usenix

THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Centimani: Enabling Fast Al Accelerator Selection
for DNN Training with a Novel Performance
Predictor

Zhen Xie, Binghamton University; Murali Emani, Argonne National Laboratory;
Xiaodong Yu, Stevens Institute of Technology; Dingwen Tao, Indiana University;
Xin He, Xidian University; Pengfei Su, University of California, Merced; Keren Zhou,
George Mason University; Venkatram Vishwanath, Argonne National Laboratory

https://www.usenix.org/conference/atc24/presentation/xie

This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.
July 10-12, 2024 - Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference
is sponsored by

alllaic £llall aealy
% King Abdullah University

Science and Technology

+



Centimani: Enabling Fast AI Accelerator Selection for DNN Training with
a Novel Performance Predictor

Zhen Xie* =, Murali Emani’, Xiaodong Yu*, Dingwen Tao®, Xin He",
Pengfei Su”, Keren Zhou®, and Venkatram Vishwanath®
*Binghamton University TArgonne National Laboratory *Stevens Institute of Technology
°Indiana University “Xidian University > University of California, Merced ©George Mason University
= Corresponding Author: Zhen Xie (zxie3@binghamton.edu)

Abstract

For an extended period, graphics processing units (GPUs)
have stood as the exclusive choice for training deep neu-
ral network (DNN) models. Over time, to serve the grow-
ing demands in a more targeted manner, various artificial
intelligence-specific hardware, referred to as Al accelerators,
have been vigorously developed, aiming to provide more effi-
cient DNN acceleration solutions. However, sufficient solu-
tions are also heterogeneous and thus introduce complexities
in accelerator selection. Given a DNN model and a training
objective, such as throughput or price-performance ratio, it
remains challenging to arrive at the optimal decision among
many options due to high reimplementation costs and unex-
pected performance.

To tackle this challenge, we propose Centimani, a perfor-
mance predictor that accurately and rapidly predicts DNN
training throughput on various Al accelerators, thereby fa-
cilitating the accelerator selection process. To achieve this
goal, we first analyze typical Al accelerators and draw ob-
servations that abstract Al accelerator designs and guide our
performance modeling approach. In particular, we construct a
memory estimation model and decoupled performance mod-
els to select the most appropriate batch size and predict the
execution time of DNN training. We validate our approach
by applying Centimani to six common DNN models on four
typical Al accelerators. Results show that Centimani predicts
the throughput with an average accuracy of 93.1% on single-
device training and 90.4% on multiple-device training, thus
the optimal accelerator corresponding to the user’s training
objective can be obtained.

1 Introduction

The availability of vast public datasets and the rapid advance-
ments of DNNs have led to significant growth in the preva-
lence of Al-driven applications and services, achieving re-
markable outcomes in many tasks [35,38,41,67,70, 89,102,
116]. Meanwhile, the increasingly complex DNN models
entail significant overhead for model training [122]. Conse-
quently, in recent years, academia and industry have made

extensive efforts [30, 90,91, 104] to offer a broad range of
new hardware to optimize DNN training workloads. These
new Al-specific hardware are known as Al accelerators.

From the trend perspective, Al accelerators have become
the mainstream way to sustainably push Moore’s Law in the
Al field [37,94]. According to Al Index Report 2023 [2] and
Top AI Market Radar [14], the lion’s share of private invest-
ments in Al, approximately $6 billion or 58%, has been di-
rected towards the development of Al accelerators. In the HPC
domain, Al accelerators have been seamlessly integrated into
cutting-edge exascale supercomputers, including Aurora [4],
Frontier [8], and El Capitan [7]. This integration has signifi-
cantly contributed to providing sufficient DNN solutions.

From the application perspective, many DNN models [30,
30,43,87,92,98, 101, 103] have been reimplemented and
trained on Al accelerators with substantial performance
speedups. For example, the largest biological language models
(GenSLMs) [123] have been trained on a new Al accelera-
tor named Cerebras CS-2 system [57]. For GenSLM with 25
billion parameters, only /6 Cerebras CS-2 accelerators can
reach convergence in 21.7 hours, which is faster than 560
NVIDIA A100 GPUs [31]. This work has been awarded the
2022 Gordon Bell Special Prize [1].

However, sufficient DNN solutions are also heterogeneous.
While having various options provides users with flexibility,
it can also lead to the paradox of choice, which leaves practi-
tioners uncertain about which Al accelerator should be used
to train their models. What further complicates matters is that
no “one-size-fits-all” solution works best on all DNN models.
Choosing an appropriate Al accelerator involves weighing
its performance benefits against the migration cost from the
current platform (typically the GPU platform), which makes
users have to face a decision-making dilemma.

A natural way to make this decision is to reimplement
the models and then measure training performance directly
on each Al accelerator, as demonstrated in many existing
work [22,84,96,99]. Another common wisdom is to consult
existing benchmarks published by vendors and match them
with a similar DNN model to obtain a “ballpark estimate” [44,
75,90, 104]. However, these approaches have their limitations
as follows:
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Repetitive implementation and direct hardware access:
Take GenSLMs [123] as an example, this work requires ex-
tensive efforts from researchers to achieve remarkable per-
formance on accelerator selection, because GenSLMs have
also been reimplemented and trained on five other Al acceler-
ators, with the selection of the optimal one (such as Cerebras
CS-2) contingent on actual performance assessment. This dif-
ficulty is due to the unique programming models [40,46, 82]
of Al accelerators and the dependent libraries required to
train this DNN model, resulting in a significant expenditure
of manpower and cost. Furthermore, measuring performance
requires direct access to all Al accelerators considered, which
may not always be feasible for all users.

Large deviations from benchmarks: Deriving the train-
ing throughput of a particular DNN model through official
benchmarks can be inaccurate, primarily because benchmarks
typically contain only a limited number of DNN models, such
as MLPerf [75] and DAWNBench [32]. Such benchmarks
are not effective, especially when the DNN model to be es-
timated differs significantly from the models in the bench-
marks. Additionally, different Al accelerators choose varying
hardware-related hyper-parameters [104], such as batch size,
for the same model to achieve higher parallelism and better
data locality, which can further affect throughput estimation.

Hardware utilization and scalability: Another ap-
proach [18, 114] to predict the training throughput of a model
is to utilize hardware utilization, such as applying GPU train-
ing utilization to other Al accelerators. However, this ap-
proach may lead to significant errors, because the hardware
utilization among accelerators is not a general indicator due
to distinct hardware design and software workflow. Moreover,
different Al accelerators are connected using unique networks,
which presents additional challenges for throughput predic-
tion in a distributed environment.

Based on the above considerations, in this work, we advo-
cate for a hybrid approach that combines experimental and
analytical methods to make direct performance predictions
and guide the appropriate selection of accelerators. We notice
that: (1) the hardware design [30, 69] and software execution
flow [26,90] of Al accelerators are starkly noticeable due to
distinct performance considerations; and (2) DNN training
workloads [50,60] differ from conventional general programs
because they typically consist of routine training stages with
required hyper-parameters. Ideally, the throughput prediction
of the whole training process can be decomposed into the
execution time prediction of multiple training stages for bet-
ter prediction accuracy, and the execution time of each stage
can be predicted on unified accelerator abstractions for more
comprehensive coverage.

To enlighten our performance model, we first analyze typ-
ical Al accelerators and propose a multi-aspect abstraction
that hides the details of accelerator designs; Specifically, the
multi-aspect abstraction involves two abstractions from dif-
ferent perspectives to describe Al accelerators: (1) hardware

abstraction deals with various hardware resources and config-
urations while hiding the underlying hardware complexity to
improve generality to adapt more platforms; and (2) software
abstraction systematically encapsulates the management of
training data and operators. In addition, the hardware abstrac-
tion and software abstraction are connected by an execution
modeling, which builds a connection between multi-aspect
abstraction and DNN model training.

We leverage this setting to develop our performance model.
Our performance predictor involves two steps: (1) we first
estimate the memory consumption of the given DNN model
with varying batch sizes and select the optimal one on each Al
accelerator; then (2) we predict the execution time of multiple
training stages and eliminate overlapping portions among
these stages to obtain the final training time.

Specifically, in the first step, we select an appropriate hyper-
parameter such as batch size for model training based on the
proposed memory estimation model, which traverses the com-
putation graph of DNN models, estimates the memory con-
sumption of each training data, and maps each training data
to the actual memory hierarchy of each accelerator. The mem-
ory estimation model optimizes data placement by maximiz-
ing the allocation of on-chip memory, coordinating specific
software workflow strategies, and staying within hardware
limitations. Our goal in selecting the maximum batch size is
to improve training efficiency.

In the second step, we predict the execution time of multi-
ple stages in DNN training, which include data loading/pre-
processing, computation, and communication. We infer to the
data loading/pre-processing time from the existing platform
(usually GPU). For the computation stage, we traverse differ-
ent operators in the computation graph to estimate the total
computation time. These operators are categorized as either
common or uncommon operators, in which the execution time
of common operators is obtained by executing predefined
micro-benchmarks, while the execution time of uncommon
operators is estimated using a cache-aware roofline model.
For the communication stage, we analyze the amount of data
that needs to be exchanged and estimate its communication
time using communication primitives. Finally, we eliminate
the overlapping part among stages to obtain the final predic-
tion.

We implement our model into a Python library that we call
Centimani, and evaluate its prediction accuracy by comparing
predicted throughput with measured performance using six
DNN models on four Al accelerators. The average accuracy
of Centimani on single-device training and multiple-device
training is 93.1% and 90.4% respectively.

In summary, this work makes the following contributions:

e We introduce a new and general performance predictor for
DNN training on Al accelerators.

e Centimani introduces model topology and training stages
to enable accurate performance prediction on Al accelera-
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tors. Its applicability and effectiveness are evaluated using
six common DNN models, namely, (i) ResNet-50 v1.5, (ii)
U-Net, (iii) CANDLE UNO, (iv) BERT-large, (v) Brag-
gNN [89], and (vi) OpenAl GPT-2, on four Al accelerators
(SambaNova, Graphcore, Cerebras, and Habana).

e Centimani uses an automated workflow with high us-
ability. Two training metrics (e.g., throughput and price-
performance ratio) are presented to show how Centimani
can help users make informed decisions based on their
training objectives.

2 Background and Motivations

2.1 Background on DNN Training

A DNN model consists of numerous parameters and can be
trained on a single device or across multiple devices. Regard-
less of the hardware used, the process of DNN training can be
broken down into three main stages [28,48,53,115] : (1) data
loading/pre-processing, which refers to the action required to
move and manipulate data samples from a storage location to
the memory co-located with the compute units for training; (2)
computation, which encompasses forward and backward prop-
agation to process a batch of training data through the DNN
model and compute the loss function and gradients of each
learnable parameter; (3) communication, which aggregates
all gradients from all devices and synchronizes parameters
with a designated optimizer (e.g., SGD [25], Adam [88], etc.).
Through iterative refinement of model parameters using these
three stages, DNN training continues until the loss function
reaches its minimum or a predetermined target.

2.2 Why Select Optimal AI Accelerator?

Al accelerators exhibit varying performance even when exe-
cuting the same training task. To reveal this situation, we train
a common ResNet-50 v1.5 model [55] with the same floating-
point precision (half-precision) and dataset (ImageNet [36])
on five platforms, including a conventional NVIDIA A100
GPU platform [31] and four new Al accelerator platforms,
namely, SambaNova SN30 [82], Graphcore Bow-IPU [63],
Cerebras CS-2 [57], and Habana Gaudi2 [76].

Figure 1(a) demonstrates the training throughput and hard-
ware utilization of each accelerator, where hardware utiliza-
tion is determined by dividing the achieved computing power
by the respective peak performance. Among the five plat-
forms, they exhibit varying training throughputs. Notably,
Habana Gaudi2 achieves the highest throughput, surpassing
the lowest brought by NVIDIA A100 GPU by a factor of
2.17x. However, such performance differences cannot be
solely attributed to disparities in the theoretical peak perfor-
mance of Al accelerators. For example, Graphcore Bow-IPU
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Figure 1: Throughput, hardware utilization, and the optimal
batch size of training ResNet-50 on Al accelerators.

has a theoretical peak performance of 350 TFLOPS in the half-
precision format, which is 1.21x higher than that of NVIDIA
A100 GPU at 312 TFLOPS, yet Graphcore Bow-IPU achieves
a speedup of 1.46x, primarily due to its superior hardware
utilization of 22.36%, compared to NVIDIA A100 GPU’s
utilization of 17.21%. The results also show that hardware
utilization is not a cross-platform indicator for estimating the
actual training performance of Al accelerators.

Furthermore, even for the same task, Al accelerators also re-
quire different batch sizes to achieve optimal training through-
put. Figure 1(b) lists the recommended batch size for each Al
accelerator when training ResNet-50 v1.5 model with Ima-
geNet. Notably, the batch size for Graphcore Bow-IPU is 64 x
larger than that for SambaNova SN30. The main reason for
this discrepancy is that using different batch sizes ensures that
the training data can be stored in on-chip memory as much as
possible without exceeding the accelerator’s memory capacity.
Therefore, selecting appropriate batch sizes is important for
performance prediction and is part of this work.

2.3 Why Not Measure Memory Consumption
on CPUs or GPUs?

If each Al accelerator requests a specific batch size, is it possi-
ble to directly measure the memory consumption of different
batch sizes on CPUs/GPUs and then choose a suitable one
by comparing the memory capacity of Al accelerators? The
answer is no. Firstly, GPUs often lack sufficient memory ca-
pacity to support runs with larger batch sizes. For example,
the commonly used NVIDIA A100 GPU has 40GB/80GB
memory, which is significantly less than the 256GB memory
on Graphcore BOW-IPU. Moreover, CPUs have adequate
memory capacity, but they cannot support certain floating
point formats, such as Bfloat16 and FP8. Hence, we will build
a memory estimation model to avoid this limitation.

2.4 Why Not Apply Heuristic Algorithms?

An alternative approach to predict the throughput of DNN
training is to employ heuristics [39, 51, 79, 108] based on
hardware and model characteristics. This approach involves
selecting relevant hardware and model features as input, mea-
suring actual performance as output, and statistically analyz-
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ing the potential connection between the two using a heuristic
algorithm. Then, the resulting model can be used to predict
training performance for new hardware and DNN models.

However, a key challenge of this approach is the need for
a certain amount of training data to build an accurate heuris-
tic model. Unfortunately, Al accelerator vendors often only
demonstrate a limited number of DNN models [64,81], which
is insufficient to train a robust model. Furthermore, the heuris-
tic algorithm tends to assume that the training data and testing
data have the same distribution. If a heuristic model is trained
on a specific set of Al accelerators, it may not be readily ap-
plicable to other Al accelerators with significant differences.
Therefore, experimental and analytical approaches are more
suitable for performance prediction on Al accelerators than
heuristic-based approaches.

3 Al Accelerator Analysis and Inspiration

3.1 Micro-architecture of AI Accelerators

Al accelerators are designed with a primary focus on per-
formance enhancements, such as achieving high parallelism,
fast memory transactions, and advanced scalability, et al. For
example, @ SambaNova SN30 [82] revolutionizes training
performance by mitigating redundant data movement through
the implementation of a Reconfigurable Dataflow Unit (RDU)
architecture [83] with a dataflow-based execution model; &
Graphcore Bow-IPU [64] optimizes both computational and
data exchange aspects by providing more extensive compute
parallelism. This is implemented through a Bulk Synchronous
Parallel (BSP) model [47], coupled with high memory band-
width; ® Cerebras CS-2 [57] propels DNN training through
the utilization of Colossal Tensor Cores (CTCs) [68], expan-
sive on-chip memory capacity, and robust core-core intercon-
nections, which are imposed and powered into a Wafer-Scale
Engine (WSE) processor [56]; @ Habana Gaudi2 [76] priori-
tizes versatility and programmability by employing a hetero-
geneous architecture comprising a Tensor Processing Core
(TPC) cluster and Matrix Math Engine (MME) [17]. Each Al
accelerator follows distinct design principles and objectives,
delivering its unique set of advantages and strengths.

Table | lists the hardware specifications of these Al accel-
erators, comparing them with an NVIDIA A100 GPU as the
baseline. These accelerators exhibit striking disparities across
various dimensions, encompassing compute core counts, the-
oretical peak performance, memory configurations, and in-
terconnect networks. Remarkably, the number of computing

Table 1: Hardware specifications of evaluated Al accelerators

Feature Nvidia A100 SambaNova SN30 | Graphcore Bow-IPU | Cercbras CS-2 Fabana Gaudi2
Comnate Units | 912 CUDA cores | 640 PCUs 147 cores 850,000 Cores MME
OmPULe I | 432 Tensor cores | 640 PMUs cores for 8 worker 24 TPCs
Peak Pert. 312 TFLOPS ~300 TFLOPS | 350 TELOPS 320 TELOPS/worker | ~450 TFLOPS
for Al Compute
N 192 KB L1
On-Chip Memory | 2™ 320 MB 900 MB 5 GB/worker 48 MB
Gff-Chip Memory | 40 GB HBM2 12 TB DDR4 756 GB DDR4 756 GB DDR4 96 GB HBMZE
Process 7om 7om 7om Tom 7om
NVLink RDU direct IPU Link SR4 link RoCE2

SambaNova SN30

Cerebras CS-2

Habana Gaudi2

Figure 2: Microarchitecture of SambaNova SN30, Graphcore
Bow-IPU, Cerebras CS-2, and Habana Gaudi2.

cores in these accelerators exhibits significant variability. For
example, Graphcore Bow-IPU boasts an impressive 1472
cores, whereas Habana Gaudi2 features just one MME and
24 TPCs. Furthermore, substantial distinctions emerge in on-
chip and off-chip memory capacities among Al accelerators.
For instance, the on-chip memory of each worker in Cerebras
CS-2 is 128 times larger than that of NVIDIA A100 GPU, un-
derscoring significant differences in their ability to efficiently
localize training data. Moreover, each Al accelerator employs
its unique communication network between devices, resulting
in distinct distributed performance.

Hardware Analysis of AI Accelerators: Figure 2 outlines
the microarchitecture of these accelerators, highlighting sig-
nificant differences in compute core (e.g., execution units
and network-on-chip) and memory hierarchy (e.g., on-chip
and off-chip memory) in System-on-Chip (SoC) design. Re-
garding compute core design, each accelerator employs its
own Instruction Set Architecture (ISA), pipeline, and branch
prediction. Significantly, the majority of architectural details
have not been publicly disclosed.

Additionally, all four Al accelerators adopt the commonly
used hierarchical memory subsystem, including on-chip and
off-chip memory. Concerning on-chip memory design, Sam-
baNova SN30, Graphcore Bow-IPU, and Cerebras CS-2 allo-
cate on-chip memory among compute cores, facilitating fast
and local memory access. In contrast, Habana Gaudi2 opts
for centralized on-chip memory, such as a shared SDRAM
pool, streamlining data transfer and communication among
compute cores.

Regarding internetwork design, SambaNova SN30 and
Cerebras CS-2 facilitate efficient adjacent communication
through on-chip switches and direct core-to-core connection.
Graphcore Bow-IPU employs a shared data bus, while Habana
Gaudi2 achieves core communication via shared memory.
Software Analysis of AI Accelerators: Al accelerators in-
corporate specific software execution flows tailored to their
hardware architecture. Similar to NVIDIA A100 GPU, Ha-
bana Gaudi2 follows a sequential execution in DNN train-
ing, where each operation must load the required training
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data from off-chip memory to on-chip memory before com-
mencing. In contrast, SambaNova SN30 minimizes off-chip
memory access by caching intermediate results within on-
chip memory. Graphcore Bow-IPU achieves data locality by
employing a memory management technique that allocates
training data across different memory hierarchies. Cerebras
CS-2 adopts a unique strategy by maintaining all the param-
eters within on-chip memory at all times to facilitate high
bandwidth access.

3.2 Observations and Modeling Trade-offs

Based on these analyses of typical Al accelerators, we have
three observations to guide the design of performance model:
Observation 1: These Al accelerators differ significantly
in hardware and software implementation, but have some com-
monalities in the memory subsystem and data management.

These distinguished hardware designs profoundly influ-
ence the substantial variations in the performance of these Al
accelerators. These unique software designs are intricately
linked to the underlying hardware configurations and play a
pivotal role in the effectiveness of these accelerators. When
attempting to adapt DNN training to a given accelerator, the
amalgamation of these specialized designs introduces a higher
level of performance uncertainty.

While Al accelerators come in various forms, they share
similarities in how they organize memory and manage train-
ing data. Specifically, aspects such as utilizing on-chip mem-
ory and off-chip memory in hierarchical memory subsystem,
along with data management methodologies, serve as unifying
elements across various Al accelerator designs.

Observation 2: Predicting the execution time of the entire
DNN training on Al accelerators is difficult, and hardware
simulators offer limited assistance in this regard.

DNN model training is a complex process that involves
multiple training stages, which involves a variety of DNN
operators and requires different functions from Al accelera-
tors. For example, the computation stage primarily involves
compute and memory access units, while the communication
stage is more related to network components. As a result, pre-
dicting the performance of the entire training process, which
comprises distinct stages and operators, can lead to significant
deviations.

Traditional hardware simulators, such as Gem5 [24] and
ZSim [93], are highly configurable to evaluate different archi-
tectures. Real workloads can be executed under full-system
mode to collect all details of the runs, including execution
time. However, hardware simulators encounter two challenges.
(1) The microarchitectures of these accelerators are not made
public entirely. (2) Even with open-source hardware, simula-
tors tend to significantly slow down programs [27], typically
by a factor of 20x to 40x, making it infeasible to simulate
the time-consuming DNN training tasks.

Observation 3: Choosing appropriate batch sizes must
consider hardware limits and software optimizations.

The hardware limits of each Al accelerator can constrain
the selection of batch size. For instance, SambaNova’s on-
chip memory is limited to 640 MB, which is designed to store
all training data and intermediate results during DNN training,
thus greatly limiting the maximum number of samples that
can be processed simultaneously.

Based on these observations, we can identify three trade-
offs that need to be considered in performance modeling. (1)
If the execution time of DNN operators can be accurately pre-
dicted and appropriately combined, the overall prediction will
be more accurate. (2) A uniform hardware abstraction that
executes various DNN operators should participate in perfor-
mance prediction, improving prediction accuracy, and reduc-
ing modeling complexity. (3) A uniform software abstraction,
which manages training data and affects the selection of batch
size under hardware limits, should be included.

4 Centimani: A Performance Predictor

4.1 Centimani Overview

Our performance predictor Centimani is inspired by three
key trade-offs. To accommodate various hardware designs
and software optimizations and improve the generality and
effectiveness of performance modeling, two abstractions are
presented: (1) hardware abstraction proposes a unified hard-
ware interface that hides fine-grained characterizations of
the underlying hardware design and reveals coarse-grained
performance behaviors of different resources provided by Al
accelerators; (2) software abstraction provides a unified mech-
anism that allows allocation, placement, and accessing of all
training data on the hierarchical memory subsystem to meet
various computation and transmission demands to enhance
the manageability of DNN training on Al accelerators.

In addition, the two abstractions are connected through the
execution modeling, which maps the DNN training process
with associated hyperparameters into an efficient execution
on specialized Al accelerators. This mapping is a critical step
in revealing the real performance behaviors of each Al accel-
erator. The modeling process is shown in Figure 3. Firstly, the
software abstraction provides control over hardware-related
hyperparameters such as batch size (see Section 4.2); sec-
ondly, the execution model takes DNN model and optimal
hyper-parameters to map three training stages into correspond-
ing training components, and then each training component
is further decomposed into a combination of various DNN
operators; thirdly, the execution time of all the operators is
predicted by decoupled performance models (see Section 4.3),
and the overlap of these stages is removed to arrive at a final
time prediction (see Section 4.3.4). To sum up, execution
modeling provides a bridge between the high-level model
description in deep learning frameworks and the low-level
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Figure 3: Hardware and software abstractions of Al accelera-
tors, and two corresponding performance modeling compo-
nents (colored in navy blue) in Centimani.

hardware-specific instructions.

In addition, the predicted execution time can be converted
into different performance metrics, such as throughput or
price-performance ratio, which can be used by end users (or
researchers) to make informed hardware selections.

4.2 Hyper-parameters Selection

Selecting appropriate hyper-parameters is a crucial decision
that can significantly impact training throughput, especially
when training a DNN model on new Al accelerators. Some
default but mismatched hardware-related hyper-parameters
can lead to inefficient hardware utilization [33, 74, 118],
limited/exceeded parallelism [65, 77, 80], and resource con-
tention [62]. We propose a novel memory estimation model
to resolve the hesitancy of choosing the most important hyper-
parameter - batch size. We first show our preliminary results
by comparing training throughputs across multiple batch sizes
and then describe the proposed model.

4.2.1 Large Difference across Multiple Batch Sizes

We implement two DNN models, e.g., ResNet-50 v1.5 [55]
and Bert-Base [38], on four Al accelerators to study the dif-
ference in training throughput of using multiple batch sizes.
The training throughput of these two models is collected re-
spectively.

Table 2 summarizes the speedups of using optimal batch
sizes compared to default batch sizes used on the GPU plat-
form (NVIDIA A100 40GB) for four Al accelerators. It is
obvious that it is unnecessary or even infeasible to tenaciously
use default batch sizes on all Al accelerators. For example,
training ResNet-50 on SambaNova SN30 or training Bert-
Base on SambaNova SN30 and Cerebras CS-2 with default
batch sizes will cause out-of-memory (OOM) errors. In addi-
tion, the default batch sizes cannot achieve the best training
throughput, where the training throughput with optimal batch
sizes of the two models can reach on average 4.68 x and up to

9.31x higher training throughput than that with default batch
sizes. In other words, the result further proved that choosing
appropriate batch sizes is critical in using Al accelerators.

4.2.2 Memory Model

Based on Observation 1 in Section 3.2, all Al accelerators em-
ploy a hierarchical memory subsystem and manage training
data through their memory management mechanisms. The
observation inspires our memory model to identify data place-
ment across multilevel memory and differentiate behaviors in
their properties. Unlike conventional CPU/GPU systems that
put training data in the same memory hierarchy, e.g., plac-
ing all training data on DRAM or global memory for CPUs
and GPUs, our memory model considers the configuration
of multilevel memory and predicts the respective memory
consumption of each memory level by introducing data clas-
sification and memory estimation model for a given batch
size. From this, our memory model selects the optimal batch
size that maximizes memory efficiency and avoids exceeding
hardware limits using batch size selection.

Data Classification Data classification is designed on top of
mainstream training frameworks, such as PyTorch, Tensor-
Flow, and MXNet, which are supported by all Al accelerators
and organize the execution of DNN training through a struc-
tural representation, known as a computation graph.

In a computation graph, each node represents the invoca-
tion of a mathematical operator, such as matrix multiplication
or concatenation, which takes tensor variables (multidimen-
sional arrays) as input and output. Each mathematical opera-
tor incurs a certain memory overhead by math libraries (i.e.,
cuBLAS and cuDNN for NVIDIA GPUs). Each operator may
contain numerical learnable parameters/tensors (i.e., weights
and gradients). Additionally, execution dependencies are spec-
ified by edges that point from the output of one operator to the
input of another. When a batch size for a DNN model is cho-
sen, all tensor shapes involved in the computation graph are
fixed. This characteristic is exploited by our memory model.

To fully understand how memory is consumed during DNN
training, we classify the allocated data into five categories:

Table 2: Best batch sizes for Al accelerators and speedups

over default setting (256 for ResNet-50 and 3 for Bert-Base)

on A100 GPU.
Al

Models/ Best Speedup Over

Accelerators Dataset | Batch Size | Default Setting

SambaNova SN30 Model: 32 Out-of-memory
Graphcore Bow-IPU | ResNet-50 1024 4.17x
Cerebras CS-2 Dataset: 480 2.75x
Habana Gaudi2 ImageNet 512 1.94x

SambaNova SN30 Model: 1 Out-of-memory
Graphcore Bow-IPU | Bert-Base 16 9.31x

Cerebras CS-2 Dataset: 2 Out-of-memory
Habana Gaudi2 SQuAD 12 5.24x
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e Input/Output Tensors, which include input tensors and output
tensors (such as activations). Activations are further computed
to forward output and output gradients.

* W&B Tensors, which include weights and biases of opera-
tions. They are learnable parameters of training.

e Gradient Tensors, which include gradients, weight gradients,
and gradients for momentum. They are computed under back-
ward propagation for updating and calculating weights in the
next iteration.

e Algorithm-related Tensors, which include variables used for
specific algorithms such as mixed precision training [78] and
stabilized SGD [61].

* Ephemeral Tensors, which include temporary variables used
in operation implementation such as mathematical library and
communication reservation used for multi-device training.

Altogether, such categorization offers a structured classi-

fication for comprehending the multifaceted roles and con-
tributions of tensors in the memory consumption of DNN
training.
Memory Estimation Model To build the memory estimation
model, it is essential to consider both the memory consump-
tion of various training data and their mapping to hierarchical
memory system. The workflow of the memory estimation
model can be divided into two parts as follows.

The first part is to traverse the computation graph of DNN
model and predict the memory consumption of each training
data in a fine-grained manner. For example, given a model
with N layers, we traverse each model layer in turn and in-
fer the memory consumption of each operator in each model
layer. For each model layer (e.g., layer L), the size of the acti-
vations of the previous layers (layer L — 1) and the weights
of the current layer (layer L) are estimated according to their
dimension and data types in the forward pass. In addition,
for the backward part, the size of the gradients of the next
layer (layer L+ 1), the weight gradients and the gradients of
the current layer (layer L) are inferred. Meanwhile, additional
memory consumption of all involved operators (such as com-
munication reservation and temporary variables) is also taken
into account. Based on our observation long-live temporary
tensors are rare, so we use the peak amount of all allocated
tensors to avoid out-of-memory issues.

The second part is to estimate the memory consumption of
each memory level. The process consists of two steps: step 1
classifies different training data into various categories using
data classification; step 2 maps various data categories to
the hierarchical memory where they are located according to
the data management policies of Al accelerators. It is worth
noting that the matching of different data categories and mul-
tilevel memory completely depends on the software execution
flow and memory management mechanism of Al accelerators
and therefore varies greatly, which can also be obtained from
their software design manual and SDK tools [6, 10, 11, 15].
Then, the total memory consumption of on-chip and off-chip
memory can be calculated.

Ie " ;
DNN Extract [ C i | Memory Model \| Batch Size
Models Graph Graph Traversal )—»( Data Classification )t Candidate Set
! 1
N ’ On-chip Memory Size ! | Optimal

Off-chip Memory Size | Memory Estimation Model
Figure 4: Workflow of memory modeling and selection of
batch size.

In summary, the inputs of the memory estimation model

are the DNN model and the batch size to be evaluated, and
the output is the memory consumption of each memory level
on various Al accelerators.
Batch Size Selection Figure 4 depicts the workflow of batch
size selection in memory model. Given a DNN model, we ex-
tract its computation graph. When evaluating a batch size in a
candidate set, we traverse the computation graph, classify dif-
ferent training data, estimate the memory consumption of each
training data, and calculate the memory consumption of each
memory level using the memory estimation model. Finally,
we select the optimal batch size in all candidate sets, which
can maximize computational parallelism and stay within the
hardware limits of each kind of memory.

4.3 Decoupled Performance Models

To make accurate predictions for DNN training, Centimani
introduces the decoupled performance models, which include
three models and predict the execution time of multiple train-
ing phases separately, including data loading/pre-processing
stage, computation stage, and communication stage. In the
end, the overlap of these stages is removed to arrive at the
final prediction.

4.3.1 Data Loading/Pre-processing Model

Data loading/pre-processing stage of DNN training is respon-
sible for fetching training samples from secondary memory
storage and applying additional transformations, such as de-
coding, augmentation, and batching, to the input data. There
is a significant difference between GPU training and Al accel-
erator training in the pre-processing stage. For GPU training,
the pre-processing stage is usually performed on GPU using
NVIDIA Data Loading Library [13], while for Al accelera-
tors, the pre-processing stage tends to occur on the host/CPU
side [43] due to the lack of special hardware modules.
Therefore, we modify the pre-processing code of GPU
training so that it can be executed and measured on the
host/CPU side. We approximate the data loading time in
Al accelerator training by collecting the data loading time in
GPU training and measuring memory bandwidths between
host/CPU and GPU/AI accelerators. Additionally, we esti-
mate the pre-processing time in Al accelerator training by
collecting the pre-processing time in GPU training and com-
paring the peak performance of CPU between GPU and Al
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accelerator training. In summary, the data loading and pre-
processing time are estimated proportionally based on the
time of GPU training.

4.3.2 Computation Model

To predict the computation stage of DNN training on a given
Al accelerator, we first break down the time that is required
for an iteration into the time of individual operators, which
can be expressed as follows:

L 0(i)

Toaren =Y, Y, E(i. ]) @

i=1j=1

where L is the number of layers in a DNN model, O(i) is
the number of operators in layer i, and E(i, j) is the batched
execution time of j — th operator in layer i.

Therefore, the key to predicting training time lies in accu-
rately predicting the execution time of each operator. Previous
work [54,71,85] has attempted to predict the execution time
of an operator, like E (i, j) in Equation 1. Most work has been
based on the assumption that the execution time is linearly
related to the number of floating point operations required.
However, this assumption is not valid, especially when pre-
dicting the execution time of the same operator on different
accelerators. For instance, we observe that Graphcore Bow-
IPU exhibits 1.91 x the performance of NVIDIA A100 GPU
on convolution operation-based ResNet50 v1.5 model, de-
spite having only a 10% difference in their floating-point
peak performance. As a result, traditional methods are prone
to significant prediction errors.

We present an alternative approach that combines experi-
mental and analytical methods to predict the execution time
of each operator. Specifically, we categorize operators into
two groups: common and uncommon operators, and predict
their execution time using corresponding methods. For com-
mon operators, which are those included in the pre-defined
micro-benchmark set, we directly measure execution time by
constructing synthetic input data with a specific shape from
the computation graph. For uncommon operators, which are
those not included in the micro-benchmark set or belonging
to customized operators, we estimate execution time by col-
lecting the number of floating-point operations and arithmetic
intensity (A.L) of the operator in GPU training and applying
cache-aware roofline model [58]. The approach is as follows:

E(i,j)~ {Kerne{(E(i,j).lnpul shape), if E(z]) € Microbenchmark Set
Roofline(Collected_FLOPs,A.I.), otherwise
(@)
where Kernel is the operator to E(i, j), Collected_FLOPs is
the collected number of floating-point operations required to
process E(i, j), A.I. is the arithmetic intensity of E(i, j).
In addition, we also consider the overhead of kernel launch,
although for the accelerator all kernels are offloaded before
execution, so this overhead is negligible.

4.3.3 Communication Model

There are two main parallelism modes for distributed train-
ing [23]: model parallelism and data parallelism. The two
parallelism modes exhibit distinct patterns. For model paral-
lelism, each device requires results from other devices based
on model partitioning. In contrast, data parallelism involves
independent computation on each device, and therefore no
communication is required during the computation stage.

For model parallelism, we directly collect the communi-
cation traffic during the computation stage in multi-GPU
training and simulate it as the communication traffic in multi-
device training on Al accelerators. We also measure the com-
munication bandwidth among devices to calculate the data
transfer time during computation. The computation time can
be achieved as follows:

L(d+1)0() Traf ficld,d +1)
Zevi(-e d) = E(i,j 7 3
e () ,':;d) ,;1 @)+ Bandwidth(d,d + 1) 3)

where layer L(d) to layer L(d + 1) are part of the model as-
signed to device d by model partition graph, Traf fic(d,d+1)
is the collected communication traffic from device d to de-
vice d + 1 in multi-GPU training, and Bandwidth(d,d +1) is
the measured bandwidth between device d and device d + 1.
The final computation time is the longest path in the model
partitioning graph.

Once the computation stage is complete, the device must
communicate its local gradient to the global parameters.
This communication can be accomplished using either syn-
chronous [34] or asynchronous [117] learning algorithms. In
synchronous learning, every device must wait for all devices
to transmit all parameters before the next training iteration. In
asynchronous learning, each device is allowed to transmit its
gradients once they are calculated, enabling the global model
to be updated without waiting for other devices. Therefore, the
time required for the communication phase can be modeled
as follows:

) Size(Gradients in Device d)
Taevice (d) + Bandwidth(Device d.Server) ’

Tyevice (d) + All_Reduce(Gradients), if Sync. learning

if Async. learning

Teomm(d) = { “)

where Bandwidth(Device d,Server) is the measured
bandwidth between device d and parameter server,
Size(Gradients in Device d) is the size of gradients on
device d, and All_Reduce(Gradients) is the time required to
execution the all-reduce operation.

Finally, we also include data compression techniques [21,
59] that are used to decrease communication traffic in the
communication model. Two primary compression methods
are quantization [42], which represents data using fewer bits,
and sparsification [121], which removes the number of zero
elements. Our model takes this communication optimization
into account, and the new communication traffic is determined
as Size'(Gradients) = Size(Compress(Gradients)).
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4.3.4 Overlap Removal

Two overlaps are considered in the performance model.
Data Loading/Pre-processing and Computation Overlap:
The execution pipelines of GPU training and Al accelerator
training differ. For GPU training, data loading can be per-
formed simultaneously with pre-processing and other stages,
thereby hiding the overhead of data loading. Conversely, for
Al accelerator training, other stages execute simultaneously
with data loading and pre-processing stages.

Computation and Communication Overlap: For PS-based
distributed DNN training, the computation stage and com-
munication stage can be overlapped [105, 113]. The com-
putation/communication overlap mechanism uses the stale-
synchronous parallel synchronization model to overlap the
communication of previous iterations with the computation
of the current iteration, resulting in the final execution time
being the greater of the two stages.

5 Implementation Details

5.1 Memory Model

Formally, the computation graph of a DL model is represented
as a directed acyclic graph (DAG), where DAG = (7, f)
= {uy,...,u, } is the vertex set and each vertex u; is an

operator. E = {(u;,u;),...} is the set of directed edges. A
directed edge (u;,u;) delivers an output tensor of u; to u; as
input and specifies the dependency between two operators.
The DAG is usually a static computation graph or can be
converted from a dynamic computation graph.

LetS=<uj,...,u, > be atopological ordering of the opera-
tors in DAG that satisfies the condition { < u;,u; >¢ E | i > j}.
We refer to S as the operator schedule, which represents the
actual execution order of the operators. The schedule S can
be obtained in GPU training as a reference.

Given a batch size (BS) from the candidate set, our mem-
ory model traverses the computation graph DAG sequentially
according to the schedule S, estimating the memory consump-
tion of the input/output, weights, gradients, and intermediate
tensors used by the math library of each operator. These ten-
sors are then mapped to on-chip and off-chip memory, and
the total memory consumption of each type of memory is cal-
culated as Esto,—chip(BS) and Est,rr—chip(BS), respectively.

Finally, we choose the largest batch size that satisfies the
hardware limits (Realy,—cpip and Real,fr—cpip) by comparing
the estimated memory consumption with the following objec-
tive function (Wyyepip is usually set to 10 in our modeling):

min - Wonchip (Realon—chip — Eston-—chip (BS))* + (Realysy-ciip — Estogs-aiip (BS))?

s.t. Realon—chip > ESton—chip(BS)

Realyy—chip > Estoff—chip (BS)
BS € Candidate set for batch size

®)

In other words, we seek to find a batch size BS that mini-
mizes the objective function under hardware and candidate
constraints. This ensures that the chosen batch size is feasible
and that as much on-chip memory as possible can be utilized.

5.2 Micro-benchmarks, Roofline Models, and
Communication Primitives

Micro-benchmarks In this study, we define DL micro-
benchmarks as the fundamental building blocks of the com-
putation model 4.3.2. We focus on the most commonly used
kernels that underlie the majority of DL workloads, including
generic matrix multiplication (GEMM), convolution, ReL.U,
LSTM, and transformer operators. These kernels are designed
to accept any input shapes and data types, including single-
precision, half-precision formats, and FPS8, and are imple-
mented on each Al accelerator. Table 3 selectively presents
the performance of two kernels on four Al accelerators and
compares them with the NVIDIA A100 GPU. The GEMM
kernel involves half-precision multiplication of two square
matrices, each of these has a width of 1k. ReLU is applied
to 3-D tensors with a batch size of 128 and dimensions of
128 x 128 for the other two axes.

Roofline Models In addition, a cache-aware roofline model
for each Al accelerator is built by collecting peak performance
and memory bandwidth of on-chip and off-chip memory.

Figure 5 displays cache-aware roofline models constructed

for four Al accelerators. The x-axis represents the arithmetic
intensity of operations, and the y-axis represents the achiev-
able performance. The cache-aware roofline model allows
us to distinguish where data reside and predict performance
with different rooflines. Moreover, Figure 5 depicts three un-
common operators (Batch Normalization, Linear Transfor-
mation, and MaxPooling2D) that are not included in micro-
benchmarks. Each operator is tested in two precisions (single
precision and half precision). Thus, the predicted performance
of each operator is the intersection point of the vertical line
and the corresponding roofline.
Communication Primitives To investigate the communica-
tion cost, we collect the transmission bandwidth between de-
vices in each system. Additionally, Table 3 also demonstrates
a communication primitive (all-reduce) across all systems.
All-reduce exchanges 240MB of data on each device and
calculates its communication bandwidth.

Table 3: Performance results of two DNN operators and one

communication primitive.
AI Accelerators Kernel | TFLOPS | Kernel | TFLOPS Kernel GB/s

NVIDIA A100 291.83 0.62 100.61
SambaNova SN30 272.37 7.43 64.17
Graphcore Bow-IPU | GEMM 295.32 ReLU 5.59 All-reduce | 103.62
Cerebras CS-2 307.53 5.87 134.75
Habana Gaudi2 430.58 227 85.23
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Figure 5: Cache-aware roofline models built on four AI accelerators, and three uncommon operators using single- and half-

precision are depicted.

6 Evaluation

6.1 Setup

Platforms and Formats: We conduct experiments on four
Al accelerators. (1) SambaNova DataScale SN30-8R rack
system, which consists of two DataScale SN30-8 nodes in-
terconnected with an InfiniBand-based fabric. Each SN30-8
node includes eight SambaNova Cardinal SN30 Reconfig-
urable Dataflow Units (RDUSs) and a host module with 1.5TB
of memory and 128 cores. (2) Graphcore Bow Pod16 sys-
tem is powered by four inter-connected Bow-2000s. Each
Bow-2000 features four Graphcore Bow-IPU (Intelligence
Processing Unit) processors. (3) Cerebras CS-2 cluster is
powered by a wafer-scale engine. Each wafer-scale engine
features eight worker nodes. (4) Habana Gaudi2 system con-
sists of 16 Gaudi2 accelerators. The Gaudi2 architecture is
heterogeneous, with two kinds of engines: Matrix Multipli-
cation Engines (MMESs) and a fully programmable Tensor
Processor Core (TPC) cluster.

Models and Dataset: We evaluate Centimani on six differ-
ent DNN models using a public dataset, with the specifics
of each model and dataset provided in Table 4. ResNet-
50 v1.5 model [55] is an escalated version of the original
ResNet-50 model. U-Net [97] is a convolutional neural net-
work used for biomedical image segmentation. CANDLE-
UNO [107] is a pharmacological model that aims to enable
precision medicine for cancer treatment. Bert-large [38] is
a transformer-based model that is pretrained on a large En-
glish language corpus dataset in a semi-supervised manner.
BraggNN [72] is a scientific model designed for High Energy
X-ray Diffraction Microscopy (HEDM) modeling. OpenAl
GPT-2 1.5B [86] is the 1.5B parameters version of GPT-2 and
a transformer-based language model created and released by
OpenAl

Implementation and Baselines: This work is implemented

Table 4: Evaluated models and dataset

Model | ResNet-50 v1.5 [55] | U-Net [97] CANDLE-UNO [107]
Dataset | ImageNet LGG Segmentation | CCLE

Model | Bert-large [38] BraggNN [72] OpenAl GPT-2 1.5B [86]
Dataset | Wikipedia Frames-exp4train OpenWebText2

based on PyTorch 2.12.1. We implement a memory model
and decoupled performance models as extended modules in
PyTorch. Micro-benchmarks utilize a combination of PyTorch
implementations and vendor-provided benchmarks.

We compare Centimani with three solutions:
@ Roofline model [106], which predicts the achievable per-
formance relative to hardware limits and application charac-
teristics.
® Hardware utilization-based prediction [18], which uses
hardware utilization of GPU training and the theoretical per-
formance of Al accelerators to predict execution time.
® Similarity-based benchmarking [75, 104], which identifies
the most similar model to the target model in the existing
benchmarks and uses its performance as the predicted perfor-
mance of the target model.

6.2 Prediction Accuracy
6.2.1 Single-device Training

Performance Prediction: Figure 6 presents the prediction ac-
curacy of Centimani for single-device training across four dif-
ferent accelerators. Each subfigure compares the predictions
of Centimani against three other solutions for all evaluated
DNN models.

Centimani achieves an average prediction accuracy of
93.1% (with a range of 98.4% to 82.6%) across all Al accel-
erators and DNN models, while the roofline model, hardware
utilization-based prediction, and similarity-based benchmark-
ing achieve an average prediction accuracy of 28.4%, 37.8%,
and 57.2%, respectively. We make the following observations:
(1) By leveraging model topology and training stages, Centi-
mani provides a more accurate performance prediction than
application-agnostic solutions such as the roofline model and
hardware utilization-based prediction. (2) Centimani outper-
forms similarity-based benchmarking on U-Net, CANDLE-
UNO, BraggNN, and OpenAl GPT-2 1.5B models, which
are not included in the benchmark set provided by vendors.
Similarity-based benchmarking leads to low prediction accu-
racy due to the significant differences between the models
evaluated and the benchmark set. (3) Centimani performs
much better than the prediction based on hardware utiliza-
tion in Graphcore Bow-IPU, because it has distinct hardware
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Figure 6: Prediction accuracy of Centimani for single-device training on six DNN models across four Al accelerators.

[ Measured NVIDIA A100 B8R Predicted SambaNova SN30 E=5 Predicted Graphcore Bow-1PU [IIIT] Predicted Cerebras CS-2 B8 Predicted Habana Gaudi 2

design and software optimization, resulting in completely dif-
ferent hardware utilization. (4) For models with large memory
footprints, such as CANDLE-UNO and BraggNN, Centimani
achieves better accuracy on SambaNova SN30 because the ! (2) Comparison of throughpat across Al aceelerglore, "
memory model accurately predicts memory consumption and
selects the most appropriate batch size.
Accelerator Selection: The primary use case of Centimani
is to assist deep learning users in making informed decisions
when selecting Al accelerators. In the following two scenar-
ios, we demonstrate how Centimani leverages the predicted
performance, enabling users to make the correct selection
based on their specific training objectives.

One scenario that deep learning users may encounter is

-

Normalized

ResNet50 v1.5 Bert-large OpenAl GPT-2 1.5B
(b) Comparison of price-to-performance ratio across Al accelerators '

Figure 7: Throughput and price-performance ratio of training
three DNN models on different Al accelerators, normalized
to the measurement on NVIDIA A100 GPU.

deciding whether it is worthwhile to port their DNN models displays Centimani’s predictions on the price-performance ra-
to other Al accelerators or determining which Al accelerator tio, all normalized to the price-performance ratio of NVIDIA
can provi(i.e the best training tl}rqughput. Figure 7(a) presents A100 GPU. In particular, Graphcore Bow-IPU offers a signif-
Centimani’s throughput predictions for three DNN models: icant improvement in the price-performance ratio, owing to

ResNet-50 v1.5, Bert-large, and OpenAI GPT-2 1.5B, on four its low rental cost and excellent training throughput.
Al accelerators, normalized to the measured throughput on
NVIDIA A100 GPU. Notably, both Graphcore Bow-IPU,
Cerebras CS-2, and Habana Gaudi2 always perform better

than NVIDIA A100 GPU with an average speedup of 1.54x, We also evaluated the scaling performance by predicting the

6.2.2 Multiple-device Training

1.41x and 1.73 x, respectively. In contrast, SambaNova SN30 training throughput of the U-Net model on two, four, and
only provides a marginal throughput improvement with an eight devices for each Al accelerator. To model the amount
average speedup of 1.22x. Specifically, Habana Gaudi2 out- of communication of each device, we use the communication
performs the other accelerators on ResNet-50 v1.5 model model in Centimani, and the communication time is simulated
composed of dense matrix multiplication, while Graphcore using the communication primitive (all-reduce).

Bow-IPU achieves superior performance on Bert-large and
OpenAl GPT-2 1.5B models, which rely on transformer-based
computations.

Another scenario for deep learning users is determining
which accelerator offers the best price-performance ratio. This
ratio is defined as the throughput divided by the hourly cost of
renting the hardware. To calculate the price-to-performance
ratio, we collect the hourly rental costs of a single device for
each Al accelerator from their cloud platforms [3,5,9, 12, 16].
The hourly rental costs' are 2.87/device/hr for NVIDIA A100
GPU, 1.74/device/hr for SambaNova SN30, 1.21/device/hr for
Graphcore Bow-IPU, 2.89/worker/hr for Cerebras CS-2, and
1.64/device/hr for Habana Gaudi2, respectively. Figure 7(b)

Figure 8 displays the results normalized to the throughput
of single-device training. As the number of devices increases,
all accelerators achieve higher training throughput. Cerebras
CS-2 system has slightly stronger scalability than other Al
accelerator systems, owing to its higher communication band-
width between devices. Overall, our model achieves an av-
erage prediction accuracy of 90.4% for training on multiple
devices.

Summary. Centimani provides highly accurate predictions
with an average error of 6.9% and 9.6% for single-training and
multiple-device training, respectively. It is noteworthy that
even in cases where there are prediction errors, Centimani still
correctly predicts the relative ordering of all Al accelerators

"Please note that, over time, the actual price may be different from the in terms of their throughput and price-performance ratio. This

price published on the websites. capability empowers users to make informed decisions based
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Figure 8: Normalized speedups of training U-Net model on
two, four, and eight devices for three accelerators.

on their specific needs for cost, pure throughput, or scalability.

6.3 Breakdown of Performance Prediction
6.3.1 Memory Consumption Prediction

We investigate the impact of memory consumption prediction
and batch size selection on Centimani’s end-to-end predic-
tion. In our evaluation, Centimani selects the optimal batch
size based on memory consumption prediction and hardware
limits and then feeds it as input to the decoupled performance
models to predict training throughput. In contrast, the ground
truth batch sizes are manually selected by enumeration.

Table 5 provides a comparison of the batch sizes selected
by Centimani and those manually selected on four Al accel-
erators. Our results demonstrate that Centimani’s memory
consumption prediction can accurately determine the appro-
priate batch sizes for different models, achieving a matching
accuracy of %. Specifically, for models such as ResNet-50
v1.5 and BraggNN, where Centimani predicts smaller batch
sizes than those manually selected, the impact on training
throughput is minimal, with performance differences of no
more than 4.6%. This finding underscores the strength of
Centimani’s batch size selection: It can automatically predict
appropriate batch sizes for most cases and prevent Out-Of-
Memory (OOM) errors caused by overly large batch sizes.

Table 5: A comparison between predicted batch sizes and
manually selected batch sizes.

ResNet-50 v1.5 U-Net CANDLE UNO
Selected | Predicted | Selected | Predicted | Selected | Predicted
SambaNova SN30 16 16 2 2 8 8
Graphcore Bow-IPU 1024 512 4 4 512 512
Cerebras CS-2 64 64 2 2 256 256
Habana Gaudi2 64 64 2 2 230 230
BERT-large BraggNN OpenAl GPT-2 1.5B
Selected | Predicted | Selected | Predicted | Selected | Predicted
SambaNova SN30 256 256 1024 512 16 16
Graphcore Bow-IPU 16 16 2048 1024 32 32
Cerebras CS-2 16 16 1640 1560 16 16
Habana Gaudi2 16 16 1440 1240 2 2

6.3.2 Computation Prediction

One of the most important aspects in improving prediction
accuracy is to accurately predict the execution time of each
operator involved in DNN training. In our tests, for the com-
putation model 4.3.2, common operators, which accounted
for 58% of all operators, can be predicted by running micro-
benchmarks directly, while uncommon operators, which ac-
counted for 42% of all operators, use the predefined cache-
aware roofline models. In terms of contribution to the final
prediction result, common operators predict 44.6% of the to-
tal training time while uncommon operators predict 25.7%,
which also shows that these two types of predictions are in-
dispensable to the final result.

6.3.3 Communication Prediction

To evaluate the communication capabilities of various acceler-
ators, we conduct a communication primitive using all-reduce
operation to measure the communication bandwidth and time
incurred across multiple devices. Specifically, we collected a
typical communication pattern from U-Net model consisting
of 16,777,216 floating-point numbers in single precision and
ran the communication primitive on eight devices to obtain
the communication bandwidths. Our results show that the
average communication bandwidth of SambaNova SN30-8R
system, Graphcore Bow Pod16 system, Cerebras CS-2 sys-
tem, and Habana Gaudi2 system is 10.24 GB/s, 54.33 GB/s,
352.37 GB/s, and 62.14 GB/s, respectively.

6.4 Overhead of Performance Modeling

We study the overhead of Centimani. The major overhead
includes (1) measuring memory capacity, memory bandwidth,
transmission bandwidth between CPU and accelerators, and
communication bandwidth between multiple devices, (2) con-
structing microbenchmarks and roofline model for each accel-
erator, (3) collecting memory consumption for math library,
and (4) traversing computation graph to make memory con-
sumption and performance prediction. It should be noted that
the first three components of this overhead occur only once
for each accelerator, while the fourth component occurs once
for each DNN model. Therefore, the overhead of Centimani
is significantly lower than the overhead of porting the DNN
model to all accelerators.

7 Related Work

DNN Performance Models for Different Hardware. Pre-
vious research has investigated performance models for
DNN training on various hardware, including GPUs [66,
73,95,100,109,111,112,120], CPUs [19,20, 110], and FP-
GAs [29,49,52,118].
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Geoffrey et al. [45] proposed a runtime-based computa-
tional performance predictor named Habitat, which helps
users make informed and cost-efficient GPU selections for
DNN training. However, Habitat uses the performance of
one typical GPU to derive the performance of other GPUs,
this approach is not suitable for Al accelerators that are very
different from GPUs and each other.

To predict the execution time of DNN models, Ruohan et

al. [108] proposed a machine learning-based solution that cap-
tures low-level hardware-dependent information. However,
this approach relies on having sufficient training data, which
is not always available for Al accelerators. In contrast, Xiao-
fan et al. [119] presented an FPGA-based DNN accelerator
model that imitates micro-architecture and pipeline structure
to discover the drawbacks of existing designs. Nevertheless,
this fine-grained performance modeling lacks generality and
has substantial overhead.
DNN Benchmark. A significant body of prior work has fo-
cused on benchmarks for DNN training [44,75, 104], provid-
ing valuable insights into DNN training performance. How-
ever, these studies mainly focus on comparing different algo-
rithms and hardware, rather than performance prediction. In
contrast, the microbenchmarks used by Centimani are primar-
ily designed to predict the execution time of each operation
in a DNN model. Besides, a cache-aware roofline model is
introduced to overcome the shortcomings of the microbench-
marks that cannot cover all operations. By doing so, Centi-
mani provides better performance prediction and assists users
in making informed hardware selections.

8 Conclusions

We introduce Centimani, a novel performance predictor that
assists deep learning researchers and practitioners in select-
ing an Al accelerator for training their DNN models. The
primary idea behind Centimani is to combine experimental
and analytical approaches to predict the execution time of
DNN training on each Al accelerator. We evaluate Centimani
with six typical DNN models on three Al accelerators and
find that it makes execution time predictions with an average
accuracy of 93.1% and 90.4% for single-device training and
multiple-device training, respectively. Finally, we demonstrate
two decision metrics (throughput and price-performance ra-
tio), and Centimani correctly guides which accelerator should
be chosen. After that, the introduction of new GPUs and Al
accelerators is our future plan.
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