


(root and admin) to those associated with cloud images,

network and IoT devices, and specific software. Based on

observing that username fingerprints are a strong differen-

tiator between attackers and legitimate users, we designed

Dictionary-Based Blocking (DBB)—a novel technique

for blocking SSH BFAs with high effectiveness. DBB blocks

traffic based on dictionaries of usernames attempted by attack-

ers. The low false positive rates of DBB ensure that legitimate

users retain reliable access.

With our research, we make the following contributions:

• We present an analysis of the properties of the SSH

brute-force attacks going on today, including insights

about their methodology, inferences about their targets,

investigations into their network sources, and analysis

of attackers’ persistence. (Sections 4, 5, 6)

• We develop a method for creating username dictionaries

that allow us to track attacks across IP addresses and over

time, even when data is incomplete or attackers make

small adjustments to their username lists. (Section 7)

• We present a new method, Dictionary Based Blocking

(DBB), for blocking SSH brute-force attacks using these

dictionaries. (Section 8)

• We evaluate DBB using real-world data, showing it to

be highly effective at blocking attackers while allowing

legitimate users access. (Section 8.3)

• We present results from a production deployment of

DBB, showing that it performs exceptionally well in

practice. (Section 8.5)

We begin with an overview of related literature in Section 2

and data collection setting and method in Section 3.

2 Related Work

The literature most relevant to our work analyzes SSH BFAs

and examines approaches to block them.

Analyzing SSH BFAs: An analysis of 103K login attempts

from 271 IPs on three honeypots over 11 weeks revealed

that the attacks target administrator as well as user accounts

and can be thwarted with strong passwords and key-based

logins [58]. More recently, researchers found that such attacks

employ root and admin as popular usernames (95% and 3%

of attempts, respectively) [10]. Complimentary research has

focused on the use of stolen credentials and botnets when

carrying out SSH BFAs [17, 71].

SSH BFAs have been captured by honeypots deployed via

IoT hardware and software as well and demonstrated that

attackers who gain access engage in diverse activities, such

as bitcoin mining, UDP/TCP flooding, SSH scans, and SSH

port forwarding [24]. In a larger-scale deployment via 102

medium-interaction honeypots across three continents, re-

searchers monitored 12 million connections originating from

38K unique IPs and examined how attacker behavior is in-

fluenced by the location of the honeypot, the difficulty of

compromise, and the variety of files available on the hon-

eypot [15]. Use of cipher suites and SSH version strings to

fingerprint the mechanisms used in the attacks has identified

that attackers use popular tools off-the-shelf software, such

as Ncrack [6] and Hydra [4], as well as custom tools [30].

A recent deployment of medium-interaction honeypots for

five protocols captured 73K IP addresses, noting an increasing

frequency of SSH attacks throughout the period. More lon-

gitudinal honeypot deployments have observed a significant

number of IP addresses engaged in multiple activities over

15 months [47] and two years [40]. The data covered various

attacks, including SSH BFAs and non-standard port accesses,

and the researchers observed that attacker preferences were

relatively stable [40]. The studies mentioned above mostly

use honeypots that collect only attacks. In contrast, we exam-

ined data from a production system, enabling us to compare

attackers and legitimate users accessing the same system.

Blocking SSH BFAs: Researchers have proposed various

approaches to detect and block BFAs, including network flow

analysis [26, 32–35, 42, 67] and machine learning/deep learn-

ing techniques [31,37,38,45,48,49,62]. However, employing

network flow data to detect SSH BFAs can result in a high

number of false positives.

Alternately, defenses against SSH BFAs can employ

host-based approaches to track user/IP characteristics, such

as failed attempts and interarrival time. Tools such as

Fail2ban [3], denyhosts [1], and sshguard [9] use host-based

blocking of suspicious traffic. They analyze authentication

logs to compute relevant features, such as the number of failed

login attempts, and block corresponding IP addresses with

host-based firewalls such as iptables [7]. Fail2ban is one

of the most widely used tools for stopping BFAs: it blocks

IP addresses exceeding a threshold number of failed attempts

within a specified period. Tuned time- and rate-based block-

ing mechanisms have been used to improve blocking strate-

gies [63]. A simulation with synthetic data showed that a dis-

tributed active-response architecture can enable the sharing

of relevant information—particularly attacking IP addresses—

among trusted hosts [44]. However, such an approach is not

privacy-preserving and requires a set of trusted hosts. By ana-

lyzing data from a production system, we were able to design

and deploy a novel defense and compare its effectiveness

(including false positives) with rate-based designs.

3 Data Collection

Our research is based on an analysis of sshd logs from Cloud-

Lab [27], a public facility used by academic researchers at

institutions around the world. CloudLab has a cloud-like user

model: the users are “tenants” who access servers temporar-

ily assigned to them. Although CloudLab has some policy

control, such as initial sshd and logging configurations, the

users are not under direct control of CloudLab. Once users

acquire control of their assigned nodes, they may, and occa-



sionally do, alter the SSH settings without any supervision

or regulation from CloudLab. Therefore, an additional layer

of SSH security, beyond the defaults permitting only key-

based authentication and prohibiting username,password

authentication, is needed.

We used two sets of log files collected by CloudLab. The

first (Log1) was collected on a single cluster over four years

(October 2017 – August 2021) and contains a large number

of attacks that enabled us to study general trends in SSH

BFAs. The second (Log2) was collected at three different

CloudLab sites over ten weeks (November 2022 – January

2023) to evaluate our proposed blocking mechanism. The

three CloudLab sites are geographically dispersed and use

unrelated IP addresses owned by different networks.

SSH Logs: Each host (also called a “node” or “server”)

in CloudLab has a persistent public IPv4 address and runs

sshd for remote access—the primary way legitimate users

interact with the host. By default, CloudLab hosts do not run

other public-facing services, though users are permitted to

start their own services if they wish. All CloudLab hosts are

configured to log SSH login attempts to a central syslog

server from which we obtained our datasets. We parsed the

logs to extract various relevant features, such as source IP ad-

dresses, attempted usernames, authentication responses, etc.

The log files did not contain passwords. To get a view ap-

proximating the network boundary (e.g., firewall or bastion

host), we first removed any SSH attempts originating from

within CloudLab itself. After removing the internal attempts,

Log1 included ≈ 840K unique source IP addresses attempt-

ing ≈ 277K unique usernames and making ≈ 427M login

attempts Log2 contained ≈ 91K unique source IPs attempting

≈ 98K unique usernames and ≈ 213M login attempts.

When analyzing the logs, we took into account that log

messages can be lost due to central server overload, network

congestion, misconfigurations on the hosts or the server, or

intentional configuration changes by users. We further consid-

ered that CloudLab hosts are responsive to SSH requests only

when in use, with usage periods of varying lengths distributed

unevenly. As a result, log data pertaining to any given host can

exhibit short-term gaps corresponding to periods in which it is

not in use. To avoid incorrect conclusions on account of such

short-term gaps, we used methods that support “fuzzy” match-

ing and looked at long-term trends. Of the hosts included in

Log1, 352 logged SSH connections every day of the logged

period, and the three sites in Log2 averaged connections from

1,322 hosts daily (616, 384, and 322 each).

Distinguishing Legitimate Users From Attackers: We

considered an IP address as belonging to a legitimate user if it

had at least one successful login. In other words, we assumed

that IP addresses associated only with failed logins belonged

to attackers. CloudLab’s default sshd configuration allows

only public-key authentication, and the CloudLab staff know

of no attacks using stolen private keys. Therefore, we assumed

that only legitimate users logged in successfully. On the other

hand, attackers typically attempt to log in using passwords.

Even though CloudLab is set to accept only key-based authen-

tication, password-based login attempts are logged despite

being disallowed. Although legitimate users may attempt (and

fail) to log in with passwords, nearly all failed login attempts

in our logs appear to be part of attacks rather than erroneous

password-based attempts from legitimate users.

Advantages of Production Facility over Honeypots: Un-

like honeypot logs that exclusively contain attacks, the Cloud-

Lab logs we analyzed contain actions of attackers along with

those of legitimate users. As a result, analyzing the data al-

lowed us to explore the practices of legitimate users in ad-

dition to those of attackers, thus facilitating comparisons be-

tween the two. One of the main challenges of honeypot logs is

the inability to test blocking strategies because of the absence

of legitimate users, resulting in a lack of false positives for the

assessment. In contrast, our data can serve the dual purpose of

aiding the development of blocking strategies and providing

a means to assess their effectiveness.

Metadata Limitations: In parts of our analysis, we used

data regarding network owners and geographic locations of

the attacker IP addresses [5,14]. Since we fetched this data in

Summer 2022, after collecting Log1, it is possible that some

IP addresses changed ownership after we had logged attacks

from them. In addition, the use of NAT and dynamic address

assignment on source networks may obscure the true number

of attacking devices captured in the logs.

Ethical Considerations: Collecting logs is a routine op-

eration in facilities like CloudLab. We have reported results

using large aggregates without identifying individual users. In

cases where mentioning specific users can provide illustrative

value, we have anonymized the usernames. At the same time,

we have assumed that attackers do not have a legitimate expec-

tation of privacy. Still, we have not mentioned IP addresses

since the devices may be compromised unbeknownst to their

owners, who may have no malicious intent.

4 The Anatomy of SSH BFAs

In this section, we cover the basic features of SSH BFAs,

attaching specific numbers and concrete behaviors from Log1

to illustrate the concepts in the general descriptions.

Source IP Addresses: An SSH BFA originates from a

source to a set of targets using a guessing vector of credentials.

Such attacks can come from a large number of IP addresses.

For instance, Log1 contains attacks from over 800,000 IP ad-

dresses, with at least one attack from 90% of the 249 countries

with ISO country codes [39]. However, few conclusions about

the individual or entity controlling an attack can be drawn

from source IP addresses alone. In many cases, the attacking

devices do not belong to malicious actors themselves but to

botnets composed of compromised machines [13, 46, 56] in-

fected with self-replicating worms [25] or used to mask the

locations of the actual attackers.















of the presence of DBB and the dictionaries shared among

the cooperating parties. Although we have described the use

of DBB to protect individual hosts, it can be applied network-

wide by using log files from individual hosts to generate

rules for a border firewall. That said, DBB is not intended to

defend against targeted attacks in which only a single facility

is attacked for a short period. Further, DBB cannot defend

against stolen credentials, which allow attackers to succeed at

logging in on the first attempt. Defending against such attacks

would require additional protective mechanisms [65, 71, 73].

8.2 Design of DBB

DBB involves a set of collectors that observe SSH login at-

tempts. In the simplest cases, the collectors can be production

machines that harvest their logs for usernames and source

IP addresses associated with failed logins. Alternately, SSH

honeypots or machines can be set up specifically as collec-

tors. As described in Section 7, the collectors create a set

of dictionaries by formulating a union of all usernames in

their dictionaries. A Username Block List (UBL) is created by

removing any locally valid usernames from the union. Each

collector sends its UBL to a central coordinator that com-

bines them with those received from other collections and

distributes the union to any defending hosts, i.e., hosts that

wish to defend themselves against SSH BFAs. DBB involves

employing UBL to identify attacker IP addresses and blocking

them at the defending host and/or at a network-wide firewall.

When a defending host receives a failed login attempt for any

username in the UBL that is not a local user4, it blocks all

further traffic from that source (e.g., by adding a local fire-

wall rule [7]). We envision a deployment of DBB in which

volunteers worldwide contribute UBLs from collectors on

their networks to a trusted central coordinator that publishes

a global UBL that any host can use for defense.

It is crucial to note a couple of important properties of

DBB. First, no IP addresses are exchanged. As a result, unlike

IP-based blocklists, DBB preserves the privacy of users and

facilities and prevents “false accusations” against specific

IP addresses. Second, DBB removes legitimate usernames

when creating and applying UBLs since legitimate usernames

can end up in dictionaries (as we showed in our analysis).

Removal of legitimate usernames avoids information leakage

from the collectors and prevents defending hosts from locking

out unlucky users whose usernames end up in the UBL.

8.3 Effectiveness of DBB

We evaluated DBB using Log2, which was collected for nearly

ten weeks—from November 2022 to January 2023—on three

CloudLab sites: Site-A, Site-B, and Site-C. While Site-B and

4We recommend root be deemed an invalid username even if a facility

permits its use.

Site-C have characteristics similar to Site-A, they are geo-

graphically distributed and use distinct IP addresses on differ-

ent networks. We simulated DBB on the data from these sites

to derive and distribute new UBLs once a day using their log

files as traces. In addition, we deployed DBB in production

for three weeks at the Emulab [2] cluster in CloudLab.

Evaluating DBB: We simulated DBB at each site inde-

pendently to determine its effectiveness by measuring the

fraction of attack attempts blocked and the number of false

positives (i.e., the number of blocked IP addresses of legiti-

mate users).5 We have reported false positives using absolute

numbers rather than percentages because each false positive

corresponds roughly to a single blocked user and/or one sup-

port ticket for the staff to resolve. For the same reason, we

have reported false positives with respect to the number of

blocked source IP addresses belonging to legitimate users.

We identified legitimate user IP addresses in Log2 with the

same method used for Log1, finding that Site-A, Site-B and

Site-C had 2,952, 1,733, and 1,504 IP addresses of legitimate

users, respectively. At Site-A, Site-B and Site-C DBB blocked

99.58%, 99.59%, and 99.39% of the BFAs with 17, 18, and

5 false positives, respectively. As we showed earlier, most

attacks use a dictionary. Therefore, DBB achieved uniformly

high block rates, with only 0.5% of BFAs going unblocked.

The false positive rates for all sites were remarkably low, with

an average of one false positive every five days.

Comparing DBB to Fail2ban: We ran simulations us-

ing Log2 to compare DBB with Fail2ban [3], a widely de-

ployed state-of-the-art tool for blocking SSH BFAs at the

host. Fail2ban has three adjustable parameters: Maxretry—

the number of failed attempts from the same IP address that

activate blocking; Findtime—the period during which failed

attempts are counted; and Bantime—the duration of the block.

In comparison, DBB employs a single parameter equivalent

to maxretry. Since we recommend blocking with DBB at the

first failed login attempt, i.e. maxretry = 1, this can serve as

the default configuration.

Trying every one of the numerous possible combinations of

Fail2ban parameters is practically infeasible. Therefore, we

tuned the parameters to conduct a fair comparison between

Fail2ban and DBB without favoring either technique.We com-

pared the performance of Fail2ban with DBB with three differ-

ent settings variations: S1: Default settings for DBB (maxretry

= 1) and Fail2ban (maxretry = 5, findtime = 10 minutes, ban-

time = 10 minutes); S2: Default settings for DBB (maxretry

= 1) with Fail2ban adjusted to use the same maxretry value

(maxretry = 1, findtime = 10 minutes bantime = 10 minutes);

and S3: No unblocking in Fail2ban (bantime = ∞) and vary-

ing values of maxretry from [1,45] for both techniques. All

variations used the default Fail2ban findtime of 10 minutes.

5Even though defending hosts remove local usernames from the UBL,

false positives can occur if a legitimate user tries to log in using a wrong

username that happens to be in the UBL or shares an IP address with an

attacker (e.g.. due to NAT).





fail2ban operates without a finite findtime, instead using find-

time=∞ and bantime=24 hours. When an IP address success-

fully logs in, the maxretry counter is reset to zero. Emulab’s

firewall blocks all access from any IP address contained in

the IP-address blocklists; this proactive measure is taken not

only to counter SSH BFA but also to defend against attacks

attempting to exploit other protocols and vulnerabilities.

Operational Effectiveness: It was possible to compute the

precise percentage of BFAs blocked when assessing DBB per-

formance in the simulation because we knew the total number

of failed SSH attempts. However, blocking IP addresses in

an operational system prevents subsequent failed attempts

from that source, making it challenging to count the precise

number of attack attempts that would have been logged with-

out DBB. We therefore relied on the three-week record of

failed attempts from Emulab to establish a baseline for esti-

mating the proportion of attacks blocked. Importantly, these

constraints mean that measurements of DBB performance

blocking BFAs in operation provide lower bounds.

We found that DBB is significantly more effective than the

existing blocking mechanism at Emulab during DBB deploy-

ment. DBB reduced failed SSH login attempts by 79.5%—

from 80.6K to 16.5K per day—suggesting that it blocked

four-fifths of the attacks not caught by the other defenses

at Emulab. During the DBB deployment period, no legiti-

mate user contacted the administrators about being blocked

by DBB while two users contacted them because of blocking

by lazy-fail2ban. One of the two blocked by lazy-fail2ban had

mistakenly attempted to log in with a username resembling a

university identification number, surpassing the lazy-fail2ban

threshold and getting blocked. However, DBB did not block

the user because the identification number used as the user-

name was not in the UBL. The incident illustrates that the

design of DBB has the advantage of minimizing the chances

of blocking legitimate users because of inadvertent errors

such as usernames with typos or those from other services.

8.6 Practical Considerations

DBB is a lightweight mechanism that involves negligible

overhead for collectors or coordinators. The only requirement

for DBB is that defending hosts have the ability to check

username membership in a relatively small set. Moreover,

the compact size of the UBL makes it well-suited for deploy-

ment on resource-constrained devices such as IoT devices.

As a result, DBB can be easily deployed at larger scales by

appropriately considering several practical factors.

Dictionaries Distribution: We propose hashing usernames

before sharing with the coordinator. The approach permits

easily testing membership in the UBL but avoids leaking valid

usernames, thus making it difficult to use public UBLs to

target high-value usernames. Moreover, hashed usernames

prevent broader dissemination of newly discovered vulnerabil-

ities pertaining to a username known only to a few attackers.

Dictionary Collection: Since dictionaries do not include

IP addresses and locally valid usernames are removed before

sharing, collectors can be set up anywhere on the Internet

without raising privacy concerns. A collector need not reveal

its own IP address and can be easily moved elsewhere to pre-

vent adversaries from discovering it. However, DBB functions

well even if the adversaries know the identities of some, or

even most, collectors as long as there are a few collectors that

are not known to the attackers. Since DBB does not place a

high degree of trust in dictionary providers, attempting to deny

service by inducing false inclusion of a username in a dictio-

nary is ineffective. Therefore, a large network of volunteer

collectors can operate with fairly light oversight.

Block Evasion: To evade DBB, an attacker must avoid

high-value usernames in the public UBL, likely reducing the

effectiveness of the attack. Attacking with a username not in

the UBL requires that the username not be present in any dic-

tionary. In other words, evading DBB requires avoiding every

collector or avoiding using the same set of usernames from

any source. The safest strategy for attempting to evade blocks

is to mix high-value new usernames with unique “chaff” user-

names in every attempt. Such an approach would slow the

attacker down. Moreover, it would not help to have multiple at-

tacking sources. In fact, it would require greater coordination

or increased chaff to avoid reusing username sets.

9 Conclusion

While new cyberthreats emerge daily, attackers across the

world continue to rely on simple, traditional approaches such

as SSH BFAs. Yet, existing approaches face challenges in

blocking such attacks with high accuracy without also block-

ing sizable numbers of legitimate users. The observed trends

indicate an evolution of attacks on various accounts, software

and devices, with attackers shifting from traditional generic at-

tacks. Analyzing multi-year login attempt logs enables the ef-

fective identification of malicious activity by discerning differ-

ences in attacker and legitimate user behavior. We have shown

that such insight can be applied for designing a lightweight

blocking mechanism that can be deployed at scale with little

overhead. Our approach outperforms the state-of-the-art in

host-based SSH blocking, pointing the way to a new class of

more effective defenses against BFAs.

Acknowledgements

We extend our sincere gratitude to the anonymous reviewers,

our shepherd Bruce Davie, and the CloudLab administrators

for their invaluable contributions and dedicated efforts in re-

viewing and supporting our research. Their insightful feed-

back have enriched the quality of our work. This material is

based upon work supported by the National Science Founda-

tion under Award Nos. 1743363, 1801446, and 2027208.



References

[1] Denyhosts. https://denyhosts.sourceforge.net/.

Accessed 2024-03-03.

[2] Emulab. https://www.emulab.net/. Accessed 2024-03-03.

[3] Fail2ban. https://github.com/fail2ban/fail2ban.

Accessed 2024-03-03.

[4] Hydra. https://www.kali.org/tools/hydra/. Accessed

2024-03-03.

[5] IPinfo. https://ipinfo.io/. Accessed 2024-03-03.

[6] Ncrack. https://nmap.org/ncrack/. Accessed 2024-03-

03.

[7] The Netfilter.org “iptables” project. https://www.netfilte

r.org/projects/iptables/index.html.

[8] pfsense. https://www.pfsense.org/. Accessed 2024-03-

03.

[9] SSH Guard. https://www.sshguard.net/. Accessed

2024-03-03.

[10] A. Abdou, D. Barrera, and P. C. van Oorschot. What lies be-

neath? Analyzing automated SSH bruteforce attacks. In F. Sta-

jano, S. F. Mjølsnes, G. Jenkinson, and P. Thorsheim, editors,

Technology and Practice of Passwords, pages 72–91, Cham,

2016. Springer International Publishing. DOI: 10.1007/978-3-

319-29938_6.

[11] Akamai Security Research. Panchan’s mining rig: New Golang

peer-to-peer botnet says “Hi!”. https://www.akamai.com

/blog/security/new-p2p-botnet-panchan, Jun 2022.

Accessed 2024-03-03.

[12] S. Alrwais, X. Liao, X. Mi, P. Wang, X. Wang, F. Qian,

R. Beyah, and D. McCoy. Under the shadow of sunshine:

Understanding and detecting bulletproof hosting on legitimate

service provider networks. In 2017 IEEE Symposium on Secu-

rity and Privacy, IEEE S&P 2017, pages 805–823, 2017. DOI:

10.1109/SP.2017.32.

[13] M. Antonakakis, T. April, M. Bailey, M. Bernhard,

E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-

man, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,

J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,

and Y. Zhou. Understanding the Mirai botnet. In 26th

USENIX Security Symposium, USENIX Security 17, pages

1093–1110, Vancouver, BC, Aug 2017. USENIX Association.

https://www.usenix.org/conference/usenixsecurity

17/technical-sessions/presentation/antonakakis.

[14] ARIN. American Registry for Internet Numbers. https:

//www.arin.net/. Accessed 2024-03-03.

[15] T. Barron and N. Nikiforakis. Picky attackers: Quantify-

ing the role of system properties on intruder behavior. In

Proceedings of the 33rd Annual Computer Security Applica-

tions Conference, ACSAC ’17, pages 387–398, New York,

NY, USA, 2017. Association for Computing Machinery. DOI:

10.1145/3134600.3134614.

[16] M. S. Bohuk, M. Islam, S. Ahmad, M. Swift, T. Ristenpart, and

R. Chatterjee. Gossamer: Securely measuring password-based

logins. In 31st USENIX Security Symposium, USENIX Secu-

rity 22, pages 1867–1884, Boston, MA, Aug. 2022. USENIX

Association. https://www.usenix.org/conference/usen

ixsecurity22/presentation/sanusi-bohuk.

[17] P. M. Cao, Y. Wu, S. S. Banerjee, J. Azoff, A. Withers, Z. T.

Kalbarczyk, and R. K. Iyer. CAUDIT: Continuous auditing of

SSH servers to mitigate Brute-Force attacks. In 16th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 19), pages 667–682, Boston, MA, Feb. 2019. USENIX

Association. https://www.usenix.org/conference/nsdi

19/presentation/cao.

[18] Check Point Research. Stopping serial killer: Catching the

next strike. https://research.checkpoint.com/2021/s

topping-serial-killer-catching-the-next-strike/,

Jan 2021. Accessed 2024-03-03.

[19] P. J. Criscuolo. Distributed denial of service: Trin00, tribe

flood network, tribe flood network 2000, and stacheldraht. De-

partment of Energy Computer Incident Advisory Capability

(CIAC), UCRLID-136939, Rev. 1, Feb 2000.

[20] Dahua Technology. Dahua Intelligent Solutions. https:

//www.dahuasecurity.com/. Accessed 2024-03-03.

[21] Dahua Technology. Security advisory — Buffer overflow

vulnerability found in some Dahua IP camera devices. https:

//www.dahuasecurity.com/support/cybersecurity/de

tails/617, 2019. Accessed 2022-03-01.

[22] Dahua Technology. Security advisory — Some products of

Dahua have security risks. https://www.dahuasecurit

y.com/support/cybersecurity/details/637, 2019.

Accessed 2022-03-01.

[23] Dahua Wiki. Dahua default usernames and passwords. https:

//dahuawiki.com/UsernameandPassword. Accessed 2022-

03-01.

[24] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen,

and J. Yang. Understanding fileless attacks on Linux-based

IoT devices with HoneyCloud. In Proceedings of the 17th

Annual International Conference on Mobile Systems, Applica-

tions, and Services, MobiSys ’19, pages 482–493, New York,

NY, USA, 2019. Association for Computing Machinery. DOI:

10.1145/3307334.3326083.

[25] Dr. Web. Linux.muldrop.14. https://vms.drweb.com/vi

rus/?i=15391790, 2017. Accessed 2024-03-03.

[26] M. Drašar. Protocol-independent detection of dictionary at-

tacks. In T. Bauschert, editor, Advances in Communication Net-

working, pages 304–309, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg. DOI: 10.1007/978-3-642-40552-5_30.

[27] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,

G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,

and P. Mishra. The design and operation of CloudLab. In Pro-

ceedings of the USENIX Annual Technical Conference (ATC),

July 2019.

[28] K. Egevang and P. Francis. The IP Network Address Translator

(NAT). RFC 1631, 1994. https://www.rfc-editor.org/r

fc/rfc1631 Accessed 2024-03-03.



[29] D. Garn. Eight ways to protect SSH access on your system.

https://www.redhat.com/sysadmin/eight-ways-sec

ure-ssh, Oct 2020. Accessed 2024-03-03.

[30] V. Ghiette, H. Griffioen, and C. Doerr. Fingerprinting tooling

used for SSH compromisation attempts. In 22nd International

Symposium on Research in Attacks, Intrusions and Defenses,

RAID 2019, pages 61–71, Chaoyang District, Beijing, Sept.

2019. USENIX Association. https://www.usenix.org/c

onference/raid2019/presentation/ghiette.

[31] J. Hancock, T. M. Khoshgoftaar, and J. L. Leevy. Detect-

ing SSH and FTP brute force attacks in big data. In 20th

IEEE International Conference on Machine Learning and

Applications, ICMLA 2021, pages 760–765, 2021. DOI:

10.1109/ICMLA52953.2021.00126.

[32] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre,

and A. Pras. SSHCure: A flow-based SSH intrusion detection

system. In R. Sadre, J. Novotný, P. Čeleda, M. Waldburger, and
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D Top usernames in DG

Table D.1 shows the usernames present in at least 5% of the DGs.

Table D.1: Usernames in ≥ 5% of all DGs.

Username Percentage of DGs Username Percentage of DGs

root 69.94 debian 8.65

admin 55.87 centos 8.65

user 36.07 demo 8.65

test 30.21 minecraft 8.36

support 26.83 zabbix 7.92

ubnt 24.93 odoo 7.92

oracle 23.02 server 7.92

ubuntu 22.87 ts3 7.92

postgres 20.38 apache 7.77

ftp 20.09 teamspeak 7.77

pi 19.21 dev 7.62

guest 18.48 vagrant 7.33

git 16.42 web 7.33

service 15.54 mother 7.33

usuario 14.96 test1 7.04

mysql 14.22 administrator 6.89

nagios 13.49 system 6.74

hadoop 12.76 weblogic 6.30

tomcat 11.88 steam 6.16

jenkins 11.29 svn 5.43

user1 10.12 ansible 5.28

www 9.82 test2 5.28

student 9.38 kafka 5.13

supervisor 9.24 alex 5.13

deploy 8.80 webmaster 5.13

E Username Classification

Table E.1 contains our manual classification of the 100 most-attempted usernames. (Usernames colliding with real CloudLab

usernames have been omitted for privacy.)

Username Percentage of Attempts Cumulative Percentage Category Sub-category

root 47.81 47.81 admin –

admin 3.97 51.78 admin –

support 2.66 54.44 non-admin role

ubnt 1.82 56.26 specific network

user1 1.79 58.06 non-admin role

default 1.78 59.83 non-admin misc

MikroTik 1.72 61.56 specific network

administrator 1.71 63.26 admin –

admin1 1.70 64.97 admin –

profile1 1.70 66.67 non-admin role

demo 1.70 68.37 non-admin role



Username Percentage of Attempts Cumulative Percentage Category Sub-category

web 1.70 70.07 specific service

tech 1.59 71.66 non-admin role

telecomadmin 1.54 73.20 specific network

oracle 0.78 73.98 specific software

ubuntu 0.64 74.62 specific distribution

ftp 0.58 75.20 specific service

postgres 0.50 75.70 specific software

pi 0.40 76.10 specific distribution

git 0.35 76.45 specific service

guest 0.31 76.75 non-admin role

test1 0.29 77.05 non-admin role

export 0.28 77.33 non-admin role

usuario 0.28 77.61 non-admin role

test2 0.26 77.86 non-admin role

mysql 0.21 78.07 specific software

hadoop 0.20 78.28 specific software

deploy 0.18 78.45 non-admin role

nagios 0.17 78.62 specific software

jenkins 0.16 78.78 specific software

dev 0.15 78.93 non-admin role

www 0.14 79.07 specific service

debian 0.13 79.20 specific distribution

minecraft 0.12 79.32 specific software

odoo 0.11 79.44 specific software

ansible 0.11 79.55 specific software

teamspeak 0.11 79.66 specific software

student 0.11 79.76 non-admin role

tomcat 0.10 79.87 specific software

ts3 0.10 79.97 specific software

server 0.10 80.07 non-admin role

centos 0.09 80.16 specific distribution

es 0.09 80.24 specific software

zabbix 0.08 80.32 specific software

weblogic 0.08 80.40 specific software

steam 0.07 80.47 specific software

vagrant 0.06 80.54 specific software

elasticsearch 0.06 80.60 specific software

elastic 0.06 80.66 specific software

webadmin 0.06 80.72 specific service

kafka 0.06 80.78 specific software

ftpadmin 0.06 80.84 specific service

webmaster 0.06 80.90 specific service

vnc 0.06 80.96 specific software

system 0.06 81.01 admin –

contador 0.06 81.07 non-admin role

ftptest 0.06 81.13 specific service

service 0.06 81.18 non-admin role

baikal 0.06 81.24 specific software

ts 0.05 81.29 non-admin misc

duni 0.05 81.34 non-admin misc

temp 0.05 81.40 non-admin misc

spark 0.05 81.45 specific software



Username Percentage of Attempts Cumulative Percentage Category Sub-category

svn 0.05 81.50 specific service

docker 0.05 81.55 specific software

developer 0.05 81.60 non-admin role

jira 0.05 81.66 specific software

app 0.05 81.70 non-admin misc

sinusbot 0.05 81.75 specific software

apache 0.05 81.80 specific software

sysadmin 0.05 81.84 admin –

nexus 0.05 81.89 specific software

uftp 0.04 81.93 specific service

ec2- 0.04 81.98 non-admin misc

bot 0.04 82.02 non-admin misc

butter 0.04 82.06 specific software

mcserver 0.04 82.10 specific software

teamspeak3 0.04 82.14 specific software

nginx 0.04 82.18 specific software

csgo 0.04 82.22 specific software

backup 0.04 82.25 non-admin role

vbox 0.04 82.29 specific software

csgoserver 0.04 82.33 specific software

gpadmin 0.04 82.36 specific software

info 0.03 82.40 non-admin misc

hd 0.03 82.43 non-admin misc

a 0.03 82.46 non-admin misc

db 0.03 82.50 specific service

teste 0.03 82.53 non-admin misc

user2 0.03 82.56 non-admin role

deployer 0.03 82.59 non-admin role

daniel 0.03 82.63 non-admin name

nvidia 0.03 82.66 specific software

db2inst1 0.03 82.69 specific software

ethos 0.03 82.72 specific distribution

manager 0.03 82.75 non-admin role

www-data 0.03 82.78 specific service

wp 0.03 82.81 specific software

redis 0.03 82.84 specific software

testing 0.03 82.87 non-admin role

Table E.1: Username classification

F Top 50 Countries And Network Providers

Figure F shows the top 50 countries and network providers based on the percentage of attackers and attempts.




