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Abstract

We present Bayesian Diffusion Models (BDM), a predic-
tion algorithm that performs effective Bayesian inference
by tightly coupling the top-down (prior) information with
the bottom-up (data-driven) procedure via joint diffusion
processes. We show the effectiveness of BDM on the 3D
shape reconstruction task. Compared to prototypical deep
learning data-driven approaches trained on paired (super-
vised) data-labels (e.g. image-point clouds) datasets, our
BDM brings in rich prior information from standalone la-
bels (e.g. point clouds) to improve the bottom-up 3D re-
construction. As opposed to the standard Bayesian frame-
works where explicit prior and likelihood are required for
the inference, BDM performs seamless information fusion
via coupled diffusion processes with learned gradient com-
putation networks. The specialty of our BDM lies in its
capability to engage the active and effective information
exchange and fusion of the top-down and bottom-up pro-
cesses where each itself is a diffusion process. We demon-
strate state-of-the-art results on both synthetic and real-
world benchmarks for 3D shape reconstruction. Project
link: https://mlpc-ucsd.github.io/BDM

1. Introduction

The Bayesian theory [5, 38], under the general princi-

ple of analysis-by-synthesis [80], has made a profound im-

pact on a myriad of tasks in computer vision and machine

learning, including face modeling [13], shape detection and

tracking [6], image segmentation [65], scene categorization

[18], image parsing [66], depth estimation [43, 73], object

recognition [20, 21, 70], and topic modeling [7].

We assume the task of predicting y for a given input x
(y and x represent respectively the 3D point clouds and the

input image in this paper). The Bayes’ theorem turns the

posterior p(y|x) into the product of the likelihood p(x|y)
and the prior p(y) as p(y|x) ∝ p(x|y)p(y), which can be

further approximated by pγ(y|x)p(y) [40], where pγ(y|x)
* equal contribution. Work done during the internship of Haiyang Xu,

Yu Lei, Yue Zhao, and Yilin Wang at UC San Diego.

Figure 1. Baseline vs Bayesian Diffusion Models. Our BDM

brings rich prior knowledge into the shape reconstruction process,

fixing the incorrect predictions by the baseline (top row). BDM

surpasses baselines in all three training data scales (bottom row).

represents a direct bottom-up (data-driven) process, e.g.,
the Viola-Jones face detector [68]. The formulations of

p(x|y)p(y) [41] and pγ(y|x)p(y) [40] can be solved via

e.g., the Markov Chain Monte Carlo (MCMC) sampling

methods [3, 71].

When does the Bayesian help? The Bayesian theory

[5, 34, 80] provides a principled statistical foundation to

guide the top-down and bottom-up inference, which is

deemed to be of great biological significance [38]. In the

early development of computer vision [50], the objects in

study [13, 21, 70] are often of simplicity and are picked

from relatively small-scale datasets [19, 27, 54]. The top-

down prior [20, 66] can therefore provide a strong regular-

ization and inductive bias to the bottom-up process that has

been trained from the data [19, 27].

Why is the Bayesian not anymore widely adopted in the
deep learning era? Although still being an active subject

[22] in study, the top-down/prior information has not been

widely adopted in the big-data/deep-learning era, where an

immediate improvement can be shown over the data-driven

models [16, 39, 58] learned from large-scale training set of

input and ground-truth pairs Ss = {(xi,yi), i = 1..n}. The
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reasons are threefold: 1) Rich features from large-scale data
[14] become substantially more robust than manually de-
signed ones [47], whereas the top-down prior p(y) for struc-
tured output y no longer shows an improvement. 2) Strong
bottom-up models [16, 39, 58] learned in a x → y fashion
from paired/supervised dataset, Ss = {(xi,yi), i = 1..n},
are powerful, and they do not necessarily see an immediate
benefit from introducing a separate prior p(y) that is ob-
tained from Sl = {yi, i = 1..n} alone, as knowledge about
the y has already been implicitly captured in the data-driven
pγ(y|x). 3) The presence of the intermediate stages with
different architectural designs for the deep models makes
merely combining the data-driven model pγ(y|x) and the
prior p(y) not so obvious, as the distributions for pγ(y|x)
and p(y) are hard to model and may not co-exist.
The emerging opportunity for combining bottom-up
and top-down processes with diffusion-based models.
The recent development in diffusion models [31, 59, 61, 62]
has led to substantial improvements to unsupervised learn-
ing beyond the traditional VAE [37] and adversarial learn-
ing [26, 33, 64]. The presence of diffusion models for learn-
ing both p(y) (e.g. shape priors [84]) and pγ(y|x) (e.g. 3D
shape reconstruction [15, 51]) inspires us to develop a new
inference algorithm, Bayesian Diffusion Models, that is ap-
plied to single-view 3D shape reconstruction.

The contribution of our paper is summarized as follows:
• We present Bayesian Diffusion Models (BDM), a new

statistical inference algorithm that couples diffusion-
based bottom-up and top-down processes in a joint frame-
work. BDM is particularly effective when having sepa-
rately available data-labeling (supervised) dataset Ss =
{(xi,yi), i = 1..n} and standalone label dataset Sl =
{yi, i = 1..m} for training pγ(y|x) and p(y) respec-
tively. For example, obtaining a set [63] for real-world
images with the corresponding ground-truth 3D shapes is
challenging whereas a large dataset of standalone 3D ob-
ject shapes such as ShapeNet [9] is readily available.

• Two strategies for fusing the information exchange be-
tween the bottom-up and the top-down diffusion process
are developed: 1) a blending procedure that takes the
two processes in a plug-in-and-play fashion, and 2) a
merging procedure that is trained.

• We emphasize the key property of fusion-with-diffusion
in BDM vs. fusion-by-combination in the traditional
MCMC Bayesian inference. BDM also differs from the
current pre-training + fine-tuning process [8] and the
prompt engineering practice [30] by making the bottom-
up and top-down integration process transparent and ex-
plicit; BDM points to a promising direction in computer
vision and machine learning with a new diffusion-based
Bayesian method.
BDM demonstrates the state-of-the-art results on the sin-

gle image 3D shape reconstruction benchmarks.

2. Related Work

Bayesian Inference. As stated previously, the Bayesian
theory [5, 38] has been adopted in a wide range of com-
puter applications[6, 13, 18, 20, 21, 43, 66, 70, 73], but the
results of these approaches are less competitive than those
by the deep learning based ones [28, 39, 58].

3D Shape Generation. Early 3D shape generation meth-
ods [1, 24, 29, 55, 74, 79] typically leverage variational
auto-encoders (VAE) [37] and generative adversarial net-
works (GAN) [26] to learn the distribution of the 3D shape.
Recently, the superior performance of diffusion models in
generative tasks also makes them the go-to methods in 3D
shape generation. PVD [84] proposes to diffuse and de-
noise on point clouds using a Point-Voxel-CNN [46], while
in DMPGen [48], the diffusion process is modeled by a
PointNet [57]. LION [81] uses a hierarchical VAE to en-
code 3D shapes into latents where the diffusion and gen-
erative processes are performed. Another popular category
of 3D generative models leverages 2D text-to-image diffu-
sion models as priors and lifts them to 3D representations
[42, 53, 56, 69].

Single-View 3D Reconstruction. Recovering 3D object
shapes from a single view is an ill-posed problem in com-
puter vision. Traditional approaches extract multi-modal
information, including shading [4, 32], texture [72], and
silhouettes [10], for reconstructing 3D shapes. Learning-
based reconstruction methods become popular with the ad-
vance of neural networks and the availability of large-scale
2D-3D datasets [9, 23]. In these methods, different 3D rep-
resentations are employed, including voxel grids [12, 25,
76, 77, 83], point clouds [17, 49], meshes [35, 36, 75], and
implicit functions [11, 52, 60].

Some other reconstruction methods take images as con-
ditions for generative models [15, 51, 74]. In particular,
they learn the prior shape distribution from large-scale 3D
datasets and then perform 3D reconstruction with 2D image
observations. 3D-VAE-GAN [74] employs GAN and VAE
to learn a generator mapping from a low-dimensional prob-
abilistic space to a 3D-shape space, and feeds images to the
generator for reconstruction. Recent methods for single-
view reconstruction are mostly based on diffusion models
[15, 44, 45, 51]. PC2 [51] proposes to project encoded fea-
tures from 2D back to 3D, which facilitates the point cloud
reconstruction in denoising. CCD-3DR [15] introduces a
centered diffusion probabilistic model based on PC2, which
offers better consistency in alignments of local features and
final prediction results. RenderDiffusion [2] presents an ex-
plicit latent 3D representation into a diffusion model, yield-
ing a 3D-aware pipeline that could perform 3D reconstruc-
tion. Zero1-to-3 [45] and One-2-3-45 [44] inject camera
information into a 2D diffusion model and reconstruct 3D
shapes with synthesized multi-view images.
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Figure 2. Overview of the generative process in our Bayesian Diffusion Model. In each Bayesian denoising dtep, the prior diffusion

model fuses with the reconstruction process, bringing rich prior knowledge and improving the quality of the reconstructed point cloud. We

illustrate our Bayesian denoising step in two ways, left in the form of a flowchart and right in the form of point clouds.

Prompts and Latent Representations in Transformers.
Transformers [67] provide a general tokenized learning

framework, allowing the insertion of the representation of y
into pγ(y|x) as special tokens [10, 30]. However, the prior
knowledge in Transformers serves as a latent condition that

is often opaque and non-interpretable.

3. Method

In the following section, we introduce the Bayesian Dif-

fusion Models, the framework of which is illustrated in

Fig. 2. Initially, a concise overview of denoising diffu-

sion models, particularly focusing on point cloud diffusion

models, is presented. This is followed by an exposition of

its conditional variant applied to 3D shape reconstruction.

Subsequently, we delve into the central concept of our pro-

posed Bayesian Diffusion Models which integrate Bayesian

priors. Concluding this section, we provide an in-depth ex-

ploration of our novel prior-integration methodology.

3.1. Bayesian Inference with Stochastic Gradient
Langevin Dynamics

As discussed in Sec. 1, our task is to predict y (a set of

point clouds) for a given input x ∈ R
q (an input image). For

the 3D shape reconstruction task, the output y consists of a

set of 3D points. The Bayesian theory [5] focuses on the

study of the posterior p(y|x) ∝ p(x|y)p(y), where p(y)
is the prior (top-down information). The likelihood term

p(x|y) can be alternatively replaced [40] by a data-driven

(bottom-up) distribution pγ(y|x), which is learned from a

paired data-labels training set Ss = {(xi,yi), i = 1..n}.
Therefore, the inference for the optimal prediction y∗ can

then be carried via Markov Chain Monte Carlo (MCMC)

[3] using stochastic gradient Langevin dynamics [71]:

Δyt =
εt

2

(∇ log pγ(y
t|x)︸ ︷︷ ︸

data−driven

+∇ log p(yt)︸ ︷︷ ︸
prior

)
+ ηt

ηt ∼ N(0, εt) (1)

where εt denotes a sequence of step size and ηt is a Gaus-

sian noise. The challenge in implementing Equation 1 is

twofold: 1) it requires knowing the explicit formulation for

both the log pγ(y
t|x) and log p(yt), which is hard to ob-

tain in real-world applications. 2) a mere summation for the

gradients ∇ log pγ(y|x) and ∇ log p(yt) limits the level of

interaction between the bottom-up and top-down processes.

Fig. 3 shows the basic Bayes formulation and demonstrates

the stochastic gradient Langevin inference result.

3.2. Denoising Diffusion Probabilistic Models

The denoising diffusion models [31, 61, 62] have demon-

strated superior performance in representing the structured

data of high-dimension in both paired data-labels setting

(learning ∇ log pt(y) from Sl = {yi, i = 1..m} [84])

and standalone labels settings (learning∇ log ptγ(y|x) from
Ss = {(xi,yi), i = 1..n} [51]) manners.

Here, we discuss the general formulation of the DDPM

model [31, 61] in the context of single image 3D shape re-

construction. For point cloud generation, diffusion models

are adept at learning the 3D shape of objects represented

in point cloud format. At a high level, diffusion models

iteratively denoise 3D points from a Gaussian sphere into

a recognizable object. Consider a set of point clouds y0,

consisting of N points, as an object in a 3N -dimensional

space. The diffusion model is employed to learn the map-

ping sθ : R3N → R
3N . Specifically, it is designed to esti-

mate q(yt−1|yt), which is the offset of the points from its

position at timestep t. This approach aligns with standard

diffusion model practices, which are trained to predict the

noise ε ∈ R
3N using the following loss function:

L = Eε∼N (0,I)

[∥∥ε− sθ(y
t, t)

∥∥2

2

]
. (2)

The process of single-view reconstruction can be con-

sidered as a conditional point cloud generation. Diffu-

sion models can be effectively applied here as well. Given

a single-view image x, the diffusion model aims to esti-

mate q(yt−1|yt,x). Therefore, we should sample from



Figure 3. Illustration for the Bayesian Diffusion Models compared with the standard Bayesian formulation. We present the standard

Bayesian formulation and the one using stochastic gradient Langevin on the top part, while our proposed BDM on the bottom.

q(yt−1|yt,x) for this task. All the other concepts and prin-
ciples are the same as point cloud generation.

3.3. Bayesian Diffusion Model

In our work, we denote x as an input image instance,

while yt, t = 1 · · ·T to represent the 3D object we want

to reconstruct. γ is taken as the distribution learned by the

reconstruction model and Π represents the distribution after

fusing prior and γ.
Generative model: The shapes generated by prior model

can be formulated as p
(
y0

)
. The noise predicted by the

model at every timestep drives the spatial distribution ac-

cording to the Markov Chain state transition probability

p
(
yt | yt+1

)
. For the gradient, we have:

ε
(
yt

)
= −σt∇yt log p(yt) (3)

Reconstruction model: In the same way of understanding

generative diffusion model, the shapes generated by γ can

be formulated as pγ
(
y0 | x). The model can reconstruct

point clouds from learned pγ
(
yt | yt+1,x

)
. In a similar

way to the above, we have:

εγ
(
yt,x

)
= −σt∇yt log pγ(y

t | x) (4)

It is obvious to conclude that the state transition prob-

ability of our Bayesian Diffusion Model comes from the

corresponding probability from model γ and posterior from

the prior model. As show in Fig. 2, we use an inaccessible

function Φ to incorporate the prior diffusion gradient into

the reconstruction diffusion gradient. Accordingly, we can

deduce the fused gradient in our Bayesian Diffusion Model

as follows:

∇ log pπ(y
t | x) = ∇γ log Φ

(
pγ(y

t | x, ỹt+1 ∼ pπ(y
t+1 | x),

p(yt | ỹt+1 ∼ pπ(y
t+1 | x)) (5)

3.4. Point Cloud Prior Integration

As stated in Sec. 1, diffusion-based models have pro-

vided us with the possibility to benefit from both bottom-

up and top-down processes. Specifically, the multi step in-

ference procedure allows more flexible and effective forms

of function Φ in Eq. (5). Therefore, we employ step-wise

interaction between a generative diffusion model and a re-

construction model, facilitating closer integration of point

cloud priors. In particular, we feed the intermediate point

cloud from our reconstruction model into the prior model,

forward it through a certain number of timesteps in both

models and fuse two new point clouds from the prior model

and the reconstruction model as the input for the reconstruc-

tion model in the next time step. As below we introduce two

fusion methods: BDM-M (Merging) and BDM-B (Blend-

ing). Both are carried out under fusion-with-diffusion.



Figure 4. Illustration of our proposed fusion methods: BDM-M

and BDM-B. The left part is the BDM-M, while the right side

shows the BDM-B.

3.4.1 BDM-M (Merging)

In Merging, we propose a learnable paradigm for incor-

porating knowledge from the prior model into the recon-

struction model. We implement BDM-M by using two dif-

fusion models, PVD [84] and PC2 [51]. Both the diffu-

sion models use PVCNN as the backbone for predicting

noise. Our Merging method focuses on the decoder part

of PVCNN. To preserve the original knowledge in the re-

construction model, we freeze the encoder and finetune the

decoder of PC2. Specifically, following [82], we retain the

original encoders of both models while feeding the multi-

scale features of PVD’s encoder directly into PC2’s decoder.

Each layer of the encoder enhanced by this integration is fa-

cilitated by a zero-initialized convolution layer. This setup

enables a seamless and implicit merging of the knowledge

from the prior model and the reconstruction model.

3.4.2 BDM-B (Blending)

Beyond the implicit incorporation of prior knowledge,

we also introduce an explicit training-free fusion method

on point clouds, termed as BDM-B. It explicitly combines

two groups of point clouds, yt = {zti}Ni=1 and yt
γ =

{ztγ,i}Ni=1, each consisting of N points. These point clouds

are noise-reduced versions derived from the same origin,

generated by generation and reconstruction models sepa-

rately. The blending operation employs a probabilistic func-

tion Ψ, which assigns a selection probability to each pair

of corresponding points ztj , z
t
γ,j , where z

t
i denotes the i-th

point in a point cloud y. The blending equation is defined

as follows:

yt
π = Ψ(yt,yt

γ) (6)

Additionally, assuming points are i.i.d., the whole point

clouds can be formulated as

p
(
yt | yt+1

)
=

N∏
i=1

p
(
zti | zt+1

i

)
(7)

and

pγ
(
yt | yt+1,x

)
=

N∏
i=1

pγ
(
zti | zt+1

i ,x
)

(8)

Points are selected based on Ψ; for instance, we might

choose 50% of the points from the prior and 50% from the

reconstruction model. Statistically, this approach is akin to

blending two point clouds, resulting in a mixed distribution

of points from both sources. The blending method also sup-

ports our Bayesian Diffusion Model theory, the details of

which will be given in the Appendix.

4. Experiment
Dataset. To demonstrate the efficacy of our Bayesian

Diffusion Model, we conducted our experiments on two

datasets: the synthetic dataset ShapeNet [12] and the real-

world dataset Pix3D [63]. ShapeNet [9], a collection of

3D CAD models, encompasses 3,315 categories from the

WordNet database. Following prior work [15, 51, 78], we

utilized a subset of three ShapeNet categories – {chair, air-
plane, car} – from 3D-R2N2 [12], including image render-

ings, camera matrices, and train-test splits. Pix3D com-

prises diverse real-world image-shape pairs with meticu-

lously annotated 2D-3D alignments. For a balanced com-

parison with CCD-3DR [15] and PC2 [51], we reproduced

these two works and adhered to CCD-3DR’s benchmark

on three categories: {chair, table, sofa}, allocating 80% of

samples for training and the remaining 20% for testing. Fur-

ther details about extended object categories are discussed

in the Appendix.

Implementation Details. For both the ShapeNet-R2N2

and Pix3D datasets, we sample 4,096 points per 3D object

and set the rendering resolution to 224×224. Notably, for

Pix3D, images are cropped using their bounding boxes, ne-

cessitating adjustments to the camera matrices to accom-

modate the non-object-centric nature and varying sizes of

the images. For the training of the generative diffusion

model, we employ the PVD [84] architecture, adhering to

their training methodologies. For the training of the recon-

struction diffusion model, we select PC2 and CCD-3DR as

two baselines and follow the recipe of CCD-3DR. The in-

ference step is set as 1,000 for both the generative model

and the reconstruction model. In our BDM inference frame-

work, Bayesian integration is strategically applied at spe-

cific intervals during the denoising process. This integra-

tion occurs every 32 steps, both in the early stage and in

the late stage of denoising. The fusion process initiated

by this integration extends throughout 16 steps, ensuring a

balanced and effective incorporation of Bayesian principles

throughout the denoising procedure. Training of generative

models was conducted on 4 NVIDIA A5000 GPUs, while

we trained reconstruction models utilizing a single NVIDIA

A5000 GPU. More details are available in the Appendix.



Figure 5. Qualitative comparisons on the synthetic ShapeNet-R2N2 dataset. We use PC2 [51] and CCD-3DR [15] as baselines of 3D shape

reconstruction. Rows 1-3 show the visualization of PC2 while rows 4-6 display the result of CCD-3DR. We show our BDM’s results under

10% data in column 2-4 and the results under 50% in column 5-7. Column 8 gives the corresponding ground truth.

4.1. Quantitative Results

We evaluate the performance of reconstruction with two

widely recognized metrics: Chamfer Distance (CD) and F-

Score@0.01 (F1). Chamfer Distance measures the disparity

between two point sets by calculating the shortest distance

from every point in one set to the closest point in the other

set. To address the issue of CD’s susceptibility to outliers,

we additionally present F-Score at a threshold of 0.01. In

this metric, a reconstructed point is deemed accurately pre-

dicted if its nearest distance to the points in the ground truth

point cloud is within the specified threshold, which presents

a measure of precision in the reconstruction process.

ShapeNet-R2N2. Tab. 1 presents our BDM’s performance

across various training data scales on ShapeNet-R2N2. The

results indicate improvement in both CD and F1 across all

three categories. Notably, the improvement becomes more

pronounced when training data scale decreases, highlight-

ing the effectiveness of the prior facing data scarcity.

Pix3D. Following CCD-3DR, we also evaluate on the

Pix3D dataset in Tab. 2. It can be seen that our method

effectively improves the performance and achieves state-of-

the-art. Notably, we train the reconstruction model trained

on Pix3D, while the prior model is trained on the same

category of the separate, larger dataset: ShapeNet-R2N2

(∼10 times size of Pix3D). In this way, we avoid the possi-

ble leaking and memorization problem, i.e., the generative

model naively retrieve the nearest memorised shape learned

from the reconstruction model.

4.2. Qualitative Results

In addition to the quantitative study, we also show the

qualitative results to show the superiority of our BDM on

both ShapeNet and Pix3D. For the ShapeNet-R2N2 dataset,



Figure 6. Qualitative comparisons on the real-world Pix3D dataset. We examine three distinct categories, each represented in a separate

row. Columns 3,4 and 8,9 feature our BDM, implemented based on PC2 and CCD-3DR respectively, for a comparative analysis.

Chair Airplane Car

Method 10% 50% 100% 10% 50% 100% 10% 50% 100%

CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑
Base: PC2 [51] 97.25 0.393 73.58 0.437 65.57 0.464 88.00 0.605 76.39 0.628 65.97 0.655 64.99 0.524 62.59 0.542 64.36 0.547

BDM-M (ours) 94.94 0.395 71.56 0.446 64.48 0.468 87.75 0.604 73.19 0.629 65.16 0.653 63.53 0.524 60.71 0.549 64.16 0.554

BDM-B (ours) 94.67 0.410 69.99 0.463 64.21 0.485 83.62 0.612 68.66 0.641 59.04 0.660 60.48 0.539 62.58 0.554 65.85 0.559

Base: CCD-3DR [15] 89.79 0.418 63.13 0.474 58.47 0.498 81.29 0.612 72.46 0.635 62.77 0.651 63.13 0.531 62.25 0.550 61.88 0.562

BDM-M (ours) 81.47 0.425 62.07 0.477 57.31 0.493 81.54 0.608 69.31 0.632 61.87 0.652 61.92 0.531 61.24 0.555 63.66 0.561

BDM-B (ours) 79.26 0.441 60.07 0.497 56.78 0.510 77.34 0.621 66.83 0.644 56.96 0.660 59.05 0.546 60.59 0.560 66.90 0.569

Table 1. Performance on Chair, Airplane and Car of ShapeNet-R2N2. We evaluate our BDM, comparing with two baselines: PC2 and

CCD-3DR. These experiments span three different scales of training data (10% / 50% / 100%) for the reconstruction diffusion model,

demonstrating the efficacy of our BDM method.

Chair Sofa TableMethod
CD↓ F1↑ CD↓ F1↑ CD↓ F1↑

Base: PC2 [51] 115.94 0.443 47.17 0.445 202.77 0.397

BDM-M (ours) 113.40 0.449 44.50 0.451 202.08 0.413

BDM-B (ours) 110.60 0.455 45.05 0.455 186.46 0.429

Base: CCD-3DR [15] 111.42 0.456 44.91 0.450 196.28 0.418

BDM-M (ours) 110.86 0.464 44.86 0.452 193.56 0.424
BDM-B (ours) 111.12 0.466 44.51 0.456 194.91 0.423

Table 2. Performance on Chair, Sofa and Table of Pix3D. We eval-

uate our BDM on the two baselines: PC2 and CCD-3DR.

Fig. 5 demonstrates our BDM’s capacity in synthetic 3D

object reconstruction. In Fig. 6, it can be seen clearly that

our method surpasses baselines with respect to the recon-

struction quality on the Pix3D dataset. Notably, our BDM

effectively restores the missing spindles of the chair in the

first image and eliminates hallucinations in the last image.

4.3. Efficiency and Fairness Analysis

As shown in Tab. 3, we present BDM’s parameters, run-

time and GPU memory when doing inference with batch

size of 1. While parameters increase due to the incorpora-

tion of prior model P , memory usage and runtime of BDM

only increase slightly. Moreover, BDM leverages off-the-

shelf pre-trained weights for prior modelP which is frozen,

which doesn’t further incur additional training cost.

PC2/CCD-3DR BDM-B BDM-M

#Parameters (M) 47.41 73.78 74.82

Runtime (s) 46.89 48.84 49.24

GPU memory (GB) 1.73 1.93 2.01

Table 3. Model parameters and inference-time efficiency.

4.4. Ablation Study

To validate the effectiveness and rationality of our BDM,

we conduct several ablation studies to explore the impact

of the timing, duration and intensity to absorb priors. Un-

less otherwise specified, we set BDM-B comprising PVD

trained on 100% data and CCD-3DR trained on 10% data

from ShapeNet-chair as our baseline.

Prior Integration Timing. This subsection evaluates the

effectiveness of integrating prior knowledge at various

stages of the denoising process. Tab. 4 reveals that inte-

grating priors in the late stage alone yields significant im-

provement on model performance, reducing CD to 80.22

and increasing F1 to 0.436. Furthermore, combining early

and late-stage integration further enhances results, achiev-

ing the lowest CD of 79.26 and the highest F1 of 0.441. This



contrasts with the middle stage integration, which even de-
grades the performance of the baseline on F1.

Early Middle Late Chamfer Distance ↓ F-Score@0.01 ↑
89.79 0.418

✓ 82.34 0.421
✓ 87.61 0.395

✓ 80.22 0.436
✓ ✓ 79.26 0.441
✓ ✓ ✓ 81.92 0.416

Table 4. Ablation on the timing of prior integration. This table
presents the impact of applying prior integration during the early,
middle, and late stages of the denoising process on CD and F1.

Prior Integration Duration. As shown in Tab. 5, we inves-
tigate how varying the duration of prior integration affects
the denoising process. First, the performance will greatly
improve once the prior duration is greater than 1, thereby
strongly validating the effectiveness of our BDM. Notably,
the prior integration duration of 16 steps demonstrates the
most substantial improvement. This is a remarkable im-
provement over the baseline (0 step). The diminishing re-
turns are observed with the duration of 32 steps, suggesting
that a moderate duration of prior integration optimally bal-
ances denoising effectiveness and prior guidance.

Prior Duration 0 step (baseline) 1 step 2 step 4 step 8 step 16 step 32 step

Chamfer Distance ↓ 89.79 80.89 81.02 80.65 79.72 79.26 79.94
F-Score@0.01 ↑ 0.418 0.427 0.430 0.429 0.432 0.441 0.438

Table 5. Ablation on the duration of prior integration. This table
presents how different durations of prior integration affect CD and
F1, ranging from 0 to 32 steps.

Prior Integration Ratio. In this part, we present an abla-
tion on the impact of the prior integration ratio on the BDM-
B process. As can be seen in Tab. 6, interestingly, a gradual
increase in the prior take-in ratio yields varying results. At
25%, there is a minor detriment to performance. However,
at 50%, we observe a significant improvement, marking the
optimal balance in prior integration. On the contrary, fur-
ther increasing the ratio to 75% and 100% leads to a drastic
decline in performance. These results suggest that while
a moderate level of prior integration enhances the model’s
performance, excessive integration can be detrimental.

Prior Ratio 0% (baseline) 25% 50% 75% 100%

Chamfer Distance ↓ 89.79 88.22 79.26 142.69 256.13
F-Score@0.01 ↑ 0.418 0.382 0.441 0.307 0.242

Table 6. Ablation on the ratio of prior integration. This table com-
pares the effects of different prior integration ratios on CD and F1.

4.5. BDM vs CFG

Considering that Classifier-Free Guidance (CFG) [30]
also shows the relation in the inference stage between the
gradient ε(yt) from the unconditional diffusion model and
the gradient εγ(yt,x) from the conditional diffusion model,
we conduct an ablation study to compare our method with
CFG. As shown in Tab. 7, both our methods surpass CFG.

Chamfer Distance ↓ F-Score@0.01 ↑
Baseline 58.47 0.498
CFG [30] 59.08 0.495
BDM 56.78 0.510

Table 7. We compare our BDM with CFG. We train these models
and test these two methods on 100% data of chair from ShapeNet.

4.6. Human Evaluation

To better evaluate the reconstruction quality, we also
conducted human evaluation. We randomly selected 20
comparison groups from the Chair, Airplane, and Car
classes in the ShapeNet dataset, totaling 60 groups. In each
group, we present outputs generated by CCD-3DR, BDM-
B, and BDM-M. Sixteen evaluators then ranked each group
on a scale of 1 to 3, and the average scores are shown in
Tab. 8. The results show that our two methods, BDM-M and
BDM-B, still outperforms CCD-3DR, which is aligned with
the quantitative result presented in the main paper. More de-
tails will be discussed in the Appendix.

Human Evaluation CCD BDM-B BDM-M

Chair 1.48 2.15 2.32
Airplane 1.74 1.86 2.40
Car 1.77 1.88 2.35

Average 1.67 1.96 2.35

Table 8. Human Evaluation over 3 categories for CCD, BDM-B,
and BDM-M, with 3 being the best and 1 being the worst.

5. Conclusion and Limitations
In this paper, we present Bayesian Diffusion Model

(BDM), a novel diffusion-based inference method for pos-
terior estimation. BDM overcomes the limitations in the
traditional MCMC-based Bayesian inference that requires
having the explicit distributions in performing stochastic
gradient Langevin dynamics by tightly coupling the bottom-
up and top-down diffusion processes using learned gradient
computation networks. We show a plug-and-play version of
the BDM (BDM-B) and a learned fusion version (BDM-M).
BDM is particularly effective for applications where paired
data-labels such as image-object point clouds, are scares,
while standalone labels, like object point clouds, are abun-
dant. It demonstrates the state-of-the-art results for single
image 3D shape reconstruction. BDM points to a promis-
ing direction to perform the general inference in computer
vision and machine learning beyond the 3D shape recon-
struction application shown here.
Limitations. BDM requires both the prior and data-driven
processes to be diffusion processes. Also, BDM-B takes ad-
vantage of the explicit representation of point clouds, which
might not be broadly adopted on implicit representations.
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[2] Titas Anciukevičius, Zexiang Xu, Matthew Fisher, Paul Hen-
derson, Hakan Bilen, Niloy J Mitra, and Paul Guerrero. Ren-
derdiffusion: Image diffusion for 3d reconstruction, inpaint-
ing and generation. In CVPR, 2023. 2

[3] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and
Michael I Jordan. An introduction to mcmc for machine
learning. Machine Learning, 50:5–43, 2003. 1, 3

[4] Joseph J Atick, Paul A Griffin, and A Norman Redlich.
Statistical approach to shape from shading: Reconstruc-
tion of three-dimensional face surfaces from single two-
dimensional images. Neural Computation, 8(6):1321–1340,
1996. 2
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