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four years from over 500 servers. We report several patterns in
attacker behavior, present insight on the targets of the attacks,
and devise a method for tracking individual attacks over time
across sources. Leveraging our insight, we develop a defense
mechanism against SSH BFAs that blocks 99.5% of such
attacks, significantly outperforming the 66.1% coverage of
current state-of-the-art rate-based blocking while also cutting
false positives by 83%. We have deployed our defense in
production on CloudLab, where it catches four-fifths of SSH
BFAs missed by other defense strategies.

1 Introduction

The Secure Shell [72] is widely used for remote administra-
tion and command execution. Due to this popularity, it is com-
mon for SSH servers to be targeted for password-guessing
Brute-Force Attacks (BFAs). In such attacks, a malicious
party attempts to connect to an SSH server using one or
more {username, password} pairs, guessing values for both
fields. Attempting to brute-force SSH may seem like an “out-
dated” attack: best practices recommend key-based authen-
tication [29], many IPv4 devices are behind NAT [28], and
scanning for hosts on IPv6 is notoriously difficult [36]. Yet,
our experience shows that BFAs are still prevalent— in fact,
increasing—on the IPv4 Internet. Such attacks are leveraged
to exploit poorly configured and poorly secured SSH servers
to build botnets [56]. If the attack against a machine succeeds,
the attackers can use the machine to carry out further attacks

Figure 1: Failed SSH attempts on CloudLab (in millions).

as part of the botnet [11,13,19,43,46] or steal its computing
resources (e.g., for cryptomining [24, 59]).

While others have studied SSH attacks, existing studies
involve smaller timescales [10, 30, 58, 71], examine fewer
hosts [10, 58], use honeypots that do not include legitimate
users [10,30,58,71], or cover periods that are not recent [10,
58]. In contrast, we captured real-world BFAs mixed with
the activities of legitimate users in a live production facility
by capturing sshd logs for four years across /=500 servers in
CloudLab [27]. Due to this unique characteristic, our dataset
provides a rare opportunity to understand changing attacker
behavior over a longitudinal span and to compare it with the
practices of legitimate users. Our analysis shows that SSH
BFAs are evolving. As Figure | illustrates, BFA attackers are
becoming more aggressive, with daily attempts increasing,
particularly in recent years.

By “fingerprinting” usernames, we were able to track many
attackers over time and across IP addresses. Our analysis
revealed a wide range of attacker behaviors. Many attack
quickly and then disappear, while others persist in their at-
tacks for months or years; some focus on one username,
while others attempt thousands. We found that attackers tar-
get a wide variety of devices (e.g., servers, Internet of Things
[IoT] devices, routers) and software (e.g., databases, games,
chat servers), shifting from typical administrator usernames



(root and admin) to those associated with cloud images,
network and IoT devices, and specific software. Based on
observing that username fingerprints are a strong differen-
tiator between attackers and legitimate users, we designed
Dictionary-Based Blocking (DBB)—a novel technique
for blocking SSH BFAs with high effectiveness. DBB blocks
traffic based on dictionaries of usernames attempted by attack-
ers. The low false positive rates of DBB ensure that legitimate
users retain reliable access.

With our research, we make the following contributions:

* We present an analysis of the properties of the SSH
brute-force attacks going on today, including insights
about their methodology, inferences about their targets,
investigations into their network sources, and analysis
of attackers’ persistence. (Sections 4, 5, 6)

* We develop a method for creating username dictionaries
that allow us to track attacks across IP addresses and over
time, even when data is incomplete or attackers make
small adjustments to their username lists. (Section 7)

* We present a new method, Dictionary Based Blocking
(DBB), for blocking SSH brute-force attacks using these
dictionaries. (Section 8)

* We evaluate DBB using real-world data, showing it to
be highly effective at blocking attackers while allowing
legitimate users access. (Section 8.3)

* We present results from a production deployment of
DBB, showing that it performs exceptionally well in
practice. (Section 8.5)

We begin with an overview of related literature in Section 2

and data collection setting and method in Section 3.

2 Related Work

The literature most relevant to our work analyzes SSH BFAs
and examines approaches to block them.

Analyzing SSH BFAs: An analysis of 103K login attempts
from 271 IPs on three honeypots over 11 weeks revealed
that the attacks target administrator as well as user accounts
and can be thwarted with strong passwords and key-based
logins [58]. More recently, researchers found that such attacks
employ root and admin as popular usernames (95% and 3%
of attempts, respectively) [10]. Complimentary research has
focused on the use of stolen credentials and botnets when
carrying out SSH BFAs [17,71].

SSH BFAs have been captured by honeypots deployed via
IoT hardware and software as well and demonstrated that
attackers who gain access engage in diverse activities, such
as bitcoin mining, UDP/TCP flooding, SSH scans, and SSH
port forwarding [24]. In a larger-scale deployment via 102
medium-interaction honeypots across three continents, re-
searchers monitored 12 million connections originating from
38K unique IPs and examined how attacker behavior is in-
fluenced by the location of the honeypot, the difficulty of

compromise, and the variety of files available on the hon-
eypot [15]. Use of cipher suites and SSH version strings to
fingerprint the mechanisms used in the attacks has identified
that attackers use popular tools off-the-shelf software, such
as Ncrack [6] and Hydra [4], as well as custom tools [30].

A recent deployment of medium-interaction honeypots for
five protocols captured 73K IP addresses, noting an increasing
frequency of SSH attacks throughout the period. More lon-
gitudinal honeypot deployments have observed a significant
number of IP addresses engaged in multiple activities over
15 months [47] and two years [40]. The data covered various
attacks, including SSH BFAs and non-standard port accesses,
and the researchers observed that attacker preferences were
relatively stable [40]. The studies mentioned above mostly
use honeypots that collect only attacks. In contrast, we exam-
ined data from a production system, enabling us to compare
attackers and legitimate users accessing the same system.

Blocking SSH BFAs: Researchers have proposed various
approaches to detect and block BFAs, including network flow
analysis [26,32-35,42,67] and machine learning/deep learn-
ing techniques [31,37,38,45,48,49,62]. However, employing
network flow data to detect SSH BFAs can result in a high
number of false positives.

Alternately, defenses against SSH BFAs can employ
host-based approaches to track user/IP characteristics, such
as failed attempts and interarrival time. Tools such as
Fail2ban [3], denyhosts [1], and sshguard [9] use host-based
blocking of suspicious traffic. They analyze authentication
logs to compute relevant features, such as the number of failed
login attempts, and block corresponding IP addresses with
host-based firewalls such as iptables [7]. Fail2ban is one
of the most widely used tools for stopping BFAs: it blocks
IP addresses exceeding a threshold number of failed attempts
within a specified period. Tuned time- and rate-based block-
ing mechanisms have been used to improve blocking strate-
gies [63]. A simulation with synthetic data showed that a dis-
tributed active-response architecture can enable the sharing
of relevant information—particularly attacking IP addresses—
among trusted hosts [44]. However, such an approach is not
privacy-preserving and requires a set of trusted hosts. By ana-
lyzing data from a production system, we were able to design
and deploy a novel defense and compare its effectiveness
(including false positives) with rate-based designs.

3 Data Collection

Our research is based on an analysis of sshd logs from Cloud-
Lab [27], a public facility used by academic researchers at
institutions around the world. CloudLab has a cloud-like user
model: the users are “tenants” who access servers temporar-
ily assigned to them. Although CloudLab has some policy
control, such as initial sshd and logging configurations, the
users are not under direct control of CloudLab. Once users
acquire control of their assigned nodes, they may, and occa-



sionally do, alter the SSH settings without any supervision
or regulation from CloudLab. Therefore, an additional layer
of SSH security, beyond the defaults permitting only key-
based authentication and prohibiting username, password
authentication, is needed.

We used two sets of log files collected by CloudLab. The
first (Logl) was collected on a single cluster over four years
(October 2017 — August 2021) and contains a large number
of attacks that enabled us to study general trends in SSH
BFAs. The second (Log2) was collected at three different
CloudLab sites over ten weeks (November 2022 — January
2023) to evaluate our proposed blocking mechanism. The
three CloudLab sites are geographically dispersed and use
unrelated IP addresses owned by different networks.

SSH Logs: Each host (also called a “node” or “server”)
in CloudLab has a persistent public IPv4 address and runs
sshd for remote access—the primary way legitimate users
interact with the host. By default, CloudLab hosts do not run
other public-facing services, though users are permitted to
start their own services if they wish. All CloudLab hosts are
configured to log SSH login attempts to a central syslog
server from which we obtained our datasets. We parsed the
logs to extract various relevant features, such as source IP ad-
dresses, attempted usernames, authentication responses, etc.
The log files did not contain passwords. To get a view ap-
proximating the network boundary (e.g., firewall or bastion
host), we first removed any SSH attempts originating from
within CloudLab itself. After removing the internal attempts,
Logl included ~ 840K unique source IP addresses attempt-
ing ~ 277K unique usernames and making ~ 427M login
attempts Log2 contained ~ 91K unique source IPs attempting
~ 98K unique usernames and ~ 213M login attempts.

When analyzing the logs, we took into account that log
messages can be lost due to central server overload, network
congestion, misconfigurations on the hosts or the server, or
intentional configuration changes by users. We further consid-
ered that CloudLab hosts are responsive to SSH requests only
when in use, with usage periods of varying lengths distributed
unevenly. As a result, log data pertaining to any given host can
exhibit short-term gaps corresponding to periods in which it is
not in use. To avoid incorrect conclusions on account of such
short-term gaps, we used methods that support “fuzzy” match-
ing and looked at long-term trends. Of the hosts included in
Logl, 352 logged SSH connections every day of the logged
period, and the three sites in Log2 averaged connections from
1,322 hosts daily (616, 384, and 322 each).

Distinguishing Legitimate Users From Attackers: We
considered an IP address as belonging to a legitimate user if it
had at least one successful login. In other words, we assumed
that IP addresses associated only with failed logins belonged
to attackers. CloudLab’s default sshd configuration allows
only public-key authentication, and the CloudLab staff know
of no attacks using stolen private keys. Therefore, we assumed
that only legitimate users logged in successfully. On the other

hand, attackers typically attempt to log in using passwords.
Even though CloudLab is set to accept only key-based authen-
tication, password-based login attempts are logged despite
being disallowed. Although legitimate users may attempt (and
fail) to log in with passwords, nearly all failed login attempts
in our logs appear to be part of attacks rather than erroneous
password-based attempts from legitimate users.

Advantages of Production Facility over Honeypots: Un-
like honeypot logs that exclusively contain attacks, the Cloud-
Lab logs we analyzed contain actions of attackers along with
those of legitimate users. As a result, analyzing the data al-
lowed us to explore the practices of legitimate users in ad-
dition to those of attackers, thus facilitating comparisons be-
tween the two. One of the main challenges of honeypot logs is
the inability to test blocking strategies because of the absence
of legitimate users, resulting in a lack of false positives for the
assessment. In contrast, our data can serve the dual purpose of
aiding the development of blocking strategies and providing
a means to assess their effectiveness.

Metadata Limitations: In parts of our analysis, we used
data regarding network owners and geographic locations of
the attacker IP addresses [5, 14]. Since we fetched this data in
Summer 2022, after collecting Log], it is possible that some
IP addresses changed ownership after we had logged attacks
from them. In addition, the use of NAT and dynamic address
assignment on source networks may obscure the true number
of attacking devices captured in the logs.

Ethical Considerations: Collecting logs is a routine op-
eration in facilities like CloudLab. We have reported results
using large aggregates without identifying individual users. In
cases where mentioning specific users can provide illustrative
value, we have anonymized the usernames. At the same time,
we have assumed that attackers do not have a legitimate expec-
tation of privacy. Still, we have not mentioned IP addresses
since the devices may be compromised unbeknownst to their
owners, who may have no malicious intent.

4 The Anatomy of SSH BFAs

In this section, we cover the basic features of SSH BFAs,
attaching specific numbers and concrete behaviors from Log/
to illustrate the concepts in the general descriptions.

Source IP Addresses: An SSH BFA originates from a
source to a set of targets using a guessing vector of credentials.
Such attacks can come from a large number of IP addresses.
For instance, Log! contains attacks from over 800,000 IP ad-
dresses, with at least one attack from 90% of the 249 countries
with ISO country codes [39]. However, few conclusions about
the individual or entity controlling an attack can be drawn
from source IP addresses alone. In many cases, the attacking
devices do not belong to malicious actors themselves but to
botnets composed of compromised machines [13,46,56] in-
fected with self-replicating worms [25] or used to mask the
locations of the actual attackers.



40000

30000

20000 1

Frequency

10000

O_
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Ratio

Figure 2: Histogram of sequence bias.

Target Host(s): Attackers may select hosts to target with
several methods: scanning sequentially or randomly, checking
for specific vulnerabilities on a host, etc. In practice, nearly all
BFAs in Log! seemed to be based on random scanning of the
IPv4 address space as seen in Figure 2, which is a histogram
of the sequence bias for the sources in Log! that attacked at
least 50 hosts. For each source IP address, we calculated the
sequence bias as the fraction of successive target [P addresses
higher than the one previously attacked. The sequence bias
for a given sequence of IP addresses, Si,...Sy is:

0 ifSi =5
SB= YN 281 if S > S
—1 if S <SS

A sequence bias of 1 indicates that the source moves from
lower-numbered addresses to higher ones 100% of the time,
with -1 indicating the reverse movement order. A sequence
bias of 0 means that each successive target is equally likely
to be ‘up’ or ‘down’ in the IP space. The density of sources
around zero—82% of the sources depicted in Figure 2 are
in the range [-0.25,0.25]—indicates that most traverse the IP
address space in random order.

Guessing Vectors: A BFA attacker attempts SSH login
with a set of usernames and passwords. A username can
be associated with multiple passwords and vice-versa. Each
{username, password} combination is called a credential
vector. Multiple such credential vectors are combined to con-
struct a guessing vector. A study published in 2015 found that
over 98% of BFAs contain the usernames root or admin [10].
Our more recent data shows that these usernames have be-
come less dominant over time (see Figure 3). As seen in Fig-
ure 3, root has fallen dramatically, and admin is used only in
a small fraction of attack attempts. Instead, as we present in
more detail in Section 5, attackers are switching to usernames
associated with cloud services and network devices.

S Properties of SSH BFAs In Practice

After looking at the general structure of SSH BFAs, we used
Logl to analyze specific aspects in more depth. We guided
our analysis with a series of questions that arose from the
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Figure 3: Percentage of BFAs with usernames root and
admin.
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Figure 4: Percentage of accepted attempts at CloudLab.

general observations in the preceding section.

How aggressive are individual attackers? A core reason
behind blocking attacking IP addresses is that attackers at-
tempt far more logins than real users. Log/ shows that Cloud-
Lab is no exception, with only 10% of the login attempts being
successful. On average, CloudLab experiences 25 successful
SSH logins per minute as opposed to 211 failed ones.

Our data contains exceptions where the number of failed
logins on a particular day did not outnumber successful ones.
For instance, on a specific day, accepted attempts reached
621K—2.2 times the number of failed attempts. This case
was mostly because of a single legitimate user, river,' who
allocated numerous nodes and established thousands of SSH
connections to each allocated node. Figure 4 shows the per-
centage of accepted attempts in the data: accepted SSH at-
tempts were greater than failed ones on only 13 days in the
four-year period covered by Logl. We speculate that the dis-
crepant days may have resulted from the use of DevOps tools,
such as Chef or Ansible [60], that make heavy use of SSH.

A majority of the failed attempts belonged to a small frac-
tion of attacking IP addresses, with 1% accounting for 78%,

'Username changed for privacy.
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Figure 5: The number of usernames attempted vs. the number
of attacking IP addresses using that many usernames. Both
axes use a log scale to depict the extreme ranges.

2% for 85%, 4% for 90%, 8% for 95%, and 22% for 99% of
all failed attempts. Over the four years represented in Log/,
each attacking IP address performed 458 attempts on average.
On the one hand, these numbers demonstrate that blocking
by IP address is an attractive approach since blocking only a
modest fraction of active attackers can greatly reduce attack
volume. On the other hand, the numbers show that achieving
perfect coverage by blocking specific IP addresses is difficult—
moving from 99% to 100% coverage requires identifying and
blocking nearly five times as many offending IP addresses.
Can we assume that all login failures are attacks? Of
the ~277K unique usernames in Logl, ~99.995% were as-
sociated only with failed login attempts, but the remaining
~0.005% had at least one accepted connection. For every
legitimate username in Log!, there were about 199 associated
only with failed attempts. Importantly, we found that every
legitimate username logged at least one failure. We suspect
failures associated with legitimate users are because of errors
such as forgetting to add SSH keys to their agent, typos in
hostnames, configuration errors on the servers, etc. The up-
shot is that administrators cannot deem an IP address to be
malicious solely because of one, or even a few, failed login
attempts. Since all legitimate users are likely to make the oc-
casional error, effective identification of SSH attacks requires
strategies more complex than simple failure-based blocking.
Do attackers try many usernames or focus on a small,
high-value set? We uncovered numerous strategies regarding
the number of usernames attackers tried. The number of user-
names employed by each source IP address varied from one to
~14K. More than half (54%) of the attacking IP addresses at-
tempted only a single username in their guessing vectors. On
average, attackers attempted 28 usernames, with 75% of the
attackers using fewer than seven usernames and 90% using
fewer than 39. A high variance ( ~15170) in the distribution
of usernames per source IP address shows that the number of
usernames attempted by attackers is highly dispersed.
Figure 5 shows the number of usernames attempted against
the number of attackers who attempted that many usernames.

It can be seen in Figure 5 that a large number of attackers
tried relatively few usernames (from one up to a few hundred).
Only a small number of attaackers attempted a large number
of usernames (in thousands). Those who tried the smallest
number of usernames (i.e., 1 or 2) tended to go after admin-
istrator access with the usernames root and admin. The sets
of usernames attempted in BFAs form the basis for our novel
blocking strategy (described in Sections 7 and 8).

Are attackers successful at guessing legitimate user-
names? We found a significant overlap between the user-
names in guessing vectors used by attackers and those of
CloudLabusers, indicating that attackers are somewhat suc-
cessful at guessing legitimate usernames. Overall, 609 user-
names belonging to legitimate CloudLab users appeared in the
attacks. Although small, this is a non-trivial fraction (3%) of
the ~20,000 CloudLab users.” However, we saw no evidence
that the guessing vectors targeted CloudLab specifically (e.g.,
via a leak of CloudLab’s user database) since guessing vec-
tors of substantial size were composed mostly of usernames
not used by CloudLab’s userbase. Instead, the presence of
real usernames in the guessing vectors seems to be because
of attackers attempting common names that are likely to be
present in any sizable user base. Regardless, the overlap with
legitimate usernames underscores the need to enforce good se-
curity practices (e.g., key-based login and/or strong passwords
or passphrases).

What types of devices or software are targeted for at-
tacks? Some Internet-connected devices have specific, known
usernames, allowing us to infer that attackers trying those
usernames were targeting devices of that type (regardless
of whether such devices are present in CloudLab). Simi-
larly, some usernames are commonly associated with spe-
cific software or operating system images intended for cloud
platforms. Therefore, we split the usernames in Log/ into
three groups: non-administrator usernames, generic adminis-
trator usernames, and device- or software-specific usernames.
We then manually classified the top 100 usernames, which
collectively represented 83% of the failed logins. Of the top
100 usernames, 17% were non-administrator usernames, 67%
were generic administrator usernames, and 16% targeted spe-
cific devices or software. Appendix E provides the full detail
of these usernames and their classifications.

Non-administrator usernames consisted mostly of
generic roles or common personal names containing no in-
formation about a specific targeted device or software. Most
non-administrator usernames (66% of attacks in this user-
name category) were based on specific user roles, such as
support, userl, profilel, and demo. The rest were either
personal names (e.g., john, vivek, zhang) or unattributable
to particular attacker intentions (e.g., default, ts, etc.).

Generic administrator usernames were dominated by the
username root, which accounted for 86% of all attacks in

2Not all CloudLab users logged in during the logged period.



this category of usernames, with admin being a distant sec-
ond with 7%. Other generic administrator usernames included
administrator, adminl, and sysadmin. Such generic ad-
ministrator usernames are used broadly by UNIX-like sys-
tems, including servers, desktops, and even IoT devices, thus
providing little information about specific targets.

Device- or software-specific usernames can be used for
devices and software with default usernames (and sometimes
default passwords). The largest set of such usernames (37%)
targeted devices or software associated with network ven-
dors Ubiquiti, Mikrotik, and Huawei. The nature of these
attacks suggests that attackers attempt to gain access to entire
networks by compromising routers and switches. Such an
approach is particularly concerning because these vendors
run the gamut from home to enterprise and from telecommu-
nications to backbone networks. Another large set of attacks
(30% of attacks in the category of device- or software-specific
usernames) seemed to be leveraging usernames that match
well-known software packages to target hosts with that soft-
ware installed. While most of these usernames corresponded
to typical server software such as oracle, mysql, hadoop,
and nagios, there was a significant subset targeting gaming-
related software, such as minecraft, csgoserver (Counter-
Strike), and teamspeak3 (used for in-game voice chat). Ad-
ditionally, 23% of attacks employing device- or software-
specific usernames tried usernames associated with common
server services (but not necessarily specific implementations
of those services), such as web, ftp, and git.

Finally, 10% of attacks with device- or software-specific
usernames appeared to target specific Linux distributions with
usernames such as ubuntu, debian, and centos. Such user-
names are often used by default in the disk images produced
by these distributions for cloud use. Interestingly, the second-
most-popular distribution-based username was pi, the default
username for Raspberry Pi OS (formerly known as Raspbian),
likely because, until 2022, this account had a well-known
default username/password pair if sshd was enabled [61].

Do usernames become more popular when vulnerabili-
ties are publicized? We noted that certain usernames in guess-
ing vectors rose in volume with the release of corresponding
Common Vulnerabilities and Exposures (CVESs) or breaking
news about specific vulnerabilities. For instance, after a public
disclosure that particular devices are affected by vulnerabili-
ties, we found that a set of usernames associated with those
devices surged among the attacks. Specifically, in mid and
late 2019, it became known that vulnerabilities in products
from video-centric IoT manufacturer Dahua [20] could be
exploited for unauthorized remote access, device restart, or
arbitrary code execution [21,22,52]. As Figure 6 shows, right
after the public disclosure, there was a sharp spike in SSH
attempts with two of Dahua’s default usernames, 888888 and
666666 [23]. The two usernames follow a similar pattern,
suggesting they belong to the same guessing vector. Notably,
attacker interest in these usernames dwindled after the initial
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Figure 6: Spikes in usernames associated with CVEs.

spike, possibly because of lower-than- expected exploitability
or the ban on these devices imposed by the US government
due to security concerns [66]. Figure 6 also shows similar
spikes in attacks for three other usernames acer, bamboo and
ceph, when corresponding CVEs [51,54,55] were announced.
Interestingly, none of these CVEs are directly related to SSH.

Sometimes, there was a direct or potential indirect connec-
tion between vulnerabilities and SSH access. In other cases,
no such connection was obvious. It does appear that CVEs
increase attacker use of related usernames, but it is not al-
ways clear why. Overall, however, attacker behavior shows
the need to react relatively quickly when new usernames be-
come more prevalent. An effective blocking strategy must be
able to discover and block new usernames quickly.

6 Attacker Distribution and Persistence

SSH BFAs are highly distributed, but the persistence of attack-
ers varies greatly. We examined trends in attacker distribution
across countries and networks, along with their persistence
across time. It is important to note that attackers often use
compromised machines [24], so we cannot draw strong con-
clusions that the entity controlling an attack is based in the
same country/network as the device launching the attack.

How widely are the attackers and legitimate users dis-
tributed? Only 1% of the IP addresses in Logl were used
by legitimate users, with the other 99% (831K) used exclu-
sively by attackers. These addresses were associated with 223
country codes and 18.5K network providers.

Most attacking IP addresses were from China (23%), fol-
lowed by the United States (14.2%), Russia (5.8%), and
Brazil (5.2%). Conversely, most legitimate IP addresses were
from the United States (64%), followed by Indonesia (7.3%),
Pakistan (5.2%), China (2.8%), and Brazil (2.8%). A majority
of attacking IP addresses captured by honeypots have sim-
ilarly been reported as originating from the United States
and China [47, 64]. IP addresses from 21% of the country
codes had at least one legitimate user, while those from the
remaining 79% of the country codes were only sources of



attacks. The number of IP addresses from a country was not
always correlated with the number of attacks from that coun-
try. For instance, IP addresses from China were responsible
for 44.7% of failed SSH login attempts, followed by those
from the United States with 8.4%. IP addresses from China
and the United States made up more than half of all failed
login attempts. The distribution fell off quickly, with 99% of
the failed logins coming from just 5.2% of all countries.

The number of attacks per network provider was similarly
skewed. About half of the failed attempts were associated
with just six network providers: China Telecom (26.8%),
China Unicom (6.1%), DigitalOcean Cloud (6.0%), Tencent
Cloud (5.5%), OVH Cloud (2.9%), and the Vietnam Posts and
Telecommunications Group (2.7%). IP addresses from the top
100 network providers contributed 79.9% of the failed login
attempts, with the top 13% contributing 99% of the failed
attempts. Among the network providers seen in our data, 99
were used only by legitimate users, 431 by legitimate users as
well as attackers, and the remaining 18,067 only by attackers.
Such a distribution indicates that flagging entire networks as
malicious is a poor strategy because most legitimate users are
on networks that are also the sources of attacks.

Similar to prior research [16,64], we observed a significant
number of attacking IP addresses (at least 15.3%, responsible
for 20% of the failed attempts) hosted by cloud providers. Of
the top ten network providers based on the number of failed
attempts, three were cloud providers. Six among the top 15
networks—and ten among the top 25—were cloud providers.

Further detail on the network providers and countries for
IP addresses in Log! is included in Appendix F.

Are there instances of concentrated attacks from spe-
cific networks? The growth in the attacking IP addresses in
CloudLab was generally steady over time. About 1-2% of the
attacking IP addresses were new each month. At the high end,
CloudLab experienced 4—6% new attackers in some months.

However; there were period during which there were large
spikes in new addresses from specific networks or countries.
To quantify this aspect, we calculated the month-to-month
growth ratio for IP addresses from each country and network
provider. We defined the growth ratio for a month as the num-
ber of new IP addresses seen that month divided by the aver-
age number of new IP addresses per month over the four-year
logging period. The growth ratio enabled us to examine those
network providers whose IP addresses exhibited high growth
ratios at some point. Figure 7 shows growth ratios for four net-
work service providers with Comcast (a large US ISP) as the
baseline compared with Lumen/CenturyLink [69] (another
large US ISP), Selectel [70] (a Russian cloud company that
others have identified as an attack source [18]), and LG Up-
lus [68] (a South Korean mobile network operator). While
there were many attackers from Comcast, they appeared at a
fairly constant rate, with the growth ratio staying close to 1.0
as seen in Figure 7 In stark contrast, the IP addresses from
the other three network providers exhibited large spikes, i.e.,
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Figure 7: Growth ratios for four networks with Comcast as
the baseline.

months during which there were far more new attackers from
these networks than typical. We typically observed 82 new
attacking IP addresses from Comcast per month, with a max-
imum of 170 new IP addresses in a month. In comparison,
there were an average of 657 new attacking IP addresses per
month from Lumen/CenturyLink, but the spike in January
2021 was composed of 28,640 new Lumen/CenturyLink IP
addresses involved in attacks. Such concentrated attacks from
a single network can have diverse causes, such as attackers
forming botnets from vulnerable routers or cable modems
specific to an ISP [50, 53], or gaining legal or illicit access to
cloud or hosting services [12,57]. Regardless of the reason,
detecting spikes can help uncover and investigate anomalies.

How long do individual IP addresses persist? The IP
addresses of most attackers and legitimate users had an active
duration of less than one day, vanishing on the same day they
first appeared. Figure 8 compares the IP addresses of attackers
and legitimate users in terms of the active durations, i.e., the
differences between the last and the first days on which the
respective IP addresses were seen, in days. Although there
were more [P addresses of legitimate users with short drua-
tions, the overall shapes of the distribution curves for the two
groups are remarkably similar.

What metrics distinguish attackers and legitimate
users? The ability to block attacks based on metrics, such
as the number of attempts, relies mainly on finding metrics
that clearly distinguish attackers from legitimate users. Fig-
ures 9 and 10 are scatter plots for three pairs of quantitative
metrics, with each point in the plots representing one source
IP address. Since there are far more attacking IP addresses
than legitimate ones, the plots depicting the latter are sparser.

In all cases, legitimate users were “embedded” within the
portions of the space covered by attackers. This can be clearly
seen in Figure 9, which is a plot of the length of time between
observing an IP address for the first and last times vs. the frac-
tion of days within that span that the IP address was active.
While legitimate users are clustered more around the axes
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