Exploring the impacts of semi-automated
storytelling on programmers’ comprehension of
software histories

John Allen
Computer Science & Engineering
Washington University in St. Louis
St. Louis, USA
johnjallen@wustl.edu

Abstract—Software developers have difficulty understanding
the rationale and intent behind original developers’ design
decisions. Code histories aim to provide richer contexts for
code changes over time, but can introduce a large amount of
information to the already cognitively demanding task of code
comprehension. Storytelling has shown benefits in communicat-
ing complex, time-dependent information, yet programmers are
reluctant to write stories for their code changes. We explored
the utility of narratives made by generative AI. We conducted
a within-subjects study comparing the performance of 16 pro-
grammers when recalling code history information from a list-
view format versus a comparable Al-generated narrative format.
Our study found that when using the story-view, participants
were 16% more successful at recalling code history information,
and had 30% less error when assessing the correctness of
their responses. We did not find any significant differences in
programmer’s perceived mental effort or their attitudes towards
reuse when using narrative code stories.

Index Terms—code histories, storytelling, software versioning

I. INTRODUCTION

Software development is inherently a story that often has
many twists and turns. While developers fix bugs and imple-
ment functional requirements in software, they often face a
sequence of dynamic challenges, and must solve a series of
problems along the way. Many challenges that arise during
development are unforeseen, and are tackled in an ad hoc
manner, leading developers to seek out web resources in
order to overcome these challenges [1]. These web resources
often influence developer’s design choices in the written code
[1], [2]. The challenges developers face, and the resources
developers use to overcome them are rarely recorded by cur-
rent software versioning systems. With traditional versioning
resources, developers often find it difficult to understand the
intent and rationale behind the way code is written [3], [4].

Research suggests that presenting rich historical context
about code artifacts may improve developers’ ability to un-
derstand the original developer’s intentions [5]. Much of
this research has focused on improving traditional list-view
representations of code edits over time, such as improving

NSF Grant No. 2128128

Caitlin Kelleher
Computer Science & Engineering
Washington University in St. Louis

St. Louis, USA

ckelleher @wustl.edu

git commits [6]. However, historical information can also
impose additional mental demands on software developers [5].
Software development is already a cognitively demanding task
[7], and tools that add rich historical information must consider
the cognitive costs associated with that information [8].

Storytelling is a powerful tool in helping people understand
complex, time-dependent information with reduced cognitive
effort [9], [10]. Capturing the story behind development, and
presenting it as a narrative instead of a traditional list of edits
may be a powerful way to provide historical context for the
design of specific code artifacts. Some research has explored
asking developers to write stories for their code [11], [12], but
no work that we are aware of has investigated the usability of
code stories for future developers.

Additionally, these studies have found that programmers
do not want to invest more time in writing a story for their
code [12]. Recent developments in generative Al have opened
the door for automated story generation. In this paper, we
explored the potential utility of GPT-4 generated code history
stories, with minimal corrections made by the authors. To
generate stories, we compiled a dataset of code changes for
two software projects. We organized each set of historical
information into a hierarchical “list-view” of concise code
changes and web searches that loosely resembles a well-
maintained git repository in which each commit represents one
cohesive and small change. We then use GPT-4 to convert the
information from the list-view into a narrative “story-view”, in
which the information is written in a narrative paragraph. We
demonstrate examples of the two history formats in Figure 1.

We presented these story-view code change histories, as
well as their list-view counterparts to 16 programmers in a
user study to investigate the impacts of the narrative format.

We posed four distinct research questions:

« RQI1: Are participants better at recalling historical code
information after studying the list or story view?

e RQ2: Are participants more aware of their correctness
when recalling historical information after studying the
list or story view?

[Calculate average pixel of image

o search: python pil iterate over pixels

o search: fastest way to calculate average color of image in python
o main.py: Resize image to 1X1 pixel to see "average" pixel
o

runtime

|Get AVG pixel for each JPG file in folder

of each

speed
o main.py: Map average pixel values back to their respective
filenames

For each pixel of target_photo, find photo

with closest average pixel

o search: python vector similarity

o search: python kdtree example

o main.py: Loop through target_photo's pixels and find the
avg_pixel closest, then map back to the filename

A

main.py: Calculate Average Pixel with Numpy average to compa.re?

o main.py: Loop through photos in directory, calculate average pixel:

© main.py: Dump pre-calculated average pixels to disk to test usage

Phase 2: Crafting the Pixels

{|Now that Blake had the image, the next mission was to
{lcalculate its average pixel color. The search was on again:
{l"how to iterate over pixels in a PIL image", and "what's the
{lfastest way to calculate the average color”. Blake tried multiple

{lapproaches before realizing that resizing the image to a 1x1

| pixel would essentially give the average color. To be sure,

1 Blake calculated the same average pixel with Numpy's average
function and compared the runtimes. Satisfied, the programmer
1| decided to read all JPG files in a directory and calculate their
average pixels. Before moving on, Blake dumped this precious
lldata onto the disk for quicker access later.

{Phase 3: Mapping the Universe

4 With average pixels in hand, Blake wanted to map these
Javerage pixels back to their respective flenames. Blake
{Ineeded to find the image that had the closest average pixel to
{leach pixel in the target photo. Blake learned about vector
Jsimilarity and KD-trees and implemented them to find the
Yclosest calculated average pixel matches, allowing the code to
Jlfind photos that were similar in color to pixels in the target
Jlimage.

Fig. 1. The list-view history format (A) includes information in a hierarchical list format, with short descriptions for each action the developer takes within
a hierarchical subgoal. The story-view (B) composes the information from the list into a overarching narrative in natural language.

e RQ3: Do participants perceive code bases as more
reusable after studying the list or story view?

o« RQ4: Do participants experience a higher cognitive de-
mand after studying and answering questions about the
list or story view?

Our results suggest that participants are better and more
confident at recalling historical information when studying the
story-view than the list-view, especially when recalling time-
dependent historical information. We found no significant dif-
ferences between programmers’ perceptions of the reusability
of the underlying code base or their perceptions of mental
effort. Although it is not statistically significant, we noted a
trend towards lower mental effort for participants when using
the story.

II. BACKGROUND

Our research builds on research in Program Comprehension
and Narrative Learning. Specifically, our paper provides in-
sight into how narrative learning can impact top-down program
comprehension.

A. Program Comprehension

Understanding an unfamiliar code base is usually a cog-
nitively overwhelming task [7], [13]. Programmers browse
information ineffectively [14], [1], and often struggle to parse
through and understand a code base [4].

Research has investigated the strategies programmers em-
ploy when attempting to understand unfamiliar code. Notably,
research groups program comprehension strategies into two
categories: “bottom-up” and “top-down” approaches. Bottom-
up program comprehension typically includes programmers
looking at low-level, implementation code, and figuring out
what the smallest pieces of code are doing, and then building
up from there in order to understand how they integrate

together to account for the behaviors of the software [15],
[16].

Top-down approaches involve programmers identifying
high-level functionalities, components, and architecture of the
software, and then exploring their implementations in order to
understand how they are composed [17], [18].

Most research in program comprehension suggests that
programmers apply both bottom-up and top-down approaches
when attempting to comprehend an unfamiliar code base [19],
[20]. Typically, programmers iterate through top-down and
bottom-up cycles of understanding a program, beginning with
a top-down understanding of the highest level components in
a piece of software, identifying parts that are relevant to them,
and then exploring their implementations using a bottom-up
approach [21].

1) Barriers in Program Comprehension: Research has pin-
pointed bottlenecks during program comprehension. Program-
mers struggle when attempting to answer questions about
unfamiliar code bases [22], [23]. Research has repeatedly
shown that the questions programmers find most difficult to
answer involve the intent and rationale behind the original
developer’s design decisions [4], [3], [24]. This information
is often not included in the software or documentation itself
[4], however, some work investigates how to incorporate this
historical information into the workflow of programmers (see
Section II1-B2).

B. Narrative Learning

Since the dawn of human language, storytelling has been
used to communicate complex information between individ-
uals [9]. Stories have been used in teaching throughout all
of human history, and are deeply ingrained in both human
culture [25], [10] and cognition [10], [26]. Research suggests
that our brains have special mechanisms for processing and

remembering stories [26], suggesting that there is a benefit to
receiving information in a story format.

Research suggests that using storytelling to present content
may help people process and remember the new informa-
tion. One study showed that applying a narrative format to
information improved participants’ speed in reading through
it and ability to recall the information [27]. Other work showed
that people were over six times more likely to remember
information presented as part of a story rather than presented
in a list [28].

Research shows a positive impact of storytelling in various
contexts. Storytelling has been shown to increase students’
math performance by helping them link new ideas to concepts
they are already familiar with [29]. Erkut showed that children
who learned geometry through means of storytelling improved
more than those who learned the same content without sto-
rytelling [30]. Jung showed that storytelling-based curricula
can also improve students’ self efficacy and performance in
math [31]. The power of storytelling has also been built into
science curricula [32]. Research has shown that introducing
scientific concepts in stories can increase student motivation
and learning [33].

1) Storytelling in Programming: Storytelling has also been
used to motivate programming. Storytelling Alice showed
that using story-based examples to introduce programming to
young girls increased their motivation to program [34]. Other
work has introduced storytelling to help novice programmers
compose more complex programs [35].

Generally, research in narrative learning suggests that story-
telling improves learners’ attention [36], [37], motivation [38],
[34], [10], and memory recall of information [36], [39]. Our
work explores how storytelling can be applied to historical
software information in order to improve the understandability
of the code for future developers.

III. RELATED WORK

Our work is related to research in Code Histories and
Capturing Design Rationale, and is closely related to a small,
newer body of work in storytelling for code histories.

A. Code Histories

Research focuses on 1) the motivations for improving access
to historical software information and 2) exploring how new
code history tools help programmers.

1) Need for Improved Historical Information: Research
suggests that programmers’ main difficulties during program
comprehension are related to inadequate access to historical
information about software. Surveys and observational studies
have shown that developers often have a hard time answering
questions about the design decisions behind software artefacts
[3], [4]. Typically, the only resources developers have when
searching for historical development information about code
is in versioning control systems, and sometimes, the original
developer themselves [4], [40]. While developers prefer asking
the original developer questions directly about their rationale,
the original developer is often unavailable as a resource [4].

Currently, the standard for version history involves git-style
source control. Research suggests that version control commit
messages are not sufficient to answer developers’ questions
[41]. Often, developers incorporate multiple unrelated changes
into a single commit, resulting in “tangled commits” [41],
[42], [43], which make it difficult for future developers to
understand the reasoning for particular code changes [41],
[44]. Additionally, relevant historical information may not
appear in git commits, as they may be in uncommitted changes
[40].

2) Code History Tools: Some research has explored un-
tangling git-style commits [6]. Other work has investigated
entirely new history capture systems, recording every change
at the keystroke level [45], [5], [46]. This introduces a large
amount of extraneous information [5]. Some work investigates
allowing the programmers to group these fine-grained changes
at various levels of abstraction [5], and automatically removing
historical data that programmers deem irrelevant [13].

B. Capturing Design Rationale

Research in Capturing Design Rationale explores 1) the
rationale information needs of programmers and 2) tools that
help software developers and designers record their rationale
for design decisions. Some work explores how storytelling can
be used to present the rationale behind software elements.

1) Design Rationale: A growing body of work highlights
the importance of capturing the design rationale behind spe-
cific code changes [47], [48], [49]. This work emphasizes that
understanding the original developer’s rationale is a barrier
when working in unfamiliar code bases [48].

Lee emphasizes the need for design rationale capture to in-
clude practical justifications for design decisions [50]. Conklin
and Burgess argue that design rationale should be captured
with minimal impact to the regular design process [47].

It is possible to capture some information that may help
programmers reason about design rationale. As developers
implement solutions to problems, they often visit resources
online [1], [51], [52]. These resources include additional con-
text behind these developers’ intentions behind code additions,
and may be useful for future developers. However, most
design rationale or code history systems do not capture this
information, and evidence suggests it will be increasingly
difficult to track the origin of software artifacts retrospectively
[53].

2) Providing Additional Context to Programmers: Some
tools allow developers to attach additional information to their
code changes as they write code. Deep Intellisense links lines
of code to relevant external documentation such as bug reports,
emails, and source control check-ins [54]. HyperSource ties
the websites developers visit to subsequent code changes [55].
Crystalline passively collects and organizes web resources
developers visit as they write code in order to 1) improve
developer decision-making, and 2) track additional context
for decisions made [56]. Meta-manager allows developers to
attach information about provenance and rationale behind code

changes in the IDE [57]. However, none of these studies incor-
porate web information into a full code history, or investigate
other programmers’ comprehension or usage of the original
developer’s web foraging activity.

3) Storytelling for Code Histories: Very little work inves-
tigates incorporating information about the design rationale
behind historical software changes as a story. Two papers
closest to our work are:

Wauilmart [12] investigated asking developers to write stories
to describe the processes they follow while completing pro-
gramming tasks. This work demonstrated that developers have
difficulty crafting stories, and do not want to add additional
documentation duties to their workload.

Sodalite [11] supports developers authoring long-form sto-
ries behind their code changes by linking the text they create
to code elements in their IDE. Sodalite also helps by detecting
when these stories become out-of-date, and informs the author
of a need to update their story, as well as readers that a story
may be out of date. Sodalite helps readers identify documents
relevant to given parts of the code’s story.

Still, documenting software is tedious work that developers
avoid when possible [58], [59], [56], and developers are
unlikely to want to author stories for every code change they
make [12]. We are not aware of any work that has investigated
the usability of code stories during program comprehension or
the use of generative Al to author code stories.

IV. CREATING CODE HISTORIES

In order to explore the impacts of presenting software
history as a story to developers, we first created list-view
representations of code change histories for two code bases.
The list-view representations consisted of short descriptions
for code changes and information seeking activities. We then
created story-view representations for both code bases. We
provide snapshots of both formats in Figure 1. In this section,
we describe the process of capturing historical information, la-
belling development activities, and organizing these histories.

A. History Capture

We captured the history of actions two developers took
while each developed an independent project.

1) Code Bases: We selected disparate code bases to capture
a breadth of project domains. The Python Code Base uses
image processing and data manipulation libraries to generate
a photo mosaic of a target image assembled from a directory
of given images. This code was written by a member of the
research team as a personal project. The Web Code Base used a
traditional web development framework to create a tile-based
game. In contrast to the Python Code Base, the Web Code
Base was written by an online live code streamer, “Coder
Coder”, as a personal project [60]. The developers of each
code base developed their respective project in a natural way
that included unanticipated problems, allowing us to capture
authentic creation histories for both.

As each developer worked, we captured their code state
each time they tested their program. We determined instances

of testing differently for various code projects. For execution-
based softwares, we defined testing as executing the program,
whereas for web-development projects we defined testing as
interacting with localhost. We chose this approach because
we believe that testing the code indicates the programmer
believes they have made a meaningful change and will get
some important feedback from the output of the given code
state. We are aware of no other research which studies the
usability of testing-captured software histories. In addition to
code changes, we also record the web searches and website
visits the developer made as they developed their project. This
data provides additional context behind the code changes that
followed information searches.

B. History Data Processing

We then combined and labeled the set of code changes and
web activities for each project.

1) Activity Segmentation: We used different processes to
group sequences of code changes and web activities. We
grouped code edits into linear chunks based on the magnitude
of consecutive code changes made. We grouped web activities
into linear chunks based on the textual similarity of their titles.

The entire evolution of a software history base can be seen
as a long sequence of code changes. In order to segment
these changes into high-level “subgoals”, we explored vari-
ous heuristics that grouped consecutive changes together. We
experimented with different heuristics until we were satisfied
that we were grouping together meaningfully similar changes.
This process is described further in Appendix D.

The purpose of segmenting consecutive code changes and
web activity into groups was to offload the work of the original
developer of segmenting their own actions to only labeling
the segmented code changes. We acknowledge that there are
many other ways to group related code changes or web activity
together.

2) Labeling Developer Activity: The research team labeled
each code edit grouping using a high-level, one-line summary
of a sequence of code changes. In order to resemble standard
practices in historical code change descriptions, we designed
these labels to mimic the style of typical git commits. An
example from the Python task is: “main.py: Calculate Average
Pixel with Numpy average to compare runtime” (see Fig 1).
A member of the research team who had witnessed the entire
development process labeled each code edit group.

C. Creation of List-View

Traditional git commits are commonly presented as a se-
quence of short descriptors, as shown in Figure 2-A. Emulating
this style, we also presented historical information in a similar,
list-view fashion (see Figure 2-B). It is important to note,
however, that in addition to code changes, we also include the
developers’ web activity as they wrote code. We organized the
hand-labeled code change and web visit clusters and organized
them into a hierarchical goals.

add ads.txt (#53807)

§ ahmaxed committed 2 weeks ago - v 11/12

Adding an initial key listener to B
detect letters the user enters.

A

fix: remove robots.txt (#53808)

2 o script.js: Outline initial code via
& oieytonwilliams committed 2 weeks ago - v/ 11/12
comments
fix(client): keep editor tabs buttons visible (#53373) o search: How to detect a keypress in
gikt committed 2 weeks ago - 10 /10 javascript
o search: javascript onkeypress

- Commits on Feb 19, 2024
o script.js: Adding a key listener
fix(curriculum): missing contraction (#53789)

Nrezhang committed 2 weeks ago -/ 11/12

Use regular expressions to determine

fix: remove test case in execute-brain (#53802) whether a pressed key is a letter and,

@ naomi-Igbt committed 2 weeks ago - v/ 11/12 if S0, save it.
chore(i18n,learn): processed translations (#53714) = & search: how to determine whether an
@) camperbot and naomi-igbt committed 2 weeks ago - 1112 antored charanior is:allattar

script.js: Figure out whether or not an

fix(client): render MathJax in jaws header (#53370) L]
gikt committed 2 weeks ago entered character is a letter
o search: flavio javascript test regex;

searching for specific resource

v 2

feat(client, 18n): add note about exam being available

&= sidemt and huyenltnguyen committed 2 weeks ago -/ 11/12

Fig. 2. The list-view format (B) includes short, descriptive text to describe
code changes and actions a developer performed as they modified a software
base, and is comparable in style to a git commit history (A)

1) Hierarchical Activity Organization: We noticed that
consecutive clusters of code changes and web activity were
often related under a unifying subgoal of the developer. So,
we manually segmented sequences of actions into groups,
and labeled the overarching “goal”. For example, “Calculate
average pixel of image” in Fig 1, is a label for a goal-level
grouping of actions, which includes two search groupings
followed by two code edit groupings. The entire list-view
history of each code base consists of a sequence of such goal-
level groupings, which each had their own code edit and/or
web groupings.

D. Creation of Story-View

Evidence suggests that using storytelling to present sequen-
tial information may help people process and remember the
information [27]. To explore storytelling as an alternative to
traditional list-oriented presentations of software history, we
constructed narrative-formatted “story-view” descriptions for
each code base’s history.

Describing code changes in a narrative format would add
a nontrivial amount of work to a developer’s workload [12].
Further, programmers do not wish to spend extra time crafting
stories for code they write [12], [56]. So, we explored using
generative Al to create these stories based on the list-view
history for a given code base.

1) Al Code Story Generation: We prompted GPT-4 to
create a narrative story for each list-view history, and then
we made slight manual modifications to the resulting story
to ensure consistency with the list-view, and to keep the
descriptions of the original developer ungendered in order
to avoid gender bias in our study [61]. The changes we
made to the generated stories were minimal, and typically
involved editing sentences that omitted a detail from the
original list-view history. In general, the story for each code
history required very few edits, making this process much
less burdensome than writing a code story from scratch. More

details and examples of the prompting we utilized are included
in Appendix A.

To present these stories to programmers, we transformed
each story into a simple website. Details which were direct
references to programmer actions were highlighted in blue, as
shown in Fig 1-B. We chose this design to be consistent with
future work in which we may add actionable hyperlinks to the
code actions within a story.

V. METHODS

We performed a within-subjects study of 16 student pro-
grammers performing recall tasks using 1) a list-view history
and 2) a story-view history of two separate code bases.

A. Participants

We recruited sixteen participants pursuing degrees related
to computer science at a private university in the United
States. To ensure that participants had adequate computing
backgrounds to make progress on reuse through re-purposing
tasks, we recruited only students who had taken at least two
programming classes or who had at least three months of work
or internship experience programming.

Eight of our participants identified as female, seven as
male, and one preferred to not respond. Our participants had
substantial programming experience, reporting an average of
eight computing courses and more than seventeen months
of work experience. Twelve participants were enrolled in
undergraduate programs. One was pursuing a Master’s, and
the remaining three participants were pursuing their PhD.
Two undergraduate participants were not majoring in CS: one
pursuing a degree in Data Science, while the other majored
in Finance. All other participants’ primary degrees were in
Computer Science or Engineering.

B. Study Procedures

We designed a within-subjects study of 16 programmers
completing two tasks: one where they study and answer
questions about a list-view code history, and the other about
a story-view code history. In order to control for the different
tasks and ordering effects, we employed a Latin-squares study
design to assign participants their task order, as well as which
task they received the story-view for and which one they
received the list-view. Our sample size of 16 perfectly balances
the frequencies of all conditions.

We gave participants an introductory task where they had
five minutes to study the list-view code history of a sample
code base, and then five minutes to study the story-view of
the same code base, then given a practice exam that asked the
same types of questions that would be on the official user test.

After the introduction, participants received their first task,
where they had up to 15 minutes to study either the list-view
or story-view of a new code base. After the participant was
content with their studying, or the 15 minutes ran out, they
took a quiz on the history behind the code base. After this,
they began their second task, where they again had up to 15

were able to load more than 20 results?

Which code snippet contains code which allowed the developer to ensure they

Which statistical technique did Taylor [the original developer] employ
to refine the restaurant data?
Percentiles

min_rating = 4.5#5
min_reviews = 60

A.|df = df[(df.user_ratings_total >= min_reviews) & (df.rating >= min_rating)]

Z-score
Chi-square test
Both A and B

OCow»®

2)

for place in response|'results']:
name = place.get('name')
rating = place.get('rating')

time,sleep(2)
restaurants = []
params = {

o

var map = new google.maps.Map(document. getElementById("map'), {
zoom: 12,
center: center

What challenge did Taylor encounter when initially fetching restaurant
data from the API?
A. The API did not return any data.
The API returned a vast amount of unnecessary data.
The APl was returning only a limited first page of 20 results.

B.
C.
D. The API was returning data from a different city.

After viewing the change history of the codebase:

1« | feel very confident about reusing or modifying the code
| feel confident about reusing or modifying the code. 4
| feel neutral about reusing or modifying the code.)
| de not feel confident about reusing or modifying the code.

2
3.
4.
5 | feel very unconfident about reusing or medifying the code

1)

Fig. 3. Set of sample questions of the various types: 1) code interpretation, 2) factual, 3) historical, and 4) attitudes towards reuse.

minutes to study the second code base’s history using the view
which they did not have during the first task, and then took a
quiz over its content. We did not include delays or distraction
tasks between the studying and quiz phases because during
actual development, there is nothing preventing a programmer
from working with the code directly after looking through
its history. Finally, we interviewed participants about their
experience with both history view types.

It is important to note that participants in our study only
had access to code histories, not the code bases themselves.
We did this to ensure that participants focused on studying
the historical information, preventing them from defaulting to
program comprehension habits such as studying code which
would be identical regardless of the historical information
format attached to it. This allows us to more cleanly compare
the participants’ performance with each view type. We discuss
this decision further in Section VII-B2.

C. Questionnaires

We created a questionnaire for each of the two code
bases that was independent of view type. Each questionnaire
included questions regarding 1) factual information about the
code base, 2) historical information about the code base,
3) code snippet interpretations, 4) attitudes towards reuse,
and 5) mental effort. We show samples of each question
type in Figure 3. For multiple-choice questions about factual
information, historical information, or code interpretation, the
questionnaire also asks participants to rate their confidence on
a 5-point Likert scale from “Strongly Uncertain” to “Strongly
Confident”.

1) Factual Questions: Factual questions were designed to
measure participants’ ability to recall specific facts about
each code base, including its features and implementation.
Figure 3-2 shows an example of a factual question. This is
a factual question because it asks about a specific, isolated
detail regarding what was implemented in the code, and did
not have other development factors impacting it.

2) Historical Questions: We used historical questions to
measure participant’s ability to recall time-dependent facts
about the evolution of each code base. These questions asked
about the relationship between multiple events during the
development process, such as an error in response to an imple-
mentation choice, or a data structure selection in response to a
particular result or error. Research shows that developers have
difficulty in answering questions about the intentions about
design decisions [4], so these questions were aimed at teasing
out why design decisions were made, or how the code changed
over time, especially in response to unexpected obstacles. An
example of a historical question is shown in Figure 3-3. This
is a historical question because it asks about the resultant error
from an initial design choice, so it is part of a longer process.

3) Code Interpretation Questions: Previous work has
shown that programmers have difficulty in tying high-level
functionalities to their concrete implementations during soft-
ware reuse [8], [62]. So, we also asked participants to find
implementations of high-level functionalities mentioned in the
history. Participants picked out which snippet they believed
was responsible for a given behavior. An example of a code
interpretation question is shown in Figure 3-1.

These questions were designed not to be self-evident; it
was not easy for participants to reason through the snippets
in order to select the correct answer. Instead, they had to
utilize historical information in order to successfully reason
about what the correct code snippet does. For example, in
the code snippet in Figure 3-1, the correct answer is C. The
other snippet options are incorrect: A. filters results, B. iterates
through 20 results from a response, and D. defines a Google
Map instance. Participants are only able to figure out the
correct answer if they remember that the developer introduced
a delay to successfully load all API search results.

4) Attitudes towards reuse: In order to explore how the
history format impacts the perceived accessibility of code
bases, we asked participants questions about their attitudes
towards reusing each code base after studying the history only.
These questions were in Likert format, where lower values

PARTICIPANT RAW AND ADJUSTED ACCURACY (HISTORICAL AND FACTUAL), CONFIDENCE ERROR, MENTAL EFFORT, AND ATTITUDES TOWARDS REUSE

TABLE I

Raw Residuals of OLS Controlling for Task Type, Order
metric List Story Wilcoxon | Wilcoxon List Story Wilcoxon | Wilcoxon
mean (std) mean (std) stat P mean (std) mean (std) stat P
Confidence Error | 1.506 (0.386) | 1.052 (0.373) 14 0.0034 0.227 (0.352) | -0.227 (0.370) 11 0.0017
Mental Effort 3.537 (0.862) | 3.137 (0.695) 27 0.1093 0.200 (0.821) | -0.200 (0.666) 36.5 0.1046
Accuracy 0.669 (0.110) | 0.778 (0.110) 18 0.0076 -0.055 (0.108) | 0.055 (0.110) 21 0.0131
Factual Accuracy | 0.759 (0.144) | 0.798 (0.163) 59 0.6685 -0.020 (0.084) | 0.020 (0.120) 47.5 0.3225
History Accuracy | 0.637 (0.262) | 0.851(0.152) 30 0.0507 -0.107 (0.161) | 0.107 (0.161) 5 0.0003
Attitudes Avg 3.618 (0.889) | 3.625 (0.736) 58.5 0.932 -0.003 (0.878) | 0.003 (0.729) 64.5 0.8999

are linked to more positive attitudes towards reuse. Figure
3-4 shows an example of this type of question. Participants
answered these questions before the code snippet questions,
so that they did not see any actual code before answering this
question, ensuring that their perceived difficulty of reuse was
based strictly on the history view they studied.

5) Mental Effort: Finally, at the end of each quiz, par-
ticipants completed the NASA-TLX Mental Effort survey to
estimate their cognitive load throughout the task.

D. Analysis

In order to prepare our data for statistical analysis, we define
a meaningful metric for evaluating participant confidence and
describe our process to control for covariate variables.

1) Confidence evaluation: Confidence is not always a good
thing. For instance, being confident about an incorrect answer
can lead to invalid assumptions about a code base, which can
ultimately lead to ‘insurmountable barriers’ during code reuse
[63].

To explore the degree to which participants were appropri-
ately confident, we defined a metric to favor high reported
confidence scores when the participant is correct, and low
confidence scores when the participant is incorrect. This
essentially measures confidence error by combining Do pro-
grammers know the answer? and Do programmers know if
they know the answer?.

We calculate the confidence error C' based on whether or
not each question was answered correctly or not, as shown in
the equation below:

5 — Crorrect if answer is correct

Econﬁdence =
Cincorrect -1

if answer is incorrect

Research in retrospective metacognition has leveraged simi-
lar confidence error metrics [64], [65], [66], and other research
suggests that self-regulated learning can be improved with
higher retrospective metacognition [65], [67]. For each partici-
pant, we calculate this confidence error for every question. We
include this metric to better capture how aware programmers
are of their understanding of a code base, as this is likely to
lead them to more efficiently invest their time during program
comprehension.

2) Controlling for covariate variables: We note that the
task type and task order may have had an effect on each of
our dependent variables. In order to control for the covariate

effects of task order and task type, we fit an Ordinary Least
Squares model to each dependent variable using these two
covariates, and compared the residuals of the model across
list-view and story-view conditions using the same statistical
methods as for the raw data. A guide to interpreting these
values is included in Appendix E. In addition, we present strat-
ified data visualizations to demonstrate the covariate effects.

3) Statistical Testing: For each participant, we calculated
accuracy (%) across factual, historical, snippet interpretation
questions, as well as accuracy across the entire set of questions
for a given code base. We also calculate average confidence
error for each participant, as well as average scores for
attitudes towards reuse questions and mental effort. We then
compare the set of the 16 participants’ accuracy, confidence,
attitude, and mental effort scores for their list-view test to their
story-view test using the Wilcoxon signed-rank test. We do this
for both the raw data and for the covariate-adjusted residuals.

We use the Wilcoxon signed-rank test to evaluate significant
differences because we are comparing repeated measures
across conditions of a moderately small sample size (16),
and the majority of our measured distributions do not fit the
assumption of normality required by other statistical tests, such
as MANOVA. We report values for effect size as well as p-
values for each metric. We note that since we compare accu-
racy in three groupings (all, factual, historical), we interpret
the p-values with respect to the Bonferonni correction.

VI. RESULTS

We find that participants are 16% more accurate and have
30% less confidence error recalling historical information
when studying the story-view compared to the list-view, espe-
cially when recalling time-dependent historical questions, and
that there are no significant differences between participants’
time studying or recalling historical information, perception of
reusability of underlying code base, or mental effort between
participants when using the story-view and the list-view (see
Table I).

We begin this section by describing the effects of confound-
ing variables, and then present our results in further depth
within the context of our research questions.

A. Confounding Variables

We note that two covariate factors: task-type and task-order
had an impact on metrics for individual user tasks. Figure 4
shows distributions for overall question accuracy, confidence

accuracy

2.00 4

1.75 1

=

u

[=]
L

1.25 o

1.00

confidence_error

0.75 4
0.50 4 o

0254 o

mental_effort

o] e (o]

ZZ2 web-dev [taskl

—3 list
B sto

=3 python

task2

Fig. 4. Box plots of A) accuracy, B) confidence error, and C) mental
effort stratified across the independent variables: view-types, tasks, and task
order. Adjacent pairs of distributions represent within-subjects comparisons,
however, between-subjects comparisons are also visualized. Full discussion
of the confounding variables is in Section VI-A.

error, and average reported mental effort across 1) history
format type, 2) task type, and task order. For each metric, this
figure also visualizes the interaction of history format type
with both task type and task order.

The graph displays data in pairs of boxplots, each rep-
resenting contrasting within-subject distributions. This repre-
sentation also allows for between-subject comparisons. For
example, the fifth and sixth boxplots for any metric represent
the eight users who used the list-view for the web-dev task
and the story-view for the Python task. Conversely, boxplots
seven and eight represent the remaining eight users who
were given the list-view for the Python task and story-view
for the web-dev task. A between-subject comparison, such
as comparing column five (list-view, web-dev) with column
eight (story-view, web-dev), illustrates the differences in user
metrics between the two view formats for a specific task.

Figure 4 shows that participants are more accurate, have
less confidence error, and experience lower mental effort
when studying the story-view (orange) than when studying
the list-view (blue) throughout stratification of task types and

task orders. For example, Fig 4-A shows that participants
consistently had higher response accuracy when using the
story-view.

We note that in the python task, there is more variance in
participants’ accuracy (Fig 4-A), and higher reported mental
effort (Fig 4-C). We also note a tightening effect between
task 1 and task 2; across all metrics shown in Figure 4, the
distribution of measurements tightens during task 2. This is
likely due to participants acclimating to the task conditions
and involving less overhead mental processing costs of getting
acquainted to the task structure.

B. Information Recall

Here we address RQ1: Are participants better at recalling
historical code information when studying the story view?

In general, participants had a higher accuracy on questions
after studying the story-view code history. We note that task-
type and task-order may have impacted participants’ accuracy
averages distributions. In Figure 4, we visualize the distribu-
tions of participant accuracy averages across all tasks, as well
as the various interactions between view-type and task-type or
type-order.

Regardless of task-type and task-order, 12 (75%) partici-
pants scored a higher accuracy when using the story-view,
while the remaining 4 (25%) scored lower accuracy. For
factual questions, 9 (56%) participants’ accuracy increased
when using the story compared to their list-view task, and 7
(44%) decreased. Finally, for historical questions, 11 (69%)
participants’ accuracy increased when using the story-view
compared to their list-view task, while the remaining 5 (31%)
performed slightly worse when using the story-view.

When comparing multiple-choice question accuracy over
all questions, participants performed significantly better (p <
0.016) in the story-view condition than in the list-view
condition. After studying the list-view of a code’s history,
participants averaged 67% accuracy on the multiple choice
questions. After studying the story-view, participants answered
correctly 78% of the time.

When answering factual questions, participants in list-view
and story-view conditions performed similarly, at 76% and
80%, respectively. In contrast, participants performed better
at answering historical questions during the story-view (85%
accuracy) than after studying the list-view (64% accuracy).
The difference in historical accuracy between list-view and
story-view was significant when controlling for task type and
task order (p < 0.016). We observed no significant difference
between conditions for code interpretation questions. Resulting
average raw scores, adjusted scores, and significance tests for
each question type are shown in Table L.

Participants’ sentiments aligned with our finding that they
performed better at remembering time-dependent information
when using the story-view. When asked to comment about
their experience during the user test, User 10 reflected, “In
terms of order in which [the developer] made the [web code
base], in [the story-view], the order in which they did things
was really clear to me, while in the [list-view] one, it was a

little bit harder to remember like, the order in which things
were implemented.”

When describing why they had a harder time remembering
data structures referenced in the list-view history, User 6
echoed a similar sentiment when they argued that the structure
of the story helped them remember why a particular data
structure was implemented, typically in response to a prior
design decision not working out. They continued, “but [the list-
view] is like ‘search this’, ‘implemented that’, ‘search this’,
‘implemented that’, so it was also harder to remember the
order in which things happened because there wasn’t that story
behind it.”

C. Confidence in Quiz Responses

Next we address RQ2: Are participants more aware of
their correctness when recalling historical information when
studying the list or story view?

Participants demonstrated more certainty in their responses
when using the story-view than when using the list-view,
having a significantly lower (p < 0.01) confidence error in the
story condition, indicating that story-view users generally had
higher confidence when correct, and lower confidence when
incorrect. Participant confidence error averages are shown in
Table I, and their distributions are visualized in Figure 4.

User 15 described a level of uncertainty they experienced
when recalling information from the list-view history. They
recounted: “When I’m thinking about [the list-view], I'm just
recalling the facts, rather than thinking through the story I
read. I also feel less confident because I'm just thinking about
the facts, and sometimes I feel less confident because I just
think about the fact and I'm like ‘okay do I remember it back
well, or not?’”.

D. Attitudes towards reuse

Thirdly, we report on RQ3: Do participants perceive code
bases as more reusable when studying the list or story view?

We found no significant differences in attitudes towards
reuse between the view types. Average scores and statistical
tests are reported in Table I. Note that in this scale, lower
scores represent more positive attitudes. In general, partici-
pants noted that both formats provided valuable information
about the history of the code, but were unlikely to feel com-
fortable about reusing the code without seeing the code bases
themselves. User 8 summed up this experience concisely: “It
doesn’t matter the format, I don’t feel confident modifying
[the code] because I haven’t done it before.”

Participants mentioned that if they were required to reuse
either code base, many would want access to both formats,
finding benefits to each one: the list-view for quick, concise
reference to specific details as-needed, and the story-view to
give an overall sense of what is in the code, and to bring out the
intentions of the original developer. User 15 summed up this
paradigm, “I feel like if I was going to modify the code bases,
I want to look at both. I want the story to understand what
the developer wants done, and how they intended to structure
things, but I want the log so that I can do in-depth technical

analysis for actually making a change”. User 15 continues,
“In terms of actually understanding the code, I don’t feel
anywhere near as confident [with the list-view] compared to
the [story-view] style. Because like with [the list-view], I see,
okay, they made these changes, a little bit of why they made
the changes, but it’s mostly ‘here’s all the changes they made.
Here’s the things the code’s doing.” But, I don’t necessarily
see as much intrinsic motivation for why they’re doing one
change or another, versus like, with the story, I can see that.”

User 11 also highlighted the strengths of each format: “the
[story-view] is definitely easier to follow, and it’s easier to
like, retain information. I think you really ‘get’ behind what
the thought process was and like, how someone develops code.
The [list-view] one, it’s more concise but it’s harder to get in
a person’s head”. When asked why they might want to get
in the original programmers’ head, User 11 responded “If the
code works? Maybe not, but definitely debugging will help a
lot. Like, “Why do you have this? Oh, you were trying to go
down this path? Okay, like this makes more sense’. Or maybe
you’re trying to modify code and be like, “Why is this here?’
It’s like: ‘Oh, this was just to make it faster. Okay. Well that

EED)

doesn’t matter to me, I can adjust this’”.

E. Mental Effort

Finally, we address RQ4: Do participants experience a
higher cognitive demand when studying the list or story view?

Participants reported slightly lower mental effort when using
the story-view, however, this trend was not statistically signif-
icant (p = 0.11). Mental effort averages for each condition are
listed in Table I and box plots are shown in Fig 4. 11/16 (69%)
of participants reported lower mental effort when using the
story-view, 3 (19%) reported higher effort, and the remaining
2 (13%) reported no difference. User 2 described the story to
be a more natural means of collecting information: “Like, [the
story-view] just reads in my mind faster than just seeing the
coding steps, but that might also be because I'm just more
familiar with regular English words than coding languages”.

Overall, participants benefited from the familiarity of the
list-view format, and the relatability of the story-view. User 8
described this perfectly when describing how the list-view was
more similar to tools they were already familiar with. They
described the list-view as, “slick-quick access to information,
more organized, and easier to parse.” They continued, “It’s
definitely more standard, I mean everything is just more stan-
dardized, more like an encyclopedia or something”. Although
User 8 enjoyed the consistency of the list-view, they indicated
higher engagement with the story-view, reflecting, “Yeah, I
feel the story one was nice. It was nice to read. It was fun
to read. And then like that compared to the [list-view] when
it was like just the the boring, bunch of abstract stuff I don’t
understand, I just felt very apathetic in a way”.

User 15 had a similar description of the two formats, stating
“I’m not having to parse a list, analogy wise, it’s like if I were
reading a textbook vs. reading a fiction book. Reading the
list feels like reading a dense textbook or git commit history,
reading the story is like I’'m reading someone’s description

of how they’re doing this. it feels like less effort even if it’s
containing similar information”.

Finally, User 14 hinted that the story reduced the effort
needed to apply their imagination in order to empathize with
the original developer, when reading the story-view: “I don’t
need to add so much imagination to see what is going on with
[the developer] for when they were programming the code.”

Summed up, our findings are suggestive that storytelling
may help programmers apply less cognitive effort to relate
with the original developer, but more work with a larger
subject pool is necessary to provide more evidence.

VII. DISCUSSION AND FUTURE WORK

Here we discuss the implications of our results, and how
further work could investigate the impact of storytelling within
a broader range of developer workflows.

A. Improved Understanding of Code History

Our results suggest that storytelling may help programmers
clarify the relationships between historical development events
by highlighting the interactivity of the distinct information
searches, web visits, and code changes. This may help pro-
grammers work with unfamiliar code. On one end, improved
confidence in program comprehension may empower program-
mers to modify code [68], a critical step in making sense
of unfamiliar code [52]. On the other hand, having reserva-
tions about assumptions that are actually incorrect may help
programmers avoid being stuck by “insurmountable barriers”
[63] when working in a new code base. Some work suggests
that code histories should be integrated directly into IDEs to
support programmers in their natural workflow [11], [56], [8].
Future work should consequently investigate including stories
within the IDE themselves to explore their utility to developers
in their natural workflow.

1) Supplementing Current History Formats: Participants
valued the story-view for connecting how distinct developers
actions are related through time, and the list-view for being
succinct and similar to existing tools, like Git. Our results
suggest that stories are not a replacement for traditional list-
view style code change histories, but could supplement them to
help programmers relate to the original developer. Future work
should also explore the story format across different problem-
solving styles [69].

2) Expanding to other code history scopes: In this study,
we focused on code stories for smaller, personal projects
for three reasons, 1) the agency developers have to make
decisions, 2) the emphasis on the direct transfer of knowledge
from one developer to another, and 3) the feasibility of
capturing a project of this scope. However, developers working
or onboarding onto larger projects could also benefit from
storytelling. Future work should investigate storytelling as it
scales to larger, distributed projects, or as it is applied to
other levels of historical granularity, such as summarizing
git commits, pull requests, and production version updates.
Finally, while we used web history and labeled code changes
to create histories, future work should include incorporating

other historical development information into the story, such as
functional requirements changes, formalized testing episodes,
versioning conflicts, and think-aloud data [70].

B. Limitations

1) Measuring Memory Retention: A threat to construct
validity in our study is that we measure and report data about
participants’ factual memory retention of a code history. In
practice, developing an understanding of how a piece of code
was written has a complex relationship with making mean-
ingful edits. Further, including a delay or distractor task may
be more appropriate in assessing programmers’ recollection of
facts, and should be investigated in future work. Additionally,
future studies should investigate storytelling code histories
through a sensemaking lens.

2) Programmers did not have access to code bases: A
threat to external validity is that participants in our study only
had access to code histories, not the code bases themselves.
We chose to focus on the summary views to ensure that
participants were reasoning from these views alone. Further
work should include the code bases as well in order to explore
how programmers can leverage insights from the story and list
views when modifying programs.

3) Activity Labeling: While we mimicked git-style commit
messages to label activities, a breadth of potential labeling
styles could be applied to developer actions. As with git
commit messages, these descriptions are subjective to their
author, which may impact external validity. Future work
should investigate a more diverse set of labeling styles, and
also investigate using generative Al to author and organize
code change labels.

Finally, it is important to note that storytelling can vary
across people, cultures, and media. Our work is only a small
step in discovering the effects of storytelling on programmer’s
understanding of software histories. Further work should in-
vestigate the impact of a diverse set of media and narrative
structures on programmer understanding of code history.

VIII. CONCLUSION

Programmers performed 16% better on memory recall tasks
when given access to story-formatted information, and 34%
better on questions which involved the time-dependent rela-
tionships with other pieces of information. Story users were
30% more accurate in assessing their correctness during the
story condition than in the non-story task. Participants valued
both formats for different reasons. Programmers valued the
list-view for offering concise descriptions and that it is similar
to code history formats they were already familiar with, like
Git. Programmers valued the story format for piecing together
seemingly unrelated code changes into a larger narrative, its
ease of reading, and for fostering empathy for the original
developer. These findings indicate that code stories should
complement, but not replace other versioning systems. Pro-
grammers experienced slightly less mental effort when using
the story-view but this was not statistically significant. Finally,
future work should investigate code history stories in actual
programming contexts.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, vol. 32, no. 12, pp. 971-987, 2006.

C. Kelleher and M. Ichinco, “Towards a model of api learning,” in 2079
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 1IEEE, 2019, pp. 163-168.

T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and usability of programming languages and tools, 2010,
pp. 1-6.

A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in 29th International Conference on
Software Engineering (ICSE’07). 1EEE, 2007, pp. 344-353.

Y. Yoon and B. A. Myers, “Semantic zooming of code change history,”
in 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2015, pp. 95-99.

M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untan-
gling fine-grained code changes,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 341-350.

I. Crk and T. Kluthe, “Assessing the contribution of the individual alpha
frequency (iaf) in an eeg-based study of program comprehension,” in
2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). 1EEE, 2016, pp. 4601-4604.
J. Allen and C. Kelleher, “Exploring analogical reasoning and history
use in software re-purposing,” in 2023 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 1EEE, 2023,
pp. 242-244.

E. Greene, Storytelling: art and technique: art and technique.
CLIO, 1996.

R. Landrum, K. Brakke, and M. McCarthy, “The pedagogical power of
storytelling. scholarship of teaching and learning in psychology, 5 (3),
247-253, 2019.

A. Horvath, A. Macvean, and B. A. Myers, “Support for long-form
documentation authoring and maintenance,” in 2023 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 1EEE,
2023, pp. 109-114.

P. Wuilmart, E. Soderberg, and M. Host, “Programmer stories, stories
for programmers: Exploring storytelling in software development,” in
Companion Proceedings of the 7th International Conference on the Art,
Science, and Engineering of Programming, 2023, pp. 68-75.

K. Maruyama, T. Omori, and S. Hayashi, “Slicing fine-grained code
change history,” IEICE TRANSACTIONS on Information and Systems,
vol. 99, no. 3, pp. 671-687, 2016.

X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951—
976, 2017.

N. Pennington, “Comprehension strategies in programming,” in Empir-
ical Studies of Programmers: Second Workshop, 1987, 1987, pp. 100-
113.

J.-M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-oriented
program comprehension: Effect of expertise, task and phase,” Empirical
Software Engineering, vol. 7, pp. 115-156, 2002.

R. Brooks, “Towards a theory of the comprehension of computer
programs,” International journal of man-machine studies, vol. 18, no. 6,
pp. 543-554, 1983.

E. Soloway and K. Ehrlich, “Empirical studies of programming knowl-
edge.” IEEE Transactions on software engineering, no. 5, pp. 595-609,
1984.

S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and software, vol. 7, no. 4, pp. 325-339, 1987.

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” Journal of Systems and Software, vol. 7,
no. 4, pp. 341-355, 1987.

C. L. Corritore and S. Wiedenbeck, “An exploratory study of program
comprehension strategies of procedural and object-oriented program-
mers,” International Journal of Human-Computer Studies, vol. 54, no. 1,
pp. 1-23, 2001.

J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of the 14th ACM SIG-

ABC-

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

SOFT international symposium on Foundations of software engineering,
2006, pp. 23-34.

K. Erdos and H. M. Sneed, “Partial comprehension of complex pro-
grams (enough to perform maintenance),” in Proceedings. 6th Inter-
national Workshop on Program Comprehension. IWPC’98 (Cat. No.
98TB100242). 1EEE, 1998, pp. 98-105.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 492-501.

I. F. Goodson, G. Biesta, M. Tedder, and N. Adair, Narrative learning.
Routledge, 2010.

P. B. Armstrong, Stories and the brain: The neuroscience of narrative.
JHU Press, 2020.

A. C. Graesser, N. L. Hoffman, and L. F. Clark, “Structural components
of reading time,” Journal of Verbal Learning and Verbal Behavior,
vol. 19, no. 2, pp. 135-151, 1980.

G. H. Bower and M. C. Clark, “Narrative stories as mediators for serial
learning,” Psychonomic science, vol. 14, no. 4, pp. 181-182, 1969.

B. Casey, J. E. Kersh, and J. M. Young, “Storytelling sagas: An effective
medium for teaching early childhood mathematics,” Early Childhood
Research Quarterly, vol. 19, no. 1, pp. 167-172, 2004.

S. Erkut, “Multicultural adventure stories as medium for teaching math
in the early elementary grades: An evaluation,” in Wellesley Centers for
Women Board of Overseers meeting. Wellesley, MA, 2003.

D. B. Jung and J. E. Kim, “A study on the effects of storytelling-linked
integrated math programs on young children’s mathematical disposition
and self-efficacy,” Korean Journal of Childcare and Education, vol. 11,
no. 2, pp. 151-175, 2015.

S. Rowcliffe, “Storytelling in science,” School science review, vol. 86,
no. 314, p. 121, 2004.

C.-M. Hung, G.-J. Hwang, and I. Huang, “A project-based digital story-
telling approach for improving students’ learning motivation, problem-
solving competence and learning achievement,” Journal of Educational
Technology & Society, vol. 15, no. 4, pp. 368-379, 2012.

C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling alice motivates
middle school girls to learn computer programming,” in Proceedings of
the SIGCHI conference on Human factors in computing systems, 2007,
pp. 1455-1464.

Q. Burke and Y. B. Kafai, “Programming & storytelling: opportunities
for learning about coding & composition,” in Proceedings of the 9th
international conference on interaction design and children, 2010, pp.
348-351.

S. M. Kromka and A. K. Goodboy, “Classroom storytelling: Using
instructor narratives to increase student recall, affect, and attention,”
Communication Education, vol. 68, no. 1, pp. 2043, 2019.

S. Bolkan, “Storytelling in the classroom: Facilitating cognitive interest
by promoting attention, structure, and meaningfulness,” Communication
Reports, vol. 34, no. 1, pp. 1-13, 2021.

C. R. Lucarevschi, “The role of storytelling on language learning: A
literature review,” Working Papers of the Linguistics Circle, vol. 26,
no. 1, pp. 24-44, 2016.

I. McGregor and J. G. Holmes, “How storytelling shapes memory and
impressions of relationship events over time.” Journal of personality and
social psychology, vol. 76, no. 3, p. 403, 1999.

M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015, pp. 1-10.

K. Herzig and A. Zeller, “The impact of tangled code changes,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 121-130.

D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 351-360.

S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. A. Ghaleb,
K. K. Chahal, T. Bossenmaier, B. Nagaria, P. Makedonski, M. N.
Ahmadabadi et al., “A fine-grained data set and analysis of tangling
in bug fixing commits,” Empirical Software Engineering, vol. 27, no. 6,
p- 125, 2022.

A. E. Hassan, “The road ahead for mining software repositories,” in
2008 frontiers of software maintenance. 1EEE, 2008, pp. 48-57.

J. Park, Y. H. Park, S. Kim, and A. Oh, “Eliph: Effective visualization
of code history for peer assessment in programming education,” in

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Proceedings of the 2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing, 2017, pp. 458-467.

Y. Yoon and B. A. Myers, “Supporting selective undo in a code editor,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. 1EEE, 2015, pp. 223-233.

E. J. Conklin and K. B. Yakemovic, “A process-oriented approach to
design rationale,” Human—Computer Interaction, vol. 6, no. 3-4, pp.
357-391, 1991.

S. Mehrpour and T. D. Latoza, “A survey of tool support for working
with design decisions in code,” ACM Computing Surveys, vol. 56, no. 2,
pp. 1-37, 2023.

K. A. Alsafwan, “Toward better understanding and documentation of
rationale for code changes,” 2023.

J. Lee, “Design rationale systems: understanding the issues,” /[EEE
expert, vol. 12, no. 3, pp. 78-85, 1997.

D. M. Arya, J. L. Guo, and M. P. Robillard, “How programmers find
online learning resources,” Empirical Software Engineering, vol. 28,
no. 2, p. 23, 2023.

C. Kelleher and M. Brachman, “A sensemaking analysis of api learning
using react,” Journal of Computer Languages, vol. 74, p. 101189, 2023.
G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance
tracking at the scale of public source code,” Empirical Software Engi-
neering, vol. 25, pp. 2930-2959, 2020.

R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating evap-
orated information,” in Proceedings of the 2008 international working
conference on Mining software repositories, 2008, pp. 23-26.

B. Hartmann, M. Dhillon, and M. K. Chan, “Hypersource: bridging the
gap between source and code-related web sites,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2011,
pp. 2207-2210.

M. X. Liu, A. Kittur, and B. A. Myers, “Crystalline: Lowering the
cost for developers to collect and organize information for decision
making,” in Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, 2022, pp. 1-16.

A. Horvath, A. Macvean, and B. A. Myers, “Meta-manager: A tool for
collecting and exploring meta information about code,” 2024.

D. Fontanet Losquifio and T. Urdell, “Why do developers struggle with
documentation while excelling at programming,” B.S. thesis, Universitat
Politecnica de Catalunya, 2014.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 492-501.

C. Coder. (2022, Feb) Live coding a wordle clone
(5 hrs) — html sass js. YouTube. [Online]. Available:
https://www.youtube.com/watch?v=PNGgQzw6PQg

R. L. Roper, “Does gender bias still affect women in science?” Micro-
biology and Molecular Biology Reviews, vol. 83, no. 3, pp. e00018-19,
2019.

C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, pp. 131-183, 1992.

A.J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in 2004 IEEE Symposium on Visual Languages-
Human Centric Computing. 1EEE, 2004, pp. 199-206.

M. Siedlecka, B. Paulewicz, and M. Wierzchon, “But i was so sure!
metacognitive judgments are less accurate given prospectively than
retrospectively,” Frontiers in psychology, vol. 7, p. 171892, 2016.

Z. C. Ozcan, “The relationship between mathematical problem-solving
skills and self-regulated learning through homework behaviours, mo-
tivation, and metacognition,” International Journal of Mathematical
Education in Science and Technology, vol. 47, no. 3, pp. 408-420, 2016.
J. Kruger and D. Dunning, “Unskilled and unaware of it: how diffi-
culties in recognizing one’s own incompetence lead to inflated self-
assessments.” Journal of personality and social psychology, vol. 77,
no. 6, p. 1121, 1999.

A. M. Robey, M. R. Dougherty, and D. R. Buttaccio, “Making retro-
spective confidence judgments improves learners’ ability to decide what
not to study,” Psychological Science, vol. 28, no. 11, pp. 1683-1693,
2017.

J. Eliasson, L. K. Westin, and M. Nordstrom, “Investigating students’
confidence in programming and problem solving,” in Proceedings.
Frontiers in Education. 36th Annual Conference. 1EEE, 2006, pp.
22-27.

[69] M. Guizani, I. Steinmacher, J. Emard, A. Fallatah, M. Burnett, and
A. Sarma, “How to debug inclusivity bugs? an empirical investigation
of finding-to-fixing with information architecture,” 2020.

R. Krosnick, F. Anderson, J. Matejka, S. Oney, W. S. Lasecki, T. Gross-
man, and G. Fitzmaurice, “Think-aloud computing: Supporting rich
and low-effort knowledge capture,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, 2021, pp. 1-13.

[70]

APPENDIX

A. GPT-4 Prompting and Output Examples

The research team used GPT-4 through ChatGPT’s web in-
terface with no hyperparameter tuning. We experimented with
various story-creation prompting techniques, and ultimately
landed on the prompt structure below, which in this example
specifies data for the app used in the demo code history.

1) Prompt: 1 am going to send a list of goals and actions
a programmer took while making an app to find top-rated
restaurants in a given area, and I want you to create a short
story describing the main phases of development the software
underwent. The story should be written in a way that helps
you empathize with the original developer’s challenges, but
not be overly whimsical.

The format is in the form:

begin example

Goal 1:

Action 1

Action 2

Goal 2:

Action 3

Action 4

Action 5

end example

Goals will be high level goals that include multiple actions.
Actions will include changes to specific files, or web searches
for information. Please include all footnotes to reference facts
in your story with their original source ”Actions”. Here is the
data:

o Goal: Plug into Google Maps API, query for restau-
rants within search radius of St. Louis
— search: what is my ip;
— search: google maps change ip address api access;
— revisit: Google Cloud Platform;
¢ Goal: Get more than the first page of 20 results
returned by Maps API for search radius
— search: why does google maps api only return a few
results;
- example.py:
tokenCount
— example.py: Checking to see what the response
from Maps API is
— example.py: Add delay between pages of results,
so page would not be empty
— search: google maps api get more than 60 restaurants;
— example.py: Add longer delay and check response
- example.py: Checking the value of
next_page_token from Maps response

Adjust loop counter using

Goal: Break search radius circle into overlapping
subcircles in order to pull more results

search: use google maps api to get a total count of
restaurants in city;

search: meter to longitude and latitude conversion;
search: circles and angles overlap playground;
example.py: Defining a subcircle to be used to
represent part of the larger radius more finely

search: equal circles with 60 degree overlap;

search: read from file in javascript;

search: google maps change API key;

example.py: Convert meters to latitude and longi-
tude differences

example.py: adjust latitude and longitude to be
placed north and east of starter circle, instead of south
and west

example.py: shift every other column of subcircles
horizontally to cover area more efficiently

search: 30 60 90 triangle;

revisit: Algorithm - Circle Overlapping - Mathematics
Stack Exchange;

example.py: adjust distance between subcircles
based on hand calculations

search: how many degrees in circle;

revisit: https://chat.openai.com/;

example.py: Loop through 5X5 grid and print
where centroids of subcircles should be

Goal: Plot found restaurants by number of reviews
and average review score

revisit: Google Maps;

visualizeData.py: Plot found restaurants by
user_ratings_total and average rating

search: numpy log;

visualizeData.py: attempt to make scatterplot
interactive, to see the label associated with each data
point

revisit: Google Maps;

Goal: Filter for ’good” restaurants and add labels to
scatterplot

visualizeData.py: filter restaurants by
min_rating and min_reviews, and annotate the
datapoints with labels

visualizeData.py: calculate z-score for rating
and num_reviews

visualizeData.py: only display 90th percentile
outliers for rating and num reviews

example.py: adjust search radius and number of
subcircles

revisit: Google Cloud Platform;

example.py: adjust centerpoint of search radius
revisit: Google Cloud Platform;

search: google maps types of places;
visualizeData.py: fixed typo in csv file name

B. GPT-4 Raw Output

In the bustling heart of St. Louis, a programmer named
Alex sought to solve a culinary conundrum: finding top-rated
restaurants in the area. Like any software developer embarking
on a new project, Alex was about to undergo a roller-coaster
of discovery, frustration, and innovation.

Alex’s first hurdle' was the Google Maps API, which would
be the backbone of his application. After entering the search
command, ’what is my ip,’l he wondered if the change of
his IP address affected API access and hence, looked up
’google maps change ip address api access.’> He then revisited
Google Cloud Platform® to make sure he was in the clear. It
was the typical back-and-forth dance familiar to developers
everywhere, adjusting parameters, revisiting platforms, and
laying the first bricks of the project.

His elation, however, was short-lived. As he pulled the
restaurant data, Alex noticed that the API was only serving
a limited first page of 20 results*. Why would this be the
case? He dove back into the web with "why does google maps
api only return a few results’ to find some answers>. Delving
into the code of example.py, he tinkered with loop counters®,
examined API responses’, and incorporated delays®. But it
was still an uphill battle; he had to increase the delay” and pay
attention to the next_page_token from the API response10
to get beyond the restrictions.

But Alex was far from done. He pondered how to effectively
break the search radius into overlapping subcircles to pull
even more results. His journey took him into the depths of
geometry, playing with meters, longitude, latitude'>!3, and
circle overlaps'*. Every piece of the puzzle, from converting
meters to latitude and longitude differences!” to adjusting
the placements of subcircles'®, was a challenge in itself.
With some hand calculations and help from mathematical
discussions on Stack Exchange?*?!, Alex was able to finely
map out a 5X5 grid where the centroids of these subcircles
should be?*.

Having collected a robust set of data, Alex then shifted
his focus to visual representation?®. He began plotting restau-
rants by number of reviews and average review score in
visualizeData.py™. To give depth to his visualizations,
Alex delved into making the scatterplot interactive®?, allowing
viewers to see labels associated with each data point. This was
a storytelling tool, and it brought the data to life.

However, quality mattered to Alex. He sought only
the “good” restaurants. Filtering became a pivotal ac-
tion, as he adjusted parameters for ratings and reviews in
visualizeData.py® . Through statistical techniques like
calculating z-scores®! and zeroing in on the 90th percentile
outliers®2, Alex created a more refined experience for the end-
user. And to keep the data fresh and relevant, he made adjust-
ments in example.py like modifying the search radius®*%
and revisiting the Google Cloud Platform3+3.

The journey was filled with intricate tasks, from fixing
typographical errors in file names*® to deciphering the different
*types of places’ in Google Maps®’. But through the amalga-
mation of these detailed actions, Alex crafted a software tool

that would guide many food enthusiasts to the best spots in
St. Louis.

Footnotes:

1) search: what is my ip;

2) search: google maps change ip address api access;

3) revisit: Google Cloud Platform;

4) search: why does google maps api only return a few

results;

5) example.py: Adjust loop counter using
tokenCount;

6) example.py: Checking to see what the response from
Maps API is;

7) example.py: Add delay between pages of results, so

page would not be empty;

8) example.py: Add longer delay and check response;

9) example.py: Checking the value of

next_page_token from Maps response;

search: use google maps api to get a total count of

restaurants in city;

11) search: meter to longitude and latitude conversion;

12) search: circles and angles overlap playground;

13) example.py: Defining a subcircle to be used to repre-
sent part of the larger radius more finely;

14) search: equal circles with 60 degree overlap;

15) search: read from file in javascript;

16) example.py: Convert meters to latitude and longitude
differences;

17) example.py: adjust latitude and longitude to be placed
north and east of starter circle, instead of south and west;

18) example.py: shift every other column of subcircles
horizontally to cover area more efficiently;

19) search: 30 60 90 triangle;

20) revisit: Algorithm - Circle Overlapping - Mathematics
Stack Exchange;

21) example.py: adjust distance between subcircles based
on hand calculations;

22) search: how many degrees in circle;

23) revisit: https://chat.openai.com/;

24) example.py: Loop through 5X5 grid and print where
centroids of subcircles should be;

25) revisit: Google Maps;

26) visualizeData.py: Plot found restaurants by

user_ratings_total and average rating;

search: numpy log;

visualizeData.py: attempt to make scatterplot in-

teractive, to see the label associated with each data point;

29) revisit: Google Maps;

30) visualizeData.py: filter
min_rating and min_reviews,
the datapoints with labels;

31) visualizeData.py: calculate z-score for rating and
num_reviews;

32) visualizeData.py: only display 90th percentile out-
liers for rating and num reviews;

33) example.py: adjust search radius and number of sub-

10)

27)
28)

restaurants by
and annotate

circles;
34) revisit: Google Cloud Platform;
35) example.py: adjust centerpoint of search radius;
36) revisit: Google Cloud Platform;
37) search: google maps types of places;
38) visualizeData.py: fixed typo in csv file name;

C. Post-Generation Edits

The research team manually edited GPT-4’s output to ensure
the protagonist of the story remained ungendered, to avoid
gender bias in the study participants. Additionally, when
specific actions were omitted from the story-view, the research
team manually added them into the story. For example, the
story-view only references 38 actions, whereas the input
included 40 actions. Afterwards, the research team converted
the story into a simple website to give programmers access
to the story. In doing so, the team removed the superscripts
and instead added links for sentences which referenced de-
veloper actions. While this represents a manual bottleneck for
the creation process, these edits are much quicker to make
than crafting a story from scratch. Further, experimenting
with GPT-40 highlighted its significantly improved ability of
incorporating all developer actions into the generated story.

D. Activity Segmentation Heuristic Creation

Testing segmentation requires a set of code histories that
was not readily available. In order to create these heuristics, we
first created a validation set of 6 programs. For each program,
we observed its creation in its entirety, and recorded when
the developer tested their code. At each test, we recorded the
program state through either a code recording software we
developed or from a process of OCR and manual edits to
capture the code from livestreamers’ videos. Upon observing
that developers commonly went through iterations of rapid
changing of a given section of code, and then testing between
each change, we decided to define a heuristic which groups
these localized changes together. Through several iterations
of defining heuristics, we were satisfied with the resulting
grouping for the six validation programs. The team underwent
a similar process in grouping web searches together; we found
that developers often made multiple, similar searches before
finding a web resource. Through several rounds of heuristic
testing, our process of grouping web searches together based
on common keywords appeared to appropriately address this
phenomenon.

1) Final Heuristic Segmentation Algorithm: The final
heuristic segmentation algorithm iterates through the set of
code states at each test, and analyzes the changes made
between states, appending consecutive code changes to the
same segment of activity if they were made in the same file
and any of the following conditions applied:

- One or more code lines are modified, but there are no
additions of new lines or deletions of lines

- Up to three lines are added or deleted from the code state

- No changes or only white space changes are made

If none of these conditions were met, or the code change
happened in a different file than the previous change, a new
cluster of code changes would begin. We noted that developers
often sketched out a new section of functionality with the
insertion of new lines of code and then modified and debugged
those lines. Thus, the limitation on the number of new lines
helps to capture the beginning of new functionality.

When grouping sequential web searches together, we relied
on a process of comparing sequential searches as bags of
words. If two consecutive searches had an overlap of key-
words, then we included the sequence of events into one
search cluster. We excluded traditional stop words as well as
common programming words like “javascript”, “python”, and
“documentation”. This simple approach quickly allowed us to
group semantically similar searches together.

E. Controlling for Covariates: Supplemental Interpretation

Additionally, Table I shows statistical comparisons for the
various metrics using both raw data, and residuals from a linear
regression controlling for the covariates. Average residuals of
each linear regression are equal and opposite between story
and list view groups. This is because we balanced our data
to have equal counts of task order and task type for each
history view condition. Since the line of best fit will always
have an average residual of O (all residuals cancel out), when
we look at the average residual for the two conditions, each
having the same count of covariate values, their averages are
equally far from zero in opposite magnitudes. Positive average
magnitudes in Table I indicate measurements that were higher
than the estimations given the covariates, and negative average
magnitudes indicates measurements lower than the regression
predictions.

