with learning rate 10~%, which is decayed at the 80k itera-
tion.

The inference procedure to evaluate PRQ is described in
Section 3.2, where outputs are voxel-based representations
as required by the PRQ metric. For visualization, we apply
the marching cubes algorithm [33] to extract the isosurface
from the predicted TDF as meshes and assign each vertex a
color based on its semantic class and instance id, which is
determined by the label of its nearest neighbor in the pre-
dicted panoptic segments.

4.3. Metrics

Depth-aware panoptic segmentation. Besides the stan-
dard Panoptic Quality (PQ) metric introduced in [25] to
evaluate panoptic segmentation, we also adopt Depth-aware
Panoptic Quality (DPQ) [38], which evaluates segmentation
and depth estimation jointly. Specifically, given prediction
p and ground truth g, and depth threshold A, DPQ)‘ is com-
puted as

DPQ*(p, g) = PQ(p™, 9) (8)

where p” is obtained by filtering out pixels in p with relative
depth errors higher than A\. The overall DPQ is computed
by averaging over A = {0.1, 0.25, 0.5}. We also report the
root mean square error (RMSE) of the estimated depth for
reference.

3D panoptic reconstruction. We use 3D panoptic recon-
struction quality (3D PRQ) defined in [8] to evaluate the
model performance on 3D scene understanding. 3D PRQ is



Table 1. 2D quantitative results on 3D-Front [13]. Each cell contains values averaged over all / thing / stuff classes. Note that Pano-Re [§]
has only instance segmentation, and thus metrics including stuff classes are unavailable.

Method \ PQ \ DPQ’! ¢ DPQ 1 \ RMSE |
Pano-Re [8] —/68.39/ — —/60.18/ — —/64.99/ — 0.10/ 0.14/ 0.08
Uni-3D 73.80/80.19/54.63 | 66.85/71.02/5432 71.62/77.26/54.71 | 0.12/0.15/0.09

Table 2. 3D quantitative results on 3D-Front [13]. Values for Mesh R-CNN and Total3D are taken from [13], which are finetuned by the

authors on 3D-Front.

PRQ RSQ RRQ | PRQ RSQ RRQ | PRQ RSQ RRQ

Method .
Things Stuff

Mesh R-CNN [17] — — — 20.90 38.00 53.20 — — —
Total3D [37] 15.08 36.63 40.15 | 13.77 34.88 38.89 | 20.94 4449 45.85
Pano-Re [8] 42.60 53.71 70.85 | 36.79 49.57 65.67 | 68.73 7236 94.19
Uni-3D (Single-scale) | 52.48 60.91 83.90 | 47.22 56.60 81.56 | 76.17 80.28 94.39
Uni-3D (Multi-scale) | 53.54 61.67 84.71 | 48.33 57.44 8243 | 77.00 80.72 94.97

a simple extension of PQ in 3D space. For a specific cate-
gory c, the corresponding PRQ value is defined as

PRQ® — >_(i.jyetee 10U(E, )
~ |TP®| + 0.5|FP¢| + 0.5|FN°|

€))

where TP, FP, and FN is true positives, false positives, and
false negatives for the category c, respectively. PRQ® can
also be divided into two terms: RSQ® representing segmen-
tation and RRQ° representing recognition accuracy. RSQ®
and RRQ¢ can be computed as

> i,jyere 10U(4, )

RSQ° =
5Q TP°|

(10)

TP

- c c c (11)
ITP®| + 0.5[FP°| + 0.5[FN°|

4.4. Baselines

We compare the proposed method with state-of-the-art
approaches that can perform the 3D panoptic scene recon-
struction task, including Mesh R-CNN [17], Total3D [37],
and Pano-Re [8]. Mesh R-CNN reconstructs instances in
input images by instance segmentation features, so it could
not predict 3D stuff shapes and we only evaluate its perfor-
mance on thing reconstruction. For Total3D, we follow [8]
and set its layout prediction target as wall and floor for eval-
uating stuff reconstruction quality.

4.5. Results

2D quantitative results. We provide the results of quanti-
tative evaluation on 3D-Front [13] with Pano-Re [8] in Ta-
ble 1. Here only DPQ with the strictest A = 0.1 and the
average over all the thresholds are shown. Our framework
outperforms Pano-Re in terms of 2D segmentation, while
the depth estimation is on par, with RMSE lower than 5%

of the mean depth (2.34) in the dataset. For both frame-
works, the depth estimation errors in thing classes tend to
be higher than in stuff classes. We will discuss the impact
of depth accuracy on the final 3D reconstruction results in
Section 4.6.5.

3D quantitative results. We show quantitative compar-
isons in Table 2, evaluated with the PRQ metric proposed in
[8]. Our method, Uni-3D, either with single- or multi-scale
feature lifting, is able to surpass Pano-Re by ~10 PRQ. The
improvement is consistent through thing and stuff classes.

3D qualitative results. We present qualitative results in
Figure 4. As shown in the figure, Mesh R-CNN (column
2) tends to generate noisy reconstructed shapes. Total3D
predicts shape-based instance category priors, which leads
to inconsistency between shapes and 2D observations (col-
umn 3). These two methods predict 3D instance shapes
and layouts separately, resulting in poor global structure
and arrangement. Pano-Re and the proposed Uni-3D sys-
tem are able to accurately generate instance geometry and
scene layouts. Compared to Pano-Re (column 4), Uni-
3D performs better in 3D segmentation (column 5) due to
its universal 3D scene reconstruction pipeline, which cor-
rectly distinguishes separate instances and provides precise
semantic label predictions. Furthermore, Uni-3D demon-
strates better reconstruction quality and alignment with the
ground truth in all five samples.

Evaluation on real-world data. We show 3D quantita-
tive evaluations on Matterport3D [3] in Table 3 and some
qualitative examples in Figure 5. Compared with synthetic
dataset 3D-Front, real-world images are significantly more
challenging due to the complexity of scene arrangement,
noises in input data, and quality of labels. Thanks to the
unified paradigm, Uni-3D is able to effectively reconstruct
the shape and provide semantics for many 3D instances.
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Figure 5. Qualitative results of panoptic 3D reconstruction on Mat-
terport3D [3]. Different colors represent separate instances.

Table 3. 3D quantitative results on Matterport3D [3].
‘ PRQ RSQ RRQ ‘ PRQ RSQ RRQ ‘ PRQ RSQ RRQ

Method

Things Stuff
Mesh R-CNN [17] - - - 629 31.12 15.60 - - -
Pano-Re [8] 7.01 2857 17.65 | 6.34 26.06 16.06 | 10.78 40.03 26.77
Uni-3D ‘ 8.21 37.18 21.53 ‘ 7.28 36.83 19.39 ‘ 11.00  38.23 27.96

4.6. Ablation Studies

We provide various ablation studies to demonstrate the
efficacy of our system designs. Except for comparisons re-
garding multi-scale features, we only utilize the single-scale
version of our framework in this section.

Table 4. Ablation studies on 3D-Front [ 1 3] with the 3D reconstruc-
tion network in Pano-Re [8].

Method | PRQ RSQ RRQ
Pano-Re [§] \ 42.60 5371 70.85
Pano-Re w/ our seg 43.10 54.34 71.06
Pano-Re w/ our depth 32.64 4558 63.56

Pano-Re w/ our seg + depth | 33.34 45.57 65.19
Pano-Re w/ our 2D network ‘ 46.00 53.81 83.04
Uni-3D ‘ 5248 60.91 83.90

4.6.1 Importance of Unified Architecture

In Table 4, we demonstrate the effectiveness of our uni-
fied design for 3D reconstruction, where 3D stuff and things
are unified as 3D segments, guided by 2D queries. As our
2D segmentation outperforms that of Pano-Re [8], we first
replace their 2D segmentation and/or depth estimation re-
sults with ours while retaining features from their ResNet-
18 backbone (row 2 — 4 in the table). Our 2D segmentation
results improve the 3D reconstruction quality of Pano-Re,
while our depth decreases PRQ regardless of segmentation,
which is in line with 2D qualitative results in Table 1.

We then substitute the 2D network of Pano-Re with our
depth-aware panoptic segmentation framework. Thanks to
the stronger feature backbone, further boost to PRQ (+4-2.9)
is achieved on top of replacing 2D segmentation results.
However, even with the same 2D network, Uni-3D still sur-
passes Pano-Re by a large margin (46.48 in PRQ). This

illustrates the importance of our unified design of 3D seg-
ments and 2D queries as priors in reconstruction quality.

4.6.2 Multi-scale Feature Lifting

In Section 3.2, we introduce back-projection of multi-scale
2D features and fuse them into the U-Net encoders to lever-
age the richer semantics in these features. Table 2 provide
comparisons between Uni-3D with single- and multi-scale
feature lifting. Multi-scale features bring a prominent PRQ
boost 1.06, with the increase in thing classes (+1.11) larger
than in stuff classes (4-0.83). Figure 6 visualizes two sam-
ples where multi-scale features help the 3D network recon-
struct better fine details, i.e. seatbacks in the top row, and
table-top vases in the bottom row. The wall in the bottom
row also looks more complete for the multi-scale variant
due to a more accurate prediction of the TDF.

@iy &

"~ 4

R a e

Figure 6. Side-by-side comparison of reconstruction results be-
tween single- (column 2) and multi-scale (column 3) feature lift-
ing. Multi-scale features enhance the reconstruction quality of
finer details.

4.6.3 Features Used in Back-projection

Following [8], multiple types of inputs, i.e. 2D features,
depth, and 2D semantic segmentation maps are back-
projected and encoded in the 3D network. We ablate the
use of these features by removing one at a time and the re-
sults are provided in Table 5.

Efficacy of 2D segmentation masks as priors. The use
of semantic segmentation maps is equivalent to the instance
propagation in [8]. The inclusion of 2D segmentation maps
does improve 3D results, especially in thing classes. How-
ever, the performance gain is minor (0.33 PRQ) on Uni-
3D compared with Pano-Re [8]. The latter suffers a large
PRQ drop (22.84) without instance propagation, mostly in
thing classes. As we generate 3D convolution kernels from
2D query embeddings, along with the 3D features lifted
from 2D Transformer encoders, the strong affinity between
queries and features after multiple layers of depth or seg-
ment decoders are maintained, which provides significantly
more robust 2D priors for both thing and stuff segments in
3D panoptic reconstruction.



Table 5. Ablation studies on 3D-Front [13] dataset with single-
scale features in back-projection. Our model remains relatively
robust with different feature inputs.

PRQ
Method all Things Stuff
Pano-Re [£] 42.60 36.79 68.73

— Instance propagation 19.76 (—22.84) 9.60 (—27.19) 65.47 (—3.26)

+ GT depth 4458 (+1.98)  38.17 (+1.38) 73.43 (+4.70)
Uni-3D 52.48 47.22 76.17

— Semantic segm. map 52.15(—-0.33)  46.81 (—0.41) 76.20 (+0.03)
— Depth DF embedding | 52.44 (—0.04) 47.22 75.90 (—0.27)

— Mask feature 52,03 (~0.45)  46.78 (—0.44) 75.65 (—0.52)
— Depth feature 52.32(—0.16)  47.14 (—=0.08) 75.66 (—0.51)
+ GT depth 56.13 (43.65)  51.55 (+4.33)  76.71 (+0.54)

Mask vs depth feature. For mask feature P°(F;) and
depth feature PP (F}), they are derived from the same fea-
ture F; in the Transformer encoder but projected into dif-
ferent spaces that are optimized for segmentation and depth
estimation respectively. Removing mask features P (F})
results in a 0.45 PRQ drop, which is much larger than the
drop (0.16) when removing depth features P (F}), signi-
fying the closer affinity between query embeddings K (qf )
and mask features. Also, despite the dip in performance
when only the depth feature is used, it alone can still yield
a relatively high PRQ of 52.03, demonstrating the benefits
of interactions between depth estimation and panoptic seg-
mentation in the 2D Transformer, where the knowledge is
shared across tasks. Hence, even though the two features
are just different “views” of the feature F};, we incorporate
both into our 3D network.

Use of depth information. Regarding the depth as a dis-
tance field embedding, we only find it yields a minor im-
provement (0.27) in stuff PRQ. In terms of features, the
depth feature has a greater influence on stuff PRQ (0.51)
than things (0.08), consistent with the functionality exhib-
ited by depth DF embedding.

4.6.4 Effect of 2D Queries and Features in 3D Network

In Table 6, we further ablate the model by either remov-
ing 2D features (both mask feature P(F}) and depth fea-
ture PP (Fy)), or replacing learned 2D queries g7 with
randomly initialized learnable query embeddings, or do-
ing both. When 2D features are used, without learned 2D
queries, PRQ only has a minor dip (0.15) on stuff classes,
while it suffers a larger drop (0.96) on thing classes. Simi-
lar trends can be observed when 2D features are not present,
where stuff PRQ remains the same while thing PRQ drops
1.66. These results demonstrate that the learned 2D queries
mainly affect object instances instead of stuff layouts in 3D,
where the latter can be straightforwardly solved by semantic
segmentation.

In terms of the 2D features, removing them brings about

a consistent decrease in PRQ for both thing and stuff
classes. Without 2D features, the PRQ drop on thing classes
is smaller when 2D queries are used (1.68 vs 2.38), while
for stuff classes the difference is minor (2.45 vs 2.30). It
suggests that the 2D queries serve as strong priors for 3D
that majorly encode instance information, and the 2D fea-
tures provide rich semantics crucial for both instance and
stuff layouts.

4.6.5 Effect of Depth Estimation

The efficacy of back-projection relies on the depth accuracy,
and therefore we investigate its effects by providing ground
truth depth to the model. The results in Table 5 demonstrate
that for Uni-3D, the depth impacts more significantly the
reconstruction quality for thing classes, which often contain
finer structures compared with stuff classes such as wall or
floor. For stuff classes, the performance is close to satura-
tion as only 0.54 PRQ gain is observed with ground truth
depth. This is in contrast to [8], where depth inaccuracies
penalize more stuff instances.

Table 6. Ablation studies of Uni-3D (single-scale) on 3D-
Front [13] dataset regarding the effects of 2D queries and features.
2D features pertain to both mask feature P (Fy) and depth fea-
ture PP (Fy), while 2D queries are g5 from the last decoder layer
in the 2D network.

. PRQ
2D Queries 2D Features all Things Stuff
v v 52.48 47.22 76.17
v 51.67 (—0.81) 46.26 (—0.96) 76.02 (—0.15)
v 50.67 (—1.81) 4554 (—1.68) 73.72 (—2.45)

4930 (=3.18) 43.88 (—3.34) 73.72 (—2.45)

5. Conclusion

In this paper, we present Uni-3D, a universal approach
that unifies instance and layout representation by leveraging
a query-based network design. It also incorporates depth-
aware panoptic segmentation to improve 2D depth estima-
tion and segmentation qualities, thereby enhancing the ro-
bustness of 3D predictions. The proposed method signif-
icantly outperforms related approaches both qualitatively
and quantitatively, demonstrating the superiority of our uni-
versal model design.

Limitations. Uni-3D is capable of hallucinating occluded
parts in the 2D input image. Yet we still observe that its
performance may degrade in certain cases where large ar-
eas are occluded or only a limited portion of an instance is
observable for reconstruction.
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