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There is overwhelming research evidence showing that students often struggle with learning key engineering concepts. The
Low-Cost Desktop Learning Modules (LCDLM:s) are model prototypes of standard industry equipment designed for
students to learn some fundamental but abstract engineering concepts in the classrooms. Previous results have shown that
students who interact with LCDLMs tend to outperform those who engage in traditional lectures. However, little is
known about student profiles and their forms of engagement with this tool. Hence, the present study seeks to investigate
the different student profiles that emerge from students working with the LCDLM and the demographic factors that
influence student engagement with the tool. Participants (N = 1,288) responded to an engagement survey after working
with LCDLMs in engineering classrooms in several states around the United States. We then used a latent profile analysis
(LPA) — an advanced statistical approach — to better understand the representation of learner engagement profiles
resulting from their self-reported learning engagement beliefs as they reflect on their experience in using LCDLMs. The
LPA revealed five distinct profile types — disengaged, somewhat engaged, moderately engaged, highly engaged, and
fluctuating engagement. Results showed that those who are more interactive and actively engaged with the LCDLM
scored higher on their questionnaire compared to those who passively engaged with the LCDLM. We conclude with a

discussion of the theoretical and practical implications of our findings.
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1. Introduction

Recent years have seen a growing interest in Latent
Profile Analysis (LPA) in organizational sciences
(e.g.,[1, 2]). LPA uses categorical latent variables to
identify latent subpopulations within a target popu-
lation. It assumes that people can be classified by
varying degrees into different groupings (subpopu-
lations) based on their personal and/or environ-
mental characteristics. A categorical latent variable
model can be used to represent structures by using
groupings, as Woo et al. indicated [2]. Developing
and incorporating typologies based on data can be
conceptually meaningful and methodologically fea-
sible through categorical latent variable models [3].
Leveraging on LPA methodological features and
underlying assumptions, we used LPA to better
understand and establish the representation of
learner engagement profiles resulting from their
self-reported learning engagement beliefs as they
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reflect on their experience in using hands-on learn-
ing equipment in engineering classrooms in several
states around the United States.

Science, Technology, Engineering, and Mathe-
matics (STEM) instructors in higher education
have touted active learning as a promising way to
positively transform STEM education [4-7]. Speci-
fically, proponents of active learning in STEM
suggest that such active learning strategies increase
student engagement in and interaction with their
learning environments [8, 9]. As engagement
increases, positive outcomes such as learning per-
formance, interest, attention, and self-regulation
are likely to follow [10-13].

To better understand student roles in active
learning environments, we draw upon Lombardi
et al.’s definition of active learning [6]. According to
Lombardi et al., “[active] learning is a classroom
situation in which the instructor and instructional
activities explicitly afford students agency for their
learning” (p. 17). This suggests that instructors are
responsible for offering instructional activities that

* Accepted 18 January 2024.
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provide specific affordances in learning, however,
students are similarly responsible for their learning.
Lombardi et al.’s definition also delineates that
within undergraduate STEM instruction, active
learning should focus on increasing learner engage-
ment by offering opportunities for “direct experi-
ences of phenomena,” using scientific data and
models that both provide and represent said phe-
nomena, and ‘“‘domain-specific practices that guide
the scientific interpretation” [6].

An example of an instructional activity that
aligns with Lombardi et al.’s definition of active
learning [6] is the Low-Cost Desktop Learning
Modules (LCDLMs) designed by an engineering
education research team at the Washington State
University, Pullman campus [14]. LCDLMs were
designed to offer postsecondary students (i.e.,
undergraduates) a robust active learning experience
in learning engineering topics. Specifically, students
can use these LCDLMs to conduct direct investiga-
tions of hydraulic loss, flow measurement, and heat
transfer phenomena [15]. Yet, while LCDLMs were
designed to increase learner engagement in the
engineering classroom, preliminary analyses
indicate LCDLMs are not always more effective
than traditional approaches especially when learn-
ing engineering concepts at lower levels of Bloom’s
taxonomy [14]. To better understand for whom and
when the LCDLMs are more beneficial for learn-
ing, in this study, we take on a person-centered
approach by examining the effects of the individual
learner’s engagement level as they interact with
LCDLMs during a typical engineering learning
activity.

While activities may be designated as being
active learning modes to increase engagement in
the classroom and afford student agency for learn-
ing, actual student engagement, specifically cogni-
tive engagement, during the learning task, may still
vary [10]. For example, an instructor might intend
for students to work collaboratively with the
LCDLM for an engineering lab assignment. How-
ever, students who simply sit with their group
members but do not contribute to the assignment
will have a much lower level of cognitive engage-
ment than their group members who are actively
contributing to the group discussion. In a different
scenario, a student might instruct others on how to
use the LCDLM, answer questions raised by other
group members, and mentally formulate questions
to ask the instructor. Although the student is not
physically interacting with the LCDLM, they are
still highly engaged in the learning activity. These
two scenarios illustrate how the same learning
activity might elicit different levels of engagement
for students. More specifically, while the learning
activity was designed to promote a specific level of

engagement, students may approach these activ-
ities differently resulting in differential learning
outcomes. This leads to the need to answer an
overarching research question: what individual
characteristics should researchers consider to
determine whether active learning activities are
effective for promoting positive learning out-
comes?

To address the above question, in this paper, we
aim to (1) establish a representation of learner
engagement profiles resulting from their self-
reported learning engagement beliefs, (2) establish
differences in profile membership based on gender,
race, and class standing, and (3) investigate the
relationship between profile membership and learn-
ing performance on a posttest.

2. Background

2.1 Low-Cost Desktop Learning Modules
(LCDLMs)

The Low-Cost Desktop Learning Modules
(LCDLMs) were developed so that engineering
students can conduct investigations to learn funda-
mental principles in fluid mechanics and heat trans-
fer [14, 16, 17]. One key advantage of learning with
the LCDLM is that it provides visual representa-
tions of engineering phenomena that would other-
wise be difficult to comprehend without such visual
representation (see Fig. 1) [8]. Such visual represen-
tations promote a better understanding of specific
concepts in engineering, such as identifying the
system boundary for computing a heat transfer
rate in a heat exchanger [17] and predicting fluid
velocity in a pipe [18]. The potential benefits of the
LCDLMs are far-reaching. A recent study showed
that the effects of learning with the LCDLMs are
not just limited to a specific learning environment or
implementation procedure [15]. Notably, findings
in the study show that LCDLMs have been imple-
mented in a wide variety of learning environments

Fig. 1. Photo of the Double Pipe Heat Exchanger LCDLM used
in Reynolds et al’s study [8].
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and their deployment by engineering faculty at
universities across the US leads to well-documented
effectiveness.

2.2 Interactive, Constructive, Active, and Passive
(ICAP) Framework

Because in this study we seek to examine the impact
of the individual learner engagement profile on
learning achievement, we used the ICAP frame-
work as observed by their overt learning behaviors
[10]. Specifically, I stands for interactive, C for
constructive, A for active, and P for passive.
Based on the framework, learning activities that
require a deeper level of engagement, i.e., construc-
tive, and interactive, are better for learning than
activities requiring little to no engagement (i.e.,
active and passive). More specifically, the ICAP
framework predicts that interactive engagement
provides better cognitive engagement than con-
structive engagement and other modes of engage-
ment. In turn, constructive engagement is better
than active engagement, which is better than pas-
sive engagement.

Under the interactive mode of engagement, activ-
ities are structured such that learners are actively
interacting with each other to address a common
learning objective. As such, interactive learning
activities promote the deepest level of understand-
ing as supported by the work of Chi and Wylie [10]
because learners exchange information beneficial
for strengthening each other’s knowledge struc-
tures. Additionally, learners at this level of cogni-
tive engagement are more likely to arrive at
solutions for novel problems [10]. In the ICAP
framework, an instructional dialogue between the
teacher and student is also considered an interactive
engagement.

Under the constructive mode of engagement,
learners generate or produce additional externa-
lized outputs or products beyond what was pro-
vided in the learning materials [10]. Unlike the
interactive mode of engagement, learners work on
tasks individually to construct or generate knowl-
edge that goes beyond the information given. Con-
structive activities include drawing concept maps,
taking notes, asking questions, comparing and
contrasting, integrating text and diagrams, reflect-
ing and monitoring one’s understanding, and other
self-regulatory activities. Thus, a characteristic
descriptor of the constructive mode is generative.
To meet the criteria for constructive engagement,
the outputs of generative behaviors should contain
new ideas that go beyond the information given;
otherwise, such behaviors are merely active/manip-
ulative [10].

We operationalize active students as those who
manipulate some parts of the instructional materi-

als such as pointing or gesturing, pausing or rewind-
ing, underlining, copying, hands-on, or choosing an
option [9]. By restricting active activities to mean
those that require some form of motoric behavior
that causes focused attention while performing a
physical manipulation, we are distinguishing them
from overt activities that are carried out mindlessly,
such as reading a book out loud.

Finally, we define a passive mode of engagement
as learners being oriented toward and receiving
information from instructional materials without
overtly doing anything else related to learning
besides listening [10]. Essentially, learners are pas-
sive recipients of information. Outwardly, they do
not look like they are doing anything to interact
with the information. This might look like a student
sitting in a lecture and simply listening to the
information, or a student sitting with a group of
other students but who is not involved in any
discussions or activity with the group. Although
the passive level is described as the lowest of the four
modes of engagement, the authors acknowledge it is
possible for students to covertly process the materi-
als while listening or observing a video, even though
they may appear to be passively engaged.

Based on the ICAP framework and the defini-
tions of the different modes of engagement, a
psychometrically-validated survey was adapted to
reflect learning opportunities with the LCDLM
that maps onto the four different modes of engage-
ment. The ICAP hypothesis predicts that as stu-
dents become more engaged with the learning
materials, they progressively move from passive to
active to constructive, and finally to interactive
learning. Literature on active learning typically
encourages students to participate in classrooms
during instruction. Research at the post-secondary
level has been the most prominent in promoting and
using active learning in college classrooms. Indeed,
it has been shown to be effective by many scholars
including Harvard physics instructors [20, 21] and
more recently promoted by Nobel Laureate in
physics, Carl Wieman [22]. Researchers have also
looked at other predictors of success, such as the
status as an international student, student standing
in the university, gender, and age [23], and learning
during the COVID-19 pandemic .

3. Purpose of Study

Learning environments and interactions play a
pivotal role in higher-education learning outcomes.
Students use of learning strategies is also likely to
differ across contexts and learning environments.
Regardless, students who interact with hands-on
modules and course-related materials tend to out-
perform those in the traditional face-to-face lecture
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format [22]. Given this, we ask three fundamental
research questions: (Research Question 1) what are
the different student profiles that emerge from
students working with the LCDLM; (Research
Question 2) is the LCDLM successful in improving
learning outcomes; and (Research Question 3) how
do students respond to the LCDLM based on their
demographic information and academic standing?

With regard to Research Question 1, we exam-
ined how learner profiles varied based on LCCLM
scores. Specifically, we expect to see a difference in
responses to the survey based on learner profiles.
For example, we expect highly engaged students to
report high interactivity and low passivity on the
survey. Similarly, we expect the reverse for those
with low engagement. We also postulate that using
the LCDLM in class will increase learning out-
comes at the base level, which is consistent with
prior literature outcomes [8, 15]. Specifically, we
postulate that highly interactive and highly engaged
students will outperform those in the group with
lower engagement. Finally, we expect to see char-
acteristics such as year in school, gender, race, etc.,
influence responses on the survey and their perfor-
mance on the LCDLM-related tests.

4. Methods

4.1 Participants

Participants were 1,288 postsecondary engineering
heat transfer and fluid mechanics students from
both undergraduate and graduate engineering
classes from 25 universities, and 41 classes in
total, across the United States. Universities were
recruited based on the region of operation and
included both private and public universities.
These universities were categorized into “hubs” to
facilitate data collection and management. There
were seven national hubs and each consisted of five
to eight universities. Student participants were
recruited for the study in class by their instructor.
Instructors and their respective teaching assistants
at the universities underwent training before imple-
mentation. Participation in the study was volun-
tary. Students were also told that their responses
would be kept confidential. The study was
approved by the second author’s University Institu-
tional Review Board.

4.2 Equipment and Implementation

The Low-Cost Desktop Learning Modules
(LCDLMs) are model prototypes of standard
industry equipment designed to achieve different
purposes, and a past study reported that these
miniaturized industrial-scale equipment produce
data that align with large-scale industrial equip-
ment [19]. These LCDLMs are hands-on instruc-

Fig. 2. Sample of a Shell and Tube LCDLM.

tional aids that simulate engineering concepts.
These are helpful tools for learning abstract engi-
neering concepts in the classroom since students can
manipulate and observe them. The LCDLM ver-
sions used in our studies are simple, inexpensive to
construct, and made from low-cost materials. Fig. 2
shows a picture of a shell and tube exchanger. By
adjusting the valves, students can quantify the
impact of the flow rate on temperature. By using
shell and tube model equations, they may explore
different scenarios to understand shell and tube
concepts better. Through their interactions with
an LCDLM, students can substantiate many
abstract concepts taught in the classroom.

4.3 Measurement
4.3.1 Measures of Learning Performance

Measures of learning performance were con-
structed by the research team for each of the
LCDLM learning topics (i.e., hydraulic loss, ven-
turi meter, double pipe, shell, and tube). To exam-
ine prior knowledge, topic-specific pre-tests were
administered to students before they participated in
the LCDLM learning activities. The number of
questions on the pre-test ranged from six to nine
questions, depending on the topic. A posttest,
identical to the pre-test, was administered to
assess learning following the completion of the
LCDLM activities. The tests comprised a mix of
conceptual multiple-choice questions, true/false
questions, and open-ended questions.

4.3.2 ICAP Survey

To establish learning profiles, the research team
adapted a survey to assess perceptions of engage-
ment when learning with the LCDLMs. There were
16 items on the survey to assess the level of engage-
ment when learning with the LCDLMSs. There were
four items for each of the four modes of engagement
based on Chi and Wylie’s framework [10]. Partici-
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pants responded to the survey items using a 5-point
Likert scale (1 = strongly disagree, 5 = strongly
agree), self-reporting how the LCDLM influenced
their learning experience. Engagement modes were
assessed to reflect participant learning activity.
Based on their experiences with LCDLM-facili-
tated instruction, participants were asked to express
how LCDLM instruction helped them engage.
Example items for each mode of engagement are
provided below:

Interactive: The use of the LCDLMs helped me
discuss with a peer about the Double Pipe Heat
Exchanger concepts more than I could with a
lecture.

Constructive: The use of the LCDLMs can help me
to self-explain the concepts to myself better than
lectures.

Active: The use of the LCDLMs helped me see
Double Pipe Heat Exchanger concepts better
than lectures.

Passive: The use of the LCDLMs made me idle.

Six items about the usefulness of specific features
of the LCDLM were also included in the survey.
For example, students were asked whether the see-
through plastic in the LCDLM helped them under-
stand specific concepts relevant to heat exchange.
Similarly, participants responded to these items
using a 5-point Likert scale (1 = strongly disagree
and 5 = strongly agree), reporting how these
features influenced their learning experience.

4.4 Scoring
4.4.1 Change in Learning Score

The pre- and posttests were graded by the instruc-
tors and teaching assistants of the respective classes.
Each item on the test was worth one point. The pre-
and posttests for each respective topic were iden-
tical. The total score on the tests ranged from six to
nine points, depending on the topic. To examine the
change in learning score, we calculate the difference
between posttest and pre-test scores. We subse-
quently developed two categories for learning per-
formance: scores increased, where posttest scores
were higher than the pre-test, and scores decreased/
remained the same, where posttest scores were
lower than the pre-test or the same.

4.4.2 ICAP Survey Scores

For this study, we were primarily interested in
responses to the 16 ICAP items on how the
LCDLM engaged and influenced students. There
were four items for each of the four modes of
engagement (Interactive, Constructive, Active,
and Passive). To calculate self-reported engage-
ment, we summed up responses for the respective

subscales. The highest possible score for each sub-
scale is 20 points (i.e., a response of ‘““Strongly
Agree” for all four items on a particular subscale),
and the lowest possible score is 4 (i.e., a response of
“Strongly Disagree” for all four items on the
particular subscale).

4.5 Procedure

The instructors who participated in this study were
given the LCDLMSs and asked to incorporate the
module into the class sessions to facilitate instruc-
tion while teaching heat transfer and fluid
mechanics concepts. All participants had at least
50 minutes of weekly instruction on these engineer-
ing concepts of heat transfer and fluid mechanics
taught using the LCDLMs at each implementation
site. The consent form was administered to all
students in the respective classes. Students who
consented to release their data for the study were
redirected to a demographic survey via Qualtrics.
Students in the experimental group received links to
an online survey administered via Qualtrics at the
end of the LCDLM sessions. The pre-test and
posttest were both administered via Qualtrics. The
pre-test was administered before students started
working on the LCDLMs and the posttest was
administered after completion of LCDLM learning
activities. Data analyzed in the present study were
collected from face-to-face and online settings.

4.6 Data Analysis Plan

4.6.1 Covariates

Age, gender, race, college standing, international
student status, classroom size, and academic year
were included in the logistic regression model as
covariates to control their effects on the score
differences before and after exposure to the
LCDLM activities. Gender was coded as male,
female, and others, and race was included as
dummy binary variables.

4.6.2 Statistical Analysis

To establish measurement models of key constructs
of ICAP, we conducted confirmatory factor analy-
sis using Mplus 8.4 [25] to ensure that subscale
scores within the ICAP framework could be distin-
guished and thus reported separately. The measure-
ment model for incentivized self-learning — a
possible key predictor of ICAP profiles — was also
examined. We tested model fit by using the root
mean square error of approximation (RMSEA), the
standardized root mean square residual (SRMR),
and the Tucker-Lewis index (TLI) / comparative fit
index (CFI). The model fit was considered appro-
priate if the RMSEA and SRMR values were below
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0.08, and the CFI and TLI values were close to or
higher than 0.95 [26].

We performed latent profile analysis (LPA) [27]
to group individuals into homogenous profiles with
regard to their ICAP score. LPA is a special case of
mixture models in which it assumes that the popula-
tion consists of unobserved subgroups or profiles.
The number and nature of the profiles are unknown
and have to be inferred from the data; that is, it is
hypothesized that the scores of individuals on
several continuous scales can be explained by their
membership within latent profiles. LPA seeks to
find a solution with a sufficient number of profiles
that reveal a distinctive pattern of responses
between the different profiles but relatively homo-
geneous responses within each profile.

LPA was chosen as our modeling technique given
the advantages over standard cluster analysis meth-
ods such as agglomerative hierarchical cluster ana-
lysis or k-means clustering. LPA has the advantage
of being a model-based approach, allowing a quan-
titative comparison of models with solutions vary-
ing in the number of profiles to select the one best
fitting the data. Because the number of expected
profiles is unknown, we conduct an exploratory
analysis by investigating models for one to seven
profiles. To obtain stable solutions, the variances
were constrained to be equal across clusters [28].
Using MPlus 8.4 we generated several model fit
criteria to help decide which latent profile model
best fits the data. More specifically, the Bayesian
Information Criterion (BIC) and Akaike Informa-
tion Criterion (AIC) were checked. Smaller values
for the BIC and AIC are favored as they indicate a
better model fit [29, 30], Furthermore, a significant
p-value for the Lo-Mendell-Rubin likelihood ratio
test implied that the k-profile model fit better than
the model with k-1 profiles [31]. Next, the entropy
was examined, which indicated the clear delineation
of clusters. The entropy values should be greater
than 0.7 to indicate an acceptable classification
accuracy [32]. Finally, the sizes of the profiles and
their interpretability were used as further selection
criteria [33]. We are mindful in our analysis of
models that present groups with less than 5% of
the total students (i.e., which in our case would be
less than 60 students in a profile), to avoid groups
that provide statistical differences, but insignificant
theoretical differences. After the best solution is
determined, a profile of performance in each
group is plotted, and a detailed description of
each group is provided.

4.7 Predicting Performance with Profile
Membership

We used multivariate logistic regression to describe
whether the membership of LCDLM interaction

profiles is associated with increased academic per-
formance. We conducted an initial bivariate logistic
regression and a more complex model with all the
related covariates included. The logistic regression
outcome is binary, with scores increases coded as 1
and score remaining the same or decreasing coded
as 0. The analysis was used to answer the research
question regarding profile membership in predict-
ing student success in engineering concepts. Speci-
fically, this analysis was conducted to answer
Research Questions 2 and 3, to explore the extent
to which personal background characteristics and
academic profile of adult students predict their
profile membership, and whether profile member-
ship increases or decreases the odds of successful
academic performance.

5. Results

Table 1 provides the general descriptions of the
population sampled. Data from 1,288 participants
were analyzed in this study. Caucasian population
represented the largest group in racial diversity
(41.4%), followed by Asian and Pacific Islanders
(28.4%), African American (20.3%), and Native
American (7.1%) Due to COVID-19, we observed
an increase in the number of individuals participat-
ing in online classes or hybrids (37.9%) as colleges
adjusted to prevent the spread of the pandemic and
remain in session. Additionally, there was a small
variation in the grouping of each regional hub, with
the Northwest hub having the highest recruitment
as it was the first site for LCDLM implementation
and represents over 35.8% of the total population.

5.1 Class Choice

To establish a representation of learner engagement
profiles based on their self-reported learning
engagement beliefs (Research Question 1), fit
indices and criteria are used for the selection of
the model with the optimal number of clusters. The
fit indices performed on the LPA are located on
Table 2, specifically looking at the AIC, BIC, LMR,
G? statistics, entropy, and the smallest group size.
The AIC and BIC, decreased as the number of
groups increased, but only marginally from more
than seven group solutions onward. The p values of
the LMR for K versus K-1 classes were also
significant for each higher group, except for six-,
seven-, and eight-classes profiles. Yet, log-likeli-
hood for AIC and BIC indicates that the model
progressively improves until the nine-model, with
the lowest score being nine-class (Negative-LL;
—23333.1; AIC: 47002.12; BIC: 47881.7), but
entropy is highest for the seven-profiles model
(0.95). The Lo-Mendell-Ruben likelihood-ratio
test indicates the model was progressive until the
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Table 1. Descriptive Analysis of the Total Population Included in
the Analysis

Variable LCDLM
Total Count 1288
Academic Year/Semester
2018 Fall 180 (14.0%)
2019 Spring 295 (22.9%)
2019 Fall 253 (19.6%)
2020 Spring 210 (16.3%)
2021 Fall 350 (27.2%)
Race
Caucasian 533 (41.4%)

Black or African American 262 (20.3%)

Asian and Pacific Islander 366 (28.4%)
Native American 91 (7.1%)
Others 36 (2.8%)
Median Age (S.D.) 19.71
Gender (Female) 492 (38.2%)
International Student (yes) 392 (30.4%)
Class Standing
Freshman 321 (24.9%)
Sophomore 536 (41.6%)
Junior 217 (16.8%)
Senior 152 (11.8%)
Graduate and Others 62 (4.8%)

Learning Setting

In-Person 291 (22.6%)
Online 509 (39.5%)
Hybrid 488 (37.9%)

Learning Score

Score increased 830 (64.4%)
Score remained or decreased 388 (30.1%)
Regions and Hubs
Northwest 461 (35.8%)
Southwest 186 (14.4%)
Northeast 192 (14.9%)
Southeast 274 (21.3%)
Central 175 (13.6%)

Table 2. Fit Statistics of LPA

6-class model, where the seven-class model is not
optimal compared to the six-class model (p = 0.08).
Examining the group size, only the 5-class model
has an acceptable group size that is over 5% of the
total study population. The final class selected
based on the metrics is the five-class model, with
acceptable group size, LMR test, and grouping.

5.2 Class Description

Fig. 3 provides a visual representation of responses
to the 16 items on the ICAP survey, sorted by
student profiles. In this section, we explore the
level of engagement based on their profiles. Overall,
most students do not differentiate significantly from
interactive learning, constructive learning, and
active learning within the same profile, meaning
that their score on interactive learning is similar to
their constructive and active learning scores. More-
over, the four questions that are used to classify
each group also depict similar scores within the
same group. Below we discuss more in detail
regarding the different classes.

5.3 Latent Profiles
5.3.1 Profile 1: Disengaged (138 individuals)

The first profile is called the ‘Disengaged profile’
(n =147). Disengaged students are characterized by
the lowest response scores on most of the ICAP
items. The profiles here reveal lower interactive,
constructive, and active engagement scores, con-
trasted with higher passive learning scores. Com-
pared to other groups, the Disengaged students
mostly exhibit higher-than-average passive scores
(2.90), and extremely low interactive (1.52), active
(1.61), and constructive learning (1.59).

5.3.2 Profile 2: Somewhat Engaged (271
individuals)

Somewhat Engaged students reported higher inter-
active, constructive, and active levels than those
with the disengaged profiles, but lower levels than

LMR

(K class to Smallest
Model N LL (model) | df AIC BIC K-1 class) | G> Entropy group size
Two class 1,288 —27535.1 49 55168.11 55424.66 0.001 0.06 0.92 640
Three class 1,288 -26311.4 66 52754.77 53100.33 0.001 0.07 0.93 212
Four class 1,288 -25197.9 83 50561.8 50996.35 0.001 0.07 0.92 70
Five class 1,288 —24424.8 100 49049.58 49573.14 0.001 0.09 0.92 77
Six class 1,288 —23893.1 117 48020.26 48632.82 0.001 0.1 0.95 46
Seven class 1,288 —23688.1 134 47644.24 48345.82 0.08 0.07 0.95 37
Eight class 1,288 —23496.5 151 47294.99 48085.57 0.1 0.096 0.90 37
Nine class 1,288 —23333.1 168 47002.12 47881.7 0.07 0.4 0.94 35

Note: Log-Likelihood (LL) Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), Lo-Mendell-Rubin likelihood
ratio test (LMR), G-test, entropy, and the smallest group size are listed for each model built.
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Fig. 3. The output of the LPA found five unique profiles in the study sample.

those in the stronger profiles. Contrasting with
these higher scores are the lower score for passive.
On average, this class has an average score in
interactive score (3.82), constructive score (3.73),
and active score (3.50). Compared with the disen-
gaged profile, Somewhat-Engaged students have a
lower score on passive learning (1.98), which indi-
cates that this group may experience a more bene-
ficial interactive effect while interacting with the
LCDLM.

5.3.3 Profile 3: Moderately Engaged (615
individuals)

Moderately Engaged profiles (Profile 3 or Group 3)
are similar to the profiles of group 2 (Profile 2), but
with a statistically significantly higher score than
group 2 in terms of their interactive score (3.87),
constructive learning score (3.85), and active learn-
ing score (3.76). However, students that are mem-
bers of this profile also reported a higher level of
passive learning, deviating from the theoretical
construct.

Comparing groups 2 to 3, we can conclude that
both groups share similar scores on the ICAP scale,
aside from the difference on the passive subscale —
differing in approximately 1.5-1.7 points (26%).
One possible explanation for the quantitative dif-
ference observed between Profiles 2 and 3 is the
effort required for these students to succeed may be
different in the LCDLM model. In Profile 3, more
students have higher learning scores. For example,
some students, especially those who have prior
exposure to related engineering concepts, may
exhibit more passive learning. This is consistent
with the Expertise Reversal Principle, where
instructional material becomes redundant for

more knowledgeable learners [34]. It may be the
case that students in Profile 3 who have high prior
knowledge do not feel the LCDLM can help them
engage and learn engineering concepts better
because they already have some level of prior
knowledge brought into the learning scenario.

5.3.4 Profile 4: Highly Engaged (192 individuals)

This profile demonstrated the highest level of inter-
active, constructive, and active learning. Addition-
ally, this group had the lowest score in terms of
passive learning, which is ideal for formulating
critical thinking. Consistent with the ICAP frame-
work, the higher scores on the interactive learning
(4.76) and constructive learning (4.69) subscales are
associated with lower passive learning scores (1.51)
and resulting in the formulation of critical thinking
while engaged with the DLM model.

5.3.5 Profile 5: Fluctuating Engagement (72
individuals)

Students assigned to Profile 5 reported high scores
on all ICAP subscales, which deviates farthest from
the ICAP framework. This suggests that not only
do these 77 students exhibit high scores in inter-
active, constructive, and active learning; but the
students in this particular profile group also have a
moderately high score on the passive subscale. We
will discuss this further in the discussion section
because the students may have fluctuated between
actively and attentively interacting with the mod-
ules, and passively learning. Additionally, COVID-
19 may have introduced further complications
where the line between active and passive learning
is further blurred.
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Table 3. Results from Simple Logistic Regression Analysis

Bivariable Multivariable
Variable Regression Regression
Academic Year 0.65*%* 0.96
Race
Caucasian Reference Reference
Black or African American | 0.28** 0.32%*
Asian and Pacific Islander | 1.63%*** 1.42%*
Native American 0.80 0.70*
Age 1.03 1.07
Gender (female) 1.32* 1.18*
International Student (yes) 0.7 1.0
Class Standing 1.63%* 1.35%
LCDLM Medium
In-Person Reference Reference
Hybrid 0.93 0.86
Online 0.56%* 0.52%*
Regions and Hubs
Northwest 0.88 0.92
Southwest 1.10 1.03
Northeast 1.03 1.03
Southeast 1.01 1.01
Central Reference Reference
Latent Groups
Disengaged 0.53%%* 0.47*
Somewhat Engaged Reference Reference
Moderately Engaged 1.26%* 1.24%%*
Highly Engaged 2.78%** 2.61%*
Fluctuating Engagement 0.77 1.02

Note. *p < 0.05; ** p < 0.01; ***p < 0.001.

5.4 Predicting Performance with Profile
Membership

The result for the multivariate logistic regression is
shown in Table 3. Two different logistic regressions
were used to answer Research Questions 2 and 3,
respectively. The multivariate logistic regression
describes whether the membership of LCDLM-
interaction profiles is associated with increased
academic performance (Research Question 2),
while the multinomial logistic regression deter-
mines if specific demographic and academic back-
ground increases the odds of specific membership
(Research Question 3). The logistic regression out-
come is binary, with score increases coded as 1 and
scores remaining the same or decreasing coded as 0.
The analysis was used to answer the research
question regarding profile membership in predict-
ing student success in engineering concepts. Speci-
fically, this analysis was conducted to answer
Research Question 3, which explores the extent to
which personal background characteristics and
academic profile of adult students predict their
profile membership, and whether profile member-
ship increases or decreases the odds of successful
academic performance.

In Table 4, we used odds ratio to present the
results for the multivariate logistic regression
models, a bivariate model, and a final model includ-
ing the predictor class and covariates in the equa-
tion. The logistic regression showed that different
covariates impacted academic performance. When
comparing only racial differences, Blacks and Afri-
can American students had lower odds of scoring

Table 4. Means (Standard Deviations) of the Main Variables by Cluster

Student Disengaged Somewhat Engaged Moderately Engaged | Highly Engaged Fluctuating
Profiles (n=147) (n =290) (n = 658) (n =205) Engagement (n = 77)
11 1.61 (0.04) 3.74 (0.03) 3.86 (0.04) 4.63 (0.05) 4.90 (0.07)
r 1.75 (0.05) 3.98 (0.03) 3.92 (0.06) 4.71 (0.05) 4.91 (0.08)
I3 1.76 (0.05) 3.95(0.03) 3.85(0.05) 4.78 (0.05) 4.82(0.08)
yzi 1.67 (0.05) 3.74 (0.03) 3.80 (0.06) 4.59 (0.05) 4.88 (0.09)
Cl 1.47 (0.04) 3.55(0.03) 3.71 (0.05) 4.49 (0.05) 4.82 (0.08)
2 1.70 (0.04) 3.84 (0.03) 3.85(0.05) 4.74 (0.05) 4.82 (0.08)
c3 1.61 (0.04) 3.85(0.03) 3.87 (0.05) 4.80 (0.05) 4.86 (0.07)
4 1.57 (0.04) 3.95(0.03) 3.96 (0.05) 4.83(0.04) 4.89 (0.07)
Al 1.66 (0.05) 3.24 (0.03) 3.72 (0.06) 3.98 (0.06) 4.69 (0.10)
A2 1.67 (0.05) 3.54 (0.03) 3.82(0.06) 4.30 (0.05) 4.77 (0.08)
A3 1.47 (0.06) 3.13 (0.04) 3.71 (0.07) 3.96 (0.07) 4.84 (0.11)
A4 1.79 (0.04) 4.02 (0.03) 3.84 (0.05) 4.65 (0.05) 4.86 (0.08)
Pl 2.96 (0.05) 2.23(0.03) 3.63 (0.06) 1.75 (0.05) 4.76 (0.09)
P2 2.87 (0.05) 2.05(0.03) 3.77 (0.06) 1.67 (0.05) 4.69 (0.09)
P3 2.93(0.05) 1.95(0.03) 3.63 (0.06) 1.46 (0.05) 4.78 (0.08)
P4 2.84 (0.05) 2.01 (0.03) 3.41(0.07) 1.46 (0.06) 4.30 (0.10)

Note. 1 = Interactive, C = Constructive, A = Active, P = Passive.
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higher on their posttest compared to Caucasian
students after interacting with the LCDLM
(OR = 0.32, 95% CI = [0.22, 0.4]). Conversely,
Asian and Pacific Islanders had higher odds of
scoring higher on their posttest after interacting
with the DLM (OR = 1.42, 95% CI = [1.20, 5.51]).
Although female-identifying students represented a
smaller percentage of students, they had higher
odds of learning the concepts taught by LCDLMs
compared to male-identifying students (OR = 1.18,
95% CI = [1.04, 1.46]). College class standing also
significantly affected posttest performance, with
upper-class college students performing better
(OR = 1.35, 95% CL = [1.51, 1.78]). More specifi-
cally, as indicated by the odds ratios, students are
1.4 times more likely to perform better on the
posttest with every year spent in college. The
latent groups, after controlling for the medium in
which participants worked with LCDLM, class
standing, year of enrollment, gender, race, age,
and location-hub, still accurately predicted the
posttest performance. The reference groups were
picked based on the theoretically acceptable group,
with “Somewhat Engaged” chosen for this model.
The “Somewhat Engaged” profile is used as the
reference category, as this is the expected group
with median performance. As expected, the disen-
gaged group performed poorly, with roughly two
times increased odds of doing poorer on the post-
DLM model compared to the “Somewhat
Engaged” profile (OR = 0.47, 95% CI = [0.3,
0.7]), while “Moderately Engaged” performed
better (OR = 1.24, 95% CI [1.21, 1.35]). The
highly engaged group outperformed most groups
(OR =2.61,95% CI =[1.8, 3.74]). In the final model,
some relationships were diluted, such as gender,
race, and class standing. However, no relationships
were found to be insignificant after including them
in the multivariable logistic regression.

6. Discussion

In the present study, we explored different groups of
students who interacted with the LCDLM based on
ICAP questionnaire responses. We found that
following the ICAP framework, those who are
more interactive and actively engaged with the
LCDLM scored higher on their questionnaire com-
pared to those who passively engaged with the
LCDLM. The LPA revealed five distinct profile
types and the validation process resulted in a
differentiation of group academic success. Given
this, we provide a discussion of the unexpected
results.

Students assigned to Profile 4 (Highly Engaged,
205 students) exhibited relatively high scores on
Interactive, Constructive, and Active forms of

engagement. They also reported relatively low
levels of skills for idle learning, which is the least
effective style of learning. Even when controlled for
race, ethnicity, gender, and other academic
information, students in this group outperformed
other groups in terms of test score improvement.
More notably, the students that are in this group are
generally more likely to succeed in using the
LCDLM. Altogether, these results are suggestive
of a group of students characterized by their
commitment to the engineering lab modules.

The other profile, namely the profile in which
students score lowest for all questionnaires in the
ICAP is called the “Disengaged” profile (n = 147).
Students in this profile are characterized by lower
scores on all subscales, which is associated with
poorer outcomes as exhibited in the logistic regres-
sion output. When comparing the different profiles
in terms of the trend in the scores for the various
subscales, the disengaged profile shows a greater
amount of passive learning in comparison to the
other ICAP profiles, while other profiles have lower
or moderate passive learning outcomes. Further-
more, the fluctuating profile was associated with
high ICAP scores across the subscales but exhibited
test score outcomes similar to those that are of the
moderately engaged profile.

Having higher interactive and constructive scores
indicates a higher likelihood of optimal learning
performance. Additionally, a positive view of work-
ing with the LCDLM leads to more effective learn-
ing (e.g., high satisfaction with the teaching lab or
instructor). Thus, there appears to be an effect of
positive perception of the learning environment
rather than the direct effect of LCDLM modules
themselves on learning [35-37].

Based on student ratings on the ICAP subscales
and other demographic information (e.g., class
standing, international student, or US region), the
moderately-engaged profile had higher odds of
performing better on tests compared to the some-
what engaged profile. Among these profiles, the
fluctuating engagement profile performed similarly
to the somewhat-engaged profile in terms of testing
outcome after controlling for demographic and
academic backgrounds. This suggests that the
LCDLM is in itself useful for learning.

The demographic information suggests that there
are still barriers to learning effectively with the
LCDLMSs. Those who are African American and
Native American are still left behind in terms of
positive educational outcomes, and in our study,
students of those demographics still performed
more poorly than their Caucasian and Asian Amer-
ican counterparts. In addition, results from our
study show that first-year college students tended
to do worse than those who had been in college for
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more years, with each year consecutively perform-
ing better. Lastly, those who interacted with
LCDLMs benefited more. This is in line with the
copious literature explicating the deleterious effects
of COVID-19 and the forced remote/online learn-
ing during that period [38, 39].

6.1 Limitations

Although we were successful in generating and
characterizing five types of profiles in LCDLM
users, there are a couple of limitations of the
study. First, some of the obtained results may be
explained better by soliciting additional informa-
tion from participants about their reasons for
endorsing any particular form of engagement.
Alternatively, future studies may include conduct-
ing interviews with selected participants.

Second, because our search for the types of
LCDLM-user profiles was exploratory, future stu-
dies must replicate and further validate our results.
This is needed to better explicate the robustness of
our findings. In addition, future studies should
investigate whether the reasons that we used to
generate the types of LCDLM users are indeed
stable or that they vary over situations or time. It
is also important to examine student retention of
information over time with the continuous use of
LCDLMs. In addition, it is suggested that active
and engaged learning will improve student learning,
leading to better student outcomes. Thus, future
studies may also include student course grades and
or course pass/fail rates as potential covariates.
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ment in the classroom on learning, and draws
instructors’ attention to the need of identifying
engineering education learning activities that
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