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The purpose of this note is to summarize the arguments required to derive the results
appearing in robust minmax control of linear dynamical systems using a quadratic stage
cost. The main results required in robust minmax control are Corollary 19 and Propo-
sition 20. Moreover, the solution to the trust-region problem given in Proposition 15
and Lemma 16 may be of more general interest.

Linear algebra

We assume throughout that the parameters D ∈ R
n×n ≥ 0, A ∈ R

m×n, b ∈ R
m, d ∈ R

n

or d ∈ R
n+m. Let A+ ∈ R

n×m denote the pseudoinverse of matrix A ∈ R
m×n. Let

N(A) and R(A) denoted the null space and range space of matrix A, respectively. We
will also make use of the singular value decomposition (SVD) of A given by

A =
[

U1 U2

]

[

Σr 0
0 0

] [

V ′
1

V ′
2

]

= U1ΣrV
′
1 (1)

and r is the rank of A. The properties of the SVD and the fundamental theorem of
linear algebra imply that the orthonormal columns of U1 and U2 are bases for R(A) and
N(A′), respectively, and the orthonormal columns of V1 and V2 are bases for R(A′) and
N(A), respectively.1 We also have that A+ = V1Σ

−1
r U ′

1.
First, we require solutions to linear algebra problems when such solutions exist.

Proposition 1 (Solving linear algebra problems.). Consider the linear algebra problem

Ax = b

1. A solution exists if and only if b ∈ R(A).

∗An earlier version of these results was presented at the short course “Robust Nonlinear Model
Predictive Control: Recent Advances in Design and Computation,” University of California, Santa
Barbara, CA, March 25–28, 2024.

†The authors gratefully acknowledge the financial support of the National Science Foundation (NSF)
under Grant Nos. 2027091 and 2138985. jbraw@ucsb.edu, dmannini@ucsb.edu, skuntz@ucsb.edu.

1Edge cases: A = 0 has r = 0 and empty U1, V1,Σr matrices, so U = U2, V = V2 and R(A) =
{0}, R(A′) = {0}, N(A) = R

n, N(A′) = R
m. At the other extreme, if A is square and invertible,

r = m = n and U2, V2 are empty so U = U1, V = V1, and R(A) = R
n, R(A′) = R

m, N(A) =
{0}, N(A′) = {0}.
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2. For b ∈ R(A), the solution (set of solutions) is given by2

x0 ∈ A+b+N(A) (2)

Proof. By definition of range, if b /∈ R(A) there is no x such that Ax = b, and if
b ∈ R(A), there is an x such that Ax = b, which is the same as the existence condition.
For b ∈ R(A), let z ∈ R

n denote a value so that Az = b, and let q be an arbitrary
element in N(A) so x0 = A+b+ q. To show (2) are solutions, note that

Ax0 = A(A+b+ q) = AA+Az = Az = b

where we have used the definition of the null space and one of the pseudoinverse’s
defining properties, AA+A = A. To show that (2) are all solutions, let x′ denote a
solution. We then have A(x′−A+b) = b−b = 0, so x′−A+b ∈ N(A) or x′ ∈ A+b+N(A).
Since x′ is an arbitrary solution, (2) gives all solutions.

Note that if one is interested in deriving (2) rather than establishing that it is correct
as we did here, use the two orthogonal coordinate systems provided by the SVD of A,
and let x = V α, b = Uβ, and solve that simpler decoupled linear algebra problem for
α0 as a function of β, and convert back to x0 in terms of b.

If b /∈ R(A), x0 is still well-defined, but Ax0 − b = (AA+ − I)b = −U2U
′
2b ̸= 0. In

this case, the x0 given in (2) solves minx |Ax− b| (least-squares solution), and achieves
value

∣

∣Ax0 − b
∣

∣ = |U ′
2b|.

Positive semidefinite matrices. We say that a matrix M ∈ R
n×n is positive

semidefinite, denoted M ≥ 0, if M is symmetric and x′Mx ≥ 0 for all x ∈ R
n.

Optimization

We shall appeal without proof to one theorem for existence of solutions to optimization
problems, the Weierstrass (extreme value) theorem. It says that a continuous function
on a closed and bounded set attains its min and max on the set.3 As we specialize to
the results of interest in this note, next we consider convex, differentiable functions.

Definition 2 (Convex function). A function V : Rn → R is convex if

V (αu+ (1− α)v) ≤ αV (u) + (1− α)V (v) (3)

for all u, v ∈ R
n and 0 ≤ α ≤ 1.

If the function V is differentiable, then it is convex if and only if

V (v) ≥ V (u) + (v − u)′
dV

du
(u) (4)

for all u, v ∈ R
n. See Boyd and Vandenberghe (2004, pp.69–70) for a proof of this fact.

An immediate consequence of this global lower bound is that u0 is a minimizer of V
if and only if (dV/du)(u0) = 0.

2We overload the addition symbol to mean set addition when adding singletons (A+b) and sets
(N(A)).

3Proofs for the multivariate version required here can be found in Mangasarian (1994, p. 198), Polak
(1997, Corollary 5.1.25), Rockafellar and Wets (1998, p. 11), and Rawlings, Mayne, and Diehl (2020,
Proposition A.7).
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Proposition 3. A convex, differentiable function V : Rn → R has a minimizer u0 if
and only if (dV/du)(u0) = 0.

Proof. To establish sufficiency, assume (dV/du)(u0) = 0; (4) then implies V (v) ≥ V (u0)
for all v ∈ R

n, and therefore u0 is the minimizer of V .
To establish necessity, assume that u0 is optimal but that, contrary to what is to be

proven, (dV/du)(u0) ̸= 0, and let h = −(dV/du)(u0) so that the directional derivative
satisfies

lim
λ→0+

V (u0 + λh)− V (u0)

λ
= h′ dV

du
(u0) = −

∣

∣

∣

∣

dV

du
(u0)

∣

∣

∣

∣

2

Given this limit, for every ϵ > 0 there exists δ(ϵ) > 0 such that

V (u0 + λh)− V (u0)

λ
≤ −

∣

∣

∣

∣

dV

du
(u0)

∣

∣

∣

∣

2

+ ϵ

for all 0 < λ ≤ δ. Choose ϵ = (1/2)
∣

∣(dV/du)(u0)
∣

∣

2
> 0, and we have that

V (u0 + λh) ≤ V (u0)− (λ/2)

∣

∣

∣

∣

dV

du
(u0)

∣

∣

∣

∣

2

for 0 < λ ≤ δ. This inequality contradicts the optimality of u0 and, therefore (dV/du)(u0) =
0, which establishes necessity, and the proposition is proven.

When considering robust control of linear dynamical systems with quadratic stage
cost, quadratic functions play a central role. We have the following result about their
convexity.

Proposition 4 (Convex quadratic functions). The quadratic function V (u) = (1/2)u′Du+
u′d+ c is convex if and only if D ≥ 0.

Proof. We establish that the quadratic term f(u) := u′Du is convex by substituting
αu+ (1− α)v into function f and rearranging the terms

f(αu+ (1− α)v)−
(

αf(u) + (1− α)f(v)
)

= −α(1− α)(u− v)′D(u− v)

Since −α(1−α) < 0 for α ∈ (0, 1), we have that the right-hand side is less than or equal
to zero for every u, v ∈ R

n if and only if D ≥ 0, verifying (3) for the function f .
It is then straightforward to show that the linear function u′d and the constant

function c are both convex by directly verifying (3). It is also straightforward to establish
that linear combinations of convex functions are convex by verifying (3), and, therefore
the function V is convex if and only if D ≥ 0.

The following optimization result for convex quadratic functions is then useful in
the ensuing discussion.

Proposition 5 (Minimum of quadratic functions). Consider the quadratic function
V (·) : Rn → R with D ∈ R

n×n ≥ 0

V (u) := (1/2)u′Du+ u′d

1. A solution to minu V exists if and only if d ∈ R(D).
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2. For d ∈ R(D), the minimizer and optimal value function are

u0 ∈ −D+d+N(D) V 0 = −(1/2)d′D+d (5)

and (d/du)V (u) = 0 at u0.

Proof. The function V (u) is differentiable and convex (Proposition 4) so from Proposi-
tion 3, a solution exists if and only if the derivative is zero. Taking the derivative gives
(d/du)V (u) = Du + d. From Proposition 1, Du + d = 0 has a solution if and only if
d ∈ R(D) and the set of all solutions is d0 = −D+d +N(D), and evaluating V at the
solution gives V (u0) = −(1/2)d′D+d establishing (5).

For maximization problems, we can replace D ≥ 0 with D ≤ 0 and min with max.

Partitioned semidefinite matrices. We make extensive use of partitioned matrices

M =

[

M11 M12

M ′
12 M22

]

We have the following result for positive semidefinite partitioned matrices (Boyd and
Vandenberghe, 2004, p.651).

Proposition 6 (Positive semidefinite partitioned matrices). The matrix M ≥ 0 if and
only if M11 ≥ 0, M22 −M ′

12M
+
11M12 ≥ 0, and R(M12) ⊆ R(M11).

Proof.

1. Forward implication. Define V (x, y) := (1/2)(x, y)′M(x, y), and assume M ≥ 0.
Expanding V using the partitioned matrix

V (x, y) = (1/2)

[

x
y

]′ [
M11 M12

M ′
12 M22

] [

x
y

]

= (1/2)
(

x′M11x+ 2x′M12y + y′M22y
)

(6)

≥ 0, for all (x, y)

Setting y = 0 in (6) implies that M11 ≥ 0. Since M11 ≥ 0, V (x, y) is a differen-
tiable, convex function of x for any y. Therefore minx V (x, y) has a solution for
every y, and Proposition 5 then impliesM12y ∈ R(M11) for every y, which is equiv-
alent to R(M12) ⊆ R(M11). Substituting the minimizer over x, x0 = −M+

11M12y
into V gives

V (x0, y) = (1/2)y′(M22 −M ′
12M

+
11M12)y (7)

and since V (x, y) ≥ 0 for all (x, y), we have that M22 −M ′
12M

+
11M12 ≥ 0, and the

forward implication is established.

2. Reverse implication. Assume M11 ≥ 0, M22 − M ′
12M

+
11M12 ≥ 0, and R(M12) ⊆

R(M11), and we establish that M ≥ 0. For proof by contradiction, assume there
exists an (x, y) such that (x, y)′M(x, y) < 0. By Proposition 5, we know that
minx V (x, y) exists since M11 ≥ 0 and M12y ∈ R(M11), and it has value V 0 =
V (x0, y) with x0 = −M+

11M12y. Substituting this into V gives V 0 = (1/2)y′(M22−
M ′

12M
+
11M12)y ≥ 0 because matrix M22 −M ′

12M
+
11M12 ≥ 0. By optimality of x0,

V (x, y) ≥ V 0 ≥ 0 for all x. But that contradicts V (x, y) < 0, and we conclude
M ≥ 0, and the proof is complete.
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Note that
[

M11 M12

M ′
12 M22

]

≥ 0 if and only if

[

M22 M ′
12

M12 M11

]

≥ 0

So we can also conclude that M ≥ 0 if and only if M11 ≥ 0, M22 ≥ 0, M22 −
M ′

12M
+
11M12 ≥ 0, M11 −M12M

+
22M

′
12 ≥ 0, R(M12) ⊆ R(M11), and R(M ′

12) ⊆ R(M22).
Note also that given the partitioning in M , we define

M̃11 := M22 −M ′
12M

+
11M12

M̃22 := M11 −M12M
+
22M

′
12 (8)

and M̃11 is known as the Schur complement of M11, and M̃22 is known as the Schur
complement of M22.

Constraints and Lagrangians. Next we require a standard optimization result for
using a Lagrangian to reformulate a constrained minimization as an unconstrained min-
max problem. The following result will be useful for this purpose. Let U ⊆ R

n be a
nonempty compact set and V (·) : U → R be a continuous function on U . Define the
Lagrangian function L(·) : U × R → R as

L(u, λ) = V (u)− λρ(u, U) (9)

where ρ(·) : Rn×U → R≥0 is any convenient continuous indicator function that evaluates
to zero if and only if u ∈ U . Denote a minmax problem as

inf
u

sup
λ

L(u, λ)

When a solution to this problem exists, we define the optimal value L∗ and solution set
u∗ as

L∗ = min
u

max
λ

L(u, λ) u∗ = argmin
u

max
λ

L(u, λ)

It is convenient in the subsequent development to define the maximizer of the inner
problem

λ(u) := argmax
λ

L(u, λ), u ∈ U

Proposition 7 (Constrained minimization and Lagrangian minmax). Let U ⊆ R
n

be a nonempty compact set and V (·) : U → R be a continuous function on U , and
L(·) : U × R → R be defined as L(u, λ) := V (u) − λρ(u, U). Consider the constrained
optimization problem

inf
u∈U

V (u) (10)

and the (unconstrained) Lagrangian minmax problem

inf
u

sup
λ

L(u, λ) (11)

1. Solutions to both problems exist.

2. Let V 0 be the solution and u0 be the set of optimizers of minu∈U V (u). Let L∗ be
the solution and u∗ the set of optimizers of minu maxλ L(u, λ). Then

V 0 = L∗ u0 = u∗ λ(u∗) = R
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Proof. The solution to (10) exists by the Weierstrass theorem. Denote the optimal value
V 0 and solution set u0 ⊆ U which satisfy V (u0) = V 0. We show that a solution to (11)
also exists. Consider the inner supremum. From the definitions of functions L and ρ,
we conclude

sup
λ

L(u, λ) =

{

V (u), u ∈ U

+∞, u /∈ U

Then consider the outer infimum. We have that

L∗ = inf
u

sup
λ

L(u, λ) = inf
u∈U

V (u) = min
u∈U

V (u) = V 0

So the solution to (11) exists with value L∗ = V 0. Taking the argument gives

u∗ := arg inf
u

sup
λ

L(u, λ) = argmin
u∈U

V (u) = u0

For the inner problem evaluated at u∗, we note that

sup
λ

L(u∗, λ) = sup
λ

V (u0) = max
λ

V 0 = V 0

Taking the argument then gives

λ(u∗) = arg sup
λ

L(u∗, λ) = argmax
λ

V 0 = R

and the result is established.

Minmax and Maxmin

More generally, we are interested in a function V (u,w) V : U × W → R and the
optimization problems

inf
u∈U

sup
w∈W

V (u,w) sup
w∈W

inf
u∈U

V (u,w)

We assume in the following that the inf and sup are achieved on the respective sets and
replace them with min and max.

Continuous functions. Let’s start here. According to Wikipedia, von Neumann’s
minimax theorem states (von Neumann, 1928)

Theorem 8 (Minimax Theorem). Let U ⊂ R
m and W ⊂ R

n be compact convex sets.
If V : U×W → R is a continuous function that is convex-concave, i.e., V (·, w) : U → R

is convex for all w ∈ W , and V (u, ·) : W → R is concave for all u ∈ U
Then we have that

min
u∈U

max
w∈W

V (u,w) = max
w∈W

min
u∈U

V (u,w)

Note that existence of min and max is guaranteed by compactness of U,W (closed,
bounded). Also note that the following holds for any continuous function V

min
u∈U

max
w∈W

V (u,w) ≥ max
w∈W

min
u∈U

V (u,w)

This is often called weak duality. It’s easy to establish. We are regarding the switching of
the order of min and max as a form of duality. (Think of observability and controllability
as duals of each other.)
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So when this inequality achieves equality, that’s often called strong duality. So the
minimax theorem says that continuous functions that are convex-concave on compact
sets satisfy strong duality. When strong duality is not achieved, we refer to the difference
as the duality gap, which is positive due to weak duality

min
u∈U

max
w∈W

V (u,w)− max
w∈W

min
u∈U

V (u,w) > 0

Saddle Points. In characterizing solutions of these problems, it is useful to define a
saddle point of the function V (u,w).

Definition 9 (Saddle point). The point (set) (u∗, w∗) ⊆ U ×W is called a saddle point
(set) of V (·) if

V (u∗, w) ≤ V (u∗, w∗) ≤ V (u,w∗) for all u ∈ U,w ∈ W (12)

Proposition 10 (Saddle-point theorem). The point (set) (u∗, w∗) ⊆ U ×W is a saddle
point (set) of function V (·) if and only if strong duality holds and (u∗, w∗) is a solution
to the two problems

min
u∈U

max
w∈W

V (u,w) = max
w∈W

min
u∈U

V (u,w) = V (u∗, w∗) (13)

u∗ = argmin
u∈U

max
w∈W

V (u,w) w∗ = arg max
w∈W

min
u∈U

V (u,w) (14)

In the following development it is convenient to define the solutions to the minimiza-
tion and maximization problems

V (u) := max
w∈W

V (u,w), u ∈ U V (w) := min
u∈U

V (u,w), w ∈ W (15)

Note that (14) implies that maxw∈W V (w) = V (w∗) and minu∈U V (u) = V (u∗).

Remark 11. Note that (14) also implies that

max
w∈W

min
u∈U

V (u,w) = min
u∈U

V (u,w∗) min
u∈U

max
w∈W

V (u,w) = max
w∈W

V (u∗, w) (16)

To establish this remark, note that

max
w∈W

min
u∈U

V (u,w) = max
w∈W

V (w) = V (w∗) = min
u∈U

V (u,w∗)

Similarly,
min
u∈U

max
w∈W

V (u,w) = min
u∈U

V (u) = V (u∗) = max
w∈W

V (u∗, w)

Next we prove Proposition 10

Proof. First we establish that (14) implies (12). Note that by optimality, the first
equality in (16), which is a consequence of assuming (14), implies that V (u∗, w∗) ≤
V (u,w∗) for all u ∈ U , and the second implies that V (u∗, w∗) ≥ V (u∗, w) for all
w ∈ W . Taken together, these are (12).

Next we show that (12) implies (14). We know that the following holds by weak
duality

max
w∈W

min
u∈U

V (u,w) ≤ min
u∈U

max
w∈W

V (u,w) (17)
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So we wish to show that the reverse inequality also holds to establish strong duality,
i.e., the first equality in (14). To that end note that from (12)

V (u∗, w) ≤ V (u,w∗) for all w ∈ W,u ∈ U

Since this holds for all w ∈ W , it also holds for a maximizer, and therefore

max
w∈W

V (u∗, w) ≤ V (u,w∗) for all u ∈ U

The left-hand side will not be larger if instead of evaluating at u = u∗ ∈ U , we minimize
over all u ∈ U , giving

min
u∈U

max
w∈W

V (u,w) ≤ V (u,w∗) for all u ∈ U

Now if this inequality holds for all u ∈ U , it also holds for the minimizer on the right-
hand side so that

min
u∈U

max
w∈W

V (u,w) ≤ min
u∈U

V (u,w∗)

We can only increase the value of the right-hand side if instead of evaluating at w =
w∗ ∈ W , we maximize over all w ∈ W , giving

min
u∈U

max
w∈W

V (u,w) ≤ max
w∈W

min
u∈U

V (u,w)

Note that this is the weak duality inequality (17) written in the reverse direction, so
combining with weak duality, we have that

min
u∈U

max
w∈W

V (u,w) = max
w∈W

min
u∈U

V (u,w)

and strong duality is established.
We next show that u∗ solves the minmax problem. From the defined optimizations

in (21) we have that

min
u∈U

max
w∈W

V (u,w) = min
u∈U

V (u) (18)

max
w∈W

min
u∈U

V (u,w) = max
w∈W

V (w) (19)

Next choose an arbitraru u1 ∈ U and assume for contradiction that V (u1) < V (u∗).
From the definition of V we then have have that

max
w∈W

V (u1, w) < max
w∈W

V (u∗, w)

Therefore since w∗ ∈ W
V (u1, w

∗) < max
w∈W

V (u∗, w)

But from the saddle-point condition, (12), maxw∈W V (u∗, w) ≤ V (u,w∗) for all u ∈ U ,
which contradicts the previous inequality since u1 ∈ U . Therefore V (u1) ≥ V (u∗), and
since u1 is an arbitrary element of U , u∗ solves the minmax problem (18).

Similarly we can show that w∗ solves the maxmin problem (19) by exchanging the
variables w and u and the operations max and min. Therefore (w∗, u∗) solves (14), and
we have established that (12) implies (14).
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In the following development it is convenient to define the solutions to the inner
minimization and maximization problems

u0(w) := argmin
u∈U

V (u,w), w ∈ W (20)

w0(u) := arg max
w∈W

V (u,w), u ∈ U (21)

Note that these inner solution sets are too “large” in the following sense. Even if we
evaluate them at the optimizers of their respective outer problems, we know only that

u∗ ⊆ u0(w∗) w∗ ⊆ w0(u∗)

and these subsets may be strict. So we have to exercise some care when we exploit strong
duality and want to extract the optimizer from a dual problem. We shall illustrate this
issue in the upcoming results.

Quadratic functions. In control problems, we min and max over possibly unbounded
sets, so we need something other than compactness to guarantee existence of solutions.
When we have linear dynamic models and quadratic stage cost (LQ), we can use the
following results for quadratic functions.

Proposition 12 (Saddle-point theorem for quadratic functions). Consider the quadratic
function V (·) : Rn+m → R

V (u,w) := (1/2)

[

u
w

]′ [
M11 M12

M ′
12 M22

] [

u
w

]

+

[

u
w

]′ [
d1
d2

]

with M22 ∈ R
n×n ≤ 0, M11 ∈ R

m×m ≥ 0, M12 ∈ R
m×n, d ∈ R

n+m.

1. A solution to minu maxw V exists if and only if d ∈ R(M). Similarly, a solution
to maxw minu V exists if and only if d ∈ R(M).

2. For d ∈ R(M), strong duality holds so that

min
u

max
w

V (u,w) = max
w

min
u

V (u,w) = V (u∗, w∗)

where (u∗, w∗) are saddle points of the function V , satisfying

[

u∗

w∗

]

∈ −M+d+N(M) V (u∗, w∗) = −(1/2)d′M+d (22)

and dV (u,w)/d(u,w) = 0 at (u∗, w∗).

3. For d ∈ R(M), let u0(w) := minu V (u,w) and w0(u) := maxw V (u,w). The
solution sets and saddle points satisfy the following relationships

u∗ = argmin
u

max
w

V (u,w), u∗ ⊆ u0(w∗), (23)

w∗ = argmax
w

min
u

V (u,w), w∗ ⊆ w0(u∗). (24)

Proof. First we establish that (u∗, w∗) satisfy (22) by analyzing the minu maxw V prob-
lem. We assume d ∈ R(M) and expand V (·) as

V (u,w) = (1/2)w′M22w + w′(M ′
12u+ d2) + (1/2)u′M11u+ u′d1 (25)
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From Proposition 5, maxw V exists if and only if M ′
12u+ d2 ∈ R(M22). This condition

is satisfied for some nonempty set of u by the bottom half of d ∈ R(M). For such u we
have the necessary and sufficient condition for the optimum

M22w
0 +M ′

12u+ d2 = 0 (26)

which defines an implicit function w0(u), and optimal value given by (5)

w0(u) = −M+
22(M

′
12u+ d2) +N(M22)

V (u,w0(u)) = (1/2)u′M̃22u+ u′(d1 −M12M
+
22d2)− (1/2)d2M

+
22d2

where M̃22 is the Schur complement of M22 defined in (8). Note that M̃22 ≥ 0 since
M11 ≥ 0 and M22 ≤ 0, which implies M+

22 ≤ 0. However, we cannot simply set
the derivative to zero because we require M ′

12u + d2 ∈ R(M22) for the existence of
V (u,w0(u)) = maxw V (u,w). To handle this range constraint, we use a linear equality
constraint M ′

12u+d2 = M22y where y is a slack variable. Under the equality constraint,
the problem minu maxw V is equivalent to the following constrained minimization:

min
u,y

V (u,w0(u)) subject to M ′
12u+ d2 = M22y.

Because V (u,w0(u)) is convex and differentiable in (u, y), its minimum subject to the
affine constraint M ′

12u + d2 = M22y is achieved by the stationary points of the La-
grangian (Boyd and Vandenberghe, 2004, pp. 141–142):

L(u, y, λ) := V (u,w0(u)) + λ′(M ′
12u+ d2 −M22y).

Taking derivatives, we have (u∗, y∗, λ∗) is a stationary point if and only if

M̃22u
∗ + d1 −M12M

+
22d2 +M12λ

∗ = 0 (27)

−M22λ
∗ = 0 (28)

M ′
12u

∗ + d2 −M22y
∗ = 0. (29)

Substituting (29) into (27), we have

M11u
∗ +M12(λ

∗ −M+
22M22y

∗) + d1 = 0.

Next, (28) implies λ∗ ∈ N(M22), so we can rewrite (29) as

M ′
12u

∗ +M22(λ
∗ −M+

22M22y
∗) + d2 = 0.

With w∗ := λ∗ −M+
22M22y

∗, we have the system (27) and (29) as
[

M11 M12

M ′
12 M22

] [

u∗

w∗

]

+

[

d1
d2

]

= 0 (30)

which has solutions since d ∈ R(M), and moreover, any such solution gives y∗ =
−M+

22M22w
∗ and λ∗ = w∗ + y∗ satisfying (27)–(29). In fact, w∗ ⊆ w0(u∗) is implied

by (28) and (29). Finally, solving (30) and substituting the solution into V (u,w) gives
(22).

To solve the maxw minu V problem, take the negative of the objective to obtain
maxw minu V = −minw maxu(−V ). Therefore the exact same procedure can be used
here, and it produces the same solutions and optimal values (22), along with u∗ ⊆
u0(w∗).

Finally, note that if d /∈ R(M), we have no solution to maxw V (u,w) for any u,
and therefore no solution to minu maxw V (u,w). Similarly we have no solution to
minu V (u,w) for any w, and therefore no solution to maxw minu V (u,w). We have
thus established all the claims of the proposition.
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Applying Proposition 12 to the following example with M11 = M22 = 0 and M12 = 1

M =

[

0 1
1 0

]

V (u,w) = uw +

[

u
w

]′

d

gives (u∗, w∗) = −(d2, d1), V (u∗, w∗) = −d1d2, w
0(u∗) = R, u0(w∗) = R. Note that

both functions w0(·) and u0(·) are defined at only a single point, u∗ and w∗, respectively.
So in this degenerate case, these functions are not even differentiable.

Lagrangian functions. The connections between constrained optimization problems
via the use of Lagrange multipliers and game theory problems are useful (Rockafellar,
1993).

For optimization problems of convex type, Lagrange multipliers take on a
game-theoretic role that could hardly even have been imagined before the
creative insights of von Neumann [32], [33], in applying mathematics to mod-
els of social and economic conflict.

–T.A. Rockafellar

Next we are interested in the Lagrangian function L(·) : Rn+m+1 → R

L(u,w, λ) := (1/2)

[

u
w

]′ [
M11 M12

M ′
12 M22

] [

u
w

]

− (1/2)λ(w′w − 1)

= (1/2)

[

u
w

]′ [
M11 M12

M ′
12 M22 − λI

] [

u
w

]

+ λ/2

with M ∈ R
(n+m)×(n+m) ≥ 0, and M11 ∈ R

m×m, M12 ∈ R
m×n, M22 ∈ R

n×n. Note that
from Proposition 6, both M11 ≥ 0 and M22 ≥ 0 as well, so that maxw is not bounded
unless λ is large enough to make M22 − λI ≤ 0. The Schur complements of M11 and
M22 − λI are useful for expressing the solution.

M̃11(λ) := (M22 − λI)−M ′
12M

+
11M12

M̃22(λ) := M11 −M12(M22 − λI)+M ′
12

Note that both Schur complements depend on the parameter λ.

Corollary 13 (Minmax and maxmin of a quadratic function with a parameter). Con-
sider the quadratic function L(·) : Rn+m+1 → R expressed as

L(u,w, λ) := (1/2)

[

u
w

]′ [
M11 M12

M ′
12 M22 − λI

] [

u
w

]

+ λ/2 (31)

1. A solution to minu maxw L exists if and only if

λ ≥ |M22| (32)

and the solution (set) and optimal value function are

w0(u) ∈ −(M22 − λI)+M ′
12 u+N(M22 − λI)

u0 ∈ N(M̃22(λ))

L(u0, w0(u0), λ) =

{

λ/2, λ ≥ |M22|

+∞, λ < |M22|
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with M(λ = 0) ≥ 0.

1. A solution to minu maxw L exists if and only if

λ ≥ |M22| (34)

and the solution (set) and optimal value function are

w0(u, λ) ∈ −(M22 − λI)+(M ′
12 u+ d2) +N(M22 − λI)

u0(λ) ∈ −M̃+
22(λ)(d1 −M12(M22 − λI)+d2) +N(M̃22(λ))

L(u0, w0(u0), λ) =

{

λ
2 − 1

2d
′M+(λ)d, λ ≥ |M22|

+∞, λ < |M22|

2. A solution to maxw minu L exists if and only if

λ ≥
∣

∣M22 −M ′
12M

+
11M12

∣

∣ (35)

and the solution (set) and optimal value function are

u0(w, λ) ∈ −M+
11(M12 w + d1) +N(M11)

w0(λ) ∈ −M̃+
11(λ)(d2 −M ′

12M
+
11d1) +N(M̃11(λ))

L(u0(w0), w0, λ) =

{

λ
2 − 1

2d
′M+(λ)d, λ ≥

∣

∣M22 −M ′
12M

+
11M12

∣

∣

+∞, λ <
∣

∣M22 −M ′
12M

+
11M12

∣

∣

3. Strong duality holds and the duality gap is zero for λ ≥ |M22|.

4. If
∣

∣M22 −M ′
12M

+
11M12

∣

∣ < |M22|, then there is an unbounded duality gap for λ in
that interval

min
u

max
w

L−max
w

min
u

L = +∞,

for
∣

∣M22 −M ′
12M

+
11M12

∣

∣ ≤ λ < |M22|

Proof. Expand L as

L(u,w, λ) =
1

2

(

u′M11u+ 2u′M12w + w′(M22 − λI)w + 2u′d1 + 2w′d2 + λ
)

1. First note that maxw L exists if and only ifM22−λI ≤ 0. Otherwise maxw L(w, u, λ) =
+∞. And M22 − λI ≤ 0 if and only if λ ≥ |M22|, which establishes (34). If this
condition is satisfied, from Proposition 5 the solution is

w0(u) ∈ −(M22 − λI)+(M ′
12 u+ d2) +N(M22 − λI)

L(u,w0(u), λ) =
1

2

(

u′M̃22(λ)u+ 2u′(d1 −M12(M22 − λI)+d2)− d′2(M22 − λI)+d2 + λ
)

Since M22−λI ≤ 0, we have that (M22−λI)+ ≤ 0 as well and therefore M̃22(λ) ≥
0. Therefore, minu L(u,w

0(u)) exists and the solution from (5) is

u0(λ) ∈ −M̃+
22(λ)(d1 −M12(M22 − λI)+d2) +N(M̃22(λ))

substituting u0 and w(u0) into L gives

L(u0, w0(u0), λ) =

{

λ
2 − 1

2d
′M+(λ)d, λ ≥ |M22|

+∞, λ < |M22|

and this part is established.

13



2. Since M11 ≥ 0, minu L exists from Proposition 5 and we have

u0(w) ∈ −M+
11(M12 w + d1) +N(M11)

L(u0(w), w, λ) =
1

2

(

w′M̃11(λ)w + 2w′(d2 −M ′
12M

+
11d1)− d′1M

+
11d1 + λ

)

Next note that maxw L(u0(w), w, λ) exists if and only if M̃11(λ) ≤ 0, or

0 ≥ (M22 − λI)−M ′
12M

+
11M12

λI ≥ M22 −M ′
12M

+
11M12

and the last inequality is satisfied if and only if λ ≥
∣

∣M22 −M ′
12M

+
11M12

∣

∣. If
that does not hold maxw L(u0(w), w, λ) = +∞, which establishes (34). When this
condition is satisfied

w0(λ) ∈ −M̃+
11(λ)(d2 −M ′

12M
+
11d1) +N(M̃11(λ))

Substituting these values into L gives

L(u0(w0), w0, λ) =

{

λ
2 − 1

2d
′M+(λ)d, λ ≥

∣

∣M22 −M ′
12M

+
11M12

∣

∣

+∞, λ <
∣

∣M22 −M ′
12M

+
11M12

∣

∣

and this part is established.

3. Recall from Proposition 6 that M ≥ 0 implies M11 ≥ 0, M22 ≥ 0, and M22 −
M ′

12M
+
11M12 ≥ 0. Since M11 ≥ 0, M+

11 ≥ 0 as well and therefore M ′
12M

+
11M12 ≥ 0.

Therefore 0 ≤ M22 −M ′
12M

+
11M12 ≤ M22, which implies

∣

∣M22 −M ′
12M

+
11M12

∣

∣ ≤

|M22|. So for λ > |M22|, both minu maxw L and maxw minu L have value λ
2 −

1
2d

′M+(λ)d, and strong duality holds.

4. IfM is such that
∣

∣M22 −M ′
12M

+
11M12

∣

∣ < |M22|, then for λ satisfying
∣

∣M22 −M ′
12M

+
11M12

∣

∣ ≤

λ < |M22|, we have minu maxw L = +∞ and maxw minu L = λ
2 − 1

2d
′M+(λ)d, so

the duality gap is infinite, which establishes this part.

Note that setting d = 0 in the proof of Proposition 14 establishes Corollary 13.
For strong duality to hold for all λ such that either problem has a bounded solution

requires that |M22| =
∣

∣M22 −M ′
12M

+
11M12

∣

∣. The following example shows that it is not

necessary for M ′
12M

+
11M12 = 0 for this condition to hold.

M22 = M12 =

[

1 0
0 1

]

M11 =

[

1 0
0 0

]

= M+
11

M22 −M ′
12M

+
11M12 =

[

0 0
0 1

]

We have that |M22| = 1 and
∣

∣M22 −M ′
12M

+
11M12

∣

∣ = 1, so the norms are equal but

M ′
12M

+
11M12 = M+

11 ̸= 0.
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Constrained quadratic optimization

A mysterious piece of information has been uncovered. In our innocence we
thought we were engaged straightforwardly in solving a single problem (P).
But we find we’ve assumed the role of Player 1 in a certain game in which
we have an adversary, Player 2, whose interests are diametrically opposed
to ours!

–T.A. Rockafellar

We next consider maximization of a convex function so that a constraint is required
for even existence of a solution. We establish the following result.

Proposition 15 (Constrained quadratic optimization). Define the convex quadratic
function, V (·) : Rn → R and compact constraint set W

V (w) := (1/2)w′Dw + w′d W := {w | w′w = 1}

with D ∈ R
n×n ≥ 0. Consider the constrained maximization problem

max
w∈W

V (w) (36)

Define the Lagrangian function

L(w, λ) = V (w)− (1/2)λ(w′w − 1)

and the (unconstrained) Lagrangian problem

max
w

min
λ

L(w, λ) (37)

and the (unconstrained) dual Lagrangian problem

min
λ

max
w

L(w, λ) (38)

1. Solutions to all three problems (36), (37), and (38) exist for all D ≥ 0 and d ∈ R
n

with optimal value

V 0 = L0 = −(1/2)d′(D − λP I)
+d+ λP /2

where

λP := the largest real eigenvalue of P P :=

[

D I
dd′ D

]

(39)

2. Problems (37) and (38) satisfy strong duality, and the function L(w, λ) has saddle
points (sets) (w∗, λ∗) given by

w∗ =







(

− (D − λP I)
+d+N(D − λP I)

)

∩W, λP = |D|

−(D − λP I)
−1d, λP > |D|

λ∗ = λP

3. The optimizer of (36) is given by w0 = w∗.
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the dual Lagrangian minmax problem. We shall find that all of the information about
λP emerges from this problem.

Lemma 16 (Dual Lagrangian of constrained quadratic optimization). Consider the
dual Lagrangian problem

min
λ

max
w

L(w, λ) L(w, λ) := (1/2)w′Dw + w′d− (1/2)λ(w′w − 1) (40)

with D ≥ 0. We have the following results.

1. This problem is equivalent to

min
λ≥|D|

max
w

L(w, λ)

2. The solution exists for all D and d and has optimal value

L0 = −(1/2)d′(D − λP I)
+d+ λP /2 (41)

where λP and matrix P ∈ R
2n×2n are defined as

λP := the largest real eigenvalue of P P :=

[

D I
dd′ D

]

(42)

3. The optimal λ and w0(λ) are given by

λ0 = λP ∈ [|D| ,∞)

w0(λ0) =

{

−(D − |D| I)+d+N(D − |D| I), λP = |D|

−(D − λP I)
−1d, λP ∈ (|D| ,∞)

4. We have that λP = |D| if and only if (i) d ∈ R(D−|D| I), and (ii) |(D − |D| I)+d| ≤
1. Otherwise λP > |D|. If (i) is violated, L(w0(λ), λ) = +∞ at λ = |D|. If (i)
holds but (ii) is violated, then L(w0(λ, λ) is finite at λ = |D|, but (d/dλ)L(w0(λ), λ) <
0 at λ = |D|.

Proof. To establish statement 1 in the lemma, note that if λ < |D|, then D − λI > 0
and maxw L(w, λ) = +∞. So adding the constraint λ ≥ |D| to the outer minimization
does not alter the solution.

To establish statements 2–4 in the lemma, we make use of the SVD of matrix D =
UMU ′, which we partition as

D =
[

U1 U2

]

[

|D| Ip
M2

] [

U ′
1

U ′
2

]

where p is the multiplicity of the largest eigenvalue of D, 1 ≤ p ≤ n. Also denote
y = U ′d, y1 = U ′

1d, y2 = U ′
2d.

We break the problem into two cases.

1. Case λP ∈ (|D| ,∞).

For λ ∈ (|D| ,∞), we have from Proposition 5 that w0(λ) = −(D − λI)−1d and
L(w0(λ), λ) = −(1/2)d′(D − λI)−1d + λ/2 . L(w0(λ), λ) is differentiable, and
taking two derivatives gives

dL

dλ
= (1/2)(1− d′(D − λI)−2d)

d2L

dλ2
= −d′(D − λI)−3d
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Setting the first derivative to zero yields

0 = 1− d′(D − λI)−2d (43)

= det(1− d′(D − λI)−2d)

= det(I − dd′(D − λI)−2)

= det(D − λI)− dd′(D − λI)−1) det(D − λI)−1

where we have used the fact that det(I+AB) = det(I+BA). Since det(D−λI) ̸=
0, we can multiply both sides of the last equality by det(D − λI)2 to obtain

0 = det(D − λI)− dd′(D − λI)−1) det(D − λI)

= det

([

D − λI I
dd′ D − λI

])

= det(P − λI)

where we have used the partitioned determinant formula, which is valid since
D − λI is nonsingular for λ > |D|. Therefore the first derivative of L vanishes in
the interval (|D| ,∞) if and only if there exists a real-valued eigenvalue of P in
this interval. Also, we have from (43) that

1 = d′(D − λI)−2d = d′U(M − λI)−2U ′d = y′(M − λI)−2y

with y := U ′d. So we conclude that y ̸= 0 for this case. Examining the second
derivative, we have

d2L

dλ2
= d′(λI −D)−3d = y′(λI −M)−3y

Note that since λ > |D|, (λI − M)−3 > 0, and since y ̸= 0, we have that
d2L/dλ2 > 0 on (|D| ,∞) and therefore L(w0(λ), λ) is strictly convex on this
interval. Therefore the minimizer of L is unique and the first derivative is zero
at the solution. We also know that there is only one real eigenvalue of P in this
interval due to the uniqueness of the optimal solution. Therefore we have estab-
lished that λ0 = λP ∈ (|D| ,∞) is the optimal solution. Substituting this solution
into L gives

L0 = L(w0(λ0), λ0) = −(1/2)d′(D − λP I)
−1d+ λP /2

verifying that (41) holds for the first case.

2. Case λP /∈ (|D| ,∞). In this case, we first show that the λ0 = |D|. Using the
SVD, we have for λ ∈ (|D| ,∞)

L(w0(λ), λ) = −(1/2)d′(D − λI)−1d+ λ/2

= −(1/2)
[

y′1 y′2
]

[ 1
|D|−λ

Ip
(M2 − λI)−1

] [

y1
y2

]

+ λ/2

From this expression for L, note that y1 = U ′
1d must be zero for this case, or

limλ→|D|+ L(w0(λ), λ) = +∞, which is a contradiction since limλ→+∞ L(w0(λ), λ) =
+∞ as well, and L is a smooth function on the interval (|D| ,∞), so it must have
a minimum on that interval (zero derivative), but by assumption it does not have
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a zero derivative on that interval. Note that y1 = U ′
1d = 0 is equivalent to

d ∈ R(D − |D| I), which can be seen from the SVD of D − |D| I

D − |D| I =
[

U1 U2

]

[

0
M2 − |D| I

] [

U ′
1

U ′
2

]

so the columns of U1 are a basis for N(D − |D| I) and d is orthogonal to the
columns of U1 so d ∈ R(D − |D| I). Substituting y1 = 0, into the expression for
L(w0(λ), λ) gives

L(w0(λ), λ) = −(1/2)d′(D − λI)+d+ λ/2, λ ≥ |D| , d ∈ R(D − |D| I) (44)

and L(w0(λ), λ) is smooth on the interval including the left boundary, [|D| ,∞),
and the optimizer must be on the boundary, λ0 = |D|. For this value of λ, the
inner maximization over w gives from Proposition 5

w0(λ0) = −(1/2)(D − |D| I)+d+N(D − |D| I)

and evaluating L0 gives

L(w0(λ0), λ0) = −(1/2)y′2(M2 − |D| I)−1y2 + |D| /2

= −(1/2)d′(D − |D| I)+d+ |D| /2 (45)

verifying (41) for this case.

Taking the derivative of (44) and evaluating at λ = |D| gives

(d/dλ)L(w0(λ), λ) = (1/2)(1− d′((D− |D| I)+)2d) = (1/2)(1−
∣

∣(D − |D| I)+d
∣

∣

2
)

which is non-negative if and only if |(D − |D| I)+d| ≤ 1. Otherwise the derivative
at the boundary is negative and the optimal λ is in the interval (|D| ,∞), which
is the previous case. Therefore λ0 = |D| if and only if

d ∈ R(D − |D| I),
∣

∣(D − |D| I)+d
∣

∣ ≤ 1

Next we show that |D| is an eigenvalue of P in this case. Factoring P − λI gives

P − λI =

[

U
U

] [

U ′DU − λI I
U ′dd′U U ′DU − λI

] [

U ′

U ′

]

=

[

U
U

]









(|D| − λ)Ip I
M2 − λI I

y1y
′
1 y1y

′
2 (|D| − λ)Ip

y2y
′
1 y2y

′
2 M2 − λI









[

U ′

U ′

]

Since the leading and trailing matrices are inverses of each other, we have a simi-
larity transformation, and the eigenvalues of the inner matrix are the eigenvalues
of P . Setting y1 = 0 in the inner matrix and setting λ = |D| gives a zero third
block row of the inner matrix, and it is singular. Therefore λ = |D| is an eigen-
value of P . Since there are no real eigenvalues of P in (|D| ,∞), we have that
|D| is the largest real eigenvalue of P for this case, and we have established that
λ0 = λP also for this case.
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Summarizing, we have broken the problem into two cases. In the first case we have
shown that λ0 = λP > |D|, and (d/dλ)L(w0(λ), λ) is zero at λ = λP . In this case there
is only one real eigenvalue of P in (|D| ,∞).

In the second case, we have that λ0 = λP = |D|, the boundary of the feasible set.
We have also shown that d ∈ R(D − |D| I), and |(D − |D| I)+d| ≤ 1 for this case. If
d /∈ R(D − |D| I), then L(w0(λ), λ) is +∞ at λ = |D|, which is in the first case. If
d ∈ R(D − |D| I), but |(D − |D| I)+d| > 1, then L(w0(λ), λ) is finite at λ = |D|, but
the derivative is negative, which is again in the first case. Thus we have established
statements 2–4 in the lemma and the proof is complete.

Next we turn to the saddle points.

Lemma 17 (Saddle points of the Lagrangian of constrained quadratic optimization).
The following (w∗, λ∗) are saddle points of L(w, λ) := (1/2)w′Dw+w′d− (1/2)λ(w′w−
1).

w∗ =







(

(D − |D| I)+d+N(D − |D| I)

)

∩W λP = |D|

(D − λP I)
−1d, λP > |D|

λ∗ = λP

Proof. From the definition of a saddle point we need to establish the inequalities

L(w, λ∗) ≤ L(w∗, λ∗) ≤ L(w∗, λ)

hold for all w ∈ R
n and λ ∈ R.

Taking the second inequality first, we have that L(w∗, λ) = (1/2)(w∗)′Dw∗+(w∗)′d
for all λ since (w∗)′w∗ = 1. Therefore L(w∗, λ) = L(w∗, λ∗) for all λ and the second
inequality is established with equality.

Turning to the first inequality, we consider the two cases; (i) λ∗ = λP > |D|, and
(ii) λ∗ = λP = |D| and d ∈ R(D − |D| I). For the first case we know that

max
w

L(w, λP ) = −(1/2)d′(D − λP I)
−1d+ λP /2 = L(w∗, λP ) = L(w∗, λ∗)

where the maximization over w is unconstrained, and the first equality follows from
Proposition 5. Since this equality holds for the maximizer, we have that L(w, λ∗) =
L(w, λP ) ≤ L(w∗, λ∗) for all w ∈ R

n, where the first equality comes from the definition
of λ∗. Thus the first inequality holds for the first case.

Turning to the second case, we have similarly from Proposition 5

max
w

L(w, |D|) = −(1/2)d′(D − |D| I)+d+ |D| /2 = L(w∗, |D|) = L(w∗, λ∗)

where again the maximization over w is unconstrained, and we have L(w, λ∗) = L(w, |D|) ≤
L(w∗, λ∗) for all w ∈ R

n. Thus both cases satisfy the first inequality, both inequalities
have been established, and the result is proven.

Finally, we address the original constrained optimization of the concave quadratic
function and its Lagrangian

Lemma 18 (Constrained quadratic optimization and its Lagrangian). We are given
the following: (i) a convex quadratic function and compact constraint set W defined in
Proposition 15

V (w) := (1/2)w′Dw + w′d W := {w | w′w = 1}
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with D ∈ R
n×n ≥ 0, (ii) the constrained maximization problem (36)

max
w∈W

V (w)

with Lagrangian function

L(w, λ) = V (w)− (1/2)λ(w′w − 1)

and the (unconstrained) Lagrangian problem (37)

max
w

min
λ

L(w, λ)

1. Solutions to (36) and (37) exist for all D ≥ 0 and d ∈ R
n and achieve the same

optimal value V 0 = L0 = −(1/2)d′(D − λP I)
+d+ λP /2.

2. The optimizer of (36), denoted w0, is given by w0 = w∗ where w∗ the saddle-point
solution set from Lemma 17.

3. The optimizer of (37), denoted (w0
L, λ(w

0
L)) is given by w0

L = w∗ and λ(w0
L) = R.

Proof.
The solution to (36) exists since V (·) is continuous and W is compact. The solution

to (37) exists and satisfies strong duality with (38) due to the saddle-point theorem
(Proposition 12) and Lemma 17, so we have that

L0 = max
w

min
λ

L = min
λ

max
w

L = −(1/2)d′(D − λP I)
+d+ λP /2

where the last equality follows by (41). From the saddle-point theorem, we also have
that w0

L = w∗ for the optimizer of the Lagrangian. Since w0
L satisfies (w0

L)
′w0

L = 1, it
follows that λ0(w0

L) = R. Finally, we have that value V 0 = L0 and set w0 = w0
L by

Proposition 7, and the proof is complete.

The proofs of Lemma 16, Lemma 17, and Lemma 18 have proven Proposition 15.

Discussion of Proposition 15. The basic problem of constrained, nonconvex quadratic
optimization has appeared in several fields. In the optimization literature it is known as
the “trust-region” problem. Nocedal and Wright discuss the numerical solution of the
trust-region problem in the context of nonlinear programming (Nocedal and Wright,
2006, p.69). Boyd and Vandenberghe establish strong dualilty of the Lagrangian and
dual Langrangian formulations of the problem (Boyd and Vandenberghe, 2004, Ap-
pendix B). The complete solution provided in Proposition 15 appears to be new to this
work. The authors would also like to acknowledge Robin Strässer for his work on earlier
versions of Proposition 15 (Mannini, Strässer, and Rawlings, 2024).

Constrained minmax and maxmin. To compactly state the results in this section
it is convenient to define two functions

M(λ) :=

[

M11 M12

M ′
12 M22 − λI

]

L(λ) := −(1/2)d′M+(λ)d+ λ/2

and for convenience, we repeat the definition of the Schur complements

M̃11(λ) := (M22 − λI)−M ′
12M

+
11M12 M̃22(λ) := M11 −M12(M22 − λI)+M ′

12
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Corollary 19 (Minmax and maxmin of constrained quadratic functions). Consider
quadratic function V (·) : Rn+m → R and compact constraint set W

V (u,w) :=
1

2

[

u
w

]′ [
M11 M12

M ′
12 M22

] [

u
w

]

W := {w | w′w = 1}

with M ∈ R
(n+m)×(n+m) ≥ 0, M22 ∈ R

n×n, M11 ∈ R
m×m, M12 ∈ R

m×n, and the two
constrained optimization problems.

min
u

max
w∈W

V (u,w) (46)

max
w∈W

min
u

V (u,w) (47)

1. The solution to (46) is

V (u0, w0(u0)) =
λ0

2

u0 ∈ N(M̃22(λ
0))

w0(u0) ∈

(

− (M22 − λ0I)+M ′
12 u0 +N(M22 − λ0I)

)

∩W

with λ0 = |M22|.

2. The solution to (47) is

V (u0(w0), w0) =
λ0

2

w0 ∈
(

N(M̃11(λ
0))

)

∩W

u0(w0) ∈ −M+
11M12 w0 +N(M11)

with λ0 =
∣

∣M22 −M ′
12M

+
11M12

∣

∣.

The proof of Corollary 19 is given at the end of the proof of Proposition 20.
Next we add the linear term to V (u,w), which may seem harmless but actually

precludes a closed-form solution as in Corollary 19. Here a nonlinear optimization over
scalar λ remains.

Proposition 20 (Minmax and maxmin of constrained quadratic functions with linear
term). Consider quadratic function V (·) : Rn+m → R and compact constraint set W

V (u,w) :=
1

2

[

u
w

]′ [
M11 M12

M ′
12 M22

] [

u
w

]

+

[

u
w

]′ [
d1
d2

]

W := {w | w′w = 1}

with M ∈ R
(n+m)×(n+m) ≥ 0, and the two constrained optimization problems.

min
u

max
w∈W

V (u,w) (48)

max
w∈W

min
u

V (u,w) (49)

1. The solution to (48) is

V (u0, w0(u0)) = −(1/2)d′M+(λ0)d+ λ0/2

u0 ∈ −M̃+
22(λ

0)(d1 −M12(M22 − λ0I)+d2) +N(M̃22(λ
0))

w0(u0) ∈

(

− (M22 − λ0I)+(M ′
12 u0 + d2) +−N(M22 − λ0I)

)

∩W
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where λ0 must be computed from the following nonlinear optimization problem

λ0 = arg min
λ≥|M22|

L(λ)

2. The solution to (49) is

V (u0(w0), w0) = −(1/2)d′M+(λ0)d+ λ0/2

w0 ∈

(

− M̃+
11(λ

0)(d2 −M ′
12M

+
11d1) +N(M̃11(λ

0))

)

∩W

u0(w0) ∈ −M+
11(M12 w0 + d1) +N(M11)

where λ0 must be computed from the following nonlinear optimization problem

λ0 = arg min
λ≥|M22−M ′

12
M

+

11
M12|

L(λ)

Proof. Expand V as

V (u,w) =
1

2
u′M11u+ u′M12w +

1

2
w′M22w + u′d1 + w′d2

1. Note that from Proposition 7 the optimization problem

min
u

max
w∈W

V (u,w)

is equivalent to the Lagrangian problem

min
u

max
w

min
λ

L(u,w, λ), L(u,w, λ) := V (u,w)−
λ

2
(w′w − 1)

From Proposition 15 strong duality holds for maxw minλ L(u,w, λ), so the opti-
mization problem is also equivalent to the dual Lagrangian problem

min
λ

min
u

max
w

L(u,w, λ)

but when we use the dual to obtain a solution set for the inner maxw problem,
which gives w0(u, λ), that solution set may be too large. We fix this issue sub-
sequently. From Proposition 14 a solution to minu maxw L(u,w, λ) exists if and
only if λ ≥ |M22| and the solution (set) and optimal value function are

w0(u, λ) ∈ −(M22 − λI)+(M ′
12 u+ d2) +N(M22 − λI)

u0(λ) ∈ −M̃+
22(λ)(d1 −M12(M22 − λI)+d2) +N(M̃22(λ))

L(u0(λ), w0(u0, λ), λ) =

{

L(λ), λ ≥ |M22|

+∞, λ < |M22|

The remaining optimization, which is equivalent to solving (48), is

min
λ≥|M22|

L(λ) (50)

which establishes that
λ0 := arg min

λ≥|M22|
L(λ)
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Substituting λ0 in u0(λ), w0(u(λ)), and L(u0(λ), w0(u0, λ), λ) gives

w0(u) ∈ −(M22 − λ0I)+(M ′
12 u+ d2) +N(M22 − λ0I)

u0(λ0) ∈ M̃+
22(λ

0)(d1 −M12(M22 − λ0I)+d2) +N(M̃22(λ
0))

L(u0, w0(u0), λ0) = −(1/2)d′M+(λ0)d+ λ0/2

Finally, restricting the dual solution w0(u0) to satisfy the constraint w ∈ W by
intersecting w0(u0) with W giving

w0(u0) ∈

(

− (M22 − λ0I)+(M ′
12 u0 + d2) +N(M22 − λI)

)

∩W

Since the constraint is satisfied, L(u0, w0(u0), λ0) = V (u0, w0(u0)) giving

V (u0, w0(u0)) = −(1/2)d′M+(λ0)d+ λ0/2

and part 1 is established.

2. From Proposition 7 the optimization problem

max
w∈W

min
u

V (u,w)

is equivalent to the Lagrangian minmax problem

max
w

min
λ

min
u

L(u,w, λ)

Unlike the previous part, before we can use Proposition 15 and invoke strong
duality, we must first examine the form of the innermost problem minu L(u,w, λ).
Using Proposition 5 to solve the minu L(u,w, λ) problem and evaluating at the
optimal u gives

L(u0(w, λ), w, λ) =
1

2
w′M̃11(λ)w + w′(d2 −M ′

12M
+
11d1)−

1

2
d′1M

+
11d1 +

λ

2

Given the functional form of w and λ above, we see that Proposition 15 indeed ap-
plies, and the optimization problem (49) is also equivalent to the dual Lagrangian
problem

min
λ

max
w

min
u

L(u,w, λ)

Again, using the dual to obtain the solution for the inner maxw problem, which
gives w0(λ), may give a solution set that is too large, and we further restrict that
set subsequently. From Proposition 14 a solution to maxw minu L(u,w, λ) exists
if and only if λ ≥

∣

∣M22 −M ′
12M

+
11M12

∣

∣ and the solution (set) and optimal value
function are

u0(w, λ) ∈ −M+
11(M12 w + d1) +N(M11)

w0(λ) ∈ −M̃+
11(λ)(d2 −M ′

12M
+
11d1) +N(M̃11(λ))

L(u0(w0, λ), w0(λ), λ) =

{

L(λ), λ ≥
∣

∣M22 −M ′
12M

+
11M12

∣

∣

+∞, λ <
∣

∣M22 −M ′
12M

+
11M12

∣

∣

The remaining optimization, which is equivalent to solving (49), is

min
λ≥|M22−M ′

12
M

+

11
M12|

L(λ) (51)
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which establishes that

λ0 := arg min
λ≥|M22−M ′

12
M

+

11
M12|

L(λ)

Restricting w0 by enforcing the constraint w0 ∈ W gives

w0(λ0) ∈

(

− M̃+
11(λ

0)(d2 −M ′
12M

+
11d1) +N(M̃11(λ

0))

)

∩W

Since the constraint is satisfied, L(u0(w0), w0, λ) = V (u0(w0), w0) giving

V (u0(w0), w0) = −(1/2)d′M+(λ0)d+ λ0/2

and part 2 is established.

To prove Corollary 19, note that d = 0 so that (50) and (51) can be solved analyt-
ically giving λ0 = |M22| for (50) and λ0 =

∣

∣M22 −M ′
12M

+
11M12

∣

∣ for (51). Substituting
these λ0 values and d = 0 into the statement of Proposition 20 then establishes the
results of Corollary 19.
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