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We report on a mixed methods study in which we investigated college algebra students’ 
attitudes toward mathematics and graphs in connection to their graph reasoning and 
graph selection. Students (n=599) completed a fully online survey of their attitudes 
toward math and graphs in conjunction with a fully online measure of their graph 
reasoning and selection for dynamic situations. Using structural equation modelling, 
we explored how students’ attitudes might link to their graph reasoning and/or graph 
selection. We found that more positive attitudes toward mathematics and graphs linked 
to more quantitative forms of graph reasoning and more accuracy in graph selection. 
INTRODUCTION 
There is a complex relationship between students’ attitudes toward mathematics and 
their mathematical thinking; it is essential that researchers engage in methods to 
embrace this complexity (Goldin et al., 2016). Drawing on DiMartino and Zan’s (2010, 
2011) model, we adopt a multidimensional view of attitudes toward mathematics, 
encompassing emotional disposition, perceived competence, and view of the subject. 
To theorize graph reasoning, we draw on the framework from Johnson et al. (2020), 
which puts forward four forms of reasoning: covariation, variation, motion, and iconic. 
To draw connections between students’ attitudes and their graph reasoning and 
selection, we use structural equation modelling (SEM). SEM is a high-level statistical 
technique, in which researchers can demonstrate efficacy of theory-based models that 
relate different research-based constructs (Kline, 2023). 
Our population comprises college algebra students (n=599), across three different U.S. 
postsecondary institutions. College algebra is a credit bearing course that often serves 
as a prerequisite to courses such as calculus, and functions and graphs are central to 
the course content. We investigate the following research question: To what extent 
does students’ attitudes toward mathematics and graphs relate to the forms of their 
graph reasoning and/or the accuracy of their graph selection? 
THEORIZING STUDENTS’ ATTITUDES TOWARD MATHEMATICS 
DiMartino and Zan (2010, 2011) grounded their perspective on attitude in students’ 
written narratives about their experiences, resulting in three interrelated dimensions: 
emotional disposition, perceived competence, and view of the subject. Emotional 
disposition referred to students’ like, dislike, or indifference toward mathematics. 
Students’ perceived competence referred to students’ perceptions of their mathematical 
capabilities. Students’ view of the subject referred to what mathematics meant for 
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students. Notably, Di Martino and Zan’s perspective emerged from a goal to embrace 
complexities in students’ attitudes, to push back against positive/negative dichotomies 
in investigations of students’ attitudes. 
THEORIZING STUDENTS’ GRAPH REASONING 
The four-form graph reasoning framework from Johnson et al. (2020) distinguished 
between students’ quantitative-based forms of graph reasoning (covariation, variation) 
and students’ physical-based forms of graph reasoning (motion, iconic). The 
framework was developed to explain students’ reasoning when interpreting and 
sketching graphs representing relationships between attributes in dynamic situations 
(e.g., a turning Ferris wheel). The covariation and variation constructs were rooted in 
Thompson’s theory of quantitative reasoning (Thompson, 1994; Thompson & Carlson, 
2017). In Thompson’s theory, a quantity referred to a person’s conception of some 
attribute as being possible to measure. For example, a person could separate the 
attribute of height from an object itself and conceive of how they might measure the 
height, even if they did not engage in any actual measuring. With covariation, Johnson 
et al. (2020) referred to students’ reasoning about relationships between attributes, with 
at least a loose connection between their directions of change (e.g., height increases 
and decreases, while distance increases). With variation, they referred to students’ 
reasoning about directions of change in a single attribute (e.g., height increases and 
decreases). With motion, they referred to students’ reasoning about observable 
movements (e.g., Bell & Janvier, 1981; Kerslake, 1977) in the situation (e.g., a graph 
should show the path of the cart turning around the Ferris wheel). With iconic, they 
referred to students’ reasoning about observable features (e.g., Clement, 1989; 
Leinhardt, 1990) in the situation (e.g., the Ferris wheel is curved, so my graph should 
be curved). 
METHODS 
Our research design is a fully mixed, sequential, quantitative dominant status research 
design (Leech & Onwuegbuzie, 2009), with qualitative analysis preceding quantitative 
analysis. For data collection, we employed two fully online instruments, a survey of 
students’ attitudes toward math and graphs (see Bechtold et al., 2022) and a measure 
of graph reasoning and selection for dynamic situations (MGSRDS) (Donovan et al., 
accepted; Johnson et al., in press). Both instruments were optimized for access on 
computers, tablets, and mobile phones. Students (n=599) completed the attitude survey 
and the MGSRDS concurrently, near the end of their college algebra course. Data 
collection occurred over three semesters (spring 21, fall 21, spring 22). 
Design of the attitude survey 
To design our survey of students’ attitudes toward mathematics and graphs (Table 1), 
we drew on Di Martino and Zan’s (2010, 2011) conceptualization of attitudes toward 
math. This survey was an adaptation of a survey that Pepin (2011) administered, 
including three questions (Q1-Q3). Because we were investigating students’ graph 
reasoning in conjunction with students’ attitudes, we decided to also include items 



Johnson, Donovan, Knurek, Whitmore, & Bechtold 

 

PME 47 – 2024 3 - 107 

specifically connected to graphs (Q4, Q5). To allow students to express multifaceted 
responses, students were not forced to choose between like/dislike (emotional 
disposition) or can/cannot (perceived competence). Students responded to the survey 
with a text entry.  

Item 
Q1. I like/dislike mathematics because ____ 

Q2. I can/cannot do mathematics because _____ 
Q3. Mathematics is ____ 

Q4. I like/dislike graphs because ____ 
Q5. I can/cannot make sense of graphs because _____ 

Table 1: Survey of students’ attitudes toward math and graphs 
Design of the MGSRDS 
The MGSRDS contains six items, with dynamic situation including a turning Ferris 
wheel, a person walking to a tree a back, a fishbowl filling with water, a cone growing 
and shrinking, a toy car moving along a square track, and two insects walking back and 
forth from home. Items appear in random order, and each item has two screens. On the 
first screen, there is a video animation of a dynamic situation (e.g., a turning Ferris 
wheel), written description of the attributes in the situation (e.g., In this situation, we 
will focus on the Ferris wheel cart's height from the ground and total distance 
travelled.), and a check for understanding. On the second screen, there are written 
instructions (e.g., Select the graph that best represents a relationship between the Ferris 
wheel cart's height from the ground and the distance travelled, for one revolution of the 
Ferris wheel.), and the video repeats. Then there are four graph choices representing 
relationships between attributes in the situation, and a text box for students to explain 
their graph choice. We have demonstrated validity for the MGSRDS (Donovan et al., 
accepted). For more on the design of MGSRDS items, see Johnson et al. (in press). 
Coding the attitude survey 
We used an interpretive approach to qualitative analysis to address complexities in 
students’ attitudes toward mathematics and graphs. We coded students’ attitudes along 
four categories: positive, mixed, negative, and detached (Table 2). The codes arose 
from our analysis of students’ text responses (see Bechtold et al., 2022; Gardner et al., 
2019). To code, we used a mix of machine and human coding. Our team hired a 
consultant to train a machine learning program based on our coding scheme. For 
responses receiving less than 70% confidence with machine coding, we brought in 
human coders (this tended to be about 30% of responses). With human coders, we used 
consensus coding (Olson et al., 2016); two people coded independently, then met to 
calibrate their codes, necessitating 100% agreement. After qualitative coding, we 
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transformed the descriptive codes into numerical codes for statistical analysis. Larger 
values indicated more positive attitudes (0-detached, 1-negative, 2-mixed, 3-positive). 
Code Description Sample Response 
Positive  Like/can I can do mathematics because I've always been 

fluent in the 'language' of mathematics. 
mixed Combination of 

positive/negative 
I am inbetween sometimes I do understand 

graphs and other times I can get very confused. 

negative Dislike/cannot I dislike graphs because I tend to forget what 
the rules are to how functions and equations are 

placed.  
detached Separation from 

oneself 
It's all just following the formulas step by step. 

Table 2: Attitude codes, descriptions, and sample responses 
Qualitative analysis: coding the MGSRDS 
We coded students’ graph reasoning based on the four-form graph reasoning 
framework from Johnson et al. (2020): covariation (COV), variation (VAR), motion 
(MO), iconic (IC). To account for written responses that indicated limited evidence 
(LE) of reasoning, we added LE as a fifth code. Table 3 shows codes, descriptions, and 
sample responses. For the graph reasoning coding, we used only human coders. Again, 
we used consensus coding, which necessitated 100% intercoder agreement. After 
qualitative coding, we transformed the descriptive codes into numerical codes for 
statistical analysis. The values (0-LE, 1-IC, 2-MO, 3-VAR, 4-COV) indicated a 
hierarchy of graph reasoning (Donovan et al., accepted), with the largest values 
indicating quantitative graph reasoning (3-VAR, 4-COV). 
Code Description Sample Response 
COV  relationships between directions 

of change in attributes 
Total distance keeps increasing but the 
height increases then decreases 

VAR directions of change in a single 
attribute 

The height increases, then decreases, 
and finally increases again 

MO Physical movement of objects in 
a situation 

Shows the motion of the ferris wheel 

IC Physical features of a situation If you connect the line, it becomes a 
circle just like the route it made 

LE Limited evidence Just seems like the answer 

Table 3: Graph reasoning codes, descriptions, and sample responses 
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We coded students’ graph selection using a spreadsheet. To guard against bias, we 
separated students’ written explanations of their graph choice from their graph 
selections. The design of the MGSRDS included graph choices that were correct, 
partially correct, and incorrect. The partially correct graph choices accurately 
represented the direction of change in each attribute but did not accurately represent 
values of each attribute (for more, see Johnson et al., in press). Again, we transformed 
the descriptive codes into numerical codes for statistical analysis. Larger values 
indicated more positive attitudes (0=incorrect, 1=partially correct, 2=correct).   
Quantitative analysis: SEM 
SEM is a statistical technique that examines relationship patterns between variables 
that are modelled latently (Kline, 2023). Latent variables are preferred because they 
allow the variance between items to be examined instead of combining items into a 
mean score; An additional benefit of SEM is the ability to model multiple pathways 
with multiple dependent variables being tested simultaneously. To use SEM, 
researchers first develop a theory-based model. Then they determine whether data 
patterns fit their model. If there is unsatisfactory model fit, researchers modify and/or 
re-evaluate (Kline, 2023). Because of its complexity, SEM requires larger sample sizes 
than techniques such as multiple regression models.  
The model for this study (Figure 1) includes two independent variables: attitudes 
towards mathematics and attitudes towards graphs. The independent variables predict 
two dependent variables, graph selection and graph reasoning. The four directional 
arrows in Figure 1 show this. To operationalize the constructs of attitudes toward 
mathematics and attitudes toward graphs, we used students’ responses to questions 1, 
2, 4, and 5 from the attitude survey (see Table 1). We did this because there was parallel 
structure in the design of the questions; one question about mathematics and graphs 
related to the dimensions of emotional disposition (Q1, Q4) and perceived competence 
(Q2, Q5), respectively. To operationalize the constructs of graph selection and graph 
reasoning, we used students’ text responses explaining their graph reasoning and their 
graph choices for each of the six MGSRDS items. 

 

Figure 1: Conceptual model 
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We use three statistics to assess model fit: the chi-square goodness of fit, the 
Comparative Fit Index (CFI), the Root Mean Square Error of Approximation (RMSEA. 
The CFI addresses relative fit, assessing the model in comparison to a null, baseline 
model comprised of uncorrelated variables. CFI values of 0.90 and above provide 
sufficient evidence of good fit (Bentler & Bonett, 1980). The RMSEA addresses 
absolute fit, comparing a model is from an ideal. RMSEA values of 0.08 and below are 
considered acceptable fit (Browne & Cudeck, 1992). After assessing model fit, then 
we examine whether the items contributing to latent variables provide evidence of good 
fit (e.g., whether the six MGSRDS items contribute to the graph reasoning and graph 
selection constructs, and whether the four attitude survey items contribute to the 
attitude toward mathematics and attitudes toward graphs constructs). Standard 
regression weights of 0.30 or above are expected, with higher values indicating 
stronger contributions (Leech et al., 2014). If some items contribute at values lower 
than 0.30, they still may be included if they are significant and removing them does 
not improve the fit of the model.   
RESULTS 
TKH�FRQFHSWXDO�PRGHO�VKRZQ�LQ�)LJXUH���GHPRQVWUDWHG�JRRG�ILW��Ȥ������� ���������p < 
0.001, CFI = 0.96, RMSEA = 0.03. All items significantly contributed (p < 0.01) to the 
respective latent variable pathways. For graph reasoning, all six MGSRDS items 
contributed at values greater than 0.30 (values ranged from 0.58 to 0.77). For graph 
selection, four MGSRDS items contributed at values greater than 0.30 (values ranged 
from 0.33 to 0.48). The other two MGSRDS items contributed at values of 0.29 and 
0.15. Removing these two items did not improve the model, thus we kept them. For 
attitudes toward mathematics and attitudes toward graphs, the four attitude survey 
questions (Q1, Q2, Q4, Q5, see Table 1) contributed at values greater than 0.30 (values 
ranged from 0.36 to 0.72). Hence, there was statistical support for our model. 
All latent variable predictive pathways shown in the conceptual model (Figure 1) are 
significant. Like standardized regression weights, higher values indicate stronger 
relationships. $WWLWXGHV�WRZDUG�PDWKHPDWLFV�LQIOXHQFHV�JUDSK�VHOHFWLRQ��ȕ� �������p < 
�������DQG�JUDSK�UHDVRQLQJ��ȕ� �������p < 0.001).  Attitudes toward graphs influences 
JUDSK�VHOHFWLRQ��ȕ� �������p  ��������DQG�JUDSK�UHDVRQLQJ��ȕ� �������p = 0.002). 
DISCUSSION 
To begin, we asked: To what extent does students’ attitudes toward mathematics and 
graphs relate to the forms of their graph reasoning and/or the accuracy of their graph 
selection? We found students’ attitudes towards mathematics and attitudes toward 
graphs to influence their graph reasoning and graph selection. While all relationships 
were statistically significant, our results demonstrated that students’ attitudes toward 
mathematics more strongly influenced their graph reasoning and graph selection than 
did students’ attitudes toward graphs. Furthermore, the relationship between attitudes 
toward mathematics was stronger for graph selection than for graph reasoning. This 
also held for attitudes toward graphs. In all cases, more positive attitudes linked to 
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more quantitative forms of graph reasoning and to more accuracy in graph selection. 
Furthermore, our results pointed to the interrelationships between the dimensions of 
emotional disposition and perceived competence within the constructs of attitudes 
toward mathematics and attitudes toward graphs, underscoring the complexity of the 
attitude construct posited by Di Martino and Zan (2010, 2011). 
To contextualize our results, we discuss some limitations. First, we use students’ 
written responses as proxies for their attitudes toward mathematics, their attitudes 
toward graphs, and their graph reasoning. Hence, there may be fuller aspects of these 
constructs not revealed by students’ written responses. Second, while students 
completed the MGSRDS and attitude survey as part of their course, they may have 
viewed these instruments as “add-ons,” and thus may have felt less investment in their 
responses (see also Johnson et al., in press). Third, our analysis conceptualizes attitudes 
as comprising only two of the dimensions of attitudes toward mathematics put forward 
by Di Martino and Zan (emotional disposition and perceived competence). Hence, our 
design simplifies the construct somewhat. 
In conclusion, Goldin et al. (2016) suggested directions for future research to include 
the development of new instruments and the investigation of adults’ attitudes toward 
mathematics. Our study furthered these research directions. In future studies, 
researchers could use the instruments we have developed with different populations. 
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