
Exploring the impacts of semi-automated

storytelling on programmers’ comprehension of

software histories

John Allen

Computer Science & Engineering

Washington University in St. Louis

St. Louis, USA

johnjallen@wustl.edu

Caitlin Kelleher

Computer Science & Engineering

Washington University in St. Louis

St. Louis, USA

ckelleher@wustl.edu

Abstract—Software developers have difficulty understanding
the rationale and intent behind original developers’ design
decisions. Code histories aim to provide richer contexts for
code changes over time, but can introduce a large amount of
information to the already cognitively demanding task of code
comprehension. Storytelling has shown benefits in communicat-
ing complex, time-dependent information, yet programmers are
reluctant to write stories for their code changes. We explored
the utility of narratives made by generative AI. We conducted
a within-subjects study comparing the performance of 16 pro-
grammers when recalling code history information from a list-
view format versus a comparable AI-generated narrative format.
Our study found that when using the story-view, participants
were 16% more successful at recalling code history information,
and had 30% less error when assessing the correctness of
their responses. We did not find any significant differences in
programmer’s perceived mental effort or their attitudes towards
reuse when using narrative code stories.

Index Terms—code histories, storytelling, software versioning

I. INTRODUCTION

Software development is inherently a story that often has

many twists and turns. While developers fix bugs and imple-

ment functional requirements in software, they often face a

sequence of dynamic challenges, and must solve a series of

problems along the way. Many challenges that arise during

development are unforeseen, and are tackled in an ad hoc

manner, leading developers to seek out web resources in

order to overcome these challenges [1]. These web resources

often influence developer’s design choices in the written code

[1], [2]. The challenges developers face, and the resources

developers use to overcome them are rarely recorded by cur-

rent software versioning systems. With traditional versioning

resources, developers often find it difficult to understand the

intent and rationale behind the way code is written [3], [4].

Research suggests that presenting rich historical context

about code artifacts may improve developers’ ability to un-

derstand the original developer’s intentions [5]. Much of

this research has focused on improving traditional list-view

representations of code edits over time, such as improving

NSF Grant No. 2128128

git commits [6]. However, historical information can also

impose additional mental demands on software developers [5].

Software development is already a cognitively demanding task

[7], and tools that add rich historical information must consider

the cognitive costs associated with that information [8].

Storytelling is a powerful tool in helping people understand

complex, time-dependent information with reduced cognitive

effort [9], [10]. Capturing the story behind development, and

presenting it as a narrative instead of a traditional list of edits

may be a powerful way to provide historical context for the

design of specific code artifacts. Some research has explored

asking developers to write stories for their code [11], [12], but

no work that we are aware of has investigated the usability of

code stories for future developers.

Additionally, these studies have found that programmers

do not want to invest more time in writing a story for their

code [12]. Recent developments in generative AI have opened

the door for automated story generation. In this paper, we

explored the potential utility of GPT-4 generated code history

stories, with minimal corrections made by the authors. To

generate stories, we compiled a dataset of code changes for

two software projects. We organized each set of historical

information into a hierarchical “list-view” of concise code

changes and web searches that loosely resembles a well-

maintained git repository in which each commit represents one

cohesive and small change. We then use GPT-4 to convert the

information from the list-view into a narrative “story-view”, in

which the information is written in a narrative paragraph. We

demonstrate examples of the two history formats in Figure 1.

We presented these story-view code change histories, as

well as their list-view counterparts to 16 programmers in a

user study to investigate the impacts of the narrative format.

We posed four distinct research questions:

• RQ1: Are participants better at recalling historical code

information after studying the list or story view?

• RQ2: Are participants more aware of their correctness

when recalling historical information after studying the

list or story view?



Fig. 1. The list-view history format (A) includes information in a hierarchical list format, with short descriptions for each action the developer takes within
a hierarchical subgoal. The story-view (B) composes the information from the list into a overarching narrative in natural language.

• RQ3: Do participants perceive code bases as more

reusable after studying the list or story view?

• RQ4: Do participants experience a higher cognitive de-

mand after studying and answering questions about the

list or story view?

Our results suggest that participants are better and more

confident at recalling historical information when studying the

story-view than the list-view, especially when recalling time-

dependent historical information. We found no significant dif-

ferences between programmers’ perceptions of the reusability

of the underlying code base or their perceptions of mental

effort. Although it is not statistically significant, we noted a

trend towards lower mental effort for participants when using

the story.

II. BACKGROUND

Our research builds on research in Program Comprehension

and Narrative Learning. Specifically, our paper provides in-

sight into how narrative learning can impact top-down program

comprehension.

A. Program Comprehension

Understanding an unfamiliar code base is usually a cog-

nitively overwhelming task [7], [13]. Programmers browse

information ineffectively [14], [1], and often struggle to parse

through and understand a code base [4].

Research has investigated the strategies programmers em-

ploy when attempting to understand unfamiliar code. Notably,

research groups program comprehension strategies into two

categories: “bottom-up” and “top-down” approaches. Bottom-

up program comprehension typically includes programmers

looking at low-level, implementation code, and figuring out

what the smallest pieces of code are doing, and then building

up from there in order to understand how they integrate

together to account for the behaviors of the software [15],

[16].

Top-down approaches involve programmers identifying

high-level functionalities, components, and architecture of the

software, and then exploring their implementations in order to

understand how they are composed [17], [18].

Most research in program comprehension suggests that

programmers apply both bottom-up and top-down approaches

when attempting to comprehend an unfamiliar code base [19],

[20]. Typically, programmers iterate through top-down and

bottom-up cycles of understanding a program, beginning with

a top-down understanding of the highest level components in

a piece of software, identifying parts that are relevant to them,

and then exploring their implementations using a bottom-up

approach [21].

1) Barriers in Program Comprehension: Research has pin-

pointed bottlenecks during program comprehension. Program-

mers struggle when attempting to answer questions about

unfamiliar code bases [22], [23]. Research has repeatedly

shown that the questions programmers find most difficult to

answer involve the intent and rationale behind the original

developer’s design decisions [4], [3], [24]. This information

is often not included in the software or documentation itself

[4], however, some work investigates how to incorporate this

historical information into the workflow of programmers (see

Section III-B2).

B. Narrative Learning

Since the dawn of human language, storytelling has been

used to communicate complex information between individ-

uals [9]. Stories have been used in teaching throughout all

of human history, and are deeply ingrained in both human

culture [25], [10] and cognition [10], [26]. Research suggests

that our brains have special mechanisms for processing and



remembering stories [26], suggesting that there is a benefit to

receiving information in a story format.

Research suggests that using storytelling to present content

may help people process and remember the new informa-

tion. One study showed that applying a narrative format to

information improved participants’ speed in reading through

it and ability to recall the information [27]. Other work showed

that people were over six times more likely to remember

information presented as part of a story rather than presented

in a list [28].

Research shows a positive impact of storytelling in various

contexts. Storytelling has been shown to increase students’

math performance by helping them link new ideas to concepts

they are already familiar with [29]. Erkut showed that children

who learned geometry through means of storytelling improved

more than those who learned the same content without sto-

rytelling [30]. Jung showed that storytelling-based curricula

can also improve students’ self efficacy and performance in

math [31]. The power of storytelling has also been built into

science curricula [32]. Research has shown that introducing

scientific concepts in stories can increase student motivation

and learning [33].

1) Storytelling in Programming: Storytelling has also been

used to motivate programming. Storytelling Alice showed

that using story-based examples to introduce programming to

young girls increased their motivation to program [34]. Other

work has introduced storytelling to help novice programmers

compose more complex programs [35].

Generally, research in narrative learning suggests that story-

telling improves learners’ attention [36], [37], motivation [38],

[34], [10], and memory recall of information [36], [39]. Our

work explores how storytelling can be applied to historical

software information in order to improve the understandability

of the code for future developers.

III. RELATED WORK

Our work is related to research in Code Histories and

Capturing Design Rationale, and is closely related to a small,

newer body of work in storytelling for code histories.

A. Code Histories

Research focuses on 1) the motivations for improving access

to historical software information and 2) exploring how new

code history tools help programmers.

1) Need for Improved Historical Information: Research

suggests that programmers’ main difficulties during program

comprehension are related to inadequate access to historical

information about software. Surveys and observational studies

have shown that developers often have a hard time answering

questions about the design decisions behind software artefacts

[3], [4]. Typically, the only resources developers have when

searching for historical development information about code

is in versioning control systems, and sometimes, the original

developer themselves [4], [40]. While developers prefer asking

the original developer questions directly about their rationale,

the original developer is often unavailable as a resource [4].

Currently, the standard for version history involves git-style

source control. Research suggests that version control commit

messages are not sufficient to answer developers’ questions

[41]. Often, developers incorporate multiple unrelated changes

into a single commit, resulting in “tangled commits” [41],

[42], [43], which make it difficult for future developers to

understand the reasoning for particular code changes [41],

[44]. Additionally, relevant historical information may not

appear in git commits, as they may be in uncommitted changes

[40].

2) Code History Tools: Some research has explored un-

tangling git-style commits [6]. Other work has investigated

entirely new history capture systems, recording every change

at the keystroke level [45], [5], [46]. This introduces a large

amount of extraneous information [5]. Some work investigates

allowing the programmers to group these fine-grained changes

at various levels of abstraction [5], and automatically removing

historical data that programmers deem irrelevant [13].

B. Capturing Design Rationale

Research in Capturing Design Rationale explores 1) the

rationale information needs of programmers and 2) tools that

help software developers and designers record their rationale

for design decisions. Some work explores how storytelling can

be used to present the rationale behind software elements.

1) Design Rationale: A growing body of work highlights

the importance of capturing the design rationale behind spe-

cific code changes [47], [48], [49]. This work emphasizes that

understanding the original developer’s rationale is a barrier

when working in unfamiliar code bases [48].

Lee emphasizes the need for design rationale capture to in-

clude practical justifications for design decisions [50]. Conklin

and Burgess argue that design rationale should be captured

with minimal impact to the regular design process [47].

It is possible to capture some information that may help

programmers reason about design rationale. As developers

implement solutions to problems, they often visit resources

online [1], [51], [52]. These resources include additional con-

text behind these developers’ intentions behind code additions,

and may be useful for future developers. However, most

design rationale or code history systems do not capture this

information, and evidence suggests it will be increasingly

difficult to track the origin of software artifacts retrospectively

[53].

2) Providing Additional Context to Programmers: Some

tools allow developers to attach additional information to their

code changes as they write code. Deep Intellisense links lines

of code to relevant external documentation such as bug reports,

emails, and source control check-ins [54]. HyperSource ties

the websites developers visit to subsequent code changes [55].

Crystalline passively collects and organizes web resources

developers visit as they write code in order to 1) improve

developer decision-making, and 2) track additional context

for decisions made [56]. Meta-manager allows developers to

attach information about provenance and rationale behind code



changes in the IDE [57]. However, none of these studies incor-

porate web information into a full code history, or investigate

other programmers’ comprehension or usage of the original

developer’s web foraging activity.

3) Storytelling for Code Histories: Very little work inves-

tigates incorporating information about the design rationale

behind historical software changes as a story. Two papers

closest to our work are:

Wuilmart [12] investigated asking developers to write stories

to describe the processes they follow while completing pro-

gramming tasks. This work demonstrated that developers have

difficulty crafting stories, and do not want to add additional

documentation duties to their workload.

Sodalite [11] supports developers authoring long-form sto-

ries behind their code changes by linking the text they create

to code elements in their IDE. Sodalite also helps by detecting

when these stories become out-of-date, and informs the author

of a need to update their story, as well as readers that a story

may be out of date. Sodalite helps readers identify documents

relevant to given parts of the code’s story.

Still, documenting software is tedious work that developers

avoid when possible [58], [59], [56], and developers are

unlikely to want to author stories for every code change they

make [12]. We are not aware of any work that has investigated

the usability of code stories during program comprehension or

the use of generative AI to author code stories.

IV. CREATING CODE HISTORIES

In order to explore the impacts of presenting software

history as a story to developers, we first created list-view

representations of code change histories for two code bases.

The list-view representations consisted of short descriptions

for code changes and information seeking activities. We then

created story-view representations for both code bases. We

provide snapshots of both formats in Figure 1. In this section,

we describe the process of capturing historical information, la-

belling development activities, and organizing these histories.

A. History Capture

We captured the history of actions two developers took

while each developed an independent project.

1) Code Bases: We selected disparate code bases to capture

a breadth of project domains. The Python Code Base uses

image processing and data manipulation libraries to generate

a photo mosaic of a target image assembled from a directory

of given images. This code was written by a member of the

research team as a personal project. The Web Code Base used a

traditional web development framework to create a tile-based

game. In contrast to the Python Code Base, the Web Code

Base was written by an online live code streamer, “Coder

Coder”, as a personal project [60]. The developers of each

code base developed their respective project in a natural way

that included unanticipated problems, allowing us to capture

authentic creation histories for both.

As each developer worked, we captured their code state

each time they tested their program. We determined instances

of testing differently for various code projects. For execution-

based softwares, we defined testing as executing the program,

whereas for web-development projects we defined testing as

interacting with localhost. We chose this approach because

we believe that testing the code indicates the programmer

believes they have made a meaningful change and will get

some important feedback from the output of the given code

state. We are aware of no other research which studies the

usability of testing-captured software histories. In addition to

code changes, we also record the web searches and website

visits the developer made as they developed their project. This

data provides additional context behind the code changes that

followed information searches.

B. History Data Processing

We then combined and labeled the set of code changes and

web activities for each project.

1) Activity Segmentation: We used different processes to

group sequences of code changes and web activities. We

grouped code edits into linear chunks based on the magnitude

of consecutive code changes made. We grouped web activities

into linear chunks based on the textual similarity of their titles.

The entire evolution of a software history base can be seen

as a long sequence of code changes. In order to segment

these changes into high-level “subgoals”, we explored vari-

ous heuristics that grouped consecutive changes together. We

experimented with different heuristics until we were satisfied

that we were grouping together meaningfully similar changes.

This process is described further in Appendix D.

The purpose of segmenting consecutive code changes and

web activity into groups was to offload the work of the original

developer of segmenting their own actions to only labeling

the segmented code changes. We acknowledge that there are

many other ways to group related code changes or web activity

together.

2) Labeling Developer Activity: The research team labeled

each code edit grouping using a high-level, one-line summary

of a sequence of code changes. In order to resemble standard

practices in historical code change descriptions, we designed

these labels to mimic the style of typical git commits. An

example from the Python task is: “main.py: Calculate Average

Pixel with Numpy average to compare runtime” (see Fig 1).

A member of the research team who had witnessed the entire

development process labeled each code edit group.

C. Creation of List-View

Traditional git commits are commonly presented as a se-

quence of short descriptors, as shown in Figure 2-A. Emulating

this style, we also presented historical information in a similar,

list-view fashion (see Figure 2-B). It is important to note,

however, that in addition to code changes, we also include the

developers’ web activity as they wrote code. We organized the

hand-labeled code change and web visit clusters and organized

them into a hierarchical goals.



Fig. 2. The list-view format (B) includes short, descriptive text to describe
code changes and actions a developer performed as they modified a software
base, and is comparable in style to a git commit history (A)

1) Hierarchical Activity Organization: We noticed that

consecutive clusters of code changes and web activity were

often related under a unifying subgoal of the developer. So,

we manually segmented sequences of actions into groups,

and labeled the overarching “goal”. For example, “Calculate

average pixel of image” in Fig 1, is a label for a goal-level

grouping of actions, which includes two search groupings

followed by two code edit groupings. The entire list-view

history of each code base consists of a sequence of such goal-

level groupings, which each had their own code edit and/or

web groupings.

D. Creation of Story-View

Evidence suggests that using storytelling to present sequen-

tial information may help people process and remember the

information [27]. To explore storytelling as an alternative to

traditional list-oriented presentations of software history, we

constructed narrative-formatted “story-view” descriptions for

each code base’s history.

Describing code changes in a narrative format would add

a nontrivial amount of work to a developer’s workload [12].

Further, programmers do not wish to spend extra time crafting

stories for code they write [12], [56]. So, we explored using

generative AI to create these stories based on the list-view

history for a given code base.

1) AI Code Story Generation: We prompted GPT-4 to

create a narrative story for each list-view history, and then

we made slight manual modifications to the resulting story

to ensure consistency with the list-view, and to keep the

descriptions of the original developer ungendered in order

to avoid gender bias in our study [61]. The changes we

made to the generated stories were minimal, and typically

involved editing sentences that omitted a detail from the

original list-view history. In general, the story for each code

history required very few edits, making this process much

less burdensome than writing a code story from scratch. More

details and examples of the prompting we utilized are included

in Appendix A.

To present these stories to programmers, we transformed

each story into a simple website. Details which were direct

references to programmer actions were highlighted in blue, as

shown in Fig 1-B. We chose this design to be consistent with

future work in which we may add actionable hyperlinks to the

code actions within a story.

V. METHODS

We performed a within-subjects study of 16 student pro-

grammers performing recall tasks using 1) a list-view history

and 2) a story-view history of two separate code bases.

A. Participants

We recruited sixteen participants pursuing degrees related

to computer science at a private university in the United

States. To ensure that participants had adequate computing

backgrounds to make progress on reuse through re-purposing

tasks, we recruited only students who had taken at least two

programming classes or who had at least three months of work

or internship experience programming.

Eight of our participants identified as female, seven as

male, and one preferred to not respond. Our participants had

substantial programming experience, reporting an average of

eight computing courses and more than seventeen months

of work experience. Twelve participants were enrolled in

undergraduate programs. One was pursuing a Master’s, and

the remaining three participants were pursuing their PhD.

Two undergraduate participants were not majoring in CS: one

pursuing a degree in Data Science, while the other majored

in Finance. All other participants’ primary degrees were in

Computer Science or Engineering.

B. Study Procedures

We designed a within-subjects study of 16 programmers

completing two tasks: one where they study and answer

questions about a list-view code history, and the other about

a story-view code history. In order to control for the different

tasks and ordering effects, we employed a Latin-squares study

design to assign participants their task order, as well as which

task they received the story-view for and which one they

received the list-view. Our sample size of 16 perfectly balances

the frequencies of all conditions.

We gave participants an introductory task where they had

five minutes to study the list-view code history of a sample

code base, and then five minutes to study the story-view of

the same code base, then given a practice exam that asked the

same types of questions that would be on the official user test.

After the introduction, participants received their first task,

where they had up to 15 minutes to study either the list-view

or story-view of a new code base. After the participant was

content with their studying, or the 15 minutes ran out, they

took a quiz on the history behind the code base. After this,

they began their second task, where they again had up to 15



Fig. 3. Set of sample questions of the various types: 1) code interpretation, 2) factual, 3) historical, and 4) attitudes towards reuse.

minutes to study the second code base’s history using the view

which they did not have during the first task, and then took a

quiz over its content. We did not include delays or distraction

tasks between the studying and quiz phases because during

actual development, there is nothing preventing a programmer

from working with the code directly after looking through

its history. Finally, we interviewed participants about their

experience with both history view types.

It is important to note that participants in our study only

had access to code histories, not the code bases themselves.

We did this to ensure that participants focused on studying

the historical information, preventing them from defaulting to

program comprehension habits such as studying code which

would be identical regardless of the historical information

format attached to it. This allows us to more cleanly compare

the participants’ performance with each view type. We discuss

this decision further in Section VII-B2.

C. Questionnaires

We created a questionnaire for each of the two code

bases that was independent of view type. Each questionnaire

included questions regarding 1) factual information about the

code base, 2) historical information about the code base,

3) code snippet interpretations, 4) attitudes towards reuse,

and 5) mental effort. We show samples of each question

type in Figure 3. For multiple-choice questions about factual

information, historical information, or code interpretation, the

questionnaire also asks participants to rate their confidence on

a 5-point Likert scale from “Strongly Uncertain” to “Strongly

Confident”.

1) Factual Questions: Factual questions were designed to

measure participants’ ability to recall specific facts about

each code base, including its features and implementation.

Figure 3-2 shows an example of a factual question. This is

a factual question because it asks about a specific, isolated

detail regarding what was implemented in the code, and did

not have other development factors impacting it.

2) Historical Questions: We used historical questions to

measure participant’s ability to recall time-dependent facts

about the evolution of each code base. These questions asked

about the relationship between multiple events during the

development process, such as an error in response to an imple-

mentation choice, or a data structure selection in response to a

particular result or error. Research shows that developers have

difficulty in answering questions about the intentions about

design decisions [4], so these questions were aimed at teasing

out why design decisions were made, or how the code changed

over time, especially in response to unexpected obstacles. An

example of a historical question is shown in Figure 3-3. This

is a historical question because it asks about the resultant error

from an initial design choice, so it is part of a longer process.
3) Code Interpretation Questions: Previous work has

shown that programmers have difficulty in tying high-level

functionalities to their concrete implementations during soft-

ware reuse [8], [62]. So, we also asked participants to find

implementations of high-level functionalities mentioned in the

history. Participants picked out which snippet they believed

was responsible for a given behavior. An example of a code

interpretation question is shown in Figure 3-1.

These questions were designed not to be self-evident; it

was not easy for participants to reason through the snippets

in order to select the correct answer. Instead, they had to

utilize historical information in order to successfully reason

about what the correct code snippet does. For example, in

the code snippet in Figure 3-1, the correct answer is C. The

other snippet options are incorrect: A. filters results, B. iterates

through 20 results from a response, and D. defines a Google

Map instance. Participants are only able to figure out the

correct answer if they remember that the developer introduced

a delay to successfully load all API search results.
4) Attitudes towards reuse: In order to explore how the

history format impacts the perceived accessibility of code

bases, we asked participants questions about their attitudes

towards reusing each code base after studying the history only.

These questions were in Likert format, where lower values



TABLE I
PARTICIPANT RAW AND ADJUSTED ACCURACY (HISTORICAL AND FACTUAL), CONFIDENCE ERROR, MENTAL EFFORT, AND ATTITUDES TOWARDS REUSE

Raw Residuals of OLS Controlling for Task Type, Order

metric
List

mean (std)

Story

mean (std)

Wilcoxon

stat

Wilcoxon

p

List

mean (std)

Story

mean (std)

Wilcoxon

stat

Wilcoxon

p

Confidence Error 1.506 (0.386) 1.052 (0.373) 14 0.0034 0.227 (0.352) -0.227 (0.370) 11 0.0017

Mental Effort 3.537 (0.862) 3.137 (0.695) 27 0.1093 0.200 (0.821) -0.200 (0.666) 36.5 0.1046

Accuracy 0.669 (0.110) 0.778 (0.110) 18 0.0076 -0.055 (0.108) 0.055 (0.110) 21 0.0131

Factual Accuracy 0.759 (0.144) 0.798 (0.163) 59 0.6685 -0.020 (0.084) 0.020 (0.120) 47.5 0.3225

History Accuracy 0.637 (0.262) 0.851(0.152) 30 0.0507 -0.107 (0.161) 0.107 (0.161) 5 0.0003

Attitudes Avg 3.618 (0.889) 3.625 (0.736) 58.5 0.932 -0.003 (0.878) 0.003 (0.729) 64.5 0.8999

are linked to more positive attitudes towards reuse. Figure

3-4 shows an example of this type of question. Participants

answered these questions before the code snippet questions,

so that they did not see any actual code before answering this

question, ensuring that their perceived difficulty of reuse was

based strictly on the history view they studied.

5) Mental Effort: Finally, at the end of each quiz, par-

ticipants completed the NASA-TLX Mental Effort survey to

estimate their cognitive load throughout the task.

D. Analysis

In order to prepare our data for statistical analysis, we define

a meaningful metric for evaluating participant confidence and

describe our process to control for covariate variables.

1) Confidence evaluation: Confidence is not always a good

thing. For instance, being confident about an incorrect answer

can lead to invalid assumptions about a code base, which can

ultimately lead to ‘insurmountable barriers’ during code reuse

[63].

To explore the degree to which participants were appropri-

ately confident, we defined a metric to favor high reported

confidence scores when the participant is correct, and low

confidence scores when the participant is incorrect. This

essentially measures confidence error by combining Do pro-

grammers know the answer? and Do programmers know if

they know the answer?.

We calculate the confidence error C based on whether or

not each question was answered correctly or not, as shown in

the equation below:

Econfidence =

{

5− Ccorrect if answer is correct

Cincorrect − 1 if answer is incorrect

Research in retrospective metacognition has leveraged simi-

lar confidence error metrics [64], [65], [66], and other research

suggests that self-regulated learning can be improved with

higher retrospective metacognition [65], [67]. For each partici-

pant, we calculate this confidence error for every question. We

include this metric to better capture how aware programmers

are of their understanding of a code base, as this is likely to

lead them to more efficiently invest their time during program

comprehension.

2) Controlling for covariate variables: We note that the

task type and task order may have had an effect on each of

our dependent variables. In order to control for the covariate

effects of task order and task type, we fit an Ordinary Least

Squares model to each dependent variable using these two

covariates, and compared the residuals of the model across

list-view and story-view conditions using the same statistical

methods as for the raw data. A guide to interpreting these

values is included in Appendix E. In addition, we present strat-

ified data visualizations to demonstrate the covariate effects.

3) Statistical Testing: For each participant, we calculated

accuracy (%) across factual, historical, snippet interpretation

questions, as well as accuracy across the entire set of questions

for a given code base. We also calculate average confidence

error for each participant, as well as average scores for

attitudes towards reuse questions and mental effort. We then

compare the set of the 16 participants’ accuracy, confidence,

attitude, and mental effort scores for their list-view test to their

story-view test using the Wilcoxon signed-rank test. We do this

for both the raw data and for the covariate-adjusted residuals.

We use the Wilcoxon signed-rank test to evaluate significant

differences because we are comparing repeated measures

across conditions of a moderately small sample size (16),

and the majority of our measured distributions do not fit the

assumption of normality required by other statistical tests, such

as MANOVA. We report values for effect size as well as p-

values for each metric. We note that since we compare accu-

racy in three groupings (all, factual, historical), we interpret

the p-values with respect to the Bonferonni correction.

VI. RESULTS

We find that participants are 16% more accurate and have

30% less confidence error recalling historical information

when studying the story-view compared to the list-view, espe-

cially when recalling time-dependent historical questions, and

that there are no significant differences between participants’

time studying or recalling historical information, perception of

reusability of underlying code base, or mental effort between

participants when using the story-view and the list-view (see

Table I).

We begin this section by describing the effects of confound-

ing variables, and then present our results in further depth

within the context of our research questions.

A. Confounding Variables

We note that two covariate factors: task-type and task-order

had an impact on metrics for individual user tasks. Figure 4

shows distributions for overall question accuracy, confidence



Fig. 4. Box plots of A) accuracy, B) confidence error, and C) mental
effort stratified across the independent variables: view-types, tasks, and task
order. Adjacent pairs of distributions represent within-subjects comparisons,
however, between-subjects comparisons are also visualized. Full discussion
of the confounding variables is in Section VI-A.

error, and average reported mental effort across 1) history

format type, 2) task type, and task order. For each metric, this

figure also visualizes the interaction of history format type

with both task type and task order.

The graph displays data in pairs of boxplots, each rep-

resenting contrasting within-subject distributions. This repre-

sentation also allows for between-subject comparisons. For

example, the fifth and sixth boxplots for any metric represent

the eight users who used the list-view for the web-dev task

and the story-view for the Python task. Conversely, boxplots

seven and eight represent the remaining eight users who

were given the list-view for the Python task and story-view

for the web-dev task. A between-subject comparison, such

as comparing column five (list-view, web-dev) with column

eight (story-view, web-dev), illustrates the differences in user

metrics between the two view formats for a specific task.

Figure 4 shows that participants are more accurate, have

less confidence error, and experience lower mental effort

when studying the story-view (orange) than when studying

the list-view (blue) throughout stratification of task types and

task orders. For example, Fig 4-A shows that participants

consistently had higher response accuracy when using the

story-view.

We note that in the python task, there is more variance in

participants’ accuracy (Fig 4-A), and higher reported mental

effort (Fig 4-C). We also note a tightening effect between

task 1 and task 2; across all metrics shown in Figure 4, the

distribution of measurements tightens during task 2. This is

likely due to participants acclimating to the task conditions

and involving less overhead mental processing costs of getting

acquainted to the task structure.

B. Information Recall

Here we address RQ1: Are participants better at recalling

historical code information when studying the story view?

In general, participants had a higher accuracy on questions

after studying the story-view code history. We note that task-

type and task-order may have impacted participants’ accuracy

averages distributions. In Figure 4, we visualize the distribu-

tions of participant accuracy averages across all tasks, as well

as the various interactions between view-type and task-type or

type-order.

Regardless of task-type and task-order, 12 (75%) partici-

pants scored a higher accuracy when using the story-view,

while the remaining 4 (25%) scored lower accuracy. For

factual questions, 9 (56%) participants’ accuracy increased

when using the story compared to their list-view task, and 7

(44%) decreased. Finally, for historical questions, 11 (69%)

participants’ accuracy increased when using the story-view

compared to their list-view task, while the remaining 5 (31%)

performed slightly worse when using the story-view.

When comparing multiple-choice question accuracy over

all questions, participants performed significantly better (p <

0.016) in the story-view condition than in the list-view

condition. After studying the list-view of a code’s history,

participants averaged 67% accuracy on the multiple choice

questions. After studying the story-view, participants answered

correctly 78% of the time.

When answering factual questions, participants in list-view

and story-view conditions performed similarly, at 76% and

80%, respectively. In contrast, participants performed better

at answering historical questions during the story-view (85%

accuracy) than after studying the list-view (64% accuracy).

The difference in historical accuracy between list-view and

story-view was significant when controlling for task type and

task order (p < 0.016). We observed no significant difference

between conditions for code interpretation questions. Resulting

average raw scores, adjusted scores, and significance tests for

each question type are shown in Table I.

Participants’ sentiments aligned with our finding that they

performed better at remembering time-dependent information

when using the story-view. When asked to comment about

their experience during the user test, User 10 reflected, “In

terms of order in which [the developer] made the [web code

base], in [the story-view], the order in which they did things

was really clear to me, while in the [list-view] one, it was a



little bit harder to remember like, the order in which things

were implemented.”

When describing why they had a harder time remembering

data structures referenced in the list-view history, User 6

echoed a similar sentiment when they argued that the structure

of the story helped them remember why a particular data

structure was implemented, typically in response to a prior

design decision not working out. They continued, “but [the list-

view] is like ‘search this’, ‘implemented that’, ‘search this’,

‘implemented that’, so it was also harder to remember the

order in which things happened because there wasn’t that story

behind it.”

C. Confidence in Quiz Responses

Next we address RQ2: Are participants more aware of

their correctness when recalling historical information when

studying the list or story view?

Participants demonstrated more certainty in their responses

when using the story-view than when using the list-view,

having a significantly lower (p < 0.01) confidence error in the

story condition, indicating that story-view users generally had

higher confidence when correct, and lower confidence when

incorrect. Participant confidence error averages are shown in

Table I, and their distributions are visualized in Figure 4.

User 15 described a level of uncertainty they experienced

when recalling information from the list-view history. They

recounted: “When I’m thinking about [the list-view], I’m just

recalling the facts, rather than thinking through the story I

read. I also feel less confident because I’m just thinking about

the facts, and sometimes I feel less confident because I just

think about the fact and I’m like ‘okay do I remember it back

well, or not?’”.

D. Attitudes towards reuse

Thirdly, we report on RQ3: Do participants perceive code

bases as more reusable when studying the list or story view?

We found no significant differences in attitudes towards

reuse between the view types. Average scores and statistical

tests are reported in Table I. Note that in this scale, lower

scores represent more positive attitudes. In general, partici-

pants noted that both formats provided valuable information

about the history of the code, but were unlikely to feel com-

fortable about reusing the code without seeing the code bases

themselves. User 8 summed up this experience concisely: “It

doesn’t matter the format, I don’t feel confident modifying

[the code] because I haven’t done it before.”

Participants mentioned that if they were required to reuse

either code base, many would want access to both formats,

finding benefits to each one: the list-view for quick, concise

reference to specific details as-needed, and the story-view to

give an overall sense of what is in the code, and to bring out the

intentions of the original developer. User 15 summed up this

paradigm, “I feel like if I was going to modify the code bases,

I want to look at both. I want the story to understand what

the developer wants done, and how they intended to structure

things, but I want the log so that I can do in-depth technical

analysis for actually making a change”. User 15 continues,

“In terms of actually understanding the code, I don’t feel

anywhere near as confident [with the list-view] compared to

the [story-view] style. Because like with [the list-view], I see,

okay, they made these changes, a little bit of why they made

the changes, but it’s mostly ‘here’s all the changes they made.

Here’s the things the code’s doing.’ But, I don’t necessarily

see as much intrinsic motivation for why they’re doing one

change or another, versus like, with the story, I can see that.”

User 11 also highlighted the strengths of each format: “the

[story-view] is definitely easier to follow, and it’s easier to

like, retain information. I think you really ‘get’ behind what

the thought process was and like, how someone develops code.

The [list-view] one, it’s more concise but it’s harder to get in

a person’s head”. When asked why they might want to get

in the original programmers’ head, User 11 responded “If the

code works? Maybe not, but definitely debugging will help a

lot. Like, ‘Why do you have this? Oh, you were trying to go

down this path? Okay, like this makes more sense’. Or maybe

you’re trying to modify code and be like, ‘Why is this here?’

It’s like: ‘Oh, this was just to make it faster. Okay. Well that

doesn’t matter to me, I can adjust this’”.

E. Mental Effort

Finally, we address RQ4: Do participants experience a

higher cognitive demand when studying the list or story view?

Participants reported slightly lower mental effort when using

the story-view, however, this trend was not statistically signif-

icant (p = 0.11). Mental effort averages for each condition are

listed in Table I and box plots are shown in Fig 4. 11/16 (69%)

of participants reported lower mental effort when using the

story-view, 3 (19%) reported higher effort, and the remaining

2 (13%) reported no difference. User 2 described the story to

be a more natural means of collecting information: “Like, [the

story-view] just reads in my mind faster than just seeing the

coding steps, but that might also be because I’m just more

familiar with regular English words than coding languages”.

Overall, participants benefited from the familiarity of the

list-view format, and the relatability of the story-view. User 8

described this perfectly when describing how the list-view was

more similar to tools they were already familiar with. They

described the list-view as, “slick-quick access to information,

more organized, and easier to parse.” They continued, “It’s

definitely more standard, I mean everything is just more stan-

dardized, more like an encyclopedia or something”. Although

User 8 enjoyed the consistency of the list-view, they indicated

higher engagement with the story-view, reflecting, “Yeah, I

feel the story one was nice. It was nice to read. It was fun

to read. And then like that compared to the [list-view] when

it was like just the the boring, bunch of abstract stuff I don’t

understand, I just felt very apathetic in a way”.

User 15 had a similar description of the two formats, stating

“I’m not having to parse a list, analogy wise, it’s like if I were

reading a textbook vs. reading a fiction book. Reading the

list feels like reading a dense textbook or git commit history,

reading the story is like I’m reading someone’s description



of how they’re doing this. it feels like less effort even if it’s

containing similar information”.

Finally, User 14 hinted that the story reduced the effort

needed to apply their imagination in order to empathize with

the original developer, when reading the story-view: “I don’t

need to add so much imagination to see what is going on with

[the developer] for when they were programming the code.”

Summed up, our findings are suggestive that storytelling

may help programmers apply less cognitive effort to relate

with the original developer, but more work with a larger

subject pool is necessary to provide more evidence.

VII. DISCUSSION AND FUTURE WORK

Here we discuss the implications of our results, and how

further work could investigate the impact of storytelling within

a broader range of developer workflows.

A. Improved Understanding of Code History

Our results suggest that storytelling may help programmers

clarify the relationships between historical development events

by highlighting the interactivity of the distinct information

searches, web visits, and code changes. This may help pro-

grammers work with unfamiliar code. On one end, improved

confidence in program comprehension may empower program-

mers to modify code [68], a critical step in making sense

of unfamiliar code [52]. On the other hand, having reserva-

tions about assumptions that are actually incorrect may help

programmers avoid being stuck by “insurmountable barriers”

[63] when working in a new code base. Some work suggests

that code histories should be integrated directly into IDEs to

support programmers in their natural workflow [11], [56], [8].

Future work should consequently investigate including stories

within the IDE themselves to explore their utility to developers

in their natural workflow.

1) Supplementing Current History Formats: Participants

valued the story-view for connecting how distinct developers

actions are related through time, and the list-view for being

succinct and similar to existing tools, like Git. Our results

suggest that stories are not a replacement for traditional list-

view style code change histories, but could supplement them to

help programmers relate to the original developer. Future work

should also explore the story format across different problem-

solving styles [69].

2) Expanding to other code history scopes: In this study,

we focused on code stories for smaller, personal projects

for three reasons, 1) the agency developers have to make

decisions, 2) the emphasis on the direct transfer of knowledge

from one developer to another, and 3) the feasibility of

capturing a project of this scope. However, developers working

or onboarding onto larger projects could also benefit from

storytelling. Future work should investigate storytelling as it

scales to larger, distributed projects, or as it is applied to

other levels of historical granularity, such as summarizing

git commits, pull requests, and production version updates.

Finally, while we used web history and labeled code changes

to create histories, future work should include incorporating

other historical development information into the story, such as

functional requirements changes, formalized testing episodes,

versioning conflicts, and think-aloud data [70].

B. Limitations

1) Measuring Memory Retention: A threat to construct

validity in our study is that we measure and report data about

participants’ factual memory retention of a code history. In

practice, developing an understanding of how a piece of code

was written has a complex relationship with making mean-

ingful edits. Further, including a delay or distractor task may

be more appropriate in assessing programmers’ recollection of

facts, and should be investigated in future work. Additionally,

future studies should investigate storytelling code histories

through a sensemaking lens.
2) Programmers did not have access to code bases: A

threat to external validity is that participants in our study only

had access to code histories, not the code bases themselves.

We chose to focus on the summary views to ensure that

participants were reasoning from these views alone. Further

work should include the code bases as well in order to explore

how programmers can leverage insights from the story and list

views when modifying programs.
3) Activity Labeling: While we mimicked git-style commit

messages to label activities, a breadth of potential labeling

styles could be applied to developer actions. As with git

commit messages, these descriptions are subjective to their

author, which may impact external validity. Future work

should investigate a more diverse set of labeling styles, and

also investigate using generative AI to author and organize

code change labels.

Finally, it is important to note that storytelling can vary

across people, cultures, and media. Our work is only a small

step in discovering the effects of storytelling on programmer’s

understanding of software histories. Further work should in-

vestigate the impact of a diverse set of media and narrative

structures on programmer understanding of code history.

VIII. CONCLUSION

Programmers performed 16% better on memory recall tasks

when given access to story-formatted information, and 34%

better on questions which involved the time-dependent rela-

tionships with other pieces of information. Story users were

30% more accurate in assessing their correctness during the

story condition than in the non-story task. Participants valued

both formats for different reasons. Programmers valued the

list-view for offering concise descriptions and that it is similar

to code history formats they were already familiar with, like

Git. Programmers valued the story format for piecing together

seemingly unrelated code changes into a larger narrative, its

ease of reading, and for fostering empathy for the original

developer. These findings indicate that code stories should

complement, but not replace other versioning systems. Pro-

grammers experienced slightly less mental effort when using

the story-view but this was not statistically significant. Finally,

future work should investigate code history stories in actual

programming contexts.



REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software

engineering, vol. 32, no. 12, pp. 971–987, 2006.

[2] C. Kelleher and M. Ichinco, “Towards a model of api learning,” in 2019

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, 2019, pp. 163–168.

[3] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and usability of programming languages and tools, 2010,
pp. 1–6.

[4] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in 29th International Conference on

Software Engineering (ICSE’07). IEEE, 2007, pp. 344–353.

[5] Y. Yoon and B. A. Myers, “Semantic zooming of code change history,”
in 2015 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC). IEEE, 2015, pp. 95–99.

[6] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untan-
gling fine-grained code changes,” in 2015 IEEE 22nd International Con-

ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 341–350.

[7] I. Crk and T. Kluthe, “Assessing the contribution of the individual alpha
frequency (iaf) in an eeg-based study of program comprehension,” in
2016 38th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). IEEE, 2016, pp. 4601–4604.

[8] J. Allen and C. Kelleher, “Exploring analogical reasoning and history
use in software re-purposing,” in 2023 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC). IEEE, 2023,
pp. 242–244.

[9] E. Greene, Storytelling: art and technique: art and technique. ABC-
CLIO, 1996.

[10] R. Landrum, K. Brakke, and M. McCarthy, “The pedagogical power of
storytelling. scholarship of teaching and learning in psychology, 5 (3),
247–253,” 2019.

[11] A. Horvath, A. Macvean, and B. A. Myers, “Support for long-form
documentation authoring and maintenance,” in 2023 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
2023, pp. 109–114.

[12] P. Wuilmart, E. Söderberg, and M. Höst, “Programmer stories, stories
for programmers: Exploring storytelling in software development,” in
Companion Proceedings of the 7th International Conference on the Art,

Science, and Engineering of Programming, 2023, pp. 68–75.

[13] K. Maruyama, T. Omori, and S. Hayashi, “Slicing fine-grained code
change history,” IEICE TRANSACTIONS on Information and Systems,
vol. 99, no. 3, pp. 671–687, 2016.

[14] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2017.

[15] N. Pennington, “Comprehension strategies in programming,” in Empir-

ical Studies of Programmers: Second Workshop, 1987, 1987, pp. 100–
113.

[16] J.-M. Burkhardt, F. Détienne, and S. Wiedenbeck, “Object-oriented
program comprehension: Effect of expertise, task and phase,” Empirical

Software Engineering, vol. 7, pp. 115–156, 2002.

[17] R. Brooks, “Towards a theory of the comprehension of computer
programs,” International journal of man-machine studies, vol. 18, no. 6,
pp. 543–554, 1983.

[18] E. Soloway and K. Ehrlich, “Empirical studies of programming knowl-
edge,” IEEE Transactions on software engineering, no. 5, pp. 595–609,
1984.

[19] S. Letovsky, “Cognitive processes in program comprehension,” Journal

of Systems and software, vol. 7, no. 4, pp. 325–339, 1987.

[20] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” Journal of Systems and Software, vol. 7,
no. 4, pp. 341–355, 1987.

[21] C. L. Corritore and S. Wiedenbeck, “An exploratory study of program
comprehension strategies of procedural and object-oriented program-
mers,” International Journal of Human-Computer Studies, vol. 54, no. 1,
pp. 1–23, 2001.

[22] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of the 14th ACM SIG-

SOFT international symposium on Foundations of software engineering,
2006, pp. 23–34.

[23] K. Erdos and H. M. Sneed, “Partial comprehension of complex pro-
grams (enough to perform maintenance),” in Proceedings. 6th Inter-

national Workshop on Program Comprehension. IWPC’98 (Cat. No.

98TB100242). IEEE, 1998, pp. 98–105.

[24] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international

conference on Software engineering, 2006, pp. 492–501.

[25] I. F. Goodson, G. Biesta, M. Tedder, and N. Adair, Narrative learning.
Routledge, 2010.

[26] P. B. Armstrong, Stories and the brain: The neuroscience of narrative.
JHU Press, 2020.

[27] A. C. Graesser, N. L. Hoffman, and L. F. Clark, “Structural components
of reading time,” Journal of Verbal Learning and Verbal Behavior,
vol. 19, no. 2, pp. 135–151, 1980.

[28] G. H. Bower and M. C. Clark, “Narrative stories as mediators for serial
learning,” Psychonomic science, vol. 14, no. 4, pp. 181–182, 1969.

[29] B. Casey, J. E. Kersh, and J. M. Young, “Storytelling sagas: An effective
medium for teaching early childhood mathematics,” Early Childhood

Research Quarterly, vol. 19, no. 1, pp. 167–172, 2004.

[30] S. Erkut, “Multicultural adventure stories as medium for teaching math
in the early elementary grades: An evaluation,” in Wellesley Centers for

Women Board of Overseers meeting. Wellesley, MA, 2003.

[31] D. B. Jung and J. E. Kim, “A study on the effects of storytelling-linked
integrated math programs on young children’s mathematical disposition
and self-efficacy,” Korean Journal of Childcare and Education, vol. 11,
no. 2, pp. 151–175, 2015.

[32] S. Rowcliffe, “Storytelling in science,” School science review, vol. 86,
no. 314, p. 121, 2004.

[33] C.-M. Hung, G.-J. Hwang, and I. Huang, “A project-based digital story-
telling approach for improving students’ learning motivation, problem-
solving competence and learning achievement,” Journal of Educational

Technology & Society, vol. 15, no. 4, pp. 368–379, 2012.

[34] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling alice motivates
middle school girls to learn computer programming,” in Proceedings of

the SIGCHI conference on Human factors in computing systems, 2007,
pp. 1455–1464.

[35] Q. Burke and Y. B. Kafai, “Programming & storytelling: opportunities
for learning about coding & composition,” in Proceedings of the 9th

international conference on interaction design and children, 2010, pp.
348–351.

[36] S. M. Kromka and A. K. Goodboy, “Classroom storytelling: Using
instructor narratives to increase student recall, affect, and attention,”
Communication Education, vol. 68, no. 1, pp. 20–43, 2019.

[37] S. Bolkan, “Storytelling in the classroom: Facilitating cognitive interest
by promoting attention, structure, and meaningfulness,” Communication

Reports, vol. 34, no. 1, pp. 1–13, 2021.

[38] C. R. Lucarevschi, “The role of storytelling on language learning: A
literature review,” Working Papers of the Linguistics Circle, vol. 26,
no. 1, pp. 24–44, 2016.

[39] I. McGregor and J. G. Holmes, “How storytelling shapes memory and
impressions of relationship events over time.” Journal of personality and

social psychology, vol. 76, no. 3, p. 403, 1999.

[40] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,” in 2015

IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2015, pp. 1–10.

[41] K. Herzig and A. Zeller, “The impact of tangled code changes,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 121–130.

[42] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on

Software Engineering, 2011, pp. 351–360.

[43] S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. A. Ghaleb,
K. K. Chahal, T. Bossenmaier, B. Nagaria, P. Makedonski, M. N.
Ahmadabadi et al., “A fine-grained data set and analysis of tangling
in bug fixing commits,” Empirical Software Engineering, vol. 27, no. 6,
p. 125, 2022.

[44] A. E. Hassan, “The road ahead for mining software repositories,” in
2008 frontiers of software maintenance. IEEE, 2008, pp. 48–57.

[45] J. Park, Y. H. Park, S. Kim, and A. Oh, “Eliph: Effective visualization
of code history for peer assessment in programming education,” in



Proceedings of the 2017 ACM Conference on Computer Supported

Cooperative Work and Social Computing, 2017, pp. 458–467.

[46] Y. Yoon and B. A. Myers, “Supporting selective undo in a code editor,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 1. IEEE, 2015, pp. 223–233.

[47] E. J. Conklin and K. B. Yakemovic, “A process-oriented approach to
design rationale,” Human–Computer Interaction, vol. 6, no. 3-4, pp.
357–391, 1991.

[48] S. Mehrpour and T. D. Latoza, “A survey of tool support for working
with design decisions in code,” ACM Computing Surveys, vol. 56, no. 2,
pp. 1–37, 2023.

[49] K. A. Alsafwan, “Toward better understanding and documentation of
rationale for code changes,” 2023.

[50] J. Lee, “Design rationale systems: understanding the issues,” IEEE

expert, vol. 12, no. 3, pp. 78–85, 1997.

[51] D. M. Arya, J. L. Guo, and M. P. Robillard, “How programmers find
online learning resources,” Empirical Software Engineering, vol. 28,
no. 2, p. 23, 2023.

[52] C. Kelleher and M. Brachman, “A sensemaking analysis of api learning
using react,” Journal of Computer Languages, vol. 74, p. 101189, 2023.

[53] G. Rousseau, R. Di Cosmo, and S. Zacchiroli, “Software provenance
tracking at the scale of public source code,” Empirical Software Engi-

neering, vol. 25, pp. 2930–2959, 2020.

[54] R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating evap-
orated information,” in Proceedings of the 2008 international working

conference on Mining software repositories, 2008, pp. 23–26.

[55] B. Hartmann, M. Dhillon, and M. K. Chan, “Hypersource: bridging the
gap between source and code-related web sites,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, 2011,
pp. 2207–2210.

[56] M. X. Liu, A. Kittur, and B. A. Myers, “Crystalline: Lowering the
cost for developers to collect and organize information for decision
making,” in Proceedings of the 2022 CHI Conference on Human Factors

in Computing Systems, 2022, pp. 1–16.

[57] A. Horvath, A. Macvean, and B. A. Myers, “Meta-manager: A tool for
collecting and exploring meta information about code,” 2024.

[58] D. Fontanet Losquiño and T. Urdell, “Why do developers struggle with
documentation while excelling at programming,” B.S. thesis, Universitat
Politècnica de Catalunya, 2014.

[59] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international

conference on Software engineering, 2006, pp. 492–501.

[60] C. Coder. (2022, Feb) Live coding a wordle clone
(5 hrs) — html sass js. YouTube. [Online]. Available:
https://www.youtube.com/watch?v=PNGgQzw6PQg

[61] R. L. Roper, “Does gender bias still affect women in science?” Micro-

biology and Molecular Biology Reviews, vol. 83, no. 3, pp. e00 018–19,
2019.

[62] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, pp. 131–183, 1992.

[63] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in 2004 IEEE Symposium on Visual Languages-

Human Centric Computing. IEEE, 2004, pp. 199–206.

[64] M. Siedlecka, B. Paulewicz, and M. Wierzchoń, “But i was so sure!
metacognitive judgments are less accurate given prospectively than
retrospectively,” Frontiers in psychology, vol. 7, p. 171892, 2016.

[65] Z. Ç. Özcan, “The relationship between mathematical problem-solving
skills and self-regulated learning through homework behaviours, mo-
tivation, and metacognition,” International Journal of Mathematical

Education in Science and Technology, vol. 47, no. 3, pp. 408–420, 2016.

[66] J. Kruger and D. Dunning, “Unskilled and unaware of it: how diffi-
culties in recognizing one’s own incompetence lead to inflated self-
assessments.” Journal of personality and social psychology, vol. 77,
no. 6, p. 1121, 1999.

[67] A. M. Robey, M. R. Dougherty, and D. R. Buttaccio, “Making retro-
spective confidence judgments improves learners’ ability to decide what
not to study,” Psychological Science, vol. 28, no. 11, pp. 1683–1693,
2017.

[68] J. Eliasson, L. K. Westin, and M. Nordstrom, “Investigating students’
confidence in programming and problem solving,” in Proceedings.

Frontiers in Education. 36th Annual Conference. IEEE, 2006, pp.
22–27.

[69] M. Guizani, I. Steinmacher, J. Emard, A. Fallatah, M. Burnett, and
A. Sarma, “How to debug inclusivity bugs? an empirical investigation
of finding-to-fixing with information architecture,” 2020.

[70] R. Krosnick, F. Anderson, J. Matejka, S. Oney, W. S. Lasecki, T. Gross-
man, and G. Fitzmaurice, “Think-aloud computing: Supporting rich
and low-effort knowledge capture,” in Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems, 2021, pp. 1–13.

APPENDIX

A. GPT-4 Prompting and Output Examples

The research team used GPT-4 through ChatGPT’s web in-

terface with no hyperparameter tuning. We experimented with

various story-creation prompting techniques, and ultimately

landed on the prompt structure below, which in this example

specifies data for the app used in the demo code history.

1) Prompt: I am going to send a list of goals and actions

a programmer took while making an app to find top-rated

restaurants in a given area, and I want you to create a short

story describing the main phases of development the software

underwent. The story should be written in a way that helps

you empathize with the original developer’s challenges, but

not be overly whimsical.

The format is in the form:

*begin example*

Goal 1:

Action 1

Action 2

Goal 2:

Action 3

Action 4

Action 5

*end example*

Goals will be high level goals that include multiple actions.

Actions will include changes to specific files, or web searches

for information. Please include all footnotes to reference facts

in your story with their original source ”Actions”. Here is the

data:

• Goal: Plug into Google Maps API, query for restau-

rants within search radius of St. Louis

– search: what is my ip;

– search: google maps change ip address api access;

– revisit: Google Cloud Platform;

• Goal: Get more than the first page of 20 results

returned by Maps API for search radius

– search: why does google maps api only return a few

results;

– example.py: Adjust loop counter using

tokenCount

– example.py: Checking to see what the response

from Maps API is

– example.py: Add delay between pages of results,

so page would not be empty

– search: google maps api get more than 60 restaurants;

– example.py: Add longer delay and check response

– example.py: Checking the value of

next_page_token from Maps response



• Goal: Break search radius circle into overlapping

subcircles in order to pull more results

– search: use google maps api to get a total count of

restaurants in city;

– search: meter to longitude and latitude conversion;

– search: circles and angles overlap playground;

– example.py: Defining a subcircle to be used to

represent part of the larger radius more finely

– search: equal circles with 60 degree overlap;

– search: read from file in javascript;

– search: google maps change API key;

– example.py: Convert meters to latitude and longi-

tude differences

– example.py: adjust latitude and longitude to be

placed north and east of starter circle, instead of south

and west

– example.py: shift every other column of subcircles

horizontally to cover area more efficiently

– search: 30 60 90 triangle;

– revisit: Algorithm - Circle Overlapping - Mathematics

Stack Exchange;

– example.py: adjust distance between subcircles

based on hand calculations

– search: how many degrees in circle;

– revisit: https://chat.openai.com/;

– example.py: Loop through 5X5 grid and print

where centroids of subcircles should be

• Goal: Plot found restaurants by number of reviews

and average review score

– revisit: Google Maps;

– visualizeData.py: Plot found restaurants by

user_ratings_total and average rating

– search: numpy log;

– visualizeData.py: attempt to make scatterplot

interactive, to see the label associated with each data

point

– revisit: Google Maps;

• Goal: Filter for ”good” restaurants and add labels to

scatterplot

– visualizeData.py: filter restaurants by

min_rating and min_reviews, and annotate the

datapoints with labels

– visualizeData.py: calculate z-score for rating

and num reviews

– visualizeData.py: only display 90th percentile

outliers for rating and num reviews

– example.py: adjust search radius and number of

subcircles

– revisit: Google Cloud Platform;

– example.py: adjust centerpoint of search radius

– revisit: Google Cloud Platform;

– search: google maps types of places;

– visualizeData.py: fixed typo in csv file name

B. GPT-4 Raw Output

In the bustling heart of St. Louis, a programmer named

Alex sought to solve a culinary conundrum: finding top-rated

restaurants in the area. Like any software developer embarking

on a new project, Alex was about to undergo a roller-coaster

of discovery, frustration, and innovation.

Alex’s first hurdle1 was the Google Maps API, which would

be the backbone of his application. After entering the search

command, ’what is my ip,’1 he wondered if the change of

his IP address affected API access and hence, looked up

’google maps change ip address api access.’2 He then revisited

Google Cloud Platform3 to make sure he was in the clear. It

was the typical back-and-forth dance familiar to developers

everywhere, adjusting parameters, revisiting platforms, and

laying the first bricks of the project.

His elation, however, was short-lived. As he pulled the

restaurant data, Alex noticed that the API was only serving

a limited first page of 20 results4. Why would this be the

case? He dove back into the web with ’why does google maps

api only return a few results’ to find some answers5. Delving

into the code of example.py, he tinkered with loop counters6,

examined API responses7, and incorporated delays8. But it

was still an uphill battle; he had to increase the delay9 and pay

attention to the next_page_token from the API response10

to get beyond the restrictions.

But Alex was far from done. He pondered how to effectively

break the search radius into overlapping subcircles to pull

even more results. His journey took him into the depths of

geometry, playing with meters, longitude, latitude12,13, and

circle overlaps14. Every piece of the puzzle, from converting

meters to latitude and longitude differences17 to adjusting

the placements of subcircles18, was a challenge in itself.

With some hand calculations and help from mathematical

discussions on Stack Exchange20,21, Alex was able to finely

map out a 5X5 grid where the centroids of these subcircles

should be24.

Having collected a robust set of data, Alex then shifted

his focus to visual representation26. He began plotting restau-

rants by number of reviews and average review score in

visualizeData.py30. To give depth to his visualizations,

Alex delved into making the scatterplot interactive32, allowing

viewers to see labels associated with each data point. This was

a storytelling tool, and it brought the data to life.

However, quality mattered to Alex. He sought only

the ”good” restaurants. Filtering became a pivotal ac-

tion, as he adjusted parameters for ratings and reviews in

visualizeData.py30. Through statistical techniques like

calculating z-scores31 and zeroing in on the 90th percentile

outliers32, Alex created a more refined experience for the end-

user. And to keep the data fresh and relevant, he made adjust-

ments in example.py like modifying the search radius33,35

and revisiting the Google Cloud Platform34,36.

The journey was filled with intricate tasks, from fixing

typographical errors in file names38 to deciphering the different

’types of places’ in Google Maps37. But through the amalga-

mation of these detailed actions, Alex crafted a software tool



that would guide many food enthusiasts to the best spots in

St. Louis.

Footnotes:

1) search: what is my ip;

2) search: google maps change ip address api access;

3) revisit: Google Cloud Platform;

4) search: why does google maps api only return a few

results;

5) example.py: Adjust loop counter using

tokenCount;

6) example.py: Checking to see what the response from

Maps API is;

7) example.py: Add delay between pages of results, so

page would not be empty;

8) example.py: Add longer delay and check response;

9) example.py: Checking the value of

next_page_token from Maps response;

10) search: use google maps api to get a total count of

restaurants in city;

11) search: meter to longitude and latitude conversion;

12) search: circles and angles overlap playground;

13) example.py: Defining a subcircle to be used to repre-

sent part of the larger radius more finely;

14) search: equal circles with 60 degree overlap;

15) search: read from file in javascript;

16) example.py: Convert meters to latitude and longitude

differences;

17) example.py: adjust latitude and longitude to be placed

north and east of starter circle, instead of south and west;

18) example.py: shift every other column of subcircles

horizontally to cover area more efficiently;

19) search: 30 60 90 triangle;

20) revisit: Algorithm - Circle Overlapping - Mathematics

Stack Exchange;

21) example.py: adjust distance between subcircles based

on hand calculations;

22) search: how many degrees in circle;

23) revisit: https://chat.openai.com/;

24) example.py: Loop through 5X5 grid and print where

centroids of subcircles should be;

25) revisit: Google Maps;

26) visualizeData.py: Plot found restaurants by

user_ratings_total and average rating;

27) search: numpy log;

28) visualizeData.py: attempt to make scatterplot in-

teractive, to see the label associated with each data point;

29) revisit: Google Maps;

30) visualizeData.py: filter restaurants by

min_rating and min_reviews, and annotate

the datapoints with labels;

31) visualizeData.py: calculate z-score for rating and

num reviews;

32) visualizeData.py: only display 90th percentile out-

liers for rating and num reviews;

33) example.py: adjust search radius and number of sub-

circles;

34) revisit: Google Cloud Platform;

35) example.py: adjust centerpoint of search radius;

36) revisit: Google Cloud Platform;

37) search: google maps types of places;

38) visualizeData.py: fixed typo in csv file name;

C. Post-Generation Edits

The research team manually edited GPT-4’s output to ensure

the protagonist of the story remained ungendered, to avoid

gender bias in the study participants. Additionally, when

specific actions were omitted from the story-view, the research

team manually added them into the story. For example, the

story-view only references 38 actions, whereas the input

included 40 actions. Afterwards, the research team converted

the story into a simple website to give programmers access

to the story. In doing so, the team removed the superscripts

and instead added links for sentences which referenced de-

veloper actions. While this represents a manual bottleneck for

the creation process, these edits are much quicker to make

than crafting a story from scratch. Further, experimenting

with GPT-4o highlighted its significantly improved ability of

incorporating all developer actions into the generated story.

D. Activity Segmentation Heuristic Creation

Testing segmentation requires a set of code histories that

was not readily available. In order to create these heuristics, we

first created a validation set of 6 programs. For each program,

we observed its creation in its entirety, and recorded when

the developer tested their code. At each test, we recorded the

program state through either a code recording software we

developed or from a process of OCR and manual edits to

capture the code from livestreamers’ videos. Upon observing

that developers commonly went through iterations of rapid

changing of a given section of code, and then testing between

each change, we decided to define a heuristic which groups

these localized changes together. Through several iterations

of defining heuristics, we were satisfied with the resulting

grouping for the six validation programs. The team underwent

a similar process in grouping web searches together; we found

that developers often made multiple, similar searches before

finding a web resource. Through several rounds of heuristic

testing, our process of grouping web searches together based

on common keywords appeared to appropriately address this

phenomenon.

1) Final Heuristic Segmentation Algorithm: The final

heuristic segmentation algorithm iterates through the set of

code states at each test, and analyzes the changes made

between states, appending consecutive code changes to the

same segment of activity if they were made in the same file

and any of the following conditions applied:

- One or more code lines are modified, but there are no

additions of new lines or deletions of lines

- Up to three lines are added or deleted from the code state

- No changes or only white space changes are made



If none of these conditions were met, or the code change

happened in a different file than the previous change, a new

cluster of code changes would begin. We noted that developers

often sketched out a new section of functionality with the

insertion of new lines of code and then modified and debugged

those lines. Thus, the limitation on the number of new lines

helps to capture the beginning of new functionality.

When grouping sequential web searches together, we relied

on a process of comparing sequential searches as bags of

words. If two consecutive searches had an overlap of key-

words, then we included the sequence of events into one

search cluster. We excluded traditional stop words as well as

common programming words like “javascript”, “python”, and

“documentation”. This simple approach quickly allowed us to

group semantically similar searches together.

E. Controlling for Covariates: Supplemental Interpretation

Additionally, Table I shows statistical comparisons for the

various metrics using both raw data, and residuals from a linear

regression controlling for the covariates. Average residuals of

each linear regression are equal and opposite between story

and list view groups. This is because we balanced our data

to have equal counts of task order and task type for each

history view condition. Since the line of best fit will always

have an average residual of 0 (all residuals cancel out), when

we look at the average residual for the two conditions, each

having the same count of covariate values, their averages are

equally far from zero in opposite magnitudes. Positive average

magnitudes in Table I indicate measurements that were higher

than the estimations given the covariates, and negative average

magnitudes indicates measurements lower than the regression

predictions.


