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We report on a mixed methods study in which we investigated college algebra students’
attitudes toward mathematics and graphs in connection to their graph reasoning and
graph selection. Students (n=599) completed a fully online survey of their attitudes
toward math and graphs in conjunction with a fully online measure of their graph
reasoning and selection for dynamic situations. Using structural equation modelling,
we explored how students’ attitudes might link to their graph reasoning and/or graph
selection. We found that more positive attitudes toward mathematics and graphs linked
to more quantitative forms of graph reasoning and more accuracy in graph selection.

INTRODUCTION

There is a complex relationship between students’ attitudes toward mathematics and
their mathematical thinking; it is essential that researchers engage in methods to
embrace this complexity (Goldin et al., 2016). Drawing on DiMartino and Zan’s (2010,
2011) model, we adopt a multidimensional view of attitudes toward mathematics,
encompassing emotional disposition, perceived competence, and view of the subject.
To theorize graph reasoning, we draw on the framework from Johnson et al. (2020),
which puts forward four forms of reasoning: covariation, variation, motion, and iconic.
To draw connections between students’ attitudes and their graph reasoning and
selection, we use structural equation modelling (SEM). SEM is a high-level statistical
technique, in which researchers can demonstrate efficacy of theory-based models that
relate different research-based constructs (Kline, 2023).

Our population comprises college algebra students (n=599), across three different U.S.
postsecondary institutions. College algebra is a credit bearing course that often serves
as a prerequisite to courses such as calculus, and functions and graphs are central to
the course content. We investigate the following research question: To what extent
does students’ attitudes toward mathematics and graphs relate to the forms of their
graph reasoning and/or the accuracy of their graph selection?

THEORIZING STUDENTS’ ATTITUDES TOWARD MATHEMATICS

DiMartino and Zan (2010, 2011) grounded their perspective on attitude in students’
written narratives about their experiences, resulting in three interrelated dimensions:
emotional disposition, perceived competence, and view of the subject. Emotional
disposition referred to students’ like, dislike, or indifference toward mathematics.
Students’ perceived competence referred to students’ perceptions of their mathematical
capabilities. Students’ view of the subject referred to what mathematics meant for
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students. Notably, Di Martino and Zan’s perspective emerged from a goal to embrace
complexities in students’ attitudes, to push back against positive/negative dichotomies
in investigations of students’ attitudes.

THEORIZING STUDENTS’ GRAPH REASONING

The four-form graph reasoning framework from Johnson et al. (2020) distinguished
between students’ quantitative-based forms of graph reasoning (covariation, variation)
and students’ physical-based forms of graph reasoning (motion, iconic). The
framework was developed to explain students’ reasoning when interpreting and
sketching graphs representing relationships between attributes in dynamic situations
(e.g., a turning Ferris wheel). The covariation and variation constructs were rooted in
Thompson’s theory of quantitative reasoning (Thompson, 1994; Thompson & Carlson,
2017). In Thompson’s theory, a quantity referred to a person’s conception of some
attribute as being possible to measure. For example, a person could separate the
attribute of height from an object itself and conceive of how they might measure the
height, even if they did not engage in any actual measuring. With covariation, Johnson
et al. (2020) referred to students’ reasoning about relationships between attributes, with
at least a loose connection between their directions of change (e.g., height increases
and decreases, while distance increases). With variation, they referred to students’
reasoning about directions of change in a single attribute (e.g., height increases and
decreases). With motion, they referred to students’ reasoning about observable
movements (e.g., Bell & Janvier, 1981; Kerslake, 1977) in the situation (e.g., a graph
should show the path of the cart turning around the Ferris wheel). With iconic, they
referred to students’ reasoning about observable features (e.g., Clement, 1989;
Leinhardt, 1990) in the situation (e.g., the Ferris wheel is curved, so my graph should
be curved).

METHODS

Our research design is a fully mixed, sequential, quantitative dominant status research
design (Leech & Onwuegbuzie, 2009), with qualitative analysis preceding quantitative
analysis. For data collection, we employed two fully online instruments, a survey of
students’ attitudes toward math and graphs (see Bechtold et al., 2022) and a measure
of graph reasoning and selection for dynamic situations (MGSRDS) (Donovan et al.,
accepted; Johnson et al., in press). Both instruments were optimized for access on
computers, tablets, and mobile phones. Students (n=599) completed the attitude survey
and the MGSRDS concurrently, near the end of their college algebra course. Data
collection occurred over three semesters (spring 21, fall 21, spring 22).

Design of the attitude survey

To design our survey of students’ attitudes toward mathematics and graphs (Table 1),
we drew on Di Martino and Zan’s (2010, 2011) conceptualization of attitudes toward
math. This survey was an adaptation of a survey that Pepin (2011) administered,
including three questions (Q1-Q3). Because we were investigating students’ graph
reasoning in conjunction with students’ attitudes, we decided to also include items
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specifically connected to graphs (Q4, Q5). To allow students to express multifaceted
responses, students were not forced to choose between like/dislike (emotional
disposition) or can/cannot (perceived competence). Students responded to the survey
with a text entry.

Item

QI. I like/dislike mathematics because
Q2. I can/cannot do mathematics because
Q3. Mathematics is
Q4. I like/dislike graphs because

Q5. I can/cannot make sense of graphs because

Table 1: Survey of students’ attitudes toward math and graphs
Design of the MGSRDS

The MGSRDS contains six items, with dynamic situation including a turning Ferris
wheel, a person walking to a tree a back, a fishbowl filling with water, a cone growing
and shrinking, a toy car moving along a square track, and two insects walking back and
forth from home. Items appear in random order, and each item has two screens. On the
first screen, there is a video animation of a dynamic situation (e.g., a turning Ferris
wheel), written description of the attributes in the situation (e.g., In this situation, we
will focus onthe Ferris wheel cart's height from the ground and total distance
travelled.), and a check for understanding. On the second screen, there are written
instructions (e.g., Select the graph that best represents a relationship between the Ferris
wheel cart's height from the ground and the distance travelled, for one revolution of the
Ferris wheel.), and the video repeats. Then there are four graph choices representing
relationships between attributes in the situation, and a text box for students to explain
their graph choice. We have demonstrated validity for the MGSRDS (Donovan et al.,
accepted). For more on the design of MGSRDS items, see Johnson et al. (in press).

Coding the attitude survey

We used an interpretive approach to qualitative analysis to address complexities in
students’ attitudes toward mathematics and graphs. We coded students’ attitudes along
four categories: positive, mixed, negative, and detached (Table 2). The codes arose
from our analysis of students’ text responses (see Bechtold et al., 2022; Gardner et al.,
2019). To code, we used a mix of machine and human coding. Our team hired a
consultant to train a machine learning program based on our coding scheme. For
responses receiving less than 70% confidence with machine coding, we brought in
human coders (this tended to be about 30% of responses). With human coders, we used
consensus coding (Olson et al., 2016); two people coded independently, then met to
calibrate their codes, necessitating 100% agreement. After qualitative coding, we
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transformed the descriptive codes into numerical codes for statistical analysis. Larger
values indicated more positive attitudes (0-detached, 1-negative, 2-mixed, 3-positive).

Code Description Sample Response
Positive Like/can I can do mathematics because I've always been
fluent in the 'language' of mathematics.
mixed Combination of [ am inbetween sometimes I do understand
positive/negative graphs and other times I can get very confused.
negative Dislike/cannot I dislike graphs because I tend to forget what
the rules are to how functions and equations are
placed.
detached Separation from It's all just following the formulas step by step.
oneself

Table 2: Attitude codes, descriptions, and sample responses
Qualitative analysis: coding the MGSRDS

We coded students’ graph reasoning based on the four-form graph reasoning
framework from Johnson et al. (2020): covariation (COV), variation (VAR), motion
(MO), iconic (IC). To account for written responses that indicated limited evidence
(LE) of reasoning, we added LE as a fifth code. Table 3 shows codes, descriptions, and
sample responses. For the graph reasoning coding, we used only human coders. Again,
we used consensus coding, which necessitated 100% intercoder agreement. After
qualitative coding, we transformed the descriptive codes into numerical codes for
statistical analysis. The values (0-LE, 1-IC, 2-MO, 3-VAR, 4-COV) indicated a
hierarchy of graph reasoning (Donovan et al., accepted), with the largest values
indicating quantitative graph reasoning (3-VAR, 4-COV).

Code Description Sample Response
COV relationships between directions  Total distance keeps increasing but the
of change in attributes height increases then decreases
VAR  directions of change in a single The height increases, then decreases,
attribute and finally increases again

MO  Physical movement of objects in Shows the motion of the ferris wheel
a situation

IC Physical features of a situation If you connect the line, it becomes a
circle just like the route it made

LE Limited evidence Just seems like the answer

Table 3: Graph reasoning codes, descriptions, and sample responses
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We coded students’ graph selection using a spreadsheet. To guard against bias, we
separated students’ written explanations of their graph choice from their graph
selections. The design of the MGSRDS included graph choices that were correct,
partially correct, and incorrect. The partially correct graph choices accurately
represented the direction of change in each attribute but did not accurately represent
values of each attribute (for more, see Johnson et al., in press). Again, we transformed
the descriptive codes into numerical codes for statistical analysis. Larger values
indicated more positive attitudes (O=incorrect, 1=partially correct, 2=correct).

Quantitative analysis: SEM

SEM is a statistical technique that examines relationship patterns between variables
that are modelled latently (Kline, 2023). Latent variables are preferred because they
allow the variance between items to be examined instead of combining items into a
mean score; An additional benefit of SEM is the ability to model multiple pathways
with multiple dependent variables being tested simultaneously. To use SEM,
researchers first develop a theory-based model. Then they determine whether data
patterns fit their model. If there is unsatisfactory model fit, researchers modify and/or
re-evaluate (Kline, 2023). Because of its complexity, SEM requires larger sample sizes
than techniques such as multiple regression models.

The model for this study (Figure 1) includes two independent variables: attitudes
towards mathematics and attitudes towards graphs. The independent variables predict
two dependent variables, graph selection and graph reasoning. The four directional
arrows in Figure 1 show this. To operationalize the constructs of attitudes toward
mathematics and attitudes toward graphs, we used students’ responses to questions 1,
2,4, and 5 from the attitude survey (see Table 1). We did this because there was parallel
structure in the design of the questions; one question about mathematics and graphs
related to the dimensions of emotional disposition (Q1, Q4) and perceived competence
(Q2, Q5), respectively. To operationalize the constructs of graph selection and graph
reasoning, we used students’ text responses explaining their graph reasoning and their
graph choices for each of the six MGSRDS items.

Attitudes
Toward
Mathematics

Graph
Selection

Attitudes
Toward
Graphs

Graph
Reasoning

Figure 1: Conceptual model
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We use three statistics to assess model fit: the chi-square goodness of fit, the
Comparative Fit Index (CFI), the Root Mean Square Error of Approximation (RMSEA.
The CFI addresses relative fit, assessing the model in comparison to a null, baseline
model comprised of uncorrelated variables. CFI values of 0.90 and above provide
sufficient evidence of good fit (Bentler & Bonett, 1980). The RMSEA addresses
absolute fit, comparing a model is from an ideal. RMSEA values of 0.08 and below are
considered acceptable fit (Browne & Cudeck, 1992). After assessing model fit, then
we examine whether the items contributing to latent variables provide evidence of good
fit (e.g., whether the six MGSRDS items contribute to the graph reasoning and graph
selection constructs, and whether the four attitude survey items contribute to the
attitude toward mathematics and attitudes toward graphs constructs). Standard
regression weights of 0.30 or above are expected, with higher values indicating
stronger contributions (Leech et al., 2014). If some items contribute at values lower
than 0.30, they still may be included if they are significant and removing them does
not improve the fit of the model.

RESULTS

The conceptual model shown in Figure 1 demonstrated good fit, 2 (99) = 154.93, p <
0.001, CFI=0.96, RMSEA = 0.03. All items significantly contributed (p < 0.01) to the
respective latent variable pathways. For graph reasoning, all six MGSRDS items
contributed at values greater than 0.30 (values ranged from 0.58 to 0.77). For graph
selection, four MGSRDS items contributed at values greater than 0.30 (values ranged
from 0.33 to 0.48). The other two MGSRDS items contributed at values of 0.29 and
0.15. Removing these two items did not improve the model, thus we kept them. For
attitudes toward mathematics and attitudes toward graphs, the four attitude survey
questions (Q1, Q2, Q4, Q5, see Table 1) contributed at values greater than 0.30 (values
ranged from 0.36 to 0.72). Hence, there was statistical support for our model.

All latent variable predictive pathways shown in the conceptual model (Figure 1) are
significant. Like standardized regression weights, higher values indicate stronger
relationships. Attitudes toward mathematics influences graph selection (f = 0.80, p <
0.001) and graph reasoning (f = 0.64, p < 0.001). Attitudes toward graphs influences
graph selection (B = 0.44, p = 0.006) and graph reasoning (B = 0.37, p = 0.002).

DISCUSSION

To begin, we asked: To what extent does students’ attitudes toward mathematics and
graphs relate to the forms of their graph reasoning and/or the accuracy of their graph
selection? We found students’ attitudes towards mathematics and attitudes toward
graphs to influence their graph reasoning and graph selection. While all relationships
were statistically significant, our results demonstrated that students’ attitudes toward
mathematics more strongly influenced their graph reasoning and graph selection than
did students’ attitudes toward graphs. Furthermore, the relationship between attitudes
toward mathematics was stronger for graph selection than for graph reasoning. This
also held for attitudes toward graphs. In all cases, more positive attitudes linked to
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more quantitative forms of graph reasoning and to more accuracy in graph selection.
Furthermore, our results pointed to the interrelationships between the dimensions of
emotional disposition and perceived competence within the constructs of attitudes
toward mathematics and attitudes toward graphs, underscoring the complexity of the
attitude construct posited by Di Martino and Zan (2010, 2011).

To contextualize our results, we discuss some limitations. First, we use students’
written responses as proxies for their attitudes toward mathematics, their attitudes
toward graphs, and their graph reasoning. Hence, there may be fuller aspects of these
constructs not revealed by students’ written responses. Second, while students
completed the MGSRDS and attitude survey as part of their course, they may have
viewed these instruments as “add-ons,” and thus may have felt less investment in their
responses (see also Johnson et al., in press). Third, our analysis conceptualizes attitudes
as comprising only two of the dimensions of attitudes toward mathematics put forward
by Di Martino and Zan (emotional disposition and perceived competence). Hence, our
design simplifies the construct somewhat.

In conclusion, Goldin et al. (2016) suggested directions for future research to include
the development of new instruments and the investigation of adults’ attitudes toward
mathematics. Our study furthered these research directions. In future studies,
researchers could use the instruments we have developed with different populations.
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