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Figure 1. Given a user-specified text prompt consisting of object compositions that are unlikely to appear simultaneously in a natural

scene, our proposed TOKENCOMPOSE method attains significant performance enhancement over the baseline Latent Diffusion Model (e.g.,
Stable Diffusion [55]) by being able to generate multiple categories of instances from the prompt more accurately.

Abstract
We present TokenCompose, a Latent Diffusion Model

for text-to-image generation that achieves enhanced con-
sistency between user-specified text prompts and model-
generated images. Despite its tremendous success, the stan-
dard denoising process in the Latent Diffusion Model takes
text prompts as conditions only, absent explicit constraint
for the consistency between the text prompts and the image
contents, leading to unsatisfactory results for composing
multiple object categories. Our proposed TokenCompose
aims to improve multi-category instance composition by in-
troducing the token-wise consistency terms between the im-
age content and object segmentation maps in the finetuning
stage. TokenCompose can be applied directly to the existing
training pipeline of text-conditioned diffusion models with-
out extra human labeling information. By finetuning Stable
Diffusion with our approach, the model exhibits significant
improvements in multi-category instance composition and
enhanced photorealism for its generated images. 1

1Project done while Zirui Wang, Zhizhou Sha and Yilin Wang interned

at UC San Diego. Correspondence to zw1300@cs.princeton.edu

1. Introduction
Despite the tremendous progress in recent text-to-image dif-

fusion models [7, 17, 21, 52, 55, 57, 58, 72, 75] that have

achieved creating images with an increasing level of qual-

ity, resolution, photorealism, and diversity, there still exists

a major consistency problem between the text prompt and

the generated image content. The models loose the com-

position capability when multiple object categories, espe-

cially those not commonly appearing simultaneously in the

real world, are included in the text prompt: objects may not

appear in the image or their configuration is not pleasantly

good looking. Figure 1 shows examples where a state-of-

the-art model, Stable Diffusion [55], fails to generate desir-

able image content from text prompts.

Prototypical generative models of various families [19,

20, 25, 30, 32, 54, 55, 66] have reached maturity. Adding

conditional training signals [13–15, 28, 37, 49, 52, 55, 75]

to the generative models significantly expands their model-

ing capability, as well as their scope of application. In the

context of Latent Diffusion Models [55], one of the most

commonly applied conditions, text (e.g., captions), is in-

jected into layers of the denoising U-Net [56] via cross-

attention.
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. An overview of the TOKENCOMPOSE training pipeline. Given a training prompt that faithfully describes an image, we adopt a

POS tagger [1] and Grounded SAM [31, 42] to extract all binary segmentation maps of the image corresponding to noun tokens from the

prompt. Then, we jointly optimize the denoising U-Net of the diffusion model with both its original denoising and our grounding objective.

However, there exists a natural discrepancy between

texts (e.g., captions) that are used to train such models and

texts (e.g., prompts) that are used for generation. Whereas

a caption usually describes a real image faithfully, a prompt

can encapsulate image features that do not match the vi-

sual scene of any real-world images. Without fine-grained

training objectives for its conditioned text, a text-to-image

diffusion model often fails to generalize to arbitrary com-

positions that lie in the prompts [65]. This can be due to

the fact that the denoising objective in text-to-image LDM

is only optimized to predict the noise given a text prompt,

leaving the text condition only as a facilitation in optimizing

the denoising function.

By imposing training objectives that operate at the to-

ken level in the conditional text, the diffusion model learns

what each token from the text means in the context of the

image in an atomistic manner. Subsequently, it can be bet-

ter at composing different combinations of words, phrases,

etc., during inference. However, obtaining the “ground-

truth” labels (e.g., segmentation maps) by humans for the

corresponding text tokens is label intensive and expensive,

especially for the text-image pairs [60] used to train large-

scale generative models. Thanks to the recent progress in

vision foundation models, Grounding DINO [42] and Seg-

ment Anything (SAM) [31], grounding segmentation maps

for text tokens can be readily attained automatically.

To this end, we seek to mitigate the composition problem

by developing a new algorithm, TOKENCOMPOSE, which

leverages models pretrained with image understanding tasks

[1, 31, 42] to provide token-level training supervisions to

a text-to-image generative model. We show that, by aug-

menting each noun token from the text prompt of a text-to-

image model with segmentation grounding objectives with

respect to its respective image during training, the model

exhibits significant improvement in object accuracy [18],

multi-category instance composition, enhanced photoreal-

ism [22] with no additional inference cost for its gener-

ated images. Along with our proposed training framework

for text-to-image generative models, we also present the

MULTIGEN benchmark, which examines the capabilities of

a text-to-image generative model to compose multiple cate-

gories of instances in a single image.

2. Related Works
Compositional Generation. Efforts that aim to improve

compositional image generation for text-conditioned image

generative models have been focused on both the training

and inference stages. One approach to improving the com-

positional generation of diffusion models in training is by

introducing additional modules, such as a ControlNet, to

specify high-level features within the image [75, 76]. How-

ever, the modules added to the diffusion models increase the

size of the model, leading to additional training and infer-

ence costs. Another approach through training is to lever-

age a reward function to encourage faithful generation of

images based on compositional prompts [4, 26, 33, 71]. Al-

beit their efficacy, reward functions are sparse and do not

provide dense supervision signals.

Inference-based methods aim to alter the latent and/or

cross-attention maps. Composable Diffusion [41] decom-

poses a compositional prompt into sub-prompts to generate

different latents, and uses a score function to combine the

latents together, while Layout Guidance Diffusion [8] uses

user-defined tokens and bounding boxes to backpropagate

gradients to the latent, and steer the cross-attention maps to

focus on specified regions for specified tokens. Other meth-

ods apply Gaussian kernels [6] or leverage linguistic fea-

tures [16, 53] to manipulate the cross-attention map. While

these methods do not require further training, they add con-

siderable cost during inference, making it cost ×3.37 times
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longer to generate a single image at most, when other gen-

eration configurations are kept the same.

Our framework is training-based and does not require

additional modules to be incorporated into the image gen-

eration pipeline. Furthermore, optimizing attention maps

based on segmentation maps provides dense and inter-

pretable supervision. As a training-based method that

jointly optimizes token-image correspondence and image

generation, the model does not require inference-time ma-

nipulations, yet it achieves strong compositionality and

competitive image quality for conditional generation.

Benchmarks for Compositional Generation. Sev-

eral benchmarks have been proposed to evaluate text-

conditioned image generative models for compositional-

ity. Most methods evaluate compositionality by binding at-

tributes to and specifying relations between objects. For

example, spatial relationships examine whether two dif-

ferent objects appear in the correct spatial layout accord-

ing to the prompt [2, 11, 18, 26, 58]. Color binding ex-

amines whether a text-conditioned image generative model

can correctly assign the specified colors to different ob-

jects, especially when color assignments are counterintu-
itive [2, 6, 16, 26, 58]. Count binding examines whether a

specified instance appears with the right number of counts

specified in the prompt [2, 11, 58]. There are additional

types of attribute bindings and relation specifications that

are evaluated in different benchmarks, such as action and

size [2], and shape and texture [26].

However, the majority of such benchmarks confound

evaluating capabilities of binding the correct attributes or

specifying the correct inter-object relationship with the suc-

cessful generation of specified objects mentioned in the

prompt, making it difficult to evaluate whether improve-

ments are made by stronger attribute assignment & rela-

tion specification capabilities or a higher object accuracy

[11, 18, 23]. VISOR [18] decouples object accuracy from

spatial relationship compositionality by calculating the suc-

cessful rate of correct spatial relationships conditioned on

the successful generation of all specified instances from the

prompt. In contrast, almost all other benchmarks do not dis-

sociate these factors and instead evaluate compositionality

on a holistic basis.

Existing benchmarks on multi-category instance compo-

sition focus on successful generation of mostly two cate-

gories. On the other hand, leading image generative models

have achieved significant improvements in multi-category

instance composition [3, 61], which are capable of generat-

ing multiple categories of instances with a high success rate.

To fill in this research gap in evaluating multi-category in-

stance composition beyond two categories, and to evaluate

our training framework in multi-category instance compo-

sition, we propose MULTIGEN benchmark, which contains

text prompts where each prompt contains objects from an

arbitrary combination of multiple categories.

Generative Models for Image Understanding. There

has been an upward trend in the use of text-conditioned

image generative models for open-vocabulary image un-

derstanding tasks, such as classification [12, 34], detection

[9, 36], and segmentation [29, 38, 44, 48, 63, 64, 67–70, 77].

An inherent advantage of using generative models for

image understanding tasks is being open-vocabulary, as

text-to-image diffusion models are trained with open-

vocabulary textual prompts. Although results using Sta-

ble Diffusion [55] for unsupervised zero-shot image un-

derstanding show great potential among methods in the

same setting (i.e., zero-shot and open-vocabulary), there

still exists a performance gap between these approaches and

those that use specialist models for image understanding

[5, 10, 31, 42, 74]. This gives us the empirical basis to

optimize a generative model (e.g., Stable Diffusion) with

knowledge from an understanding model. Furthermore, by

optimizing a diffusion model with our approach, we also

observe improved performance for downstream segmenta-

tion tasks [39, 63], which further reflects successful transfer

of this knowledge.

3. Method
3.1. Preliminaries

Diffusion models [25] are widely used in conditional im-

age generative tasks. Given an image x ∈ R
H×W×3, a

normally distributed variable ε (e.g., noise) is added to the

image with a variable extent based on a timestep t. Given

a denoising function parameterized by a neural network

θ, a noisy image xt, and a timestep t uniformly sampled

from {1, . . . , T}, the denoising function learns to predict

the noise, ε, following the objective (Eq. 1):

LDM = Ex,ε∼N (0,1),t

[
‖ε− εθ(xt, t)‖22

]
(1)

To improve the efficiency and control of diffusion mod-

els, two changes are performed on the original diffusion

recipe – forming the Latent Diffusion Model [55].

First, instead of learning a denoising function in the im-

age space, an image is encoded in a latent state z0 = E(x0)
using a variational autoencoder (VAE) [30]. A random

noise ε is added to the latent z0, resulting in a noisy la-

tent zt. The training process involves computing the loss

between the predicted noise εθ and the ground truth noise ε
to optimize the denoising function.

Second, a conditioning mechanism is added to the de-

noising function to steer the diffusion process for control-

lable image generation via cross-attention. In our setting,

the condition y is a text prompt that describes the image. To

use the text via cross-attention, each token is transformed

into an embedding τθ(y) using a pretrained text encoder

[27, 51]. The following shows the denoising objective for

an LDM (Eq. 2):

8555



LLDM := EE(x),y,ε∼N (0,1),t

[
‖ε− εθ(zt, t, τθ(y))‖22

]
(2)

We only optimize the denoising function εθ, which is pa-

rameterized by a U-Net [56] architecture during training. E ,

D, and τθ are kept frozen.

3.2. Token-level Attention Loss

Consider a text prompt that is transformed into text em-

beddings of length Lτθ(y). As LLDM only optimizes the

function so that it predicts the noise and reconstructs the

image latent by removing the noise, the relationship be-

tween each token’s embedding ei, i ∈ {1, . . . , Lτθ(y)} and

a noisy image latent zt is not optimized explicitly. This

leads to a poor token-level understanding in an LDM, which

can be visualized via activations of the multihead cross-

attention map (i.e., A) between the token’s embedding (i.e.,
K ∈ R

H×Lτθ(y)×dk ), and the noisy image latent (i.e.,
Q ∈ R

H×Lzt×dk ). For each cross-attention layer m ∈ M
with variable latent representation resolutions Lzt in the U-

Net, the cross-attention map (i.e., A ∈ R
Lzt×Lτθ(y) ) is cal-

culated as the following (Eq. 3 and 4):

Q(h) = W
(h)
Q · ϕ(zt), K(h) = W

(h)
K · τθ(y) (3)

A =
1

H

H∑
h

softmax

(
Q(h)(K(h))T√

dk

)
(4)

where h ∈ {1, . . . , H} represents each head in the mul-

tihead cross-attention, ϕ is a function that flattens a two-

dimensional image latent into one dimension, and dk is the

dimension of K.

Empirically, we observe that training a diffusion model

with only LLDM often causes activations of cross atten-

tion maps of distinct instance tokens to fail to focus on its

corresponding instance appeared in the image during train-

ing, which, in turn, results in poor capabilities in composing

multiple categories of instances during inference.

To alleviate this issue for better multi-category instance

composition, we add a training constraint that supervises

activation regions of the cross-attention maps. Specifically,

for each text token i that belongs to a noun within the

text caption, we acquire the binary segmentation map Mi

from its respective image by leveraging foundation models

trained for image understanding [31, 42]. Because cross-

attention maps at different layers m of the U-Net have

different resolutions, we downscale the resolution of Mi

to match the dimensions of its corresponding A(m)
i with

bilinear interpolation, followed by binarization of all val-

ues to form M(m)
i . Different from Layout Diffusion [8],

which uses user-defined bounding boxes during inference

for gradient-based guidance, we directly apply a loss func-

tion Ltoken that aggregates activations of cross-attention to-

ward predicted spatial regions Bi = {u ∈ Mi | u = 1}

Figure 3. Illustration of Ltoken and Lpixel. We illustrate how

Ltoken and Lpixel are calculated given a cross-attention map Ai and

a binary segmentation mask Mi. Ltoken aggregates attention ac-

tivations toward non-masked regions of Mi, and this objective is

normalized by the total activations of Ai. However, it does not
constrain where activations should be once inside the non-masked

region. Lpixel gives precise supervision whether a pixel belongs

to the segmented region, constraining where activations should be

with binary values. However, it is not normalized by the total ac-

tivations of Ai. Combining Ltoken and Lpixel, we take advantage

of the benefit of each objective while minimizing their side effects

to a minimum level. We show examples of cross-attention acti-

vations from models optimized with Ltoken and Lpixel , either of

them, and neither of them in Figure 4.

jointly with LLDM during model training. For any layer m,

Ltoken is defined as follows (Eq. 5):

Ltoken =
1

N

N∑
i

(
1−

∑Lzt

u∈Bi
A(i,u)∑Lzt

u A(i,u)

)2

(5)

where A(i,u) ∈ R represents the scalar attention acti-

vation at a spatial location u of Ai ∈ R
Lzt for the cross-

attention map formed by the latent and the ith token’s em-

bedding. Whereas the previous approach [8] calculates the

loss on each attention head of a multihead cross-attention

module separately, we calculate the loss on the average of

cross-attention activations on all heads (see Eq. 4). We find

that the latter approach encourages different heads to acti-

vate in distinct regions of the cross-attention map, which

slightly improves compositional performance and image

quality. We add a scaling factor λ to Ltoken with respect

to LLDM such that sufficient token-level gradients can be

used to optimize token-image consistency while the denois-

ing objective is minimally compromised.

3.3. Pixel-level Attention Loss

Although Ltoken substantially aggregates activations of

cross-attention maps toward the target regions, a side effect

of this aggregation is that the model tends to overly aggre-

gate its activations of the cross-attention map into certain

subregions of its target regions. This can be reflected by

visually inspecting its cross-attention map during inference
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(see Figure 4) and an increased binary cross-entropy loss of

cross-attention map activations A with respect to the target

binary segmentation map M. To overcome this problem,

we use Lpixel to counteract. Formally, for a cross-attention

map A in any layer m optimized with Ltoken, we add the

pixel-level cross-entropy objective that is defined as the fol-

lowing (Eq. 6):

Lpixel = − 1

Lτθ(y)Lzt

Lτθ(y)∑
i

Lzt∑
u

(M(i,u) log(A(i,u)

)
(6)

+
(
1−M(i,u)

)
log
(
1−A(i,u)

)

Figure 4. Impact on cross-attention activations with different
objectives. We firstly demonstrate that finetuning the Stable Dif-

fusion with only LLDM does not improve grounding capabilities

as much. Adding Lpixel alone causes increased cross-attention ac-

tivations in general. Adding Ltoken plays a vital role in improving

token grounding, but leads activations to aggregate in subregions

of the targets. By combining Ltoken and Lpixel , the model shows

substantial improvement in grounding text tokens with image fea-

tures. In this illustration, we apply the null text inversion [47]

technique to all models, allowing them to generate the same im-

age for comparable cross-attention maps.

We add a scaling factor γ so that Lpixel is kept roughly

constant while the model is jointly optimized by LLDM

and Ltoken. We provide a token- and pixel-level optimiza-

tion illustration in Figure 3 to demonstrate different levels

of granularity of Ltoken and Lpixel. Finally, at any single op-

timization step, the training objective is as follows (Eq. 7):

LTOKENCOMPOSE = LLDM︸ ︷︷ ︸
denoise

+

M∑
m

⎛
⎜⎝ λL(m)

token︸ ︷︷ ︸
token grouding

+ γL(m)
pixel︸ ︷︷ ︸

pixel grounding

⎞
⎟⎠

(7)

4. Experiment

4.1. Training Details

Dataset. To study the effectiveness of token grounding ob-

jectives, we finetune the Stable Diffusion model on a subset

of COCO image-caption pairs [39]. Specifically, we first

select all unique images from the Visual Spatial Reasoning

[40] dataset, as these images have fewer visual-linguistic

ambiguities and a greater number of different categories that

appear in each image. Then, we use a CLIP model [51] to

select the caption with the highest semantic similarity with

respect to its corresponding image. Finally, we adopt a pre-

trained noun parser to parse all nouns from the captions, and

leverage Grounded-SAM to generate binary segmentation

masks for each noun (or noun phrase) [1, 31, 42]. The fi-

nal dataset consists of ∼ 4526 image-caption pairs and their

respective binary segmentation masks. We illustrate a high-

level data and training pipeline in Figure 2.

Setup. Our main experiments are performed using Sta-

ble Diffusion v1.4 [55], a popular text-to-image diffusion

model for high-quality generation. We use both Ltoken and

Lpixel in addition to its original denoising objective LLDM

with a constant global learning rate of 5e-6 for 24,000 steps

(32,000 for Stable Diffusion v2.1) using the AdamW opti-

mizer [43]. We trained the entire U-Net with a batch size of

1 and 4 gradient accumulation steps on a single GPU. We

apply center crop to all training images and their respec-

tive segmentation maps M. For Stable Diffusion v1.4, the

cross-attention layers are located in the U-Net encoder UE,

the middle block UMid, and the decoder UD. We apply Ltoken

and Lpixel to all cross-attention layers in UMid and UD.

4.2. Main Results

Baselines. We compare our finetuned Stable Diffusion

v1.4 model against several baselines: (1) Composable
Diffusion [41], which decomposes the prompt into dif-

ferent conditions and uses a score-based mechanism to

denoise the image; (2) Layout Guidance Diffusion [8],

which backpropagates cross-attention map gradients to the

noisy latent with user-specified object tokens and bounding

boxes for spatially controllable compositional generation;

(3) Structured Diffusion [16], which automatically parses

the prompt into a constituency tree and manipulates cross-

attention key and value for compositional generation; and

(4) Attend-and-Excite [6], which applies Gaussian ker-

nels attention maps from user-specified tokens, and uses

smoothed attention maps for compositional generation.

Multi-category Instance Composition. Benchmarks

that examine this compositionality focus on the successful

generation of multiple categories of instances in the image

mentioned in the text condition. We use an existing bench-

mark, VISOR [18], along with our benchmark, MULTI-

GEN, to study the model’s capability in multi-category in-

stance composition. The VISOR benchmark obtains all

8557



Multi-category Instance Composition (↑) Photorealism (↓) Eff. (↓)
Method Object COCO INSTANCES ADE20K INSTANCES FID FID Latency

Accuracy MG2 MG3 MG4 MG5 MG2 MG3 MG4 MG5 (C) (F)

SD [55] 29.86 90.721.33 50.740.89 11.680.45 0.880.21 89.810.40 53.961.14 16.521.13 1.890.34 20.88 71.46 7.540.17

Composable [41] 27.83 63.330.59 21.871.01 3.250.45 0.230.18 69.610.99 29.960.84 6.890.38 0.730.22 - 75.57 13.810.15

Layout [8] 43.59 93.220.69 60.151.58 19.490.88 2.270.44 96.050.34 67.830.90 21.931.34 2.350.41 - 74.00 18.890.20

Structured [16] 29.64 90.401.06 48.641.32 10.710.92 0.680.25 89.250.72 53.051.20 15.760.86 1.740.49 21.13 71.68 7.740.17

Attn-Exct [6] 45.13 93.640.76 65.101.24 28.010.90 6.010.61 91.740.49 62.510.94 26.120.78 5.890.40 - 71.68 25.434.89

Ours 52.15 98.080.40 76.161.04 28.810.95 3.280.48 97.750.34 76.931.09 33.921.47 6.210.62 20.19 71.13 7.560.14

Table 1. Performance of our model in comparison to baselines. We evaluate the performance based on multi-category instance compo-

sition (i.e., Object Accuracy (OA) from VISOR Benchmark [18] and MG2-5 from our MULTIGEN Benchmark), photorealism (i.e., FID

[22] from COCO and Flickr30K Entities validation splits), and inference efficiency. All comparisons are based on Stable Diffusion 1.4.

unique pairwise combinations of the 80 object categories

from COCO [39] and converts each pair (A, B) into a text

prompt with an arbitrary spatial relationship (R) following

a template “<A> <R> <B>”, for example, “a motorcy-

cle to the left of an elephant.” With the images generated

from such prompts, VISOR uses an open-vocabulary de-

tector [45] to detect the presence and spatial locations of

each category in the pair. Object Accuracy (OA) measures

the successful rate of generating instances from both cate-

gories. VISOR also provides metrics for spatial relation-

ships. However, since our work focuses on multi-category

instance composition, we only adopt the OA metric, and re-

port relevant numbers in Table 1.

MULTIGEN uses a similar evaluation strategy compared

to VISOR, but is designed to be a more challenging metric

for multi-category instance composition. Specifically, given

a set of distinct instance categories of size N , we randomly

sample 5 categories (e.g, A, B, C, D, E), format them into

a sentence (i.e., A photo of A, B, C, D, and E.), and use

them as the condition for a text-to-image diffusion model to

generate the image. Then, we use a strong open-vocabulary

detector [46] to detect the presence of these categories in

the generated image. We perform the sampling process for

80 categories of COCO instances [39] and 100 categories of

ADE20K instances [78, 79] 1,000 times, resulting in 1,000

text prompts as multi-category instance combinations from

each dataset. For each generated image, we leverage the de-

tector to detect how many categories of instances appear in

the image. We aggregate the overall success rate of gener-

ating 2-5 specified categories out of 5 as MG2-5.

Compositional image generation often involves infer-

ence variance. To account for this, each prompt in MULTI-

GEN is used to generate 10 rounds of images, which results

in 10 × 1000 images being generated for each dataset’s cat-

egory combinations. We calculate MG2-5 for each round

and report the mean and standard deviation (in subscript) of

the MG2-5 success rate out of 10 rounds in Table 1. Based

on the evaluation, our model exceeds all baselines in ob-

ject accuracy and MG2-4. We find that Attend-and-Excite

[6] has a considerable success rate in generating all 5 cat-

egories, but it falls short of generating 2-4 categories com-

parably. We conjecture that this is due to the training distri-

bution where captions do not include as many as 5 or more

categories of instances, which inevitably leads to diminish-

ing improvements in multi-category instance composition.

Photorealism. We compare the image quality generated

from the baselines and our model using the Fréchet Incep-

tion Distance (FID) metric [22]. For baselines that do not

require additional conditional input other than captions, we

calculate the FID score based on 10,000 image-caption pairs

sampled from the COCO validation set (C). We also report

the FID metric based on 1,000 image-caption pairs from the

validation set of Flickr30K entities (F) [50]. As this dataset

provides labels and bounding boxes for entities in the cap-

tions [73], it can be used by inference-based methods that

require such input. We report all applicable scores in Table

1. We also qualitatively evaluate image quality in conjunc-

tion with multi-category instance composition across dif-

ferent baselines compared to our model in Figure 5. For

fairness, we use the same initial latent in each comparison.

Efficiency. As a training-based method, our model does

not require additional inference-time manipulations com-

pared to a standard text-to-image diffusion pipeline. On the

other hand, the majority of inference-based methods impose

a non-ignorable compute burden for compositional gener-

ation, where the slowest baseline, Attend-and-Excite [6],

takes more than 3× of time to generate a single image. We

report efficiency results in Table 1 in seconds needed to gen-

erate an image on a single NVIDIA RTX 3090 GPU with 50

DDIM steps [62] and classifier-free guidance [24].

4.3. Generalization

We evaluate whether our training method generalizes to

different variants of text-to-image models. To this end,

we apply Ltoken and Lpixel in addition to LLDM to Stable

Diffusion v2.1, and compare the results in multi-category

instance composition and photorealism between a frozen

baseline and a baseline trained only with LLDM in Table

3. The results show that these grounding objectives also

benefit Stable Diffusion v2.1 remarkably.

4.4. Knowledge Transfer

By learning segmentation maps of each noun token via

cross-attention with Ltoken and Lpixel, the model is expected
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COCO INSTANCES (↑) ADE20K INSTANCES (↑)

Component Original Modified OA (↑) MG3 MG4 MG5 MG3 MG4 MG5 FID (C) (↓)

Ours (Stable Diffusion 1.4) 52.15 76.161.04 28.810.95 3.280.48 76.931.09 33.921.47 6.210.62 20.19

(i) finetune LLDM + λLtoken + γLpixel frozen 29.86 50.740.89 11.680.45 0.880.21 53.961.14 16.521.13 1.890.34 20.88

(ii) λLtoken + γLpixel LLDM + λLtoken + γLpixel LLDM 38.02 63.211.73 19.031.28 1.880.23 62.861.41 22.171.14 3.270.46 23.04

(iii) λLtoken LLDM + λLtoken + γLpixel LLDM + γLpixel 37.46 61.951.05 18.440.98 1.810.35 65.110.99 25.340.95 4.180.53 22.32

(iv) γLpixel LLDM + λLtoken + γLpixel LLDM + λLtoken 49.85 71.611.06 24.941.24 2.830.62 75.370.90 32.911.53 5.580.46 20.60

U16×16
E , U8×8

Mid , U16×16
D 42.92 64.421.08 18.781.03 1.470.32 67.240.98 24.771.01 3.600.57 20.45

layers w. U8×8
Mid , U16×16

D , U16×16
D 41.66 66.171.29 20.291.20 1.980.48 67.531.03 25.451.24 3.870.45 20.66

λLtoken + γLpixel U32×32
D , U64×64

D U8×8
Mid , U16×16

D 44.27 65.471.42 19.161.07 1.590.34 69.331.33 26.801.52 4.050.68 20.75(v)

U8×8
Mid , U16×16

D , U32×32
D 49.89 73.801.33 26.281.00 2.760.35 75.491.02 33.471.27 5.870.80 20.45

Table 2. Ablation studies. We show how different objectives and cross-attention layers with Ltoken and Lpixel affect the multi-category

instance compositon and photorealism. Qualitative visualizations of the cross-attention maps for (i) - (iv) are in Figure 4.

to gain enhanced abilities to segment instances in the im-

age. To verify that this knowledge is transferred from a seg-

mentation model [31] to a diffusion model, we leverage the

COCO-Gen dataset from DAAM [63]. For a fair compar-

ison, we performed null text inversion [47] on all images

from this dataset for each model. As the model reconstructs

the images, we use DAAM’s algorithm and evaluation pro-

tocol to calculate the mIoU between the model’s cross-

attention map and human-annotated segmentation maps.

The results are shown in Table 4.

4.5. Downstream Metrics

While TOKENCOMPOSE is not explicitly optimized for

binding attributes such as color, texture, shape to or specify-

ing relations between objects, we show that, by improving

the model’s capability in multi-category instance composi-

tion, we also observe quantitative improvements in down-

stream compositionality metrics. We evaluate our model us-

ing benchmarks proposed by T2I-CompBench [26], which

uses various expert models [35, 51, 80] to judge the align-

ment between compositional prompt and the generated im-

age. We show results of this benchmark in Table 5.

We believe that improvements in these metrics are due

to the model having higher chances of composing multiple

Multi-category Instance Composition (↑)
Model COCO INSTANCES ADE20K INSTANCES FID (↓)

OA MG3 MG4 MG5 MG3 MG4 MG5 (C)

SD 2.1
frozen 47.82 70.14 25.57 3.27 75.13 35.07 7.16 19.59

ft. w. LLDM 55.09 76.43 32.07 4.73 77.60 37.09 7.78 20.55

Ours 60.10 80.48 36.69 5.71 79.51 39.59 8.13 19.15

Table 3. Model generalization. We show multi-category instance

composition and FID results when we apply our training approach

to Stable Diffusion v2.1, which has a different (1) input and cross-

attention map resolution, (2) text encoder [27], and (3) training

schema (i.e., progressive distillation) [59].

Model mIoU (↑)
SD 1.4

frozen 0.5371

ft. w. LLDM 0.5412

Ours 0.5876

Table 4. Enhanced segmenta-
tion capabilities. We examine

the grounded segmentaion knowl-

edge transfer from Grounded-SAM

[31, 42] to our finetuned diffusion

model with DAAM [63].

categories of instances, which serves as a prerequisite for

assigning attributes to and relations between objects.

Attribute Binding (↑) Object Relations (↑)Model
Color Shape Texture Spatial Non-Spat. Complex

SD 1.4
frozen 0.3765 0.3576 0.4642 0.1161 0.3102 0.2795

ft. w. LLDM 0.4647 0.4598 0.5209 0.1326 0.3172 0.2912

Ours 0.5055 0.4852 0.5881 0.1815 0.3173 0.2937

Table 5. Improvements in downstream metrics. As successful

composition of multiple categories of instances serves as the foun-
dation for attribute binding and object relationship specification in

compositional generation, our model shows quantitative improve-

ment on relevant metrics, despite it is not optimized explicitly for

these downstream metrics.

5. Ablations
We ablate (1) incorporating different grounding objectives;

and (2) layers applied with grounding objectives in train-

ing the denoising U-Net, and evaluate how different de-

sign strategies affect multi-category instance composition

and photorealism. We show our ablation results in Table 2.

5.1. Grounding Objectives

We compare our model with a model trained only with

LLDM for the same number of optimization steps in (ii).

We find that there is a moderate improvement in metrics

related to multi-category instance composition comparing

to (i), followed by a degeneration in photorealism (i.e.,
FID). We conjecture that training a model only with LLDM

in the COCO dataset brings an inherent advantage in im-

proving composing multiple categories of instances, as the

dataset often contains image-caption pairs where multiple

categories of instances appear in the image and are encap-

sulated by the caption.

We then trained a model with only LLDM and Lpixel (iii),

and a model trained with only LLDM and Ltoken (iv). We

observe that Lpixel has little effect compared to Ltoken when

used alone with LLDM . Ltoken plays a major role in improv-

ing multi-category instance composition and photorealism.

However, empirically, we find that training the model with
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A zzebra is standing 
next to a surfboard

A remote in front of a 
tv

A lion rests beside a 
suitcase, surrounded 

by a cluster of balloons

A pigeon sitting on a 
bench reading a book

A squirrel wielding a camera 
documents the breathtaking 

scenery of a sunrise

A bed next to a 
traffic light

Figure 5. Qualitative comparison between baselines and our model. We demonstrate the effectiveness of our training framework

in multi-category instance composition compared with a frozen Stable Diffusion Model [55], Composable Diffusion [41], Structured
Diffusion [16], Layout Guidance Diffusion [8], and Attend-and-Excite [6]. The first three columns show composition of two categories

that is deemed difficult to be generated from a pretrained Stable Diffusion model (due to rare chances of co-occurrence or significant

difference in instance sizes in the real world). The last three columns show the composition of three categories where composing them

requires understanding of visual representations of each text token.

only LLDM and Ltoken often leads to attention maps that

overly activate in subregions of the instance (see Figure 4).

We also observe that different training runs on this combi-

nation of losses lead to unstable inference performance in

multi-category instance composition.

5.2. Layers with Grounding Objectives

Finally, we experiment with adding Lpixel and Ltoken at dif-

ferent layers of cross-attention of the denoising U-Net (v).

We find that adding grounding objectives to the middle

block and the decoder of the U-Net improves the overall

performance of multi-category instance composition. Re-

moving the constraint from the middle block or adding the

constraint to the encoder degrades the performance. Fur-

thermore, for cross-attention layers at the decoder with vari-

able resolutions, we find that the more layers optimized with

Lpixel and Ltoken, the better the performance in both multi-

category instance composition and photorealism.

6. Limitation & Conclusion
Limitation. As one of the pioneering works explor-

ing the potential to improve a text-conditioned generative

model with image-token consistency using an understand-

ing model, we only add supervision terms to noun tokens for

the text prompt. While we show that this approach improves

multi-category instance composition significantly, there are

many more elements from the text prompts that one can

leverage an understanding model to improve a generative

model, such as adjectives, verbs, and/or determiners as fine-

grained token-level training objectives.

Conclusion. We explore the possibility of leverag-

ing foundation image understanding models to improve

grounding capabilities of a text-conditioned generative

model. Our training framework, TOKENCOMPOSE, excels

at multi-category instance composition with improved im-

age quality. To facilitate research in this niche, we also pro-

pose MULTIGEN, a challenging benchmark that requires a

model to generate multiple categories of instances in one

image. As a fundamental challenge in compositional gener-

ation, we hope our training framework and benchmark can

inspire future works that effectively leverage the synergy

between understanding and generation to improve either or

both directions.

Acknowledgement
This work is supported by NSF Award IIS-2127544. We

thank Yifan Xu and Dou Kwark from UC San Diego,

Kaiyi Huang from University of Hong Kong, and Adithya

Bhaskar and Ofir Press from the Princeton NLP Group for

discussions and/or feedback.

8560



References
[1] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul,

Stefan Schweter, and Roland Vollgraf. FLAIR: An easy-to-

use framework for state-of-the-art NLP. In NAACL 2019,
2019 Annual Conference of the North American Chapter of
the Association for Computational Linguistics (Demonstra-
tions), pages 54–59, 2019. 2, 5

[2] Eslam Mohamed Bakr, Pengzhan Sun, Xiaogian Shen,

Faizan Farooq Khan, Li Erran Li, and Mohamed Elhoseiny.

Hrs-bench: Holistic, reliable and scalable benchmark for

text-to-image models. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 20041–

20053, 2023. 3

[3] James Betker, Gabriel Goh, Li Jing, † TimBrooks, Jian-

feng Wang, Linjie Li, † LongOuyang, † JuntangZhuang, †

JoyceLee, † YufeiGuo, † WesamManassra, † PrafullaDhari-

wal, † CaseyChu, † YunxinJiao, and Aditya Ramesh. Im-

proving image generation with better captions, 2023. 3

[4] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and

Sergey Levine. Training diffusion models with reinforce-

ment learning. In ICML 2023 Workshop on Structured Prob-
abilistic Inference & Generative Modeling, 2023. 2

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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