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The purpose of this note is to summarize the arguments required to derive the results
appearing in robust minmax control of linear dynamical systems using a quadratic stage
cost. The main results required in robust minmax control are Corollary 19 and Propo-
sition 20. Moreover, the solution to the trust-region problem given in Proposition 15
and Lemma 16 may be of more general interest.

Linear algebra

We assume throughout that the parameters D € R"*™ >0, A € R™*" b€ R™ d € R"
or d € R"™™, Let AT € R™*™ denote the pseudoinverse of matrix A € R™*". Let
N(A) and R(A) denoted the null space and range space of matrix A, respectively. We
will also make use of the singular value decomposition (SVD) of A given by

>. o [V
A= vl 5] ] —om (1)

and r is the rank of A. The properties of the SVD and the fundamental theorem of
linear algebra imply that the orthonormal columns of U; and Us are bases for R(A) and
N(A’), respectively, and the orthonormal columns of V; and V5 are bases for R(A’) and
N(A), respectively.! We also have that AT =V, 1U].

First, we require solutions to linear algebra problems when such solutions exist.

Proposition 1 (Solving linear algebra problems.). Consider the linear algebra problem
Ax =1

1. A solution exists if and only if b € R(A).

*An earlier version of these results was presented at the short course “Robust Nonlinear Model
Predictive Control: Recent Advances in Design and Computation,” University of California, Santa
Barbara, CA, March 25-28, 2024.
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1Edge cases: A = 0 has r = 0 and empty Ui, V1, X, matrices, so U = Us,V = Vo and R(A) =
{0}, R(A") = {0}, N(A) = R™",N(A’) = R™. At the other extreme, if A is square and invertible,
r = m = n and Uz, V2 are empty so U = U,V = Vi, and R(A) = R*",R(A") = R™,N(A) =
{0}, N(A") = {0}



2. For b € R(A), the solution (set of solutions) is given by?
2" € ATh+ N(A) (2)

Proof. By definition of range, if b ¢ R(A) there is no x such that Az = b, and if
b € R(A), there is an x such that Ax = b, which is the same as the existence condition.
For b € R(A), let z € R™ denote a value so that Az = b, and let ¢ be an arbitrary
element in N(A) so 2° = ATb + ¢. To show (2) are solutions, note that

Az’ = A(AThb+q) = AATAz = Az =D

where we have used the definition of the null space and one of the pseudoinverse’s
defining properties, AATA = A. To show that (2) are all solutions, let 2’ denote a
solution. We then have A(z'—ATb) =b—b=0,s02’—Atb e N(A)orz’ € Atb+N(A).
Since «’ is an arbitrary solution, (2) gives all solutions. O

Note that if one is interested in deriving (2) rather than establishing that it is correct
as we did here, use the two orthogonal coordinate systems provided by the SVD of A,
and let x = Va, b = U, and solve that simpler decoupled linear algebra problem for
a® as a function of 3, and convert back to z° in terms of b.

If b ¢ R(A), 2° is still well-defined, but Az® —b = (AAT — I)b = —UsUsb # 0. In
this case, the ¥ given in (2) solves min, |Az — b| (least-squares solution), and achieves
value |Az® — b = |U3b|.

Positive semidefinite matrices. We say that a matrix M € R"*" is positive
semidefinite, denoted M > 0, if M is symmetric and '’ Mz > 0 for all x € R™.

Optimization

We shall appeal without proof to one theorem for existence of solutions to optimization
problems, the Weierstrass (extreme value) theorem. It says that a continuous function
on a closed and bounded set attains its min and max on the set.®> As we specialize to
the results of interest in this note, next we consider convex, differentiable functions.

Definition 2 (Convex function). A function V' : R™ — R is convex if
Vieu+ (1 —a)v) < aV(u)+ (1 —a)V(v) (3)

for all u,v € R" and 0 < e < 1.
If the function V is differentiable, then it is convex if and only if
dv
V() 2 V() + (0 - Sw) (@)
for all u,v € R™. See Boyd and Vandenberghe (2004, pp.69-70) for a proof of this fact.

An immediate consequence of this global lower bound is that u” is a minimizer of V'
if and only if (dV/du)(u®) = 0.

2We overload the addition symbol to mean set addition when adding singletons (ATb) and sets
(N(A)).

3Proofs for the multivariate version required here can be found in Mangasarian (1994, p. 198), Polak
(1997, Corollary 5.1.25), Rockafellar and Wets (1998, p. 11), and Rawlings, Mayne, and Diehl (2020,
Proposition A.7).



Proposition 3. A convez, differentiable function V : R"® — R has a minimizer u® if
and only if (dV/du)(u®) = 0.

Proof. To establish sufficiency, assume (dV/du)(u®) = 0; (4) then implies V (v) > V (u°)
for all v € R™, and therefore ©° is the minimizer of V.

To establish necessity, assume that u° is optimal but that, contrary to what is to be
proven, (dV/du)(u®) # 0, and let h = —(dV/du)(u’) so that the directional derivative

satisfies )
V(u® 4+ Ah) — V(u®) dVv dV

= h/%(uo) == %(UO)

Given this limit, for every e > 0 there exists §(e) > 0 such that

lim
A—0t A

2

V@ + M) = V(@) __|dV .

\ > - %(UO)

for all 0 < A < §. Choose € = (1/2) |(dV/dvuL)(uO)’2 > 0, and we have that

av . . |?

V(u® 4+ Ah) < V(u®) — (1/2) %(uo)

for 0 < A < 6. This inequality contradicts the optimality of u® and, therefore (dV/du)(u") =
0, which establishes necessity, and the proposition is proven. O

When considering robust control of linear dynamical systems with quadratic stage
cost, quadratic functions play a central role. We have the following result about their
convexity.

Proposition 4 (Convex quadratic functions). The quadratic function V(u) = (1/2)u' Du+
u'd + ¢ is convex if and only if D > 0.

Proof. We establish that the quadratic term f(u) := «'Du is convex by substituting
au + (1 — a)v into function f and rearranging the terms

flou+ (1 = a)v) = (af(u) + (1 - a)f(v)) = —a(l — a)(u —v)'D(u - v)

Since —a(l —a) < 0 for a € (0, 1), we have that the right-hand side is less than or equal
to zero for every u,v € R™ if and only if D > 0, verifying (3) for the function f.

It is then straightforward to show that the linear function u'd and the constant
function ¢ are both convex by directly verifying (3). It is also straightforward to establish
that linear combinations of convex functions are convex by verifying (3), and, therefore
the function V' is convex if and only if D > 0. O

The following optimization result for convex quadratic functions is then useful in
the ensuing discussion.

Proposition 5 (Minimum of quadratic functions). Consider the quadratic function
V():R* - R with D € R**"™ >0

V(u) = (1/2)u'Du+u'd

1. A solution to min, V ezists if and only if d € R(D).



2. For d € R(D), the minimizer and optimal value function are
u e -DTd+N(D) V°=—(1/2)d'D*d (5)
and (d/du)V (u) =0 at u®.

Proof. The function V (u) is differentiable and convex (Proposition 4) so from Proposi-
tion 3, a solution exists if and only if the derivative is zero. Taking the derivative gives
(d/du)V(u) = Du + d. From Proposition 1, Du + d = 0 has a solution if and only if
d € R(D) and the set of all solutions is d’ = —D%d + N(D), and evaluating V at the
solution gives V (u®) = —(1/2)d’ D" d establishing (5). O

For maximization problems, we can replace D > 0 with D < 0 and min with max.
Partitioned semidefinite matrices. We make extensive use of partitioned matrices

M= [Mn M12}

Miy Moo

We have the following result for positive semidefinite partitioned matrices (Boyd and
Vandenberghe, 2004, p.651).

Proposition 6 (Positive semidefinite partitioned matrices). The matriz M > 0 if and
only if My1 >0, Mas — M{, M M2 > 0, and R(Mi2) C R(May).

Proof.

1. Forward implication. Define V(x,y) = (1/2)(z,y) M(z,y), and assume M > 0.
Expanding V using the partitioned matrix

/
T My Mo |z
=(1/2
v = i g 3 7]
= (1/2) (2’ My13 + 22’ Myoy + y' Maoy) (6)
>0, forall (z,y)

Setting y = 0 in (6) implies that My, > 0. Since My > 0, V(x,y) is a differen-
tiable, convex function of = for any y. Therefore min, V(z,y) has a solution for
every y, and Proposition 5 then implies M2y € R(Mj1) for every y, which is equiv-
alent to R(Mjs) C R(My;). Substituting the minimizer over x, x° = — M Moy
into V' gives

V(2% y) = (1/2)y' (Maz — My, M Mia)y (7)

and since V (x,y) > 0 for all (z,y), we have that Moy — M|, M, My2 > 0, and the
forward implication is established.

2. Reverse implication. Assume My > 0, Moy — M, M, M2 > 0, and R(M;s) C
R(Mj;), and we establish that M > 0. For proof by contradiction, assume there
exists an (Z,7) such that (Z,7)'M(Z,7) < 0. By Proposition 5, we know that
min, V(z,%) exists since My; > 0 and Moy € R(Mjy), and it has value V° =
V(2°,7) with 2° = — M, M157. Substituting this into V' gives V° = (1/2)7' (Mg —
M, M My2)y > 0 because matrix May — Mjy M, My > 0. By optimality of 2,
V(z,5) > VY > 0 for all z. But that contradicts V(Z,7) < 0, and we conclude
M > 0, and the proof is complete. O



Note that

>0

[Mu My

. . M. M!
M, Mzz] >0 if and only if [ 22 12}

My My

So we can also conclude that M > 0 if and only if My; > 0, My > 0, Moy —
My M, Myy >0, My, — Mo My, My > 0, R(My3) € R(Myy), and R(M{,) C R(Mas).
Note also that given the partitioning in M, we define

My = Moy — M{, M My
Mag = My — Mo My, M/, (8)

and Mll is known as the Schur complement of M, and Mgg is known as the Schur
complement of Mos.

Constraints and Lagrangians. Next we require a standard optimization result for
using a Lagrangian to reformulate a constrained minimization as an unconstrained min-
max problem. The following result will be useful for this purpose. Let U C R™ be a
nonempty compact set and V() : U — R be a continuous function on U. Define the
Lagrangian function L(-) : U x R — R as

L(u,\) = V(u) — Ap(u,U) 9)

where p(-) : R"xU — Rx¢ is any convenient continuous indicator function that evaluates
to zero if and only if w € U. Denote a minmax problem as

inf sup L(u, A)

u A
When a solution to this problem exists, we define the optimal value L* and solution set
u* as

L* = minmax L(u, \) u* = arg min max L(u, A)
u A u A

It is convenient in the subsequent development to define the maximizer of the inner
problem

Au) = arg max L(u,\), weU

Proposition 7 (Constrained minimization and Lagrangian minmax). Let U C R"
be a nonempty compact set and V(-) : U — R be a continuous function on U, and
L(-) : U xR = R be defined as L(u,\) = V(u) — Ap(u,U). Consider the constrained
optimization problem
inf 1
nf V(u) (10)
and the (unconstrained) Lagrangian minmaz problem

inf sup L(u, \) (11)
uw oA

1. Solutions to both problems exist.

2. Let VO be the solution and u® be the set of optimizers of min,ey V (u). Let L* be
the solution and u* the set of optimizers of min, maxy L(u,\). Then

Vi=r* w’=vu"  Xu)=R



Proof. The solution to (10) exists by the Weierstrass theorem. Denote the optimal value

V0 and solution set u® C U which satisfy V (u°) = V°. We show that a solution to (11)

also exists. Consider the inner supremum. From the definitions of functions L and p,
we conclude

sup L(, \) = {V(u), uelU

A +o00, ugU

Then consider the outer infimum. We have that

L* =infsup L(u, \) = inf V(u) = min V(u) = V°
inf sup (w,A) = inf V(u) = minV(u)

So the solution to (11) exists with value L* = V. Taking the argument gives

0

*

u* == arginfsup L(u, \) = argmin V(u) = u
u A uel

For the inner problem evaluated at u*, we note that

sup L(u*, \) = sup V (u°) = max Vo =y0
A A

Taking the argument then gives

Au*) = argsup L(u*, \) = arg max VO=R
A

and the result is established. O

Minmax and Maxmin

More generally, we are interested in a function V(u,w) V : U x W — R and the
optimization problems

inf sup V(u,w) sup inf V(u,w)

uelU weW weW uelU
We assume in the following that the inf and sup are achieved on the respective sets and
replace them with min and max.

Continuous functions. Let’s start here. According to Wikipedia, von Neumann’s
minimax theorem states (von Neumann, 1928)

Theorem 8 (Minimax Theorem). Let U C R™ and W C R™ be compact convez sets.
IfV:UxW — R is a continuous function that is convez-concave, i.e., V(-,w) : U = R
is convex for allw € W, and V(u,-) : W = R is concave for all u € U
Then we have that

min max V(u, w) = max min V (u, w)

uelU weWw weW uelU

Note that existence of min and max is guaranteed by compactness of U, W (closed,

bounded). Also note that the following holds for any continuous function V/

min max V (u, w) > max min V(u, w)

uclU weW weW uelU
This is often called weak duality. 1t’s easy to establish. We are regarding the switching of
the order of min and max as a form of duality. (Think of observability and controllability
as duals of each other.)



So when this inequality achieves equality, that’s often called strong duality. So the
minimax theorem says that continuous functions that are convex-concave on compact
sets satisfy strong duality. When strong duality is not achieved, we refer to the difference
as the duality gap, which is positive due to weak duality

min max V (u, w) — max min V (u,w) > 0
uelU weW weW uelU

Saddle Points. In characterizing solutions of these problems, it is useful to define a
saddle point of the function V' (u,w).

Definition 9 (Saddle point). The point (set) (u*,w*) C U x W is called a saddle point
(set) of V() if

Vu*,w) <V, w") <V(u,w*) forallueUweW (12)
Proposition 10 (Saddle-point theorem). The point (set) (u*,w*) C U x W is a saddle

point (set) of function V (-) if and only if strong duality holds and (u*,w*) is a solution
to the two problems

: _ . _ * *
wep gy V) = napudp Vi) = Vi en) (3

* = i Vv * = inV 14
W MR s V) = e g Ve )

In the following development it is convenient to define the solutions to the minimiza-
tion and maximization problems

V(u) = max V(u,w), weU V(w) =minV(u,w), wewWw (15)

weW uelU
Note that (14) implies that max,cw V (w) = V(w*) and min,ey V(u) = V(u*).
Remark 11. Note that (14) also implies that

max min V(u, w) = min V (u, w*) min max V (u, w) = max V(u*, w) (16)
weW uelU uelU uelU weWw weW

To establish this remark, note that

max min V(u, w) = max V(w) = V(w") = min V(u, w)
Similarly, - -

min max V(u,w) = min V(u) = V(u*) = max V(u*, w)

uclU weW uelU weW

Next we prove Proposition 10

Proof. First we establish that (14) implies (12). Note that by optimality, the first
equality in (16), which is a consequence of assuming (14), implies that V(u*, w*) <
V(u,w*) for all w € U, and the second implies that V(u*,w*) > V(u*,w) for all
w € W. Taken together, these are (12).

Next we show that (12) implies (14). We know that the following holds by weak
duality

max min V (v, w) < min max V (u, w) (17)
weW uelU uelU weW



So we wish to show that the reverse inequality also holds to establish strong duality,
i.e., the first equality in (14). To that end note that from (12)

V(v ,w) < V(u,w*) forallweWuelU
Since this holds for all w € W it also holds for a maximizer, and therefore

max V(u*,w) < V(u,w*) foralluelU

weW
The left-hand side will not be larger if instead of evaluating at u = u* € U, we minimize
over all u € U, giving

min max V(u,w) < V(u,w*) forallueU
uclU weW
Now if this inequality holds for all u € U, it also holds for the minimizer on the right-
hand side so that
min max V (u, w) < min V (u, w™)
uelU weW uelU
We can only increase the value of the right-hand side if instead of evaluating at w =
w* € W, we maximize over all w € W, giving

min max V(u, w) < max min V (u, w)

uelU weWw weW uelU
Note that this is the weak duality inequality (17) written in the reverse direction, so
combining with weak duality, we have that

min max V(u, w) = max min V' (u, w)
uelU weW weW uelU
and strong duality is established.
We next show that u* solves the minmax problem. From the defined optimizations
in (21) we have that

. — . e 1
min max V(u,w) min V(u) (18)
max min V(u, w) = max V(w) (19)

Next choose an arbitraru u; € U and assume for contradiction that V(ui) < V(u*).
From the definition of V' we then have have that

\% Viu*
max (ug,w) < max (u*,w)
Therefore since w* € W
V(ug,w*) < max V(u*,w)

But from the saddle-point condition, (12), max,ew V(u*,w) < V(u,w*) for all u € U,
which contradicts the previous inequality since u; € U. Therefore V(uy) > V(u*), and
since w; is an arbitrary element of U, u* solves the minmax problem (18).

Similarly we can show that w* solves the maxmin problem (19) by exchanging the
variables w and u and the operations max and min. Therefore (w*, u*) solves (14), and
we have established that (12) implies (14). O



In the following development it is convenient to define the solutions to the inner
minimization and maximization problems

u’(w) := arg 1116151 V(u,w), weWw (20)
W (u) := arg max V(u,w), uwelU (21)
we

Note that these inner solution sets are too “large” in the following sense. Even if we
evaluate them at the optimizers of their respective outer problems, we know only that

u* g QO(’LU*) w* g EO(U*)

and these subsets may be strict. So we have to exercise some care when we exploit strong
duality and want to extract the optimizer from a dual problem. We shall illustrate this
issue in the upcoming results.

Quadratic functions. In control problems, we min and max over possibly unbounded
sets, so we need something other than compactness to guarantee existence of solutions.
When we have linear dynamic models and quadratic stage cost (LQ), we can use the
following results for quadratic functions.

Proposition 12 (Saddle-point theorem for quadratic functions). Consider the quadratic
function V() : R**™ 5 R

V(u,w) = (1/2) M [%ﬁ %] M " M Bﬂ

with Moy € R*n < O, My € RmXxm > 0, M5 € Rmxn,d € Rrtm™,

1. A solution to min, max,, V exists if and only if d € R(M). Similarly, a solution
to max,, min, V' ezists if and only if d € R(M).

2. For d € R(M), strong duality holds so that

min max V (u, w) = maxmin V (u, w) = V(u*, w*)
u w w u

where (u*,w*) are saddle points of the function V, satisfying
[Z*] € —-M"td+ N(M) V(u*,w*) =—(1/2)d M*d (22)

and dV (u, w)/d(u,w) =0 at (u*, w*).

3. For d € R(M), let u’(w) = min, V(u,w) and @w°(u) = max, V(u,w). The
solution sets and saddle points satisfy the following relationships

u* = argminmax V (u,w), u* C u®(w*), (23)
u w
w* = argmaxmin V (u,w), w* C@° (u*). (24)

Proof. First we establish that (u*, w*) satisfy (22) by analyzing the min, max,, V' prob-
lem. We assume d € R(M) and expand V(-) as

V(u,w) = (1/2)w’ Magw + w'(Miyu + da) + (1/2)u’ Myju + u'd; (25)



From Proposition 5, max,, V exists if and only if Mj,u + dy € R(Maz). This condition
is satisfied for some nonempty set of u by the bottom half of d € R(M). For such u we
have the necessary and sufficient condition for the optimum

Moo + Mjou+dy =0 (26)

which defines an implicit function w°(u), and optimal value given by (5)
@°(u) = — M35 (Mipu + dz) + N(Mas)
V(u,w°(u) = (1/2)u Magu + ' (dy — MyaMydy) — (1/2)dyMsyds

where Mo, is the Schur complement of My defined in (8). Note that Mss > 0 since
M1 > 0 and My < 0, which implies MQJF2 < 0. However, we cannot simply set
the derivative to zero because we require Mi,u + da € R(Mag) for the existence of
V (u,w"(u)) = max,, V(u,w). To handle this range constraint, we use a linear equality

constraint M{,u+ds = Mooy where y is a slack variable. Under the equality constraint,
the problem min, max,, V is equivalent to the following constrained minimization:

min V (u, @ (u)) subject to  Mju + da = Maoy.
u.y
Because V (u,w°(u)) is convex and differentiable in (u,y), its minimum subject to the

affine constraint Mi,u + da = Moy is achieved by the stationary points of the La-
grangian (Boyd and Vandenberghe, 2004, pp. 141-142):

L(u,y, ) == V(u,@°(w)) + N (M]ou + do — Mayy).

Taking derivatives, we have (u*,y*, \*) is a stationary point if and only if

MQQ'LL* + dl — M12M2J5d2 + M12)\* =0 (27)
—MaoA\* =0 (28)
M{QU* +dy — Mggy* =0. (29)

Substituting (29) into (27), we have

Myu* + Mya (N — My Mooy*) 4+ dy = 0.
Next, (28) implies A* € N(Msz), so we can rewrite (29) as

M{qu* + Mag(N* — My, Maoy™) + da = 0.
With w* := \* — M, Maoy*, we have the system (27) and (29) as

My Mg |u* dy

{Mfz M2’j Lﬂ] i [d2] - e
which has solutions since d € R(M), and moreover, any such solution gives y* =
— M, Mapw* and \* = w* + y* satisfying (27)—(29). In fact, w* C w°(u*) is implied
by (28) and (29). Finally, solving (30) and substituting the solution into V' (u,w) gives
(22).

To solve the max,, min, V' problem, take the negative of the objective to obtain
max,, min, V' = — min,, max, (—V’). Therefore the exact same procedure can be used
here, and it produces the same solutions and optimal values (22), along with u* C
QO(U}*)

Finally, note that if d ¢ R(M), we have no solution to max,, V(u,w) for any wu,
and therefore no solution to min, max, V(u,w). Similarly we have no solution to
min,, V' (u, w) for any w, and therefore no solution to max,, min, V(u,w). We have
thus established all the claims of the proposition. O

10



Applying Proposition 12 to the following example with M1 = Moy = 0 and M1, =1

0 1

M:L 0

} V(u,w) = uw + Md

gives (u*,w*) = —(d2,d1), V(u*,w*) = —did, w°(u*) = R, u’(w*) = R. Note that
both functions w°(-) and u°(-) are defined at only a single point, u* and w*, respectively.
So in this degenerate case, these functions are not even differentiable.

Lagrangian functions. The connections between constrained optimization problems
via the use of Lagrange multipliers and game theory problems are useful (Rockafellar,
1993).

For optimization problems of convex type, Lagrange multipliers take on a
game-theoretic role that could hardly even have been imagined before the
creative insights of von Neumann [32], [33], in applying mathematics to mod-
els of social and economic conflict.

~T.A. Rockafellar

Next we are interested in the Lagrangian function L(-) : R"™™+l 5 R

sy =/ [2] o 3] [2] - arone -

w

~om i [ a2+

with M e Rtm)x(n+m) > 0 and My, € R™*™, My € R™X" Myy € R"*". Note that
from Proposition 6, both M7; > 0 and Mss > 0 as well, so that max,, is not bounded
unless A is large enough to make Moy — AI < 0. The Schur complements of M;; and
Moo — A are useful for expressing the solution.

My1(N) = (Mg — AI) — Mo, M;; Mo
Mgg()\) = M11 — Mlg(Mgg — AI)_‘_M{Q
Note that both Schur complements depend on the parameter A.

Corollary 13 (Minmax and maxmin of a quadratic function with a parameter). Con-
sider the quadratic function L(-) : R*"t™+1 5 R expressed as

L(u,w, ) == (1/2) [ZH%; Mfl_zﬂ] [Z}Jr)\/Q (31)

1. A solution to min, max,, L exists if and only if
A 2 [ M| (32)
and the solution (set) and optimal value function are
w'(u) € —(Mag — M) T Mjy u+ N(Mayy — N)
u® € N(Ma(N))

A/2, A > | Mas|

L O’ 0 O,A:
(u”, w” (u”), \) {Jroo’ X < [Ma)|

11
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Figure 1: The optimal value function L° for min, max, I and max,, min, L ver-
sus parameter A. Strong duality holds only when A > |Maa|. For A < |Maal,
min, max, L° = +o00. For A\ < ‘MQQ — M{gMﬂMlgL max,, min, L = +oo.

2. A solution to max,, min, L ezists if and only if
A > | Moy — Miy My M| (33)
and the solution (set) and optimal value function are
u’(w) € =M My w+ N(Mny)
w’ € N(Mi1(\))
L(u®(w®), w’, \) = {)\/2’ A2 Moy = Mia My M
400, A< |May — M{y M M|

3. Strong duality holds and the duality gap is zero for A > |Mas|.

4. If ‘Mm - ]VI{QMﬂMu’ < |Mas|, then there is an unbounded duality gap for X\ in
that interval

minmax L — maxmin L = +oo, for |M22 — M’{2M1+1M12| < A < |Mas|
u w w u
Figure 1 illustrates a common outcome for Corollary 13. Note that the proof of
Corollary 13 follows the proof of Proposition 14.

Proposition 14 (Minmax and maxmin of a quadratic function with a parameter and
a linear term). Consider the quadratic function L(-) : R"*™TL — R expressed as

=5 (o] e 2] o]+ ] [od] - 300

ulMll Mlg U_"_Uldl_’_é
w| |M{y Mg — M| |w w| |dsy 2

M(X)

DN =
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with M(A=0) > 0.
1. A solution to min, max,, L exists if and only if
A > | Mo (34)
and the solution (set) and optimal value function are
w®(u,\) € —(Maz — M) T (M{y u+dp) + N(Mao — A
u®(A) € =M3h(A\)(dy — Mya(May — M) dy) + N(Maz(X))
A_ 1
L(u®,w®(u®), \) = {io_o,Qd M*(A)d, :\\ i :%Z:
2. A solution to max,, min, L exists if and only if
A > |Magy — My M Mis| (35)
and the solution (set) and optimal value function are
u’(w,\) € =M (Miz w+dy) + N(Miy)
w®(N) € =My (A)(dz — M{pMydi) + N(Miz(N)
2 - LM+ (\)d, A > | Moy — M{y My M|

Ll (w®),w’, ) =42 2
( ( ) ) +00, A< ’MQQ — M{2M1—~1M12|

3. Strong duality holds and the duality gap is zero for A > |Maa|.

4. If ‘Mgg — M{QMﬂMm’ < |Masa|, then there is an unbounded duality gap for X\ in
that interval

min max L — maxmin L = 400,
u w w u

fOT’ |M22 — M{QMHM12| <A< |M22|
Proof. Expand L as

1
L(u,w,\) = §(u’]\/[nu + 20 Mygw + w'(Maz — M )w + 2u'dy + 2w'dy + A)

1. First note that max,, L exists if and only if Mas—AI < 0. Otherwise max,, L(w,u, \) =
+00. And Mss — AI < 0 if and only if A > |Mss|, which establishes (34). If this
condition is satisfied, from Proposition 5 the solution is

wO(u) € —(Mag — NI)T(Mly u + da) + N(May — )

LU,UJO u), A 21 UIMQQ MNu + 2u dy — Mya(Mag — NI +dg —d/Q Mooy — NI Jrd2—|-/\
2

Since May — AI < 0, we have that (Maz —AI)" < 0 as well and therefore ]\7[22()\) >
0. Therefore, min,, L(u,w’(u)) exists and the solution from (5) is

u(X) € =M3,(A\)(dy — Mia(Maz — M) T da) + N (Maa(N))
substituting u® and w(u®) into L gives

3 —Ld M+ (\)d, A > | M|

L 0, 0 0’)\ _
(0, 0 (), ) {m Sy

and this part is established.
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2. Since M7; > 0, min, L exists from Proposition 5 and we have
uo(w) (S —Ml—ii(Mlg w + dl) =+ N(Mll)

1 -
L(u®(w),w, \) = 3 (w' My (Nw + 2w’ (dy — M{, My dy) — dy Midy + )

Next note that max,, L(u®(w),w, \) exists if and only if My;(A) < 0, or

0> (Myy — M) — M{, M, Mo
M > Moy — M{y M Mo

and the last inequality is satisfied if and only if A > |M22 - M{QMIJEM12|. If
that does not hold max,, L(u®(w),w, \) = +oc, which establishes (34). When this
condition is satisfied

w’(N) € =My (N)(da — M{,Mjidy) + N (M1 (X))

Substituting these values into L gives

A 1 yrasr+ / +

2 —=dMT(\N)d A > ([ Moy — M, MM
L(uo(wo),wo,)\): 2 2 (A)d, —| 22 }2 1+1 12|

~+00, A < |Mag — M{, M M|

and this part is established.

3. Recall from Proposition 6 that M > 0 implies M1; > 0, Mys > 0, and Myy —
M{y M Mys > 0. Since My > 0, M, > 0 as well and therefore M|, M Mis > 0.
Therefore 0 < Moy — M/, M Mys < May, which implies |M22 — M, M M| <
|Mass|. So for A > |May|, both min, max,, L and max, min, L have value 2 —

2
$d’ M (X\)d, and strong duality holds.

4. If M is such that |M22 — M{QMHM12| < | Maz], then for A satisfying |M22 — M|, M} Mia| <
A < |Mss|, we have min, max,, L = +o00 and max,, min, L = % — %d'M*()\)d, SO
the duality gap is infinite, which establishes this part. O
Note that setting d = 0 in the proof of Proposition 14 establishes Corollary 13.
For strong duality to hold for all A such that either problem has a bounded solution
requires that | Mas| = |M22 — M{QMIJF1 Mlz‘. The following example shows that it is not

necessary for M{QMﬁMlg = 0 for this condition to hold.

1 0 1 0
M22—M12—{0 1] Mll—[o 0}—M1+1

0 0
Moy — My, M My = {0 1}

We have that |Mas| = 1 and | M —M{QMﬂMm’ = 1, so the norms are equal but
MMy My = M} #0.

14



Constrained quadratic optimization

A mysterious piece of information has been uncovered. In our innocence we
thought we were engaged straightforwardly in solving a single problem (P).
But we find we’ve assumed the role of Player 1 in a certain game in which
we have an adversary, Player 2, whose interests are diametrically opposed
to ours!

~T.A. Rockafellar

We next consider mazimization of a convex function so that a constraint is required
for even existence of a solution. We establish the following result.

Proposition 15 (Constrained quadratic optimization). Define the conver quadratic
function, V(-) : R™ — R and compact constraint set W

V(w) = 1/2)w'Dw+w'd W :={w|ww=1}
with D € R"*™ > 0. Consider the constrained maximization problem

max V(w) (36)

Define the Lagrangian function
L(w,\) = V(w) — (1/2)A\(w'w — 1)
and the (unconstrained) Lagrangian problem

max m/\in L(w, \) (37)

w
and the (unconstrained) dual Lagrangian problem

m)%n max L(w, \) (38)

w

1. Solutions to all three problems (36), (37), and (38) ezist for all D > 0 and d € R™
with optimal value

VO =1L0=—(1/2)d' (D — A\pI)*d+ Ap/2

where

D I] (30)

Ap := the largest real eigenvalue of P P = {dd’ D

2. Problems (37) and (38) satisfy strong duality, and the function L(w, \) has saddle
points (sets) (w*, \*) given by

w* =

((D/\P[)+d+N(D)\pI))ﬂW, Ap = |D|
—(D—/\PI)_ld, Ap > |D|
A= Ap

*

3. The optimizer of (36) is given by w® = w*.

15



—— de R(D - |D|I)
—— [(D—[D|)*d)| > 1
—e— d ¢ R(D—|D|I)

L(w®(X),\)

3.5 4.0 4.5 5.0 5.5 6.0 6.5
A

Figure 2: L(w®(\),\) versus X\ for the same D but different d. Green lines: for d €
R(D —|D|I), L is bounded for all A > |D|. Green dots: for |(D — |D|I)"d| < 1, the
optimum is on the boundary and A\p = |D|. Red dots: for |(D — |D|I)"d| > 1, the
optimum is in the interior and Ap > |D|. Blue line and dot: for d ¢ R(D — |D|I), L is
unbounded at A = |D|, and the optimum is in the interior, and Ap > |D].

4. The optimizer of (37) is given by

5. The optimizer of (38) is given by

WO (A0) = —(D = ApI)*d+ N(D — \pl), Ap = |D|
(D - )‘PI)_ldv Ap > |D|

A= \p

6. Additionally \p = |D| if and only if (i) d € R(D—|D|I) and (ii) |(D — |D|I)*d| <
1. If (i) or (i) do not hold, then Ap > |D| and |(D — )\pI)’ld| =1.

Figure 2 shows the possible behaviors. The green lines show the case d € R(D —
|D|I), for different |d|. For d = 0 (bottom green line), A\p = |D| and the optimum is
on the boundary. Increasing |d| eventually produces a zero derivative at A = |D| (third
green line from bottom). Further increasing |d| makes the derivative at A = |D| negative
(top two green lines), and Ap > |D| (red dots), and the optimum moves to the interior.
The blue line shows the case d ¢ R(D — |D|I). L is unbounded at A = |D|, Ap > | D]
(blue dot) and the optimum is again in the interior.

To organize the proof of this proposition, we treat the Lagrangian, dual Lagrangian,
and saddle-point problems in separate lemmas, and then combine them. We start with
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the dual Lagrangian minmax problem. We shall find that all of the information about
Ap emerges from this problem.

Lemma 16 (Dual Lagrangian of constrained quadratic optimization). Consider the
dual Lagrangian problem

m}%nmaXL(w, by L(w,\) := (1/2)w'Dw + w'd — (1/2)\w'w — 1) (40)

with D > 0. We have the following results.

1. This problem is equivalent to

min max L(w, \)
A>[D| w

2. The solution exists for all D and d and has optimal value
L = —(1/2)d' (D — ApI)Td+ \p/2 (41)

where \p and matriz P € R?>"*?" qre defined as
D I}

Ap = the largest real eigenvalue of P P = [dd’ D

3. The optimal X and w®()\) are given by
A= \p € [|D],0)

WI(A0) = —(D = |D|I)*d+ N(D —[D|I),  Ap=|D|
—(D — A\pI)~'d, Ap € (|D],0)

4. We have that \p = |D| if and only if (i) d € R(D—|D|I), and (i1) |(D — |D|I)*d| <
1. Otherwise A\p > |D|. If (i) is violated, L(w®(\),\) = +o0 at A = |D|. If (i)
holds but (ii) is violated, then L(w®(\, \) is finite at X = |D|, but (d/d\)L(w°(\),\) <
0 at A =1|D|.
Proof. To establish statement 1 in the lemma, note that if A < |D|, then D — X > 0
and max,, L(w,\) = +00. So adding the constraint A > |D| to the outer minimization
does not alter the solution.

To establish statements 2—4 in the lemma, we make use of the SVD of matrix D =
UMU’, which we partition as

-t i[5 ][]

where p is the multiplicity of the largest eigenvalue of D, 1 < p < n. Also denote
y=U'd,y1 = Uid,ys = Uld.

We break the problem into two cases.

1. Case Ap € (|D],00).

For A € (|D|,00), we have from Proposition 5 that w®(\) = —(D — M)~ 'd and
L(w®(\),\) = —(1/2)d"(D — XI)7td + A/2 . L(w°(\), \) is differentiable, and
taking two derivatives gives

dL _ U -2
™ (1/2)(1 = d'(D — A\I)™=d)
d’L ! -3

Iz =—-d(D—-X)"°d
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Setting the first derivative to zero yields

0=1-d(D—-\)2%d (43)
= det(1 —d'(D — \I)72d)
= det(I — dd'(D — \I)~?)
=det(D — \I) —dd' (D — XI)"")det(D — XI)~*

where we have used the fact that det(I+AB) = det(I+ BA). Since det(D—\I) #
0, we can multiply both sides of the last equality by det(D — AI)? to obtain

0 = det(D — AI) — dd'(D — M)~ ") det(D — AI)

D — )\l 1
:det({ dd’ DAI})zdet(P—)\I)

where we have used the partitioned determinant formula, which is valid since
D — \I is nonsingular for A > |D|. Therefore the first derivative of L vanishes in
the interval (|D|,c0) if and only if there exists a real-valued eigenvalue of P in
this interval. Also, we have from (43) that

1=d(D-X)2d=dUM - \X)2U'd=y' (M — \)"%y

with y := U’d. So we conclude that y # 0 for this case. Examining the second
derivative, we have

L =d(M —-D)3d=y (N -M)3

Vi - =y M —-M)""y
Note that since A > |D|, (\I — M)~® > 0, and since y # 0, we have that
d*L/d)\?* > 0 on (|D],o) and therefore L(w®(\),\) is strictly convex on this
interval. Therefore the minimizer of L is unique and the first derivative is zero
at the solution. We also know that there is only one real eigenvalue of P in this
interval due to the uniqueness of the optimal solution. Therefore we have estab-
lished that A% = Ap € (|D|, c0) is the optimal solution. Substituting this solution
into L gives

L = L(w®(\°),\°) = —(1/2)d' (D — ApI)~'d + A\p/2
verifying that (41) holds for the first case.

. Case A\p ¢ (|D|,0). In this case, we first show that the \° = |D|. Using the
SVD, we have for A € (|D], o)

L(w®(\),\) = —(1/2)d (D — XI)~td + \/2

=) wl [P /

an-an ][] 47

From this expression for L, note that y; = Ujd must be zero for this case, or
limy | p+ L(w®(X), ) = 400, which is a contradiction since limy s o0 L(w®(X),A) =
+o0 as well, and L is a smooth function on the interval (|D], c0), so it must have
a minimum on that interval (zero derivative), but by assumption it does not have
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a zero derivative on that interval. Note that y; = Ujd = 0 is equivalent to
d € R(D — |D|I), which can be seen from the SVD of D — |D| I

U{]

0
D_|D|I:[U1 U2]|: M2—|D|I:| |:U2/

so the columns of Uy are a basis for N(D — |D|I) and d is orthogonal to the
columns of Uy so d € R(D — |D|I). Substituting y; = 0, into the expression for
L(w®(\), \) gives

Lw®(\),\) = —(1/2)d'(D — AI)*d+\/2, A >|D|, de R(D—|D|I) (44)

and L(w’()\), \) is smooth on the interval including the left boundary, [|D|, o),
and the optimizer must be on the boundary, A\° = |D|. For this value of ), the
inner maximization over w gives from Proposition 5

w’(\°) = —(1/2)(D — |D|I)*d + N(D — |D|I)
and evaluating L° gives

L(w®(X°),A%) = —(1/2)y(Mz — [D| )~ y> + | D] /2
=—(1/2)d'(D - |D|I)"d + |D| /2 (45)

verifying (41) for this case.
Taking the derivative of (44) and evaluating at A = |D| gives

(d/dNL(w’(\), A) = (1/2)(1 = d'((D = |D| 1)*)*d) = (1/2)(1 - |(D — |D| I)*d|*)

which is non-negative if and only if [(D — |D|I)"d| < 1. Otherwise the derivative
at the boundary is negative and the optimal A is in the interval (|D|,o0), which
is the previous case. Therefore A’ = |D| if and only if

de R(D—|D|I), |(D-|D|)*d]<1

Next we show that |D| is an eigenvalue of P in this case. Factoring P — AI gives

by |U (U DU — A I U’
= Ul| UddU  U'DU—AI U’
[(|D| = M), 1
B [U ] My — A I [U’ }
U Y1y} vy (1D =N, U’
Yoy Y2Us My — N

Since the leading and trailing matrices are inverses of each other, we have a simi-
larity transformation, and the eigenvalues of the inner matrix are the eigenvalues
of P. Setting y; = 0 in the inner matrix and setting A = |D| gives a zero third
block row of the inner matrix, and it is singular. Therefore A = |D| is an eigen-
value of P. Since there are no real eigenvalues of P in (|D|,00), we have that
|D| is the largest real eigenvalue of P for this case, and we have established that
A% = \p also for this case.
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Summarizing, we have broken the problem into two cases. In the first case we have
shown that A\° = Ap > |DJ, and (d/d\)L(w®(\), A) is zero at A = Ap. In this case there
is only one real eigenvalue of P in (|D|, 00).

In the second case, we have that A\ = A\p = |D|, the boundary of the feasible set.
We have also shown that d € R(D — |D|I), and |(D — |D|I)"d| < 1 for this case. If
d ¢ R(D — |D|I), then L(w’()\),\) is +oo at A = |D|, which is in the first case. If
d € R(D —|D|I), but |(D—|D|I)*d| > 1, then L(w®(\), ) is finite at A = |D|, but
the derivative is negative, which is again in the first case. Thus we have established
statements 2—4 in the lemma and the proof is complete. O

Next we turn to the saddle points.

Lemma 17 (Saddle points of the Lagrangian of constrained quadratic optimization).
The following (w*, \*) are saddle points of L(w,\) = (1/2)w' Dw+w'd— (1/2)\(w'w —
1).

*_

<(D—DI)+d+N(D—|D|I)>ﬂW Ap = |D|
(D — MpI)~d, Ap > |D|
A= Ap
Proof. From the definition of a saddle point we need to establish the inequalities
L(w,\*) < L(w*, \*) < L(w*, \)

hold for all w € R™ and A € R.

Taking the second inequality first, we have that L(w*, ) = (1/2)(w*)' Dw* + (w*)'d
for all A since (w*)'w* = 1. Therefore L(w*,\) = L(w*, \*) for all A\ and the second
inequality is established with equality.

Turning to the first inequality, we consider the two cases; (i) A* = Ap > |D|, and
(ii) \* = Ap = |D| and d € R(D — |D|I). For the first case we know that

max L(w, Ap) = —(1/2)d'(D — ApD)7td + A\p/2 = L(w*, \p) = L(w*, \*)

where the maximization over w is unconstrained, and the first equality follows from
Proposition 5. Since this equality holds for the maximizer, we have that L(w,\*) =
L(w,Ap) < L(w*, \*) for all w € R™, where the first equality comes from the definition
of A*. Thus the first inequality holds for the first case.

Turning to the second case, we have similarly from Proposition 5

max L(w, |D]) = ~(1/2)d'(D — [D| I)*d + D] /2 = L(w", |D]) = L(w*,\")

where again the maximization over w is unconstrained, and we have L(w, A*) = L(w, |D|) <

L(w*, \*) for all w € R™. Thus both cases satisfy the first inequality, both inequalities
have been established, and the result is proven. O

Finally, we address the original constrained optimization of the concave quadratic
function and its Lagrangian

Lemma 18 (Constrained quadratic optimization and its Lagrangian). We are given
the following: (i) a convexr quadratic function and compact constraint set W defined in
Proposition 15

V(w) = 1/2)w'Dw+w'd W :={w|ww=1}
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with D € R™™ >0, (ii) the constrained mazimization problem (36)

A

with Lagrangian function
L(w,\) = V(w) — (1/2)A\(w'w — 1)
and the (unconstrained) Lagrangian problem (37)

max min L(w, A)

w A

1. Solutions to (36) and (37) exist for all D > 0 and d € R™ and achieve the same
optimal value VO = L° = —(1/2)d'(D — ApI)*d + \p/2.

2. The optimizer of (36), denoted w®, is given by w® = w* where w* the saddle-point
solution set from Lemma 17.

3. The optimizer of (37), denoted (w9, A(w?)) is given by w9 = w* and A(w}) = R.

Proof.

The solution to (36) exists since V'(+) is continuous and W is compact. The solution
to (37) exists and satisfies strong duality with (38) due to the saddle-point theorem
(Proposition 12) and Lemma 17, so we have that

L’ = maxm/\inL = mgnmaXL =—(1/2)d' (D — Ap)td+ A\p/2
where the last equality follows by (41). From the saddle-point theorem, we also have
that w? = w* for the optimizer of the Lagrangian. Since w? satisfies (w?)w® =1, it
follows that \’(w)) = R. Finally, we have that value V° = L and set w® = w} by
Proposition 7, and the proof is complete. O

The proofs of Lemma 16, Lemma 17, and Lemma 18 have proven Proposition 15.

Discussion of Proposition 15. The basic problem of constrained, nonconvex quadratic
optimization has appeared in several fields. In the optimization literature it is known as
the “trust-region” problem. Nocedal and Wright discuss the numerical solution of the
trust-region problem in the context of nonlinear programming (Nocedal and Wright,
2006, p.69). Boyd and Vandenberghe establish strong dualilty of the Lagrangian and
dual Langrangian formulations of the problem (Boyd and Vandenberghe, 2004, Ap-
pendix B). The complete solution provided in Proposition 15 appears to be new to this
work. The authors would also like to acknowledge Robin Stréisser for his work on earlier
versions of Proposition 15 (Mannini, Strésser, and Rawlings, 2024).

Constrained minmax and maxmin. To compactly state the results in this section
it is convenient to define two functions

Mll M12 :|

Miy Moy — M L(A) = —=(1/2)d' M (\)d + \/2

M) = {

and for convenience, we repeat the definition of the Schur complements

My (\) == (Mg — AI) — M|y M Mo Moy (X) == Myy — Mig(May — XI) T M|,
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Corollary 19 (Minmax and maxmin of constrained quadratic functions). Consider
quadratic function V(-) : R**™ — R and compact constraint set W

=3 2] et

2 |w

with M € Rvtm)x(ntm) > 0 Aoy € R My, € R™*™ My € R™* " and the two
constrained optimization problems.

i 4
min lrunea‘;‘;V(u,w) (46)
max 1rnu1nV(u7 w) (47)

1. The solution to (46) is
0 A

V(u®, w’(u?)) = 5

uo S N(MQQ()\O)>
w’(u®) € ( — (Mg — \°T) T M7, u® + N (M — /\OI)> nw

with )\0 = |M22|.
2. The solution to (47) is

wo S (N(MH(/\O))) NnNw
u’(w®) € =M, Mg w® + N (M)
with AO = |M22 — M{QM{EM12|

The proof of Corollary 19 is given at the end of the proof of Proposition 20.

Next we add the linear term to V(w,w), which may seem harmless but actually
precludes a closed-form solution as in Corollary 19. Here a nonlinear optimization over
scalar A remains.

Proposition 20 (Minmax and maxmin of constrained quadratic functions with linear
term). Consider quadratic function V(-) : R"™™ — R and compact constraint set W

von =3[ [ [+ [T e

with M € RHm)x(n+m) > (0 and the two constrained optimization problems.

i 4
min gleav)éV(u,w) (48)
max rnuan(u,w) (49)

1. The solution to (48) is
V(u®, w(u®)) = —(1/2)d' MT(A\%)d + \°/2
u® € —MH(A\0)(dy — Mygp(May — X°T)Fdy) + N (M (N0))

w’(u®) € ( — (May — N0 T (M), u® + dy) + —N (Mo — /\OI)> nw
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where A% must be computed from the following nonlinear optimization problem

A0 =arg min L(\
g)\Z|M22‘ ( )

2. The solution to (49) is
V(w(w?),w”) = =(1/2)d MT(X°)d + \°/2
w’ € ( — M{i(\°)(do — M{, M dy) + N(]\an()\o))> nw
u’(w’) € =M (Myz w® + dy) + N(Miy)
where A% must be computed from the following nonlinear optimization problem

A\ = arg min L(X\)
A>| Moo — M|, My, Mis|

Proof. Expand V as
1 li / 1 / I /
V(u,w) = FU Miiu + v Misw + P Mosw + u'dy + w'ds

1. Note that from Proposition 7 the optimization problem

min max V (u, w)
u weW

is equivalent to the Lagrangian problem

A
minmaxm}nL(u,w, A), L(u,w, ) :==V(u,w) — §(w’w -1
u w

From Proposition 15 strong duality holds for max,, miny L(u,w, ), so the opti-
mization problem is also equivalent to the dual Lagrangian problem

min min max L(u, w, \)
A u w

but when we use the dual to obtain a solution set for the inner max,, problem,
which gives w®(u, \), that solution set may be too large. We fix this issue sub-
sequently. From Proposition 14 a solution to min, max,, L(u,w, A) exists if and
only if A > |Mas| and the solution (set) and optimal value function are
w”(u, A) € —(Mas — M) T (M, u+ do) + N(May — \)
u®(N) € —Myh(A\)(dy — Mya(Mag — M) Tda) + N (Maz(N))
{Lm, A= | Ma|

L(u®(\), w(u®, \),\) =
(u”(A),w™(u”, A), A) too, A< (Ml

The remaining optimization, which is equivalent to solving (48), is

in L(\ 0
W, P (50)

which establishes that

A= are min L(\
gAZ\MQ’z‘ ()
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Substituting A\ in u%(\), w(u(N)), and L(u®(N\),w"(u’ ), \) gives
w(u) € —(Magy — NOI) T (M, u + dy) + N(May — X°T)
uC(\0) € Myy(A0)(d1 — Myo(May — XOT)Fdy) + N (M (A0))
L(u®, w®(u®),\%) = —(1/2)d’ MT(A\°)d 4 \° /2

Finally, restricting the dual solution w®(u®) to satisfy the constraint w € W by
intersecting w°(u®) with W giving

w’(u’) € ( — (May — 0" (M7, u® + dy) + N (Moo — )J)) nw

Since the constraint is satisfied, L(u®, w®(u®), \°) = V (1, w®(u?)) giving
Vi, w(u®) = —(1/2)d' Mt (A\°)d + \°/2

and part 1 is established.

. From Proposition 7 the optimization problem

max min V (u, w)
weW wu

is equivalent to the Lagrangian minmax problem

max mAin min L(u, w, A)
Unlike the previous part, before we can use Proposition 15 and invoke strong
duality, we must first examine the form of the innermost problem min,, L(u,w, A).
Using Proposition 5 to solve the min, L(u,w, ) problem and evaluating at the
optimal u gives
0 1 By / / + 1 ! + A

L(u’(w,\),w,\) = W Mii(Nw 4+ w'(de — Mo M dy) — §d1M11d1 + 3
Given the functional form of w and A above, we see that Proposition 15 indeed ap-
plies, and the optimization problem (49) is also equivalent to the dual Lagrangian
problem

min max min L(u, w, \)
A w u

Again, using the dual to obtain the solution for the inner max,, problem, which
gives w”(\), may give a solution set that is too large, and we further restrict that
set subsequently. From Proposition 14 a solution to max,, min, L(u,w, \) exists
if and only if A > |M22 — M{, M, My5| and the solution (set) and optimal value
function are
uo(w, )\) S —Mﬁ(Mlg w 4+ dl) + N(Mll)
w’(A) € =M (A\)(da — M, M idy) + N (M (A))
L), A> |M22 — M{QMleMu|

LUO woy/\aw())\’)\ -
(u”( )sw (A), A) {_,_007 A < |Mag — Mi, My Mis|

The remaining optimization, which is equivalent to solving (49), is
min LX) (51)

A> | Moy — MY, M M|
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which establishes that

A\ = arg min L(X)
A>|Mao—M{, M M|

Restricting w® by enforcing the constraint w® € W gives
w’(\°) € ( — M{;(\°)(dy — M, M dy) + N(Mn()\o))) nw

Since the constraint is satisfied, L(u®(w?),w% \) = V (u®(w?), w°) giving
V(u®(w®),w’) = —(1/2)d MT(A\°)d 4+ \° /2
and part 2 is established. O

To prove Corollary 19, note that d = 0 so that (50) and (51) can be solved analyt-
ically giving A° = |Mas| for (50) and A® = |May — M{, M Mis| for (51). Substituting
these \? values and d = 0 into the statement of Proposition 20 then establishes the
results of Corollary 19.
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