O

proceedings

Efficient Discovery of Temporal Inclusion Dependencies
in Wikipedia Tables

Leon Bornemann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
leon.bornemann@hpi.de

Fatemeh Nargesian
University of Rochester
Rochester, New York, USA
fnargesian@rochester.edu

Tobias Bleifuf3
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
tobias.bleifuss@hpi.de

Felix Naumann
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Dmitri V. Kalashnikov
Unaffiliated
USA
dmitri.vk@acm.org

Divesh Srivastava
AT&T Chief Data Office
USA
divesh@research.att.com

felix.naumann@hpi.de

ABSTRACT

Inclusion dependencies (INDs) demand that the value set that
appears in one attribute is contained in the value set that appears
in a different attribute. The automatic discovery of INDs in static
data is a well-researched topic with many use-cases, such as
foreign key discovery. However, data is usually not static, in fact
data changes frequently, especially on Wikipedia. The availability
of change data allows us to take a fresh look at the discovery of
INDs in Wikipedia tables, by taking into account not only the
current state of a dataset, but also its past versions.

In this work, we formally define the concept of temporal INDs
(tINDs) and introduce several relaxations, allowing for the discov-
ery of tINDs in dirty data. We present an efficient index structure
for unary tIND search that returns all valid tINDs for a user query
in 63 milliseconds on average, allowing users to interactively ex-
plore tIND relationships in Wikipedia tables. Furthermore, we
can use our index to discover the set of all valid tINDs between
1.3 million attributes from Wikipedia tables in less than three
hours. Finally, we show empirically, that tIND discovery can help
to find genuine INDs much more reliably than IND discovery on
static data.

1 INTRODUCTION

An inclusion dependency is a statement about the relationship
between two attributes, usually of different relations. Given two
relation instances Ry and R; in a relational database, a traditional
(unary) inclusion dependency (IND) R; [A] C Rz [B] states that
the set of tuples in the projection of R; on attribute A is a subset
of the set of tuples in the projection of Ry on attribute B. The
extension to n-ary INDs simply extends the projection to lists of
attributes. Typically, Ry [A] is called the left-hand-side and Rz [B]
the right-hand-side of the IND.

Knowledge about INDs in a dataset is useful, because INDs
are a prerequisite for foreign key dependencies, which are instru-
mental in understanding and querying databases. Furthermore,
INDs can be of use for data integration [12] or query optimiza-
tion [15]. Thus, their automatic discovery is a well-known prob-
lem. The many different solution approaches need to deal with

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

399

(A) Pokémon (Video Game Series) (B) List of video games developed by Game Freak

Game Year Ranking
Red and Blue 1996 88%
Gold and Silver 1999 90%
Black and White 2010 86%

Publisher
Nintendo
Nintendo
Nintendo

Year Titls

1991 Yoshi

1996 Red and Blue
1999 Gold and Silver

1999 Click Medic Sony Music (C) List of Pokémon generations
c 2010 Black and White Nintendo # Region Titles
| Kanto |Red and Blue
t Il Johto  [Gold and Silver
2
Title Role Title Year City Game Format

Yoshi Music
Red and Blue |Programmer
Gold and Silver |Sub director

Wario & Mario Map designer Black and White
Red and Blue |Programmer

Gold and Silver Programmer

2011 San Diego

(F) Pokémon World Championship Locations

(D) Junichi Masuda (Works) (E) Shigeki Morimoto (Works)

Figure 1: INDs found in tables on Wikipedia on the topic
of Pokémon.

a search space, that grows quadratically for unary INDs and ex-
ponentially for n-ary INDs in the number of attributes that are
considered [10].

Several existing approaches are able to detect unary and n-ary
INDs in relational databases [1]. Furthermore, the detection of
INDs in other data sources, such as tables on Wikipedia [22] or
open government data [25] has been studied. In data sources
like Wikipedia, IND detection is particularly challenging due
to the vast number of tables. Yet, it is also particularly useful,
because in contrast to relational databases, users are unlikely to
know on which pages relevant information about a particular
entity is located. For example, a quick search reveals that six
different relational tables about the Pokémon video games are
distributed across six different Wikipedia pages. Figure 1 shows
these tables and how they are linked by INDs. To discover such
linkings between tables, we address the following IND search
scenario:

Given a table, such as Table (A) from Figure 1, a user interac-
tively explores the data and wants to expand the information for
the set of entities in attribute Q, for example Game. This triggers
the search for INDs in the dataset, where Q is the left-hand, in-
cluded side. The results indicate which other tables may hold the
information that they require. In the above example, this would
be Tables B, D and E. The results should arrive rapidly, so that
users do not have to wait to continue their exploration process.
Given an efficient solution to the IND search problem, it is easy
to see how the user experience in Wikipedia could be enhanced
by providing links to the connected tables.

10.48786/edbt.2024.35


https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.35

While there has been prior work on the discovery of inclusion
dependencies in Wikipedia tables by Tschirschnitz et al. [22],
that work suffers from two drawbacks. First, it assumes to be
given a static snapshot of data, thus implicitly assuming that the
data does not change, which is not the case in practice. Second,
it yields many INDs that are not genuine, meaning they only
hold by chance and do not express real-world constraints. Our
experiments revealed that even on a prefiltered set of attributes,
only 11% of the INDs found by Tschirschnitz et al. are genuine.

Our work addresses these shortcomings by discovering tem-
poral inclusion dependencies (tINDs) in Wikipedia tables. We for-
mally define different variants of tINDs in Section 3 but give a
brief overview here. Intuitively, a (strict) temporal unary inclu-
sion dependency between two attributes is valid if the inclusion
is satisfied across all of the observed time. Because there are
specific data quality issues that arise when analyzing temporal
data, we also introduce several relaxed variants to tINDs. The
introduced relaxations allow for briefly occurring errors in the
data as well as temporal delays between updates. Naturally, if an
IND is genuine, it can be expected to hold not just at the current
snapshot, but also for most of the prior time. Thus, it is unsur-
prising that our experiments also show that (relaxed) tINDs can
help to find genuine INDs with significantly higher precision.
Like prior work [22], we focus explicitly on tables in Wikipedia,
as our use-case and our approach is tailored to this setting: it can
handle many tables containing only a few rows as opposed to a
few tables containing many rows (like in database systems).

Our contributions are as follows:

o Definitions of several variants of relaxed temporal inclu-
sion dependencies (tINDs).

e A novel index structure and discovery algorithm to effi-
ciently search for valid relaxed tINDs for a given attribute
(the search query).

e An experimental evaluation of our approach on tables
extracted from Wikipedia containing 1.3 million attributes.
Our approach returns results for a single search query in
63 milliseconds on average, and is able to discover all
tINDs in the dataset in less than 3 hours.

e An evaluation on a manually annotated set of 900 discov-
ered INDs, showing that tIND discovery can find genuine
INDs with a precision of up to 50%, whereas static IND
discovery only achieves 11% precision.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work, and Section 3 formally introduces differ-
ent variants of (relaxed) temporal INDs. Subsequently, Section 4
presents our algorithm for efficient discovery of relaxed temporal
INDs. Finally, we evaluate our methods in Section 5 and conclude
in Section 6.

2 RELATED WORK

Because the discovery of inclusion dependencies is a well es-
tablished research area with broad applications, there are many
related approaches that focus on different variants of the problem.
There are several approaches that solve the classical problem of
n-ary IND discovery in relational databases [4, 9, 19]. While most
approaches are run on a single machine, Kruse et al. present a
distributed algorithm to solve IND discovery [18]. There is also
an approximate IND discovery approach called FAIDA which
trades off correctness against speed [17]. The efficiency of IND
discovery algorithms in relational databases has been experimen-
tally compared in a study by Diirsch et al. [10]. All of the above

400

mentioned approaches consider only static data and are thus
related, but not directly applicable to our scenario.

In the context of temporal databases, the temporal exten-
sion of dependencies, such as functional dependencies [11] or
INDs [7, 13] has been conceptually studied. However, their exis-
tance is assumed to be known and their discovery is not discussed.
Shaabani et al. consider the problem of incrementally discovering
and updating INDs [20, 21] as the data evolves. While the notion
of dynamic data is particularly related to our work, Shaabani et
al. only maintain INDs that are valid at the current state of the
data and do not consider past data. Furthermore, the approaches
by Shaabani et al. only discover strict INDs and thus do not allow
any relaxation.

In static data, several relaxations to INDs have been introduced:
Conditional INDs are INDs that do not need to hold for all tuples,
but only for those that fulfill a certain predicate. Conditional
INDs have been studied in both relational databases [3], as well
as RDF data [16]. Partial INDs relax the degree to which the left-
hand-side needs to be contained in the right-hand side. Zhu et al.
refer to this problem as domain search and present an approach
to discover unary partial INDs based on a threshold, indicating
the degree of this relaxation, in open-government data [25]. Later,
various solutions and index structures were proposed for solving
the top-k version of this discovery problem [23, 24]. A recently
suggested relaxation are similarity INDs (sINDs), which require
that every value in the left-hand side needs a corresponding value
on the right-hand side that it is similar enough to, according to a
distance function. Kaminsky et al. present SAWFISH as a solution
to discover sINDs in relational databases [14].

The most closely related work is MANY [22], which finds
unary inclusion dependencies in tables on Wikipedia. Because
of the focus on tables in Wikipedia, MANY is able to handle
a particularly large set of attributes. To compactly represent
all attributes and efficiently test for subset relationships, MANY
employs a matrix of Bloom filters. While we face a similar number
of attributes, MANY cannot be used out of the box because it does
not consider temporal data and does not allow for any relaxation.
We do however reuse some of the ideas of MANY, which is why
we explain its core functionality in more detail in Section 4.1.

3 MODELLING TEMPORAL INCLUSION
DEPENDENCIES

We first introduce the notation used in this paper to define tem-
poral inclusion dependencies, after which we formally introduce
the problem of discovering them efficiently.

3.1 Preliminaries and notation

We denote the input set of attributes of a database among which
we want to discover temporal INDs as O and use capital let-
ters, such as A, B, and Q to denote individual attributes of that
set. We model time as a sequence of equidistant timestamps
T = [t1, 12, ..., tp]. For brevity of notation, we also refer to times-
tamps using their index and use integers to specify durations.
Additionally, we overload the interval notation of an interval
I = [s, e] to also denote the set of all timestamps in that interval:
I ={ts, ..., te}. For convenience, we denote I.s = s and I.e = e to
refer to start and end times of an interval.

Given a timestamp t, we denote the set of values contained in
attribute A at that timestamp ¢t by A[t]. If there is no change to
attribute A at timestamp ¢, then A[t] = A[¢ — 1]. If attribute A
is not observable at timestamp ¢ (for example because A or its



Notation Meaning

D entire set of attributes

A,B,Q attributes € D

T = [t1,...tn] | entire observable time period

I time interval

Is/le start / end time of interval I

Alt] values of A at timestamp ¢

AlI] values of A in interval I

Va timestamps where A changed (versions of A)

£ maximal violation of a valid tIND (in terms of
timestamps or summed weight)

1 maximum allowed temporal shift

w(t) weight function for timestamps

a base for an exponential decay function (@ €
[0,1])

Table 1: Key notations used in this paper

relation was deleted), we define A[t] = 0 (empty set). Whenever
there is a change to A at a timestamp ¢ (meaning A[t] # A[t—1]),
then we say that there is a new version of A at timestamp t. We
define versions of attribute A as V4 = {t|t € {1,...,n} A A[t] #
A[t — 1]} U {0} to denote all timestamps at which a new version
of A appears. Given a time interval I = [s, e], we denote A[I] =
Ute[s,e] Alt]. The most important of the above notations are
summarized in Table 1.

3.2 Initial definitions

We first define a static inclusion dependency (IND) between two
attributes A and B:

Definition 3.1 (static IND). Given two attributes A and B and
a timestamp ¢, we say that A and B are in a static inclusion
dependency (IND) at timestamp ¢ if A[t] C B[¢].

A static IND is a traditional unary inclusion dependency on
static data, as described in related work [1]. This can be extended
to include the version history of attributes in a straightforward
manner:

Definition 3.2 (strict temporal IND). Given two attributes A
and B, we say that A and B are in a strict temporal inclusion
dependency (strict tIND) if Vt € 7 A[t] C B(t], i.e., the inclusion
dependency is valid for the entire observable time period.

Definition 3.2 is equivalent to that of temporal INDs as defined
in literature on temporal databases, with the exception that Defi-
nition 3.2 consider only unary temporal INDs, whereas related
work also considers n-ary temporal INDs [7]. An example of a
strict tIND is visualized in Figure 2 (A). Inclusion must hold at all
timestamps for a strict tIND to be valid. While some strict tINDs
may be found in very well-behaved data, such as in a relational
DBMS, it is unrealistic to expect that INDs will never be violated
in practice, especially in data sources like Wikipedia where up-
dates to different tables are not synchronized and do not underly
transactional semantics. To prevent brief inconsistencies from
invalidating INDs, the next section introduces relaxed variants
of strict tINDs.

3.3 Relaxed temporal inclusion dependencies

There are two main types of data quality issues that we observed
in Wikipedia and consider in this work: erroneous updates and

401

(A) strict tiNDQ € A (B) e-relaxed tIND Q S, A

GER | | POL | GER GER | ITA | GER
Q .. POL Q ... POL
e=1/3
A .. GER  POL ' GER A . GER  POL 'GER
POL POL
. I I " . T T T
Time 1 2 3 Time 1 2 3

(C) s,6-relaxed tINDQ S ° A (D) wes-tINDQ S, °A

GER|| ITA | |GER o [FRA|[TA | [GER
Q.. ol POL
e=1/3 S
A GER PoL GER| 7' | o [GER POL GER| w(n=tn
Time 1 % & .. Time 1 2 3

w) 13 23 1
Figure 2: Different tIND variants. For timestamp ¢, the cor-
responding value sets Q[¢] and A[¢] are shown in the re-

spective table columns above the timestamp.

temporal delays. Erroneous updates, such as the insertion of
incorrect values into the left-hand side attribute, are usually
fixed soon after their occurrence and occur very frequently on
Wikipedia. For example, one can easily imagine that in Table A
from Figure 1 a user mistakenly adds the Pokémon Trading Card
Game!, which is a spin-off title and not part of the series. Such
data quality issues can be accounted for by allowing a candidate
IND to be violated in a fraction of the timestamps e:

Definition 3.3 (e-relaxed tIND). Given two attributes A and B,
we say that A and B are in an ¢-relaxed tIND, denoted as A C; B,
if the share of timestamps ¢ where A is not contained in B is at
most ¢:

[{r € T |Alt] £ Blt]}| _
7]

An example of an e-relaxed tIND is visualized in Figure 2 (B).
Even though Q[2] & A[2], the tIND is still valid, because ¢ = 1/3
allows violation in a third of the timestamps.

The second issue that frequently occurs in temporal data is
that of temporal delays. As an example, consider Tables A, D
and E from Figure 1. If a new Pokémon game is announced it
is reasonable to assume that it will be quickly added to Table A.
However, it may take a few days or even weeks until it is clarified
that both Junichi Masuda and Shigeki Morimoto have once again
contributed to the new game, thus delaying the updates of Tables
D and E and the restoration of the IND. In general, it is unrealistic
to expect the data in Wikipedia to change perfectly in sync, as
different pages are maintained by different users who may work
in different intervals. To define a second relaxation that allows for
such shifts in time, we first define the notion of §-containment,
which specifies a time-interval for the referenced column:

1

Definition 3.4 (§-containment). Given two attributes A and B
and a timestamp ¢, we say that A[t] is §-contained in B, denoted
as A[t] <% B, if A[t] € B[I], where I = [t — &, + 5].

With the help of §-containment, we define relaxed temporal
inclusion dependencies that also allow for temporal shifts:

Definition 3.5 (¢, §-relaxed tIND). Given two attributes A and
B, we say that A and B are in an ¢, §-relaxed tIND, denoted as

!https://en.wikipedia.org/wiki/PokAlmon_Trading_Card_Game_(video_game)



A C? B, if the share of timestamps t where A is not §-contained
in B is at most &:
[{te T |Al] ¢° BY| _ .
171 N

)

An example of an ¢, §-relaxed tIND is visualized in Figure 2 (C).
Even though Q[3] ¢ A[3] the tIND is not violated at timestamp 3,
because A contains the necessary missing value POL in the tem-
porally close position A[2].

There is another potential data quality issue that neither ¢
nor § addresses, which is the usage of different entity names for
the same entity (such as USA and United States) in different
attributes over long periods of time. Conceptually, this could be
solved analogously to the work by Zhu et al. [25], which solves
approximate set containment. This would add another param-
eter to specify the degree to which the left-hand side must be
contained in the right-hand side at every timestamp for the tIND
to hold. We refrain from doing so in this work for two reasons:
First, there is a preprocessing step that can greatly reduce these
issues in Wikipedia tables (see Section 5.1). Second, the main
use-case for tIND discovery is to find genuine INDs with higher
precision. While allowing approximate containment would boost
recall, precision would likely suffer, because many new false pos-
itives would be found. Thus, we leave this additional relaxation
to future work.

A remaining issue with Definitions 3.3 and 3.5 is that all times-
tamps are given equal importance. In practice, this approach is
frequently undesirable, as data in the distant past is often less
relevant than recent data. For example, one can observe that
earlier revisions of Shigeki Morimoto’s page (Table E in Figure 1)
were maintained infrequently, which may have lead to the IND
being invalid for longer periods of time in the past. To account
for such issues, we introduce the notion of a weighting-function
w: 7 — R that can assign individual weights to timestamps.
Intuitively, a higher weight for a timestamp ¢t means that ¢ is
more important, and a violation at ¢ contributes more towards
the overall violation budget (¢) than violations at timestamps
with lower weights. This leads to our most general definition of
temporal INDs:

Definition 3.6 (wed-tIND). Given two attributes A and B, we
say that A and B are in a w-weighted ¢, §-relaxed tIND (wed-
tIND), denoted as A Q?m B, if the sum of the weights of all
timestamps where A is not -contained in B is at most &:

Z w(t) < &, where Ty = {t € T | A[t] ¢° B}

teTy

®)

An example of a wed-tIND is visualized in Figure 2 (D). Even
though the wed-tIND is violated at two timestamps, their summed
weight remains at 1, which is still an allowed violation.

Note that for wed-tINDs, ¢ is now an absolute threshold, as op-
posed to a relative one, as in Definitions 3.3 and 3.5. In principle,
w can be set arbitrarily. However, depending on the granularity
at which timestamps are available, it may be computationally pro-
hibitive to compute w for every timestamp. Thus, we recommend
functions where the sum of weights in an interval 3, [; jy w(t)
can be computed efficiently (ideally in O(1)). Popular choices
for analysis of temporal or streaming data are exponential de-
cay functions [8] to model that data in the distant past is less
important than more recent data:

w(t;) = a* ,where a € (0,1] and n = |T|

©

402

For such functions, the sum of weights in an interval [, j) can
be computed in O(1) using the closed formula of the geometric

sum.
Z w(t) = Z a7t =

relij) telif)

Naturally, users could also use a linear decay function or even
a custom function that might disregard certain time periods en-
tirely, for example because of known data quality issues during
them. Thus the choice of w gives the users a lot of freedom on
how different timestamps or time periods should be weighted.

It is noteworthy that each of the above temporal IND vari-
ants are a generalization of their predecessors and conversely a
specialization of their successor. Specifically, ¢, §-relaxed tINDs
model wed-tINDs with the special case of w being a constant
function, that assigns a weight of % to every timestamp, while
e-relaxed tINDs additionally fix § = 0. Lastly, strict tINDs also
set ¢ = 0. This means that an approach that efficiently discov-
ers wed-tIND can also discover all other types of tINDs that we
defined above. Thus, the problems that we solve in this paper
are the search and discovery problems for wed-tIND as detailed
in Section 3.5. For the remainder of this paper, when we speak
of temporal inclusion dependencies (tINDs), we mean wed-tIND
unless stated otherwise. While it may be challenging for users to
set the three parameters to suit their use-case, we mitigate this
issue to some extent: first, we achieve very low latency for indi-
vidual user queries as shown in Section 5. Second, a single index
structure that we use to solve efficient tIND search can support
a wide range of parameter settings. Thus, users can quickly try
out many different parameter settings and converge to a useful
setting for a specific scenario.

a”(a’j - a’i)

l1-«a

®)

3.4 Theoretical properties of (relaxed) tINDs

While theoretical properties are not the focus of this paper, we
briefly discuss them in the following. The work by Bronselaer et
al. discusses reflexivity, projection, permutation and transitivity
of strict n-ary tINDs [7]. While permutation and projection are
irrelevant for unary tINDs as discussed in this paper, reflexiv-
ity and transitivity are directly applicable. It is easy to see that
reflexivity also holds for all variants of relaxed temporal INDs
defined above. However, standard transitivity no longer holds,
because the violations do not need to be temporally aligned. As
an example, consider again e-relaxed tIND in Figure 2 (B). Now
imagine a third attribute B with B! = {ITA}, B? = {POL} and
B3 = {GER, POL}. It is clear to see that Q Cij3Aand ACy3 B
holds, but Q /3 B does not hold, showing that relaxed tINDs
are not transitive.

3.5 tIND discovery: problem variants

The interactive discovery of tINDs comes in two variants. In the
first variant, which we call tIND search, we are searching for all
attributes that a query attribute is contained in:

Definition 3.7 (tIND search). Given a query attribute Q, a set
of attributes D, as well as the parameters ¢, § and w, (efficiently)
find all A € D where Q Qi,’g A.

The second variant is the reverse tIND search, where we search
for attributes that are contained in the query.

Definition 3.8 (reverse tIND search). Given a query attribute
Q, a set of attributes D, as well as the parameters ¢, § and w,
(efficiently) find all A € D where A Q‘a,,g Q.



Because the search for attributes in which a query attribute
is contained is more common in related work [25], it is also the
focus of our work. We will, however, show that our solution
can also solve reverse tIND search with only a slight increase in
runtime.

As the use-case for both tIND search variants is interactive
exploration by a user, results for both variants should be returned
within at most a few seconds. This is different for the all-pairs
variant of the problem, in which one is given a set of attributes D,
as well as the parameters ¢, § and w, and the task is to efficiently
find all tINDs A Q?M B with A, B € D. Naturally, the all-pairs
problem can be solved by iteratively querying all A € D against
D if an efficient solution to the search problem exists. Thus, we
present an efficient algorithm to solve tIND search and reverse
tIND search in the next section.

4 EFFICIENT SEARCH FOR TINDS

Our solution to efficiently search for tINDs based on a query
attribute Q uses multiple index structures that reuse existing
techniques from MANY [22], a solution to the static IND dis-
covery problem on many tables. In the following, we assume,
for simplicity, that &, w and § are known beforehand, and we
can build the index optimally for these parameters. This does
not need to be the case in practice: we can also build the index
without knowledge about what values queries will use for € or w.
However, we do need to know the maximum 6 that queries will
use. The runtime impact of using suboptimal values for ¢, w, and
& is shown to be low, as discussed in Section 5.3. We first briefly
summarize the core idea of the candidate search of MANY [22] in
Section 4.1. Subsequently, we present a solution for tIND search
in Sections 4.2 to 4.4. Finally, we describe how the existing in-
dices for tIND search can be used to also solve the reverse search
problem in Section 4.5.

4.1 Candidate search in MANY

MANY [22] solves the problem of candidate search by using a
hash function h that transforms the value set of an attribute A
into a Bloom filter [6] of size m. A Bloom filter is a bit vector
h(A) = [by,...bp], b;i € {0, 1}, designed for fast set membership
and containment tests. Its main feature is that the hash func-
tion preserves subset relationships: If A C B and the i-th bit in
h(A) is set, then the i-th bit must also be set in h(B). To find all
candidates for a particular query efficiently, MANY represents
the set of attributes D as a bit-matrix, where the i-th column
corresponds to the Bloom filter of the i-th attribute in D. The
example in Figure 3 illustrates the candidate search in this ma-
trix. To find all potential supersets of the query attribute Q, one
needs to consider only all rows where h(Q) = 1. The logical
conjunction (bitwise-and) of these rows then forms the set of
candidate columns that may contain Q. Note that one can also
use this matrix to find all subsets of a query attribute: To find all
attributes that are contained in a query attribute Q, one considers
all rows where h(Q) = 0. The logical conjunction of the inverse
(bitwise-negation) of these rows then forms the set of candidate
columns that may be contained by Q.

4.2 An index structure for tIND search

While the problem of finding tINDs is more complex than check-
ing for set containment, we can use the absence of certain set
containments to prune candidates. Thus, we re-use the basic idea
of MANY by creating several different value sets, for which we

403

Query Index
Q h(Q) A, A A A A,
red 1 =l1]11|1[1]0
blue —» 0 01 0 00 :‘I» &
black 1 = 1 0 1 0 1
0 01 0 11
g

17/0/ 1,00
Retained Candidates

Figure 3: Candidate search in MANY.

build Bloom filter matrices that we can then use to narrow down
the candidates for a query. We propose two pruning mechanisms:
required values and time slice indices.

4.2.1 Required values. If a value v appears in Q for a set of
timestamps whose weights sum up to more than ¢, then for the
tIND Q szw A to be valid, v needs to also be present in A. Let
the summed occurrence weight (wy) of a value v in attribute Q
be defined as the sum of the weights of timestamps in which v
occurs in Q:

wy(Q) = w(t) (©)
te{tlveQlz]}
Then the required values for an attribute Q are defined as:
RQe,w(Q) = {v|wo(Q) > €} (7)

It is clear to see that Q Q?M A implies RQ; +,(Q) € A[T]: for
all v € RQg,w(Q), there must be at least one version where A
contains v. Thus, for every attribute A € D, we build a Bloom
filter on A[7] and assemble them into a matrix Mg as detailed
in Section 4.1. For any query attribute Q, we can then query
RQ¢ 1 (Q) against this matrix and prune all candidates that do
not contain the required values. Note that Mg~ can be constructed
without knowledge about any of the three parameters w, ¢, or 8.

4.2.2 Time slice indices. While the use of the matrix My is
good for an initial pruning step, it checks subset containment
only across the entire time period without taking the time at
which values appear into account. To remedy this, we also index
multiple smaller time slices to check for containment in a more
localized fashion.

Given an interval I = [ts, te], let us for simplicity first assume
that for a query attribute Q there is only one distinct version
within an interval I, meaning Q[ts] = Q[ts + 1] = ... = Q[te].
Furthermore, let us assume that Y,c;w(t) > ¢ and let I
[ts — &, te + 8]. If for a candidate right-hand side A we observe
that Q[t] ¢ A[I%], then we can safely prune A as a candidate
right-hand side, because the tIND must be violated in the entire
interval I, whose summed weight is more than ¢ and thus more
than the allowed violation.

Naturally, there may be several distinct versions of Q within
I, some of which may be contained in A[I 9] and some of which
might not. Furthermore, depending on the settings of ¢ or w at
query time, the summed weight of all timestamps in I may be
smaller than ¢. In both cases, we cannot immediately prune A as
a candidate. Therefore, we use multiple time slice indices built on
selected disjoint intervals Iy, ..., I and track the total violations
that we have seen per candidate right-hand side. Whenever a
new violation is found, we check whether we have exceeded ¢
and can thus prune the candidate.



Tracking violations for all candidate right-hand sides is fea-
sible, because querying Mg already prunes most of the search
space, so that not too many candidates remain. An example of
how the pruning via time-slice indices functions is visualized
in Figure 4. In the example, attribute A is indexed on two time
intervals. When querying Q against the time slice indices, two
separate (partial) violations are detected at timestamps 3 and 7,
because in both cases the string USA is not contained in any ver-
sion of A within § timestamps. After the second violation, A
can be pruned as a candidate, because the maximally allowed
violation is exceeded.

Violation counter = 2

w(t)=1 Violation counter = 1 —prune candidate
Q | GER GER GER ER
FRA | FRA | FRA oL
USA
A | GER USA | GER GER
FRA FRA FRA
ITA ITA POL
Time ——— T —T T T T —T
1 2 3 4 5 6 7 8 9
\ V; \ v%
l, ; 1,
s s
I| IZ

Figure 4: Pruning using time slice indices on intervals [;
(left, green) and I, (right, red). If the state of Q or A is
unchanged compared to the previous timestamp, the font
is in grey.

The final index structure is then created by chaining Mg with
the time slice indices Mf,, ..., M, . The total memory used by the
index structure (in bytes) is (k+1)-|D|-m-1/8, which means there
is a tradeoff between m and k. In general, m should be chosen
based on the (average) attribute cardinality, as more values in
the attributes require larger Bloom filters for the pruning to
work. A larger k is beneficial if the attributes frequently undergo
significant changes, because only then will more time slice indices
yield more pruning power. We empirically evaluate different
settings for both m and k in Section 5.4.

The process of candidate pruning for a query attribute Q is
depicted in Figure 5 and the algorithm for tIND search using the
indices is given in Algorithm 1. First, the required values for Q
are determined and queried against Mg to obtain an initial set
of candidates. Then, for every interval I;, all distinct versions
of Q within that interval are determined (line 6) and queried
against My, (lines 7-10). Partial violations are tracked and re-
maining candidates are pruned if the summed violation exceeds
the allowed violation (lines 11-15). Because Bloom filters are a
probabilistic data structure where false positives are possible, we
subsequently validate for all candidates that the subset relation-
ships of the query Bloom filters with the Bloom filters in the
index also hold true for the actual data (line 16). Afterwards, all
remaining tIND candidates need to be validated, which can be
done in parallel. Note that, in case one solves the all-pairs prob-
lem, it is superior to parallelize the calls to tINDSearch, meaning
to evaluate multiple queries in parallel. We now discuss how to
efficiently validate tINDs.

404

Input :Query attribute Q, indexed attributes
A1 -+ A p|, indices My and My, ..My, &, w, §
Output: All indexed attributes A where Q ng holds
1 PROCEDURE (INDSearch():
2 Co = BitVector(size=|D|, fill = 1);
3 C = query_index(Mqg-, RQ¢,w(Q), Co);
4 VIO =empty_map(); /* tracks violations */
5 foralli € {1,...,k} do

6 Vor = sorted({t|t € Vg At € I} U {I;.end});
7 forall j € {0,...,len(Vpr) — 1} do

8 begin = Vor[jl;

9 enszQI[j+1];

10 Cij = query_index(Mp;, Q[begin], C);

11 PV =C A =Cij;

forall ¢ € PV where PV[c] == 1do
VIO[c] = VIO[c] + w([begin, end));
if VIO[c] > ¢ then
Cle] =0; /* pruned */
C = validate_subset_relationships(Q, C);
forall i where C[i] =1 in parallel do

12
13
14
15
16

17

18 if tINDIsValid(Q C2,, A;) then
19 Cle]=0
20 return C;

PROCEDURE query_index(M, values, C):
Cym = BitVector(size=|D| fill = 1) ;
bf = h(values) ; /* creates Bloom filter x/
forall rowsr in M wherebf[r] =1do
Cm=Cpm A M[r]
return C A Cyy ;
Algorithm 1: tIND candidate pruning

21
22
23
24
25

26

4.3 Efficient tIND validation

After using the index to prune the search space, we need to
validate if a tIND candidate Q Qéw A holds. A trivial algorithm
to validate a tIND is to check §-containment for every timestamp
t and sum up the weights of timestamps where it does not hold.
There are two problems with this approach. First, the number
of timestamps n may be very large and second, if the attributes
Q or A do not change much, a lot of computations are repeated
needlessly even though nothing has changed.

We avoid this by iterating over only exactly those timestamps
where the §-containment may have changed, thus avoiding com-
putations if the state of both A and Q did not change. In the
following, we assume that the history of an attribute A is stored
as a list of versions of A that is sorted by their insert time. Given
a candidate tIND Q ng A, our algorithm can validate it in
O(TV(Q) +TV(A)), where TV (A) = ¥;ev, |A[t]], meaning we
only need to look at every version of Q and A once. The algorithm
for tIND validation is given in Algorithm 2.

The basic idea of the algorithm is to partition the entire time
period 7™ into intervals 7, so that for every I € 7, the following
properties hold:

o There is only a single version of Q in I

o Vi,t’ e I A[[t—6,t+5]] = A[[t' — 6, ¢’ +6]]. This implies
that if Q is §-contained in A at any ¢ € I, it is §-contained
in all t € I and vice-versa.

These two properties ensure that for an interval I € 7, we only
have to check §-containment for the first timestamp, reducing



History Q

Query Column

e R [T1°]
Y | 4 | | Y 4
RQ,,(Q) M, | VoIl Rk b Valld .
1 1 1
Ay AL A A I A |A,
1] b b||! 1] b b ! V] b b
B = | B =] - Vo B =]
1 1 1
0] b b | o] |0] b b [ : o] |0 b b
g I g : | g
1 1 1

final candidates

Figure 5: Querying of the index structure. The query Bloom filters are depicted in orange and (intermediate) candidates in
green. Vp[I;] denotes the Bloom filters of all versions of Q in interval I;. The indexed attributes are denoted by A; - - - Ap,.

Input :tIND candidate Q szw A
Output:True if Q Qﬁw A is valid, false otherwise
1 PROCEDURE {INDIsValid(Q c?, A):
VO={tl(t+5eVaVit-8€eVy) AteTh
T = sorted(Vp U Vj u{n}); /% |T|=n %/
violation = 0;
forall i€ {0,..|]T7| -1} do
I'=[Tr[il. Ty [i+1]);
%= [I.begin — §,1.end + 5];
if Q[I] ¢ A[I°] then

violation = violation + w(I);

2
3

4

if violation > ¢ then
return False;

10
1
return True;

Algorithm 2: tIND validation

12

the necessary number of §-containment checks to |7 |. These in-
tervals are constructed by assembling and sorting all timestamps
at which §-containment may change (lines 2-3). The subset-check
in line 8 can be implemented without creating Q[I] and A[I 9]
from scratch for every check, by using two sliding windows over
the versions of Q and A. This works, because the intervals are
traversed in a sorted manner, which means that versions of Q or
A that leave their respective sliding window are never needed
again.

We now discuss how the parameters of a tIND impact index
construction and how to choose suitable time intervals to index
on.

4.4 Index parameters and interval selection

While tIND discovery has the three parameters ¢, w, and 8, not all
of these parameters need to be known exactly during the index
construction. This is of course beneficial, because a once con-
structed index can thus be used for many queries with different
parameters. However, queries with strongly deviating parame-
ters may take longer to complete, as the index can prune less
efficiently. As already mentioned in Section 4.2.2, the maximum

405

¢ that queries will use needs to be known during index construc-
tion. That is because, if a query were to use a §’ > &, then the
time slice indices are built on intervals that consider a smaller §
than what the query allows. This means that a violation detected
in those indices no longer guarantees a violation of A Qﬁ; ¢ B
which means that none of the time slice indices could be used to
prune candidates without possibly introducing false negatives.
However, if a query uses a ¢’ < § the time slice indices can still be
used to prune candidates, although if §’ << §, then the pruning
is not as effective as it could be. The example in Figure 4 show-
cases this. If during index creation § would have been set to two
instead of one, the value USA from timestamp five would have
been present in both I f and Ig for attribute A. This would have
left the index unable to prune A as a candidate, even though for
& = 1 (which is what the query uses), A is not a valid right-hand
side for Q.

As seen in the previous section, knowledge about future e,
and w parameters of queries are neither required for M¢, nor
when building the time slice indices on pre-chosen intervals.
However, it is beneficial to take potential knowledge about these
parameters into account when choosing the intervals to build
the index on. When selecting intervals, there are two factors to
consider: the interval length and the temporal location of the
interval (determined by the interval starting time). We discuss
them in the following.

4.4.1 Interval length. The optimal interval length is difficult
to determine in theory, because there are many effects to consider:
Firstly, smaller intervals lead to smaller sets for the right-hand
sides which may lead to better pruning power. Smaller intervals
are also more accurate in terms of the temporal containment:
Recall that the Bloom filters for the candidates for the right-hand
side are created based on the entire value set A[Ié]. Thus, the
larger I, the more values will also be in A[I' 5]. This makes it more
likely that the values of a version of Q (Q[#] with t € I) will be
contained in A[I%] even though Q[t] is not actually §-contained
in A. This can happen if a value v € A[I°] that is also in Q[¢]
is only contained in a version of A that is too far away from ¢
(more than §). In such cases, we cannot prune A based on the
information in the index, even though it would be correct to do so.



The example in Figure 4 showcases this effect. If I, were enlarged
by starting at timestamp six instead of seven, then Ig would start
at timestamp five and the value USA would now be contained in
A[Iés ]. This results in the index not detecting a violation at I,
leaving the index unable to prune A.

However, smaller intervals are not necessarily superior, be-
cause the number of indices that we can build can be expected
to be limited due to memory constraints. Thus, if the interval
lengths are small, but the total time period is large, a lot of infor-
mation is not present in the indices. Versions of Q that are critical
for pruning some candidates are more likely to not be present
within any of the indexed time slices if the time slices are small,
leading to worse pruning power and thus worse runtime. Again,
we can see this in Figure 4. If the intervals I; and I, were both of
length one instead of two while starting at the same timestamps,
then I; would no longer contain the version of Q that contains
USA, which is crucial for pruning A.

What should always be avoided is the case of interval I being
so small, that its summed weight w(I) is smaller than the ¢ used
by a query. This would mean that Mj can only detect partial
violations but never prune away candidates with no known prior
violation. This is especially disadvantageous if Mj is the first time
slice index that is queried, because in that case we need to track
violations for all initial candidates obtained from Mg Doing so
would have a significant negative impact on runtime.

Barring this extreme case, both small and large intervals can
be either beneficial or disadvantageous. Thus, we have evaluated
different intervals lengths empirically. Fortunately, our experi-
ments in Section 5.3 have shown that the index is not particularly
sensitive to either large or small intervals. We thus use the setting
w(I) = € + 1 as our standard setting for interval size.

4.4.2 Interval starting time. While choosing the starting time
of an interval is more straightforward than finding a suitable
interval length, there are still a few effects to consider. First, the
weighting function w may lead to the starting time determining
the minimal duration that an interval should have. As mentioned
above, for any chosen interval I to index on, w(I) > ¢ should
hold. This means, that if w assigns less weight to timestamps
in the past, then an interval that starts at an early timestamp
will also need to be longer than an interval that starts at a more
recent timestamp.

Independent of that effect, we want to select a set of k intervals,
that maximizes the overall pruning power for future queries. Our
experiments in Section 5.4 show that selecting a random set of
intervals achieves a satisfying performance, especially if k is
large. For small k however, one can do better by estimating the
pruning power of individual intervals. In general, the pruning
power of an interval I heavily depends on two factors:

e How distinguishable are the future queries in I?
e How distinguishable are the indexed attributes A € D
inI?

While we do not assume to know anything about the value dis-
tribution of future queries, we do have this knowledge about
the indexed attributes in 9. Thus, for an interval I = [tg, t¢], we
can estimate the pruning power of I by counting the number of
distinct values across all A € O in I and dividing by the length

of the interval: p(I) = w. The higher p(I), the more

likely it is that I can prune a lot of candidates.

406

Given p as a function to assign weights to intervals, we now
need to select k intervals. Assuming the interval length is de-
termined as described in Section 4.4.1, we can use p to assign
weights to all timestamps: p(t) = p(I) where I.begin = t. Note
that if 7~ is too large to compute p(t) for every t € 7, it is always
possible to sample from 7~ at a lower granularity. Given the times-
tamps t € 7 and their weights p(t), we can draw a weighted
random sample of k timestamps by iteratively sampling times-
tamps from 7. The probability P(t) of timestamp ¢ being selected
is proportional to its weight: P(¢) = p(t) /Xy c7p(t'). We refer
to this method of choosing time slices as weighted random.

Weighted random favors timestamps at which a lot of data is
available. While this is generally beneficial, it can backfire for
large values of k by creating redundant indices. Our experiments
in section 5.4 show that a weighted random choice is superior to
a random choice for small k. However, for larger k, the increased
variance of a random choice benefits the pruning, because it
makes the creation of redundant indices less likely.

4.5 Reverse tIND search

In the above sections, we have described how to solve tIND
search, meaning the search for attributes that a query attribute Q
is contained in. As discussed in Section 3.5 it can also be of interest
to reverse the direction and search attributes that Q contains.
Fortunately, this problem can also be solved with the techniques
we outlined above, with some adjustments. As mentioned in
Section 4.1, the Bloom filter matrices can also be used to find all
potential subsets of a query, as opposed to all supersets. However,
we still need to slightly adapt our index structures to make them
usable for reverse tIND search queries.

Recall that My indexes the entire value set A[7] of every
attribute A € D. However, A Q‘vsv,g Q implies RQ w(A) € Q[T],
which means that Mg is unhelpful for reverse tIND search. In-
stead, we build another index Mgo, which indexes the required
values RQ; ,,(A) of every A € D given assumed query parame-
ters £ and w. Note that in contrast to the normal tIND search, the
maximum ¢ that queries intend to use now needs to be known at
index time. Queries may choose a lower ¢ than assumed during in-
dexing, but not a higher one, because otherwise valid candidates
may be erroneously pruned.

The time slice indices My, ..., My, can be re-used for reverse
tIND search, as long as not just Iy, ..., I, but also If, S ,Ilf are
disjoint. Recall that in a time slice index Mj, all attributes A € D
have been indexed on A[I°]. Thus, we can now query the time
slice indices for value sets that are contained in Q[I?®], meaning
we expand I9 by additional & timestamps to the left and right
for the query. By doing so, we check for all A whether A[I 5] c
QolI 2‘3]. If that is the case, we cannot detect any violation. If that
is not the case, we know that at least one of the versions of A in
19 is not §-contained in Q and thus partially violates the tIND.

Unfortunately, we have no way of knowing which exact ver-
sions of A in I9 partially violate the tIND, because we cannot
efficiently reconstruct the individual versions in I 9 from its Bloom
filter h(A[I°]). Thus, we compute the weight for every subinter-
val of I9 in which exactly one version of A exists and can only
add the minimum of these weights to the violations we have seen
so far.

An example of how violations for reverse tIND search are
detected in time slice indices is visualized in Figure 6. Despite the
original violation being caused by Az, we cannot infer this from
the Bloom filters, and thus we can only infer a minimum violation



d=1,e=1,wt)=1 Q[1,”] = {GER,POL}
A[I,°] = {GER,POL, ITA}
Q | GER GER GER Apply
— POL Bloom filter
h(a[1,]) = 110100
A, A, h(A[1,"]) =110101
A R
GE GER GER Violation detected
— POL —compute weights

w(AzAs,Az.e) =w(2,4)=3

Time T T T — T T =
W(A,5,A,.€) = w(5,5) 1]
1 2 3 4 5 6 -
N J take min
~
] 3
1
- N Violation counter += 1

Figure 6: Violation detection for reverse tIND search in a
time slice index.

of 1 instead of 3 in I°. Clearly, this effect can lead to worse
pruning power of the time-slice indices than for normal tIND
search. Additionally, larger and thus sparser Bloom filters lead
to more necessary operations for tIND reverse search, because
as explained in Section 4.1 every row where the query Bloom
filter is equal to zero needs to be checked. However, dense Bloom
filters also lead to more false positives being retained, which
means that subset validation (line 16) will take more time.

However, our experiments show that for data on Wikipedia,
the overall time that a reverse tIND query takes when using pre-
existing indices for normal tIND search is still low enough for
interactive exploration.

5 EVALUATION

We evaluate our approach on a set of tables extracted from
Wikipedia pages. Our implementations and datasets are publicly
available?. We give a brief overview of our dataset extraction,
preparation and filtering steps in Section 5.1. Subsequently, Sec-
tion 5.2 presents a general evaluation of our approaches for both
the search and reverse search, as well as the all-pairs problem.
Section 5.3 presents experiments where the query parameters
deviate from those that the index is optimized for. The impact
of hyperparameter choices is explored in Section 5.4. Finally,
Section 5.5 presents experiments using manually labelled data,
that showcase how tIND discovery can be used to detect genuine
INDs with high precision.

5.1 Dataset and experimental setup

We evaluate our approach on the historical data that is provided
by the Wikimedia Foundation®, choosing more than 16 years
between early 2001 and late 2017. Given the many different
Wikipedia page revisions, we used existing work [5] to first
extract and match all tables to create table histories and sub-
sequently match different versions of the same attribute to create
historical data for each attribute in a table. To reduce the impact
of vandalism, which frequently appears in Wikipedia [2], we
aggregated the time granularity of the observed data to daily
snapshots by setting the version of an attribute at a day to the
version that was valid for the longest time on that day.

Similar to prior work on IND discovery in Wikipedia tables [22],
we then filtered out attributes that are mostly numeric, and uni-
fied commonly used symbols for the null value [22]. Furthermore,
for values with hyperlinks to other Wikipedia pages, we replaced

Zhttps://github.com/HPI-Information-Systems/tindResources
3https://dumps.wikimedia.org/

the text of the link with the title of the linked page to uniformly
represent such links across all tables. Because many entities in
Wikipedia tables are linked, this partially solves the data quality
issue of differing entity representations as discussed in Section 3.3.
Additionally, we filtered out any attributes that do not have at
least five different versions, meaning four changes, because we
require at least some temporal data to properly evaluate tINDs.
Lastly, with our use-case in mind, an explorative evaluation of
our dataset has shown that attributes with very small value sets
very rarely appear in genuine INDs, which is why we also require
attribute histories to have a median value set size of five or more.

These filtering steps result in a dataset of more than 1.3 million
attribute histories. On average, an attribute history of our dataset
has 13 changes and exists for 5.6 years in total. The average col-
umn version has a cardinality of 28. All experiments presented in
this section (including the related work approach [22]) were exe-
cuted on this dataset. Thus, the results are directly comparable.

Unless otherwise specified, we use the following parameter
settings for the tIND relaxation in our experiments: ¢ = 3days,
w(t) = 1 (constant function) and § = 7days. We chose these set-
tings, because they achieve the highest recall for a fixed precision
of 50% when looking for genuine INDs (see Section 5.5). With the
exception of the experiments in Section 5.3, we always use these
settings for both indexing and querying, thus assuming accurate
knowledge of query needs at index time.

There are three hyperparameters that do not impact the set of
discovered tINDs, but affect the runtime of our approach. These
are the size of the Bloom filters m, the number of time slice
indices k and the method of choosing time slices. As detailed in
Section 5.4, setting m = 4096 and k = 16, as well as randomly
choosing time slices achieves the best runtime for tIND search,
which is why we use these as our default settings. For reverse
tIND search, the highest runtime is achieved by setting m =
512 and k = 2 and using the weighted random approach to
choose time slices. Therefore, we use this as our default setting
for reverse tIND search.

We compare our method against the direct application of the
closest related work on static data, namely MANY [22]. To adapt
MANY for the temporal use-case, we modify it to build k different
Bloom filter matrices on randomly chosen snapshots and use
these to prune the candidate space. We call this baseline k-MANY.
To enable a fair comparison, we always set the k for k-MANY to
the number of time slice indices used by tIND search.

All experiments were executed using 32 threads on a server
running Ubuntu 20.04 LTS with two Intel Xeon E5-2650 2.00 GHz
CPUs and 256 GB RAM.

5.2 General evaluation

Because interactive exploration of datasets via tIND search re-
quires fast execution times, we evaluate the runtime of our ap-
proach for different scenarios.

Figure 7 shows the distribution of query times for 30,000 ran-
domly chosen queries for different numbers of indexed attributes.
The figure shows that the median runtime for a tIND search query
is below 100 milliseconds for all input sizes. While the average
runtime does increase with the number of indexed attributes,
that increase is rather slow, showing that our index prunes in-
valid candidates well. In fact, even for the full number of more
than 1.3 million indexed attributes, the mean execution time of
a query is 63 milliseconds. Furthermore, 86.3% of all queries are



le4
le3
|
le2
) i Method
¢ lel K-MANY
= lj search
5 ; search (r)
]
le-1
le-24
|
le-34

0.2 0.4 0.6 0.8 1.0

input size [million]

1.2 1.35

Figure 7: Runtimes for different numbers of indexed at-
tributes. Search (r) displays reverse search. k-MANY ran
out of memory, starting at 1.2 million attributes.

40000
n 6 [days]
=) 1
< 30000 7
= 30
E 20

20000 365

10000

10 20 30 40
€ [days]

Figure 8: Impact of ¢ and § on the number of tINDs found
for 30,000 search queries.

answered in under 100 milliseconds and 99.8% are answered in
under 1 second.

While, as expected, the overall runtime for reverse tIND search
is higher, it scales with the input size in a similar manner, and the
mean runtime of 142 milliseconds is still suitable for interactive
exploration.

The figure also shows that a straightforward application of
MANY cannot solve tIND search efficiently. Even without con-
sidering the extreme outliers where k-MANY cannot prune the
search space at all, the median runtime for a query is still more
than one order of magnitude greater than what our algorithm
achieves. Furthermore, from 1.2 million attributes onwards, k-
MANY runs out of memory, because it always has to track the
violations for all candidates.

Figure 8 shows that, as expected, more tINDs are discovered
if either of the two relaxation parameters ¢ or § are increased.

Figure 9 shows the average runtime for a tIND search query
with varying ¢ and §. We can see that overall, a higher ¢ leads to
a linear increase in runtime. The same is true for higher § values,
but the effect is much less pronounced, except for § = 365d, which
is also a particularly large setting. This makes sense, because
a higher § can merely address larger temporal delays and not
erroneous values: For a tIND candidate A gﬁw B, if A[¢t] contains
a value that is not contained in B at all, then no matter how large
& becomes the tIND will always be violated at timestamp ¢.

Overall, Figure 9 shows that even for the most lenient setting
that we tested (¢ = 39d and § = 365d), the average runtime of a

408

0.5
w
2 0.4
€
=} 6 [days]
c
30.3 1
> 7
g 30
T 0.2 90
) 365
o
g0.1
©

0
10 20 30 40
€ [days]

Figure 9: Impact of ¢ and § on the mean runtime.

tIND search query is still below 500 milliseconds. Notably, still
78.5% of all queries are answered in less than 100 milliseconds
and 99.3% in less than 1 second.

We also executed the all-pairs tIND discovery by querying
every A € D against our index. In this setting, it took less than
three hours (including index construction times) to find the com-
plete set of 306,047 tINDs. As a comparison: static IND discovery
on the latest snapshot results in 883,506 INDs. Roughly a third
of the tINDs is not discovered by executing static IND discovery
on the latest snapshot, meaning we find an additional 50% of
valid tINDs in comparison to the static variant. Additionally, we
observe that 77% of the INDs discovered by the static approach
are invalid tINDs. This indicates that INDs valid at only a single
point in time are often spurious.

5.3 Impact of tIND parameter deviations

As discussed in Section 4.4, users may want to deviate from the
parameter settings for ¢ or § that the index is optimized for. Fig-
ures 10 and 11 show the runtime impact on tIND search queries
when building indices for larger, more generous parameter values
for ¢ and § than the queries actually use. Figure 10 shows that
when building the index for higher ¢ values, the mean runtime is
largely unaffected, but the runtimes for some outliers increase.
Figure 11 shows that if the index uses a setting for § that is up to
16 times larger than what the actual queries use, there is again no
significant impact on runtime. For settings that are even larger,
there is a slight dip in performance, but the majority of the queries
can still be answered in under 100 milliseconds. We conclude
from this that the index structure is not sensitive to € and §. Thus,
when building an index for an interactive setting, it is advisable
to use high settings for ¢ and §, because this also allows the usage
of the index for queries with such settings, while having only
a small impact on runtime for queries with even significantly
smaller settings for ¢ or §.

5.4 Hyperparameter impact on runtime

The most important parameter for the runtime is the size of the
Bloom filters m. Figure 12 clearly shows that the larger the Bloom
filters are, the better the average runtime for tIND search. As
expected, this effect is reversed for reverse tIND search, because
larger and thus less dense Bloom filters directly lead to more
AND-operations per query. However, it is interesting to note that
while the average runtime for reverse queries increases with the
Bloom filter size, there are also fewer severe outliers, which may



100 i
10 i
— ! ' H
A2
g 1
E
c
2
0.1
0.01 |
4 3 16 32 64 128 256
€ [days]

Figure 10: Runtimes for different settings for ¢ in the index
for queries with a fixed ¢=3 (standard setting).

100
10
z ¢ * . ¢ 3 :
[
£ 1
=]
=
2
0.1
0.01
7 14 28 56 112 224 448
index 6 [days]

Figure 11: Runtimes for different settings for § in the index
for queries with a fixed §=7 (standard setting).

100
10
o)
o reverse search
E 1 False
€ True
2
0.1
0.01
512 1024 2048 4096
m

Figure 12: Runtimes of individual queries for different
Bloom filter sizes.

be desirable in some circumstances. If we want to answer both
types of queries with the same index, setting m to either 1024 or
20438 is suitable. With m=2048, we are able to discover 98.6% of
all tIND queries and 99.9% of all reverse tIND queries in under
1 second.

To compare the two methods for choosing time slices to index
on, we randomly chose three different sets of queries of 10,000 at-
tributes each, and ran both algorithms with three different seeds.
Figures 13 and 14 show the average time it takes to complete a
query for different numbers of chosen time slices k. The boxplots
show that a larger number of time slice indices also leads to a

409

time slice choice

random - weighted random

0.15
“
e
g

z 0.10
@
Q
(]
£
=1

o 0.05
o
I
(Y]
>
©

0

2 4 8 16

Figure 13: Average runtimes for different number of time
slice indices (k) for tIND search

time slice choice

random —— weighted random

=
> 0.6
[
3
o
@
Q0.4
[
£
=]
&
© 0.2
I
[
>
@©

0

2 4 8 16

Figure 14: Average runtimes for different number of time
slice indices (k) for reverse tIND search.

superior runtime for tIND search, but the effect is not as pro-
nounced as for the size of the Bloom filters. Figure 13 shows that
for tIND search, the weighted random approach is superior for a
smaller k, but at around k = 8 this approach starts to stagnate
and subsequently gets worse for k = 16. Contrary to that, choos-
ing time slices randomly without weights continues to benefit
from more time slices. This behavior is not unexpected, because
weighted random tends to favor the same temporal areas, which
means the more indices there are, the more likely it is that some
of them yield the same result for many queries.

Interestingly, Figure 14 shows that more than two time slice
indices actually increase the runtime for reverse tIND search.
This shows that indeed the candidate pruning is not as effective
for reverse search as it is for normal tIND search. However, this
behavior is not problematic, even if we want to answer both types
of queries with the same index: One can still build 16 indices to
minimize the response time for normal tIND search, but only use
two of them for reverse search queries.

5.5 Genuine IND discovery using tINDs

The (temporal) inclusion of one column in another can have
many meanings, and knowledge about them has different uses. A
discovered inclusion can indicate a key-foreign key relationship
that could be enforced by the data management system and that



| Bucket | TP [%] |
[4.8) C [4,8) 7
[4,8) € [8,16) 10
[4,8) € [16,0) 12
[8,16) C [4,8) 7
[8,16) < [8,16) 12
[8,16) < [16,0) 9
[16,00) C [4,8) 4
[16,00) C [8,16) 14
[16,00) C [16, 00) 24

Table 2: Basic statistics about the labelled INDs. TP (true
positives) denotes the percentage of genuine INDs in a
bucket.

could be used to join the two tables. For instance, the country-
column of a table of athletes should be included in the name
column of a table of UN countries. A discovered inclusion can
indicate a joinability that does not depend on strict foreign key
relationships. For instance, a key column of one table might be
included in the key of another table, such as the name column of
an EU-country table being included in that of a UN-country table.
Users looking to extend information about such entities can use
INDs to discover joinable tables. Finally, INDs can uncover hidden
but interesting constraints. For instance, the name-column of the
Soviet Union’s male figure skating medalists is included in that
of the Russian medalists, indicating legal successorship. We call
such discovered tINDs genuine, as opposed to spurious ones.

At the beginning of our work, we hypothesized that INDs that
are valid, despite frequent changes to one or both attributes, are
more likely to be genuine. To test this hypothesis, we used static
INDs discovered on the latest snapshot and distributed them
into buckets according to the number of changes to the left- and
right-hand side. Subsequently, we manually annotated a sample
of 100 INDs per bucket as genuine or not. With the joinability
use-case in mind, we labeled such INDs as genuine that should
hold if the respective tables were complete and both columns
have the same semantic type. The annotated INDs are available
in the paper artifacts.

The results of the annotation can be seen in Table 2. It shows
that a higher change frequency indeed increases the density of
genuine INDs. This holds for both the left- and right-hand side,
except for bucket [16, c0) C [4, 7], where only few genuine INDs
are found.

While Table 2 shows that the frequency of changes in the past
can already serve as an indicator for the genuineness of an IND,
precision can be further increased by using the notion of relaxed
tINDs as presented in this paper. To evaluate the usefulness of the
different tIND variants for the discovery of genuine INDs, their
parameters ¢, § and « (base for the exponential decay function
w) were varied in a grid-search. Figure 15 shows the (micro-
average) precision recall curves of all parametrized tIND variants
discussed in this paper. Notably, every specialization of tINDs
that we presented brings some improvement. Simple ¢-relaxed
tINDs perform worse than ¢, §-relaxed tINDs, which are worse
than wed-tINDs for higher recall settings (and equivalent for low
recall settings). Static INDs discovered on the latest snapshot
(the basis for the ground truth annotation) only manage a low
precision of 11% across all buckets.

410

The desired tradeoff for many applications, such as letting
experts confirm discovered INDs as genuine before further pro-
cessing, is to achieve high precision even at the expense of recall,
so that less time of human annotators is wasted. Relaxed tINDs
can provide this tradeoff. Notably, strict tINDs perform much
worse than the relaxed variants, only achieving 25% precision
and 4% recall. This shows that relaxation is indeed necessary,
even for settings where high precision is desired.

1
0.75
S tIND type
2 450 — g,6-relaxed tIND
3 > e-relaxed tIND
= — ebw-tIND
0.25
A
0
0 0.25 0.50 0.75 1

recall

Figure 15: Micro-average precision-recall curves for the
different variants of tINDs.

6 CONCLUSION

This work defined the notion of temporal inclusion dependencies
(tINDs) — INDs that hold across all temporal versions of a dataset.
To work with real-world data, we introduced several relaxations
that allow the discovery of tINDs in dirty data. The first relaxes
the amount of time that an attribute must be contained in another:
¢ denotes the fraction or summed weight of timestamps at which
a tIND is allowed to be violated. The second relaxation allows
for the updates to the data to be shifted for up to § time units.
The last relaxation allows for the user to specify an arbitrary
weighting-function on the timestamps, for example to give a
higher weight to recent ones.

To efficiently solve unary tIND search, we presented an index
to efficiently discover for a query attribute Q, those attributes that
Q is contained in (Q Q‘f\,! ¢ A), as well as those attributes contained

in Q (B Q?M Q). Our experiments indicate that the index is able
to answer almost all queries in under one second, allowing users
to interactively explore datasets with tINDs. Furthermore, we
were able to show that temporal INDs can help to find genuine,
meaningful INDs with greater precision than the discovery of
INDs on static data.

Future work could combine the existing wed-tINDs with al-
ready known IND-relaxations, such as partial [25], conditional [3]
or similarity INDs [14]. Furthermore, the discovery of n-ary tINDs
could be studied, potentially also on large relational databases,
as such a setting will likely require different methods. Finally,
it would be interesting to investigate whether the approaches
presented in this paper are also applicable to general webtables
or open-government data.

REFERENCES

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling rela-
tional data: a survey. VLDB Journal 24, 4 (2015), 557-581.

[2] B. Thomas Adler, Luca De Alfaro, Santiago M Mola-Velasco, Paolo Rosso, and
Andrew G West. 2011. Wikipedia vandalism detection: Combining natural
language, metadata, and reputation features. In International Conference on
Intelligent Text Processing and Computational Linguistics. Springer, 277-288.



=

[3] Jana Bauckmann, Ziawasch Abedjan, Ulf Leser, Heiko Miiller, and Felix Nau-

mann. 2012. Discovering conditional inclusion dependencies. In Proceedings
of the International Conference on Information and Knowledge Management
(CIKM). ACM, 2094-2098. https://doi.org/10.1145/2396761.2398580

Jana Bauckmann, Ulf Leser, Felix Naumann, and Veronique Tietz. 2007. Effi-
ciently Detecting Inclusion Dependencies. In Proceedings of the International
Conference on Data Engineering (ICDE). 1448-1450.

Tobias Bleifuf3, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann,
and Divesh Srivastava. 2021. Structured Object Matching across Web Page
Revisions. In Proceedings of the International Conference on Data Engineering
(ICDE). 1284-1295.

Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422-426.

Antoon Bronselaer, Christophe Billiet, Robin De Mol, Joachim Nielandt, and
Guy De Tré. 2019. Compact representations of temporal databases. VLDB
Journal 28 (2019), 473-496.

Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu.
2009. Forward Decay: A Practical Time Decay Model for Streaming Systems.
In Proceedings of the International Conference on Data Engineering (ICDE).
138-149. https://doi.org/10.1109/ICDE.2009.65

Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. 2009. Unary and
n-ary inclusion dependency discovery in relational databases. Journal of
Intelligent Information Systems 32, 1 (2009), 53-73.

Falco Diirsch, Axel Stebner, Fabian Windheuser, Maxi Fischer, Tim Friedrich,
Nils Strelow, Tobias Bleifuf, Hazar Harmouch, Lan Jiang, Thorsten Papen-
brock, and Felix Naumann. 2019. Inclusion Dependency Discovery: An Exper-
imental Evaluation of Thirteen Algorithms. In Proceedings of the International
Conference on Information and Knowledge Management (CIKM). ACM, 219-228.
https://doi.org/10.1145/3357384.3357916

Curtis Dyreson, Fabio Grandi, Wolfgang Kéfer, Nick Kline, Nikos Lorentzos,
Yannis Mitsopoulos, Angelo Montanari, Daniel Nonen, Elisa Peressi, Barbara
Pernici, et al. 1994. A consensus glossary of temporal database concepts.
SIGMOD Record 23, 1 (1994), 52-64.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005.
Data exchange: semantics and query answering. Theoretical Computer Science
336, 1 (2005), 89-124. https://doi.org/10.1016/].tcs.2004.10.033

[13] Jodo Marcelo Borovina Josko. 2018. A Formal Taxonomy of Temporal Data

Defects. In Data Quality and Trust in Big Data - 5th International Workshop,
QUAT 2018, Held in Conjunction with WISE 2018, Dubai, UAE, November 12-15,
2018, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 11235),
Hakim Hacid, Quan Z. Sheng, Tetsuya Yoshida, Azadeh Sarkheyli, and Rui

Zhou (Eds.). Springer, 94-110. https://doi.org/10.1007/978-3-030-19143-6_7
Youri Kaminsky, Eduardo H. M. Pena, and Felix Naumann. 2023. Discovering
Similarity Inclusion Dependencies. Proceedings of the International Conference
on Management of Data (SIGMOD) 1, 1 (2023). https://doi.org/10.1145/3588929
Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data depen-
dencies for query optimization: a survey. VLDB Journal 31, 1 (2022), 1-22.
https://doi.org/10.1007/s00778-021-00676-3

Sebastian Kruse, Anja Jentzsch, Thorsten Papenbrock, Zoi Kaoudi, Jorge-
Arnulfo Quiane-Ruiz, and Felix Naumann. 2016. RDFind: Scalable Conditional
Inclusion Dependency Discovery in RDF Datasets. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD).

Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke,
Manuel Hegner, Martin Zabel, Christian Zollner, and Felix Naumann. 2017.
Fast Approximate Discovery of Inclusion Dependencies (LNI, Vol. P-265), Bern-
hard Mitschang, Daniela Nicklas, Frank Leymann, Harald Sch6ning, Melanie
Herschel, Jens Teubner, Theo Harder, Oliver Kopp, and Matthias Wieland
(Eds.). GI, 207-226. https://dl.gi.de/20.500.12116/629

Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. 2015. Scaling
Out the Discovery of Inclusion Dependencies. In Proceedings of the Conference
Datenbanksysteme in Biiro, Technik und Wissenschaft (BTW).

Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. 2015. Divide & conquer-based inclusion dependency discovery.
PVLDB S8, 7 (2015), 774-785.

Nuhad Shaabani and Christoph Meinel. 2017. Incremental Discovery of
Inclusion Dependencies. In Proceedings of the International Conference on
Scientific and Statistical Database Management (SSDBM). ACM, 2:1-2:12.
https://doi.org/10.1145/3085504.3085506

Nuhad Shaabani and Christoph Meinel. 2019. Incrementally updating unary
inclusion dependencies in dynamic data. Distributed Parallel Databases 37, 1
(2019), 133-176. https://doi.org/10.1007/s10619-018-7233-5

Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. 2017. De-
tecting inclusion dependencies on very many tables. ACM Transactions on
Database Systems (TODS) 42, 3 (2017), 18.

Zhong Yang, Bolong Zheng, GuoHui Li, Xi Zhao, Xiaofang Zhou, and Chris-
tian S. Jensen. 2020. Adaptive Top-k Overlap Set Similarity Joins. In ICDE.
1081-1092.

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
SIGMOD. ACM, 847-864.

Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. 2016. LSH
Ensemble: Internet-scale domain search. PVLDB 9, 12 (2016), 1185-1196.



