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There is overwhelming research evidence showing that students often struggle with learning key engineering concepts. The

Low-Cost Desktop Learning Modules (LCDLMs) are model prototypes of standard industry equipment designed for

students to learn some fundamental but abstract engineering concepts in the classrooms. Previous results have shown that

students who interact with LCDLMs tend to outperform those who engage in traditional lectures. However, little is

known about student profiles and their forms of engagement with this tool. Hence, the present study seeks to investigate

the different student profiles that emerge from students working with the LCDLM and the demographic factors that

influence student engagement with the tool. Participants (N = 1,288) responded to an engagement survey after working

with LCDLMs in engineering classrooms in several states around the United States.We then used a latent profile analysis

(LPA) – an advanced statistical approach – to better understand the representation of learner engagement profiles

resulting from their self-reported learning engagement beliefs as they reflect on their experience in using LCDLMs. The

LPA revealed five distinct profile types – disengaged, somewhat engaged, moderately engaged, highly engaged, and

fluctuating engagement. Results showed that those who are more interactive and actively engaged with the LCDLM

scored higher on their questionnaire compared to those who passively engaged with the LCDLM. We conclude with a

discussion of the theoretical and practical implications of our findings.
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1. Introduction

Recent years have seen a growing interest in Latent

Profile Analysis (LPA) in organizational sciences

(e.g., [1, 2]). LPA uses categorical latent variables to

identify latent subpopulations within a target popu-

lation. It assumes that people can be classified by

varying degrees into different groupings (subpopu-

lations) based on their personal and/or environ-
mental characteristics. A categorical latent variable

model can be used to represent structures by using

groupings, as Woo et al. indicated [2]. Developing

and incorporating typologies based on data can be

conceptually meaningful andmethodologically fea-

sible through categorical latent variable models [3].

Leveraging on LPA methodological features and

underlying assumptions, we used LPA to better
understand and establish the representation of

learner engagement profiles resulting from their

self-reported learning engagement beliefs as they

reflect on their experience in using hands-on learn-
ing equipment in engineering classrooms in several

states around the United States.

Science, Technology, Engineering, and Mathe-

matics (STEM) instructors in higher education

have touted active learning as a promising way to

positively transform STEM education [4–7]. Speci-

fically, proponents of active learning in STEM

suggest that such active learning strategies increase
student engagement in and interaction with their

learning environments [8, 9]. As engagement

increases, positive outcomes such as learning per-

formance, interest, attention, and self-regulation

are likely to follow [10–13].

To better understand student roles in active

learning environments, we draw upon Lombardi

et al.’s definition of active learning [6]. According to
Lombardi et al., ‘‘[active] learning is a classroom

situation in which the instructor and instructional

activities explicitly afford students agency for their

learning’’ (p. 17). This suggests that instructors are

responsible for offering instructional activities that
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provide specific affordances in learning, however,

students are similarly responsible for their learning.

Lombardi et al.’s definition also delineates that

within undergraduate STEM instruction, active

learning should focus on increasing learner engage-

ment by offering opportunities for ‘‘direct experi-
ences of phenomena,’’ using scientific data and

models that both provide and represent said phe-

nomena, and ‘‘domain-specific practices that guide

the scientific interpretation’’ [6].

An example of an instructional activity that

aligns with Lombardi et al.’s definition of active

learning [6] is the Low-Cost Desktop Learning

Modules (LCDLMs) designed by an engineering
education research team at the Washington State

University, Pullman campus [14]. LCDLMs were

designed to offer postsecondary students (i.e.,

undergraduates) a robust active learning experience

in learning engineering topics. Specifically, students

can use these LCDLMs to conduct direct investiga-

tions of hydraulic loss, flow measurement, and heat

transfer phenomena [15]. Yet, while LCDLMs were
designed to increase learner engagement in the

engineering classroom, preliminary analyses

indicate LCDLMs are not always more effective

than traditional approaches especially when learn-

ing engineering concepts at lower levels of Bloom’s

taxonomy [14]. To better understand for whom and

when the LCDLMs are more beneficial for learn-

ing, in this study, we take on a person-centered
approach by examining the effects of the individual

learner’s engagement level as they interact with

LCDLMs during a typical engineering learning

activity.

While activities may be designated as being

active learning modes to increase engagement in

the classroom and afford student agency for learn-

ing, actual student engagement, specifically cogni-
tive engagement, during the learning task, may still

vary [10]. For example, an instructor might intend

for students to work collaboratively with the

LCDLM for an engineering lab assignment. How-

ever, students who simply sit with their group

members but do not contribute to the assignment

will have a much lower level of cognitive engage-

ment than their group members who are actively
contributing to the group discussion. In a different

scenario, a student might instruct others on how to

use the LCDLM, answer questions raised by other

group members, and mentally formulate questions

to ask the instructor. Although the student is not

physically interacting with the LCDLM, they are

still highly engaged in the learning activity. These

two scenarios illustrate how the same learning
activity might elicit different levels of engagement

for students. More specifically, while the learning

activity was designed to promote a specific level of

engagement, students may approach these activ-

ities differently resulting in differential learning

outcomes. This leads to the need to answer an

overarching research question: what individual

characteristics should researchers consider to

determine whether active learning activities are
effective for promoting positive learning out-

comes?

To address the above question, in this paper, we

aim to (1) establish a representation of learner

engagement profiles resulting from their self-

reported learning engagement beliefs, (2) establish

differences in profile membership based on gender,

race, and class standing, and (3) investigate the
relationship between profile membership and learn-

ing performance on a posttest.

2. Background

2.1 Low-Cost Desktop Learning Modules

(LCDLMs)

The Low-Cost Desktop Learning Modules

(LCDLMs) were developed so that engineering

students can conduct investigations to learn funda-

mental principles in fluid mechanics and heat trans-
fer [14, 16, 17]. One key advantage of learning with

the LCDLM is that it provides visual representa-

tions of engineering phenomena that would other-

wise be difficult to comprehend without such visual

representation (see Fig. 1) [8]. Such visual represen-

tations promote a better understanding of specific

concepts in engineering, such as identifying the

system boundary for computing a heat transfer
rate in a heat exchanger [17] and predicting fluid

velocity in a pipe [18]. The potential benefits of the

LCDLMs are far-reaching. A recent study showed

that the effects of learning with the LCDLMs are

not just limited to a specific learning environment or

implementation procedure [15]. Notably, findings

in the study show that LCDLMs have been imple-

mented in a wide variety of learning environments
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in Reynolds et al’s study [8].



and their deployment by engineering faculty at

universities across theUS leads to well-documented

effectiveness.

2.2 Interactive, Constructive, Active, and Passive

(ICAP) Framework

Because in this study we seek to examine the impact

of the individual learner engagement profile on

learning achievement, we used the ICAP frame-

work as observed by their overt learning behaviors

[10]. Specifically, I stands for interactive, C for

constructive, A for active, and P for passive.

Based on the framework, learning activities that
require a deeper level of engagement, i.e., construc-

tive, and interactive, are better for learning than

activities requiring little to no engagement (i.e.,

active and passive). More specifically, the ICAP

framework predicts that interactive engagement

provides better cognitive engagement than con-

structive engagement and other modes of engage-

ment. In turn, constructive engagement is better
than active engagement, which is better than pas-

sive engagement.

Under the interactivemode of engagement, activ-

ities are structured such that learners are actively

interacting with each other to address a common

learning objective. As such, interactive learning

activities promote the deepest level of understand-

ing as supported by the work of Chi and Wylie [10]
because learners exchange information beneficial

for strengthening each other’s knowledge struc-

tures. Additionally, learners at this level of cogni-

tive engagement are more likely to arrive at

solutions for novel problems [10]. In the ICAP

framework, an instructional dialogue between the

teacher and student is also considered an interactive

engagement.
Under the constructive mode of engagement,

learners generate or produce additional externa-

lized outputs or products beyond what was pro-

vided in the learning materials [10]. Unlike the

interactive mode of engagement, learners work on

tasks individually to construct or generate knowl-

edge that goes beyond the information given. Con-

structive activities include drawing concept maps,
taking notes, asking questions, comparing and

contrasting, integrating text and diagrams, reflect-

ing and monitoring one’s understanding, and other

self-regulatory activities. Thus, a characteristic

descriptor of the constructive mode is generative.

To meet the criteria for constructive engagement,

the outputs of generative behaviors should contain

new ideas that go beyond the information given;
otherwise, such behaviors are merely active/manip-

ulative [10].

We operationalize active students as those who

manipulate some parts of the instructional materi-

als such as pointing or gesturing, pausing or rewind-

ing, underlining, copying, hands-on, or choosing an

option [9]. By restricting active activities to mean

those that require some form of motoric behavior

that causes focused attention while performing a

physical manipulation, we are distinguishing them
from overt activities that are carried out mindlessly,

such as reading a book out loud.

Finally, we define a passive mode of engagement

as learners being oriented toward and receiving

information from instructional materials without

overtly doing anything else related to learning

besides listening [10]. Essentially, learners are pas-

sive recipients of information. Outwardly, they do
not look like they are doing anything to interact

with the information. This might look like a student

sitting in a lecture and simply listening to the

information, or a student sitting with a group of

other students but who is not involved in any

discussions or activity with the group. Although

the passive level is described as the lowest of the four

modes of engagement, the authors acknowledge it is
possible for students to covertly process the materi-

als while listening or observing a video, even though

they may appear to be passively engaged.

Based on the ICAP framework and the defini-

tions of the different modes of engagement, a

psychometrically-validated survey was adapted to

reflect learning opportunities with the LCDLM

that maps onto the four different modes of engage-
ment. The ICAP hypothesis predicts that as stu-

dents become more engaged with the learning

materials, they progressively move from passive to

active to constructive, and finally to interactive

learning. Literature on active learning typically

encourages students to participate in classrooms

during instruction. Research at the post-secondary

level has been themost prominent in promoting and
using active learning in college classrooms. Indeed,

it has been shown to be effective by many scholars

including Harvard physics instructors [20, 21] and

more recently promoted by Nobel Laureate in

physics, Carl Wieman [22]. Researchers have also

looked at other predictors of success, such as the

status as an international student, student standing

in the university, gender, and age [23], and learning
during the COVID-19 pandemic .

3. Purpose of Study

Learning environments and interactions play a

pivotal role in higher-education learning outcomes.

Students use of learning strategies is also likely to
differ across contexts and learning environments.

Regardless, students who interact with hands-on

modules and course-related materials tend to out-

perform those in the traditional face-to-face lecture
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format [22]. Given this, we ask three fundamental

research questions: (Research Question 1) what are

the different student profiles that emerge from

students working with the LCDLM; (Research

Question 2) is the LCDLM successful in improving

learning outcomes; and (Research Question 3) how
do students respond to the LCDLM based on their

demographic information and academic standing?

With regard to Research Question 1, we exam-

ined how learner profiles varied based on LCCLM

scores. Specifically, we expect to see a difference in

responses to the survey based on learner profiles.

For example, we expect highly engaged students to

report high interactivity and low passivity on the
survey. Similarly, we expect the reverse for those

with low engagement. We also postulate that using

the LCDLM in class will increase learning out-

comes at the base level, which is consistent with

prior literature outcomes [8, 15]. Specifically, we

postulate that highly interactive and highly engaged

students will outperform those in the group with

lower engagement. Finally, we expect to see char-
acteristics such as year in school, gender, race, etc.,

influence responses on the survey and their perfor-

mance on the LCDLM-related tests.

4. Methods

4.1 Participants

Participants were 1,288 postsecondary engineering

heat transfer and fluid mechanics students from

both undergraduate and graduate engineering

classes from 25 universities, and 41 classes in

total, across the United States. Universities were

recruited based on the region of operation and

included both private and public universities.
These universities were categorized into ‘‘hubs’’ to

facilitate data collection and management. There

were seven national hubs and each consisted of five

to eight universities. Student participants were

recruited for the study in class by their instructor.

Instructors and their respective teaching assistants

at the universities underwent training before imple-

mentation. Participation in the study was volun-
tary. Students were also told that their responses

would be kept confidential. The study was

approved by the second author’s University Institu-

tional Review Board.

4.2 Equipment and Implementation

The Low-Cost Desktop Learning Modules

(LCDLMs) are model prototypes of standard
industry equipment designed to achieve different

purposes, and a past study reported that these

miniaturized industrial-scale equipment produce

data that align with large-scale industrial equip-

ment [19]. These LCDLMs are hands-on instruc-

tional aids that simulate engineering concepts.
These are helpful tools for learning abstract engi-

neering concepts in the classroom since students can

manipulate and observe them. The LCDLM ver-

sions used in our studies are simple, inexpensive to

construct, andmade from low-cost materials. Fig. 2

shows a picture of a shell and tube exchanger. By

adjusting the valves, students can quantify the

impact of the flow rate on temperature. By using
shell and tube model equations, they may explore

different scenarios to understand shell and tube

concepts better. Through their interactions with

an LCDLM, students can substantiate many

abstract concepts taught in the classroom.

4.3 Measurement

4.3.1 Measures of Learning Performance

Measures of learning performance were con-
structed by the research team for each of the

LCDLM learning topics (i.e., hydraulic loss, ven-

turi meter, double pipe, shell, and tube). To exam-

ine prior knowledge, topic-specific pre-tests were

administered to students before they participated in

the LCDLM learning activities. The number of

questions on the pre-test ranged from six to nine

questions, depending on the topic. A posttest,
identical to the pre-test, was administered to

assess learning following the completion of the

LCDLM activities. The tests comprised a mix of

conceptual multiple-choice questions, true/false

questions, and open-ended questions.

4.3.2 ICAP Survey

To establish learning profiles, the research team

adapted a survey to assess perceptions of engage-
ment when learning with the LCDLMs. There were

16 items on the survey to assess the level of engage-

ment when learning with the LCDLMs. There were

four items for each of the fourmodes of engagement

based on Chi and Wylie’s framework [10]. Partici-
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pants responded to the survey items using a 5-point

Likert scale (1 = strongly disagree, 5 = strongly

agree), self-reporting how the LCDLM influenced

their learning experience. Engagement modes were

assessed to reflect participant learning activity.

Based on their experiences with LCDLM-facili-
tated instruction, participants were asked to express

how LCDLM instruction helped them engage.

Example items for each mode of engagement are

provided below:

Interactive: The use of the LCDLMs helped me

discuss with a peer about the Double Pipe Heat

Exchanger concepts more than I could with a
lecture.

Constructive: The use of the LCDLMs can help me

to self-explain the concepts to myself better than

lectures.

Active: The use of the LCDLMs helped me see

Double Pipe Heat Exchanger concepts better

than lectures.

Passive: The use of the LCDLMs made me idle.

Six items about the usefulness of specific features

of the LCDLM were also included in the survey.

For example, students were asked whether the see-

through plastic in the LCDLM helped them under-

stand specific concepts relevant to heat exchange.

Similarly, participants responded to these items

using a 5-point Likert scale (1 = strongly disagree
and 5 = strongly agree), reporting how these

features influenced their learning experience.

4.4 Scoring

4.4.1 Change in Learning Score

The pre- and posttests were graded by the instruc-

tors and teaching assistants of the respective classes.

Each item on the test was worth one point. The pre-

and posttests for each respective topic were iden-

tical. The total score on the tests ranged from six to

nine points, depending on the topic. To examine the
change in learning score, we calculate the difference

between posttest and pre-test scores. We subse-

quently developed two categories for learning per-

formance: scores increased, where posttest scores

were higher than the pre-test, and scores decreased/

remained the same, where posttest scores were

lower than the pre-test or the same.

4.4.2 ICAP Survey Scores

For this study, we were primarily interested in

responses to the 16 ICAP items on how the
LCDLM engaged and influenced students. There

were four items for each of the four modes of

engagement (Interactive, Constructive, Active,

and Passive). To calculate self-reported engage-

ment, we summed up responses for the respective

subscales. The highest possible score for each sub-

scale is 20 points (i.e., a response of ‘‘Strongly

Agree’’ for all four items on a particular subscale),

and the lowest possible score is 4 (i.e., a response of

‘‘Strongly Disagree’’ for all four items on the

particular subscale).

4.5 Procedure

The instructors who participated in this study were

given the LCDLMs and asked to incorporate the

module into the class sessions to facilitate instruc-

tion while teaching heat transfer and fluid

mechanics concepts. All participants had at least

50 minutes of weekly instruction on these engineer-
ing concepts of heat transfer and fluid mechanics

taught using the LCDLMs at each implementation

site. The consent form was administered to all

students in the respective classes. Students who

consented to release their data for the study were

redirected to a demographic survey via Qualtrics.

Students in the experimental group received links to

an online survey administered via Qualtrics at the
end of the LCDLM sessions. The pre-test and

posttest were both administered via Qualtrics. The

pre-test was administered before students started

working on the LCDLMs and the posttest was

administered after completion of LCDLM learning

activities. Data analyzed in the present study were

collected from face-to-face and online settings.

4.6 Data Analysis Plan

4.6.1 Covariates

Age, gender, race, college standing, international

student status, classroom size, and academic year
were included in the logistic regression model as

covariates to control their effects on the score

differences before and after exposure to the

LCDLM activities. Gender was coded as male,

female, and others, and race was included as

dummy binary variables.

4.6.2 Statistical Analysis

To establish measurement models of key constructs
of ICAP, we conducted confirmatory factor analy-

sis using Mplus 8.4 [25] to ensure that subscale

scores within the ICAP framework could be distin-

guished and thus reported separately. The measure-

ment model for incentivized self-learning – a

possible key predictor of ICAP profiles – was also

examined. We tested model fit by using the root

mean square error of approximation (RMSEA), the
standardized root mean square residual (SRMR),

and the Tucker-Lewis index (TLI) / comparative fit

index (CFI). The model fit was considered appro-

priate if the RMSEA and SRMR values were below
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0.08, and the CFI and TLI values were close to or

higher than 0.95 [26].

We performed latent profile analysis (LPA) [27]

to group individuals into homogenous profiles with

regard to their ICAP score. LPA is a special case of

mixturemodels in which it assumes that the popula-
tion consists of unobserved subgroups or profiles.

The number and nature of the profiles are unknown

and have to be inferred from the data; that is, it is

hypothesized that the scores of individuals on

several continuous scales can be explained by their

membership within latent profiles. LPA seeks to

find a solution with a sufficient number of profiles

that reveal a distinctive pattern of responses
between the different profiles but relatively homo-

geneous responses within each profile.

LPAwas chosen as ourmodeling technique given

the advantages over standard cluster analysis meth-

ods such as agglomerative hierarchical cluster ana-

lysis or k-means clustering. LPA has the advantage

of being a model-based approach, allowing a quan-

titative comparison of models with solutions vary-
ing in the number of profiles to select the one best

fitting the data. Because the number of expected

profiles is unknown, we conduct an exploratory

analysis by investigating models for one to seven

profiles. To obtain stable solutions, the variances

were constrained to be equal across clusters [28].

Using MPlus 8.4 we generated several model fit

criteria to help decide which latent profile model
best fits the data. More specifically, the Bayesian

Information Criterion (BIC) and Akaike Informa-

tion Criterion (AIC) were checked. Smaller values

for the BIC and AIC are favored as they indicate a

better model fit [29, 30], Furthermore, a significant

p-value for the Lo-Mendell-Rubin likelihood ratio

test implied that the k-profile model fit better than

the model with k-1 profiles [31]. Next, the entropy
was examined, which indicated the clear delineation

of clusters. The entropy values should be greater

than 0.7 to indicate an acceptable classification

accuracy [32]. Finally, the sizes of the profiles and

their interpretability were used as further selection

criteria [33]. We are mindful in our analysis of

models that present groups with less than 5% of

the total students (i.e., which in our case would be
less than 60 students in a profile), to avoid groups

that provide statistical differences, but insignificant

theoretical differences. After the best solution is

determined, a profile of performance in each

group is plotted, and a detailed description of

each group is provided.

4.7 Predicting Performance with Profile

Membership

We used multivariate logistic regression to describe

whether the membership of LCDLM interaction

profiles is associated with increased academic per-

formance.We conducted an initial bivariate logistic

regression and a more complex model with all the

related covariates included. The logistic regression

outcome is binary, with scores increases coded as 1

and score remaining the same or decreasing coded
as 0. The analysis was used to answer the research

question regarding profile membership in predict-

ing student success in engineering concepts. Speci-

fically, this analysis was conducted to answer

Research Questions 2 and 3, to explore the extent

to which personal background characteristics and

academic profile of adult students predict their

profile membership, and whether profile member-
ship increases or decreases the odds of successful

academic performance.

5. Results

Table 1 provides the general descriptions of the

population sampled. Data from 1,288 participants

were analyzed in this study. Caucasian population

represented the largest group in racial diversity

(41.4%), followed by Asian and Pacific Islanders

(28.4%), African American (20.3%), and Native

American (7.1%) Due to COVID-19, we observed
an increase in the number of individuals participat-

ing in online classes or hybrids (37.9%) as colleges

adjusted to prevent the spread of the pandemic and

remain in session. Additionally, there was a small

variation in the grouping of each regional hub, with

the Northwest hub having the highest recruitment

as it was the first site for LCDLM implementation

and represents over 35.8% of the total population.

5.1 Class Choice

To establish a representation of learner engagement

profiles based on their self-reported learning

engagement beliefs (Research Question 1), fit

indices and criteria are used for the selection of

the model with the optimal number of clusters. The

fit indices performed on the LPA are located on

Table 2, specifically looking at the AIC, BIC, LMR,

G2 statistics, entropy, and the smallest group size.
The AIC and BIC, decreased as the number of

groups increased, but only marginally from more

than seven group solutions onward. The p values of

the LMR for K versus K-1 classes were also

significant for each higher group, except for six-,

seven-, and eight-classes profiles. Yet, log-likeli-

hood for AIC and BIC indicates that the model

progressively improves until the nine-model, with
the lowest score being nine-class (Negative-LL;

–23333.1; AIC: 47002.12; BIC: 47881.7), but

entropy is highest for the seven-profiles model

(0.95). The Lo-Mendell-Ruben likelihood-ratio

test indicates the model was progressive until the
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6-class model, where the seven-class model is not

optimal compared to the six-class model (p = 0.08).

Examining the group size, only the 5-class model

has an acceptable group size that is over 5% of the

total study population. The final class selected

based on the metrics is the five-class model, with
acceptable group size, LMR test, and grouping.

5.2 Class Description

Fig. 3 provides a visual representation of responses

to the 16 items on the ICAP survey, sorted by

student profiles. In this section, we explore the
level of engagement based on their profiles. Overall,

most students do not differentiate significantly from

interactive learning, constructive learning, and

active learning within the same profile, meaning

that their score on interactive learning is similar to

their constructive and active learning scores. More-

over, the four questions that are used to classify

each group also depict similar scores within the
same group. Below we discuss more in detail

regarding the different classes.

5.3 Latent Profiles

5.3.1 Profile 1: Disengaged (138 individuals)

The first profile is called the ‘Disengaged profile’

(n = 147). Disengaged students are characterized by

the lowest response scores on most of the ICAP

items. The profiles here reveal lower interactive,
constructive, and active engagement scores, con-

trasted with higher passive learning scores. Com-

pared to other groups, the Disengaged students

mostly exhibit higher-than-average passive scores

(2.90), and extremely low interactive (1.52), active

(1.61), and constructive learning (1.59).

5.3.2 Profile 2: Somewhat Engaged (271

individuals)

Somewhat Engaged students reported higher inter-

active, constructive, and active levels than those

with the disengaged profiles, but lower levels than
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Table 1.DescriptiveAnalysis of the Total Population Included in
the Analysis

Variable LCDLM

Total Count 1288

Academic Year/Semester

2018 Fall 180 (14.0%)

2019 Spring 295 (22.9%)

2019 Fall 253 (19.6%)

2020 Spring 210 (16.3%)

2021 Fall 350 (27.2%)

Race

Caucasian 533 (41.4%)

Black or African American 262 (20.3%)

Asian and Pacific Islander 366 (28.4%)

Native American 91 (7.1%)

Others 36 (2.8%)

Median Age (S.D.) 19.71

Gender (Female) 492 (38.2%)

International Student (yes) 392 (30.4%)

Class Standing

Freshman 321 (24.9%)

Sophomore 536 (41.6%)

Junior 217 (16.8%)

Senior 152 (11.8%)

Graduate and Others 62 (4.8%)

Learning Setting

In-Person 291 (22.6%)

Online 509 (39.5%)

Hybrid 488 (37.9%)

Learning Score

Score increased 830 (64.4%)

Score remained or decreased 388 (30.1%)

Regions and Hubs

Northwest 461 (35.8%)

Southwest 186 (14.4%)

Northeast 192 (14.9%)

Southeast 274 (21.3%)

Central 175 (13.6%)

Table 2. Fit Statistics of LPA

Model N LL (model) df AIC BIC

LMR
(K class to
K-1 class) G2 Entropy

Smallest
group size

Two class 1,288 –27535.1 49 55168.11 55424.66 0.001 0.06 0.92 640

Three class 1,288 –26311.4 66 52754.77 53100.33 0.001 0.07 0.93 212

Four class 1,288 –25197.9 83 50561.8 50996.35 0.001 0.07 0.92 70

Five class 1,288 –24424.8 100 49049.58 49573.14 0.001 0.09 0.92 77

Six class 1,288 –23893.1 117 48020.26 48632.82 0.001 0.1 0.95 46

Seven class 1,288 –23688.1 134 47644.24 48345.82 0.08 0.07 0.95 37

Eight class 1,288 –23496.5 151 47294.99 48085.57 0.1 0.096 0.90 37

Nine class 1,288 –23333.1 168 47002.12 47881.7 0.07 0.4 0.94 35

Note: Log-Likelihood (LL) Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), Lo-Mendell-Rubin likelihood
ratio test (LMR), G-test, entropy, and the smallest group size are listed for each model built.



those in the stronger profiles. Contrasting with

these higher scores are the lower score for passive.

On average, this class has an average score in
interactive score (3.82), constructive score (3.73),

and active score (3.50). Compared with the disen-

gaged profile, Somewhat-Engaged students have a

lower score on passive learning (1.98), which indi-

cates that this group may experience a more bene-

ficial interactive effect while interacting with the

LCDLM.

5.3.3 Profile 3: Moderately Engaged (615

individuals)

Moderately Engaged profiles (Profile 3 or Group 3)

are similar to the profiles of group 2 (Profile 2), but

with a statistically significantly higher score than
group 2 in terms of their interactive score (3.87),

constructive learning score (3.85), and active learn-

ing score (3.76). However, students that are mem-

bers of this profile also reported a higher level of

passive learning, deviating from the theoretical

construct.

Comparing groups 2 to 3, we can conclude that

both groups share similar scores on the ICAP scale,
aside from the difference on the passive subscale –

differing in approximately 1.5–1.7 points (26%).

One possible explanation for the quantitative dif-

ference observed between Profiles 2 and 3 is the

effort required for these students to succeed may be

different in the LCDLM model. In Profile 3, more

students have higher learning scores. For example,

some students, especially those who have prior
exposure to related engineering concepts, may

exhibit more passive learning. This is consistent

with the Expertise Reversal Principle, where

instructional material becomes redundant for

more knowledgeable learners [34]. It may be the

case that students in Profile 3 who have high prior

knowledge do not feel the LCDLM can help them
engage and learn engineering concepts better

because they already have some level of prior

knowledge brought into the learning scenario.

5.3.4 Profile 4: Highly Engaged (192 individuals)

This profile demonstrated the highest level of inter-
active, constructive, and active learning. Addition-

ally, this group had the lowest score in terms of

passive learning, which is ideal for formulating

critical thinking. Consistent with the ICAP frame-

work, the higher scores on the interactive learning

(4.76) and constructive learning (4.69) subscales are

associated with lower passive learning scores (1.51)

and resulting in the formulation of critical thinking
while engaged with the DLM model.

5.3.5 Profile 5: Fluctuating Engagement (72

individuals)

Students assigned to Profile 5 reported high scores

on all ICAP subscales, which deviates farthest from
the ICAP framework. This suggests that not only

do these 77 students exhibit high scores in inter-

active, constructive, and active learning; but the

students in this particular profile group also have a

moderately high score on the passive subscale. We

will discuss this further in the discussion section

because the students may have fluctuated between

actively and attentively interacting with the mod-
ules, and passively learning. Additionally, COVID-

19 may have introduced further complications

where the line between active and passive learning

is further blurred.
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5.4 Predicting Performance with Profile

Membership

The result for the multivariate logistic regression is

shown in Table 3. Two different logistic regressions

were used to answer Research Questions 2 and 3,

respectively. The multivariate logistic regression

describes whether the membership of LCDLM-

interaction profiles is associated with increased
academic performance (Research Question 2),

while the multinomial logistic regression deter-

mines if specific demographic and academic back-

ground increases the odds of specific membership

(Research Question 3). The logistic regression out-

come is binary, with score increases coded as 1 and

scores remaining the same or decreasing coded as 0.

The analysis was used to answer the research
question regarding profile membership in predict-

ing student success in engineering concepts. Speci-

fically, this analysis was conducted to answer

Research Question 3, which explores the extent to

which personal background characteristics and

academic profile of adult students predict their

profile membership, and whether profile member-

ship increases or decreases the odds of successful
academic performance.

In Table 4, we used odds ratio to present the

results for the multivariate logistic regression

models, a bivariate model, and a final model includ-

ing the predictor class and covariates in the equa-

tion. The logistic regression showed that different

covariates impacted academic performance. When

comparing only racial differences, Blacks and Afri-
can American students had lower odds of scoring
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Table 3. Results from Simple Logistic Regression Analysis

Variable
Bivariable
Regression

Multivariable
Regression

Academic Year 0.65** 0.96

Race

Caucasian Reference Reference

Black or African American 0.28** 0.32**

Asian and Pacific Islander 1.63*** 1.42**

Native American 0.80 0.70*

Age 1.03 1.07

Gender (female) 1.32* 1.18*

International Student (yes) 0.7 1.0

Class Standing 1.63** 1.35*

LCDLM Medium

In-Person Reference Reference

Hybrid 0.93 0.86

Online 0.56** 0.52**

Regions and Hubs

Northwest 0.88 0.92

Southwest 1.10 1.03

Northeast 1.03 1.03

Southeast 1.01 1.01

Central Reference Reference

Latent Groups

Disengaged 0.53** 0.47*

Somewhat Engaged Reference Reference

Moderately Engaged 1.26** 1.24**

Highly Engaged 2.78*** 2.61**

Fluctuating Engagement 0.77 1.02

Note. *p < 0.05; ** p < 0.01; ***p < 0.001.

Table 4. Means (Standard Deviations) of the Main Variables by Cluster

Student
Profiles

Disengaged
(n= 147)

Somewhat Engaged
(n = 290)

Moderately Engaged
(n = 658)

Highly Engaged
(n = 205)

Fluctuating
Engagement (n = 77)

I1 1.61 (0.04) 3.74 (0.03) 3.86 (0.04) 4.63 (0.05) 4.90 (0.07)

I2 1.75 (0.05) 3.98 (0.03) 3.92 (0.06) 4.71 (0.05) 4.91 (0.08)

I3 1.76 (0.05) 3.95 (0.03) 3.85 (0.05) 4.78 (0.05) 4.82 (0.08)

I4 1.67 (0.05) 3.74 (0.03) 3.80 (0.06) 4.59 (0.05) 4.88 (0.09)

C1 1.47 (0.04) 3.55 (0.03) 3.71 (0.05) 4.49 (0.05) 4.82 (0.08)

C2 1.70 (0.04) 3.84 (0.03) 3.85 (0.05) 4.74 (0.05) 4.82 (0.08)

C3 1.61 (0.04) 3.85 (0.03) 3.87 (0.05) 4.80 (0.05) 4.86 (0.07)

C4 1.57 (0.04) 3.95 (0.03) 3.96 (0.05) 4.83 (0.04) 4.89 (0.07)

A1 1.66 (0.05) 3.24 (0.03) 3.72 (0.06) 3.98 (0.06) 4.69 (0.10)

A2 1.67 (0.05) 3.54 (0.03) 3.82 (0.06) 4.30 (0.05) 4.77 (0.08)

A3 1.47 (0.06) 3.13 (0.04) 3.71 (0.07) 3.96 (0.07) 4.84 (0.11)

A4 1.79 (0.04) 4.02 (0.03) 3.84 (0.05) 4.65 (0.05) 4.86 (0.08)

P1 2.96 (0.05) 2.23 (0.03) 3.63 (0.06) 1.75 (0.05) 4.76 (0.09)

P2 2.87 (0.05) 2.05 (0.03) 3.77 (0.06) 1.67 (0.05) 4.69 (0.09)

P3 2.93 (0.05) 1.95 (0.03) 3.63 (0.06) 1.46 (0.05) 4.78 (0.08)

P4 2.84 (0.05) 2.01 (0.03) 3.41 (0.07) 1.46 (0.06) 4.30 (0.10)

Note. I = Interactive, C = Constructive, A = Active, P = Passive.



higher on their posttest compared to Caucasian

students after interacting with the LCDLM

(OR = 0.32, 95% CI = [0.22, 0.4]). Conversely,

Asian and Pacific Islanders had higher odds of

scoring higher on their posttest after interacting

with the DLM (OR = 1.42, 95% CI = [1.20, 5.51]).
Although female-identifying students represented a

smaller percentage of students, they had higher

odds of learning the concepts taught by LCDLMs

compared to male-identifying students (OR = 1.18,

95% CI = [1.04, 1.46]). College class standing also

significantly affected posttest performance, with

upper-class college students performing better

(OR = 1.35, 95% CL = [1.51, 1.78]). More specifi-
cally, as indicated by the odds ratios, students are

1.4 times more likely to perform better on the

posttest with every year spent in college. The

latent groups, after controlling for the medium in

which participants worked with LCDLM, class

standing, year of enrollment, gender, race, age,

and location-hub, still accurately predicted the

posttest performance. The reference groups were
picked based on the theoretically acceptable group,

with ‘‘Somewhat Engaged’’ chosen for this model.

The ‘‘Somewhat Engaged’’ profile is used as the

reference category, as this is the expected group

with median performance. As expected, the disen-

gaged group performed poorly, with roughly two

times increased odds of doing poorer on the post-

DLM model compared to the ‘‘Somewhat
Engaged’’ profile (OR = 0.47, 95% CI = [0.3,

0.7]), while ‘‘Moderately Engaged’’ performed

better (OR = 1.24, 95% CI [1.21, 1.35]). The

highly engaged group outperformed most groups

(OR=2.61, 95%CI= [1.8, 3.74]). In the finalmodel,

some relationships were diluted, such as gender,

race, and class standing. However, no relationships

were found to be insignificant after including them
in the multivariable logistic regression.

6. Discussion

In the present study, we explored different groups of

students who interacted with the LCDLMbased on

ICAP questionnaire responses. We found that
following the ICAP framework, those who are

more interactive and actively engaged with the

LCDLM scored higher on their questionnaire com-

pared to those who passively engaged with the

LCDLM. The LPA revealed five distinct profile

types and the validation process resulted in a

differentiation of group academic success. Given

this, we provide a discussion of the unexpected
results.

Students assigned to Profile 4 (Highly Engaged,

205 students) exhibited relatively high scores on

Interactive, Constructive, and Active forms of

engagement. They also reported relatively low

levels of skills for idle learning, which is the least

effective style of learning. Even when controlled for

race, ethnicity, gender, and other academic

information, students in this group outperformed

other groups in terms of test score improvement.
More notably, the students that are in this group are

generally more likely to succeed in using the

LCDLM. Altogether, these results are suggestive

of a group of students characterized by their

commitment to the engineering lab modules.

The other profile, namely the profile in which

students score lowest for all questionnaires in the

ICAP is called the ‘‘Disengaged’’ profile (n = 147).
Students in this profile are characterized by lower

scores on all subscales, which is associated with

poorer outcomes as exhibited in the logistic regres-

sion output. When comparing the different profiles

in terms of the trend in the scores for the various

subscales, the disengaged profile shows a greater

amount of passive learning in comparison to the

other ICAP profiles, while other profiles have lower
or moderate passive learning outcomes. Further-

more, the fluctuating profile was associated with

high ICAP scores across the subscales but exhibited

test score outcomes similar to those that are of the

moderately engaged profile.

Having higher interactive and constructive scores

indicates a higher likelihood of optimal learning

performance. Additionally, a positive view of work-
ing with the LCDLM leads to more effective learn-

ing (e.g., high satisfaction with the teaching lab or

instructor). Thus, there appears to be an effect of

positive perception of the learning environment

rather than the direct effect of LCDLM modules

themselves on learning [35–37].

Based on student ratings on the ICAP subscales

and other demographic information (e.g., class
standing, international student, or US region), the

moderately-engaged profile had higher odds of

performing better on tests compared to the some-

what engaged profile. Among these profiles, the

fluctuating engagement profile performed similarly

to the somewhat-engaged profile in terms of testing

outcome after controlling for demographic and

academic backgrounds. This suggests that the
LCDLM is in itself useful for learning.

The demographic information suggests that there

are still barriers to learning effectively with the

LCDLMs. Those who are African American and

Native American are still left behind in terms of

positive educational outcomes, and in our study,

students of those demographics still performed

more poorly than their Caucasian and Asian Amer-
ican counterparts. In addition, results from our

study show that first-year college students tended

to do worse than those who had been in college for
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more years, with each year consecutively perform-

ing better. Lastly, those who interacted with

LCDLMs benefited more. This is in line with the

copious literature explicating the deleterious effects

of COVID-19 and the forced remote/online learn-

ing during that period [38, 39].

6.1 Limitations

Although we were successful in generating and

characterizing five types of profiles in LCDLM

users, there are a couple of limitations of the

study. First, some of the obtained results may be

explained better by soliciting additional informa-

tion from participants about their reasons for
endorsing any particular form of engagement.

Alternatively, future studies may include conduct-

ing interviews with selected participants.

Second, because our search for the types of

LCDLM-user profiles was exploratory, future stu-

dies must replicate and further validate our results.

This is needed to better explicate the robustness of

our findings. In addition, future studies should
investigate whether the reasons that we used to

generate the types of LCDLM users are indeed

stable or that they vary over situations or time. It

is also important to examine student retention of

information over time with the continuous use of

LCDLMs. In addition, it is suggested that active

and engaged learning will improve student learning,

leading to better student outcomes. Thus, future
studies may also include student course grades and

or course pass/fail rates as potential covariates.

7. Conclusion

In this paper, we examined students’ engagement

profiles in the context of learning with low-cost

desktop learning modules (LCDLM). Students

completed an ICAP questionnaire consisting of

four ICAP subscales, interactive, constructive,

active, and passive. Based on students’ responses
to the questionnaire, the LPA identified five distinct

engagement profiles – disengaged, somewhat

engaged, moderately engaged, highly engaged,

and fluctuating engagement. Specifically, students

in the highly engaged and moderately engaged

profiles expressed greater engagement with the

LCDLM, as indicated by their higher interactive

and constructive subscale scores on the ICAP
questionnaire. Importantly, the results also indi-

cated that students in the highly engaged and

moderately engaged profiles were more likely to

succeed while working with the LCDLM than those

in the other categories, after controlling for other

student and demographic factors. This finding

aligns with existing work on the impact of engage-

ment in the classroom on learning, and draws
instructors’ attention to the need of identifying

engineering education learning activities that

increase engagement.
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(technical) research area is Micro, Nano, and Biofluidics with a specific focus on the development of new algorithms for
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as theChair of theASMEMicro/NanoFluidDynamics TechnicalCommittee.Moreover, he served as anAssociate Editor
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