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Abstract. We provide several algorithms for sorting an array of n com-
parable distinct elements subject to probabilistic comparison errors in
external memory. In this model, which has been extensively studied in
internal-memory settings, the comparison of two elements returns the
wrong answer according to a fixed probability, pe < 1/2, and otherwise
returns the correct answer. The dislocation of an element is the dis-
tance between its position in a given (current or output) array and its
position in a sorted array. There are various existing algorithms that can
be utilized for sorting or near-sorting elements subject to probabilistic
comparison errors, but these algorithms do not translate into efficient
external-memory algorithms, because they all make heavy use of noisy
binary searching. In this paper, we provide new efficient methods that
are in the external-memory model for sorting with comparison errors.
Our algorithms achieve an optimal number of I/Os, in both cache-aware
and cache-oblivious settings.

1 Introduction

Given n distinct comparable elements, we study the problem of efficiently sort-
ing them subject to noisy probabilistic comparisons. In this framework, which
has been extensively studied in internal-memory settings [2,5,7–9,11–16,21], the
comparison of two elements, x and y, results in a true and accurate result inde-
pendently according to a fixed probability, p < 1/2, and otherwise returns the
opposite (false) result. In the case of persistent errors [2,7–9,13], the result of
a comparison of two given elements, x and y, always returns the same result. In
the case of non-persistent errors [5,11,12,14,16,21], however, the probabilistic
determination of correctness is determined independently for each comparison,
even if it is for a pair of elements, (x, y), that were previously compared.

Motivation for sorting with comparison errors comes from multiple sources,
including ranking objects online via A/B testing [22], which evaluates the impact
of a new technology or technological choice by executing a system in a real
production environment and testing two instances of its performance (an “A”
and “B”) on a random subset of the users of the platform. Such systems can
involve many users and choices to compare via A/B testing, e.g., see [10,20];
hence, we feel that managing such implementations could benefit from external-
memory solutions.
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Since one cannot always correctly sort an array, A, subject to persistent
comparison errors, we follow Geissmann et al. [7–9], and define the dislocation
of an element, x, in an array, A, as the absolute value of the difference between x’s
index in A and its index in the correctly sorted permutation of A. Further, define
the maximum dislocation of A as the maximum dislocation for the elements
in A, and define the total dislocation of A is the sum of the dislocations of the
elements in A. By known lower bounds [7–9], the best a sorting algorithm can
achieve under persistent comparison errors is a maximum dislocation of O(log n)
and a total dislocation of O(n).

In this paper, we are interested in sorting algorithms that are in the
external-memory model. Unfortunately, the existing algorithms for sorting
with noisy comparisons are not easily converted into efficient external-memory
algorithms, because they all make use of noisy binary search, which involves a
random walk in a binary search tree [5,8,14]. Instead, we desire efficient sort-
ing algorithms that tolerate noisy comparisons and have an efficient number of
input/output operations, primarily for the persistent model, since we can sort
an array with maximum dislocation of O(log n) in the non-persistent model by a
single scan where we repeat each comparison in internal memory O(log n) times.

Intuitively, the main disadvantage of relying on noisy binary search is that
it is cache inefficient, in that it requires performing memory accesses for widely-
distributed storage locations. Large-scale applications need to minimize the num-
ber of input/output (I/O) operations to external memory. Thus, we also desire
sorting algorithms that tolerate noisy comparisons and minimize the number of
I/Os. In external-memory applications, I/Os occur in terms of memory blocks. In
this context, we use M to denote the size of internal memory and B to denote the
size of a block of memory, and we note that the best I/O bound that is possible
for sorting an array of size N in external-memory is Θ((N/B) logM/B(N/B)),
see, e.g., [19]. Thus, we also desire sorting algorithm that tolerate noisy compar-
isons and have this bound on their number of I/Os. Moreover, we desire solutions
that are either cache-aware (taking advantage of knowledge of the parameters
M and B) or cache-oblivious (which don’t know the parameters M and B).

Related Prior Results. The non-persistent error model traces back to a classic
problem by Rényi [18] of playing a game involving posing questions to someone
who lies with a given probability; see, e.g., the survey by Pelc [17]. Braverman
and Mossel [2] introduced the persistent-error model, where comparison errors
are persistently wrong with a fixed probability, p < 1/2 − ε, and they achieved
a running time of O(n3+f(p)) time with maximum expected dislocation O(log n)
and total dislocation O(n). Klein, Penninger, Sohler, and Woodruff [13] improve
the running time to O(n2), but with O(n log n) total dislocation w.h.p. The
internal-memory running time for sorting in the persistent-error model optimally
with respect to maximum and total dislocation was subsequently improved to
O(n2), O(n3/2), and ultimately to O(n log n), in a sequence of papers by Geiss-
mann, Leucci, Liu, and Penna [7–9].

Feige, Raghavan, Peleg, and Upfal [5] provide a parallel algorithm for sorting
with non-persistent errors that, with high probability, runs in O(log n) time and
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O(n log n) work in the CRCW PRAM model, and Leighton, Ma, and Plaxton [14]
show how to achieve these bounds in the EREW PRAM model.

None of these prior algorithms translate into efficient external-memory algo-
rithms, however, where we focus on optimizing the number of input/output (I/O)
operations. The main reason is that they all use noisy binary searching, which
is a random walk in a binary search tree, where each step involves a noisy com-
parison. As an external-memory algorithm, this search algorithm unfortunately
involves far-flung comparisons; hence, it causes a lot of I/Os.

Frigo, Leiserson, Prokop and Ramachandran [6] introduced the notion of
cache-oblivious algorithms, which are algorithms that do not have any variables
dependent on hardware parameters such as cache or block size that need to be
tuned for it to perform optimally. The authors also introduced the (M,B) ideal-
cache model to analyze cache oblivious algorithms, and defined the cache
complexity Q(n) and work complexity W (n) of an algorithm with input
size n, which respectively measure the number of cache misses the algorithm
incurs in the ideal-cache model, and the conventional running time of the algo-
rithm in a RAM model. The authors then introduced a cache-oblivious sorting
algorithm, Funnelsort, and showed, assuming M = Ω(B2) (also known as the
tall-cache assumption), that Funnelsort is cache-oblivious, has work complex-
ity O(n log n) and cache complexity O(1 + n

B (1 + logM n)), which matches the
Ω( n

B logM/B
n
B ) lower bound for sorting in the external-memory model.

Our Results. In this paper, we provide efficient sorting algorithms in the
external-memory model that tolerate noisy comparisons. All our algorithms uti-
lize an optimal number of I/Os. In particular, we provide solutions for either the
persistent or non-persistent error models, and for the cache-aware and cache-
oblivious external-memory models. Our algorithms avoid using noisy binary
searching by instead utilizing a generalized subroutine that is an external-
memory version of window-sort. This allows us to then design windowed ver-
sions of external-memory merge-sort and funnel-sort. Both algorithms run in
time O(n log2 n) in internal memory, or in external memory with an opti-
mal O(n/B) logM/B(n/B) I/O’s, subject to comparison errors with probabil-
ity pe < 1/2 so as to have a maximum dislocation of O(log n) w.h.p. For both
algorithms, we assume that the block size is at least logarithmic in the problem
size, i.e., B = Ω(log n). Our windowed version of funnel-sort will also use the
tall-cache assumption, i.e., M = Ω(B2). In the sections that follow, we describe
our algorithms for sorting with comparison errors.

2 Window-Sort

We begin with a version of window-sort [8], which will be useful as a subroutine
in our algorithms. We provide the pseudo-code at a high level in Algorithm 1,
for approximately sorting an array of size n that has maximum dislocation at
most d1 ≤ n so that it will have maximum dislocation at most d2 = d1/2k, for
some integer k ≥ 1, with high probability as a function of d2.
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Algorithm 1: Window-Sort(A = {a0, a1, . . . , an−1}, d1, d2)
1 for w ← 2d1, d1, d1/2, . . . , 2d2 do
2 foreach i ← 0, 1, 2, . . . , n − 1 do
3 ri ← max{0, i − w} + |{aj < ai : |j − i| ≤ w}|
4 Sort A (deterministically) by nondecreasing ri values (i.e., using ri as the

comparison key for ai)

5 return A

We note that determining the ri values can be done by scans; hence, that
step is I/O efficient in either cache-aware or cache-oblivious settings. Moreover,
the sorting step can be done with an I/O efficient algorithm, in either the cache-
aware or cache-oblivious settings, e.g., see [3,4,6]. For completeness, we provide
below an analysis of window-sort. We note that to simplify our presentation, we
assume pe ≤ 1/16, however this constraint can be relaxed to any pe < 1/2 to
obtain the same asymptotic results.

Lemma 1. Suppose the comparison error probability, pe, is at most 1/16. If an
array, A, has maximum dislocation at most d′ prior to an iteration of window-
sort for w = 2d′ (line 1 of Algorithm 1), then after this iteration, A will have
maximum dislocation at most d′/2 with probability at least 1 − n2−d′/8.

Proof. Let ai be an element in A. Let W denote the window of elements in A for
which we perform comparisons with ai in this iteration; hence, 2d′ ≤ |W | ≤ 4d′.
Because A has maximum dislocation d′, by assumption, there are no elements
to the left (resp., right) of W that are greater than ai (resp., less than ai). Thus,
ai’s dislocation after this iteration depends only on the comparisons between ai

and elements in its window. Let X be a random variable that represents ai’s
dislocation after this iteration, and note that X ≤ Y , where Y is the number of
incorrect comparisons with ai performed in this iteration. Note further that we
can write Y as the sum of |W | independent indicator random variables and that
μ = E[Y ] = pe|W | ≤ d′/4. Thus, if we let R = d′/2, then R ≥ 2μ; hence, we can
use a Chernoff bound as follows:

Pr(X > d′/2) ≤ Pr(Y > d′/2) = Pr(Y > R) ≤ 2−R/4 = 2−d′/8.

Thus, with the claimed probability, the maximum dislocation for all of A will be
at most d′/2, by a union bound. ��

This allows us to implement window-sort in external memory, as follows.

Theorem 1. Suppose the comparison error probability, pe, is at most 1/16. If
an array, A, of size n has maximum dislocation at most d1 ≥ log n, then exe-
cuting Window-Sort(A, d1, d2) runs in O(d1n) time in internal memory. It can
be implemented in external memory with O(n/B) I/Os if n ≤ M ; otherwise, it
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can be implemented with O((nd1/B) + (log(d1/d2))(n/B) logM/B(n/B)) I/Os.
Executing Window-Sort(A, d1, d2) results in A having maximum dislocation of
d2/2 with probability at least 1 − 2n2−d2/8, where d2 = d1/2k, for some integer
k ≥ 1.

Proof. For the internal-memory running time, note that we can perform the
deterministic sorting step using any efficient sorting algorithm in O(n log n)
time. The running times for the windowed comparison steps (step 3 of Algo-
rithm 1) form a geometric sum adding up to O(d1n) and the total time for all
the deterministic sorting steps (step 4 of Algorithm 1) is O((log(d1/d2))n log n),
which is at most O(d1n) for d1 ≥ log n. For the external-memory model in both
the cache-aware and cache-oblivious settings, a cache-efficient sorting algorithm
can be used, requiring at most O(log(d1/d2))(n/B) logM/B(n/B)) I/Os for all
the sorting steps. The scanning step can also be done in an cache efficient way,
requiring at most O(nd1/B) I/Os.

For the maximum dislocation bound, note once w = 2d2 and the array A
prior to this iteration has maximum dislocation at most d2, then it will result in
having maximum dislocation at most d2/2 with probability at least 1−n2−d2/8,
by Lemma 1. Thus, by a union bound, the overall failure probability is at most

n
(
2−d2/8 + 2−2d2/8 + 2−4d2/8 + · · · + 2−d1/8

)
< n2−d2/8

∞∑
i=0

2−i

= 2n2−d2/8.

��

3 Window-Merge-Sort

In this section, we describe a simple external-memory algorithm for sorting with
noisy comparisons, which achieves a maximum dislocation of O(log n). The num-
ber of I/Os for this algorithm is optimal. As is common (see, e.g., [1]), we assume
that the block size is at least logarithmic in the problem size, i.e., B ≥ log n.

Our window-merge-sort method is a windowed version of merge sort; hence,
it is deterministic. Suppose we are given an array, A, of n elements (to keep
track of the original input size, we use n to denote the original size of A, and N
to denote the size of the subproblem we are currently working on recursively).
We take as input another parameter d, which determines the resulting maximum
dislocation after running the algorithm.

For expository reasons, we first describe an internal-memory method that
runs in O(n log2 n) time and then we show how to generalize this method to an
efficient external-memory method that uses an optimal number of I/Os. We give
the pseudo-code for this method in Algorithm 2, with d = c log n for a constant
c ≥ 1 set in the analysis.
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Algorithm 2: Window-Merge-Sort(A = {a0, a1, . . . , aN−1}, n, d)
1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)

3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Merge-Sort(A1, n, d)
5 Window-Merge-Sort(A2, n, d)
6 Let B be an initially empty output list
7 while |A1| + |A2| > 6d do
8 Let S1 be the first min{3d, |A1|} elements of A1

9 Let S2 be the first min{3d, |A2|} elements of A2

10 Let S ← S1 ∪ S2

11 Window-Sort(S, 4d, d)
12 Let B′ be the first d elements of (the near-sorted) S
13 Add B′ to the end of B and remove the elements of B′ from A1 and A2

14 Call Window-Sort(A1 ∪ A2, 4d, d) and add the output to the end of B
15 return B

Our method begins by checking if the current problem size, N , satisfies N ≤
6d, in which case we’re done. Otherwise, if N > 6d, then we divide A into 2
subarrays, A1 and A2, of roughly equal size and recursively approximately sort
each one. For the merge of the two sublists, A1 and A2, we inductively assume
that A1 and A2 have maximum dislocation at most 3d/2 = (3c/2) log n. We then
copy the first 3d elements of A1 and the first 3d elements of A2 into a temporary
array, S, and we note that, by our induction hypothesis, S contains the smallest
3d/2 elements currently in A1 and the smallest 3d/2 elements currently in A2. We
then call Window-Sort(S, 4d, d), and copy the first d elements from the output
of this window-sort to the output of the merge, removing these same elements
from A1 and A2. Then we repeat this merging process until we have at most 6d
elements left in A1 ∪ A2, in which case we call window-sort on the remaining
elements and copy the result to the output of the merge. The following lemma
establishes the correctness of this algorithm.

Lemma 2. If A1 and A2 each have maximum dislocation at most 3d/2, then
the result of the merge of A1 and A2 has maximum dislocation at most 3d/2 with
probability at least 1 − 12N2−d/8.

Proof. By Lemma 1 and a union bound, each of the calls to window-sort per-
formed during the merge of A1 and A2 will result in an output with maximum
dislocation at most d/2, with at least the claimed probability. So, let us assume
each of the calls to window-sort performed during the merge of A1 and A2 will
result in an output with maximum dislocation at most d/2. Consider, then,
merge step i, involving the i-th call to Window-Sort(S, 4d, d), where S consists
of the current first 3d elements in A1 and the current first 3d elements in A2,
which, by assumption, contain the current smallest 3d/2 elements in A1 and cur-
rent smallest 3d/2 elements in A2. Thus, since this call to window-sort results in
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an array with maximum dislocation at most d/2, the subarray, Bi, of the d ele-
ments moved to the output in step i includes the d/2 current smallest elements
in A1 ∪A2. Moreover, the first d/2 elements in Bi have no smaller elements that
remain in S. In addition, for the d/2 elements in the second half of Bi, let S′

denote the set of elements that remain in S that are smaller than at least one
of these d/2 elements. Since the output of Window-Sort(S, 4d, d) has maximum
dislocation at most d/2, we know that |S′| ≤ d/2. Moreover, the elements in
S′ are a subset of the smallest d/2 elements that remain in S and there are no
elements in (A1 ∪ A2) − S smaller than the elements in S′ (since S includes the
3d/2 smallest elements in A1 and A2, respectively. Thus, all the elements in S′

will be included in the subarray, Bi+1, of d elements output in merge step i + 1.
In addition, a symmetric argument applies to the first d/2 elements with respect
to the d elements in Bi−1. Therefore, the output of the merge of A1 and A2 will
have maximum dislocation at most 3d/2 with the claimed probability. ��

As an internal-memory algorithm, window-merge-sort runs in O(n log2 n)
time. To convert this algorithm to an external-memory one, we just need to make
a few changes. First, rather than divide A into 2 subarrays for the recursive calls,
we divide A into m = Θ(M/B) ≥ 2 subarrays, A1, A2, . . . , Am, each of roughly
equal size, and recursively sort each one. For the merge step, we bring the first
max{3d, |Ai|} elements from each Ai, group them together into a list, S, and
call Window-Sort(S, 4md, d) on this list, performing this computation entirely
in internal memory (so it does not require any additional I/Os). Then we output
the first d elements from this window-sort, and continue as in Algorithm 2. This
implies the following.

Lemma 3. If A1, A2, . . . , Am each have maximum dislocation at most 3d/2,
then the result of the their merge has maximum dislocation at most 3d/2 with
probability at least 1 − 6mN2−d/8.

Proof. The proof follows by similar arguments used in the proof of Lemma 2. ��
This gives us the following.

Theorem 2. Given an array, A, of n distinct comparable elements, one can
deterministically sort A in internal memory in O(n log2 n) time or in external
memory with O((n/B) logM/B(n/B)) I/Os subject to comparison errors with
probability pe ≤ 1/16, so as to have maximum dislocation of O(log n) w.h.p.,
assuming B ≥ log n.

4 Window Funnelsort

In this section we describe WindowFunnelSort (see Algorithm 3), a noise-
tolerant version of the Funnelsort algorithm that sorts n distinct comparable
elements so as to have at most O(log n) maximum dislocation, with W (n) =
O(n log2 n) work complexity and Q(n) = O(1 + (n/B)(1 + logM n)) cache com-
plexity, which matches the lower bound of Ω( n

B logM/B
n
B ) for sorting in the
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external-memory model. In our pseudocode, n denotes the original input size,
while N denotes the size of the input array given to each function call, which
can be less than n during recursive calls.

We require a stronger assumption on the cache size for our algorithm: in
addition to the tall-cache assumption M = Ω(B2), we also require that the
block size B be at least logarithmic in the problem size, i.e. B ≥ γ log n for some
constant γ > 0 that will be determined in the analysis. In our analysis, we follow
the same general proof structure used in [6] with the ideal cache model. For the
remainder of this section, we assume that the maximum dislocation bound we
would like to obtain, d, is (3c/2) log n for some constant c > 0 that will be
determined later. The main difference in our analysis compared to [6] is that in
the recursive definition of a k-merger, we define the base cases differently such
that each base case k-merger will now use a similar merging method to the one
used in Algorithm 2, and our base cases are defined over multiple values of k,
instead of just k = 2 as done in [6].

Algorithm 3: Window-Funnel-Sort(A = {a0, a1, . . . , aN−1}, n)

1 if N ≤ (c log n)3/2 then
2 return WindowSort(A, N, c log n)

3 Divide A into N1/3 subarrays, A1 . . . , AN1/3 , each of size N2/3

4 for i = 1, . . . , N1/3 do
5 Ai = Window-Funnel-Sort(Ai)

6 A ← output of merging A1 . . . , AN1/3 using a N1/3-merger, as described in
Section 4

7 return A

We first describe how to construct a k-merger, which is defined recursively in
terms of smaller mergers. We follow the same general structure for constructing
a k-merger in the original Funnelsort algorithm [6], however in the recursive
definition of a k-merger, instead of having k = 2 as the base case, we view k-
mergers with

√
c log n ≤ k < c log n as base cases. As an invariant, each k-merger

outputs the next k3 elements of the approximately sorted sequence obtained by
merging its k input sequences.

Our base case k-merger works similarly to the merging procedure in Algo-
rithm 2. We read in 3c log n elements from each of the k inputs into an array
S, call WindowSort(S, 4kc log n, c log n), then output the last c log n elements
from this call. Then, we replace the c log n elements in the k-merger that were
just written to the output as follows: for each element e written to the output,
we read into the k-merger a new element from the input queue that e belonged
to. We then call windowSort again on this updated set of elements, and repeat
this process until the k-merger has outputted k3 elements.

For all other values of k ≥ c log n, a k-merger will work the same way as
in [6], which we describe here for completeness. A (non-base case) k-merger is
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built recursively out of
√

k-mergers by first partitioning the k inputs into
√

k sets
of

√
k elements, which forms the input to

√
k left mergers L1, L2, . . . , L√

k, each of
which is a

√
k-merger. Each Li is connected to an output buffer i, implemented

as a circular queue that can hold up to 2k3/2 elements. Each buffer is then
connected as input to R, which is another

√
k-merger. The output of R then

becomes the output of the whole k-merger. Following our invariant, in order
to output k3 elements, the k-merger will invoke R k3/2 times. Since the input
queues connected to R might become empty, the k-merger first fills all buffers
that have less than k3/2 elements before each invocation of R, which is done by
invoking the corresponding left merger Li that connects to buffer i. Since each
left merger invocation will output k3/2 elements to the corresponding buffer,
each Li will only need to be invoked at most once before each invocation of R.

Let us first consider the cache complexity of WindowFunnelSort. Follow-
ing the proof in [6], we first consider how much space a k-merger requires.

Lemma 4. A k-merger requires at most O(k2) contiguous memory locations
when k ≥ c log n.

Proof. A k-merger with k ≥ c log n requires O(k2) memory locations for the
buffers, and it also requires space for its

√
k + 1

√
k-mergers. Thus, the space

S(k) required by a k-merger satisfies the recurrence relation

S(k) ≤ (
√

k + 1)S(
√

k) + βk2,

for some constant β > 0. We prove inductively that S(k) ≤ Zk2 for some
constant Z. For k-mergers with

√
c log n ≤ k < c log n, we will read in c log n

elements from k input queues, then perform windowSort on them, requiring
S(k) = O(k log n) space for some constant β > 0. Thus for c log n ≤ k <
(c log n)2, we have S(k) ≤ (

√
k + 1)O(

√
k log n) + βk2 ≤ Zk2 for sufficiently

large Z.
For k ≥ (c log n)2, we inductively have

S(k) ≤ (
√

k + 1)S(
√

k) + βk2

≤ (
√

k + 1)Zk + βk2 ≤ Zk2

for sufficiently large Z. Thus we have S(k) = O(k2) for any k ≥ c log n. ��
Any k-merger with

√
c log n ≤ k < c log n reads in 3c log n elements from

less than c log n inputs, and will require O(log2 n) space in total. Therefore we
require that the block size B is at least γ log n for an appropriate constant γ > 0
such that after applying the tall-cache assumption M = Ω(B2), any k-merger
with

√
c log n ≤ k < c log n will fit inside the cache. Therefore, more generally,

through Lemma 4, any k-merger with
√

c log n ≤ k ≤ c log n ≤ α
√

M , where α
is a sufficiently small constant, will also fit inside the cache and run without any
additional cache misses.

The following lemma, which is proved in [6], shows that the
√

k buffers used
in a k-merger can be managed cache-efficiently.
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Lemma 5 (Lemma 4.2. in [6]). Performing r insert and remove operations on
a circular queue causes O(1 + r/B) cache misses if two cache lines are available
for the buffer.

We now bound the cache complexity Qk of one invocation of a k-merger.

Lemma 6 One invocation of a k-merger incurs

Qk = O(k + k3/B + k3 logM k/B)

cache misses.

Proof We first consider the case
√

c log n ≤ k ≤ α
√

M . From Lemma 4 and our
assumption on the cache size, we know that any k-merger with

√
c log n ≤ k ≤

α
√

M will fit inside the cache and run with no additional cache misses. Each
k-merger has k input queues, and loads a total of O(k3) elements. Let ri denote
the number of elements extracted from the ith queue. Since k ≤ α

√
M and

B = O(
√

M), there are at least M/B = Ω(k) cache lines available for the input
buffers. Thus, through Lemma 5, the total number of cache misses for accessing
the input queues is

k∑
i=1

O(1 + ri/B) = O(k + k3/B).

Similarly, the cache complexity of writing to the output queue is O(1 + k3/B).
The k-merger incurs an additional O(k2/B) cache misses through using its inter-
nal data structures, for a total of Qk = O(k + k3/B) cache misses.

We then consider the case k > α
√

M . We prove by induction that Q(k) ≤
(Zk3 logM k)/B − A(k) for some constant Z > 0, where A(k) = o(k3). We first
verify that values of αM1/4 < k ≤ α

√
M also satisfy this inequality: from the

first case, we have Q(k) = O(k + k3/B) = O(k3/B) since B = O(
√

M) = O(k2)
and k = Ω(1).

For k > α
√

M , for a k-merger to output k3 elements, the number of times the
left mergers are invoked is bounded by k3/2 + 2

√
k. The right merger R is also

invoked k3/2 times. The k-merger also has to check before each invocation of R
whether any of the buffers are empty. This requires at most

√
k cache misses and

is repeated exactly k3/2 times, for a total of at most k2 cache misses. Therefore
the cache complexity Qk of a k-merger satisfies the following recurrence relation:

Qk ≤ (2k3/2 + 2
√

k)Q√
k + k2

≤ (2k3/2 + 2
√

k)(
Zk3/2 logM k

2B
− A(

√
k)) + k2

≤ Z

B
k3 logM k + k2(1 +

Z

B
logM k) − (2k3/2 + 2

√
k)A(

√
k),

which is at most (Zk3 logM k)/B − A(k) if A(k) = k(1 + (2Z logM k)/B). ��
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Theorem 3 WindowFunnelSort incurs at most Q(n) cache misses, where

Q(n) = O(
n

B
logM/B

n

B
).

Proof If n ≤ αM for a sufficiently small constant α, the algorithm will incur at
most O(1 + n/B) cache misses, since only one k-merger will be active at any
time, and the largest possible k-merger will require O(n2/3) < O(n) space. This
case also covers the base case in Line 1 of Algorithm 3 through our assumption
on the cache size.

If n > αM , have the recurrence

Q(n) = n1/3Q(n2/3) + Qn1/3 .

From Lemma 6, we have Qn1/3 = O(n1/3 + n/B + (n logM n)/B). Therefore
the recurrence simplifies to

Q(n) = n1/3Q(n2/3) + O((n logM n)/B),

which has solution Q(n) = O(1+(n/B)(1+logM n)) by induction, which matches
the Ω( n

B logM/B
n
B ) lower bound for sorting in the external-memory model. ��

We now prove that windowFunnelSort is tolerant to persistent compari-
son errors.

Lemma 7 Given k input queues with maximum dislocation at most 3
2c log n

for some constant c > 0, one invocation a k-merger outputs k3 elements
with maximum dislocation at most 3

2c log n with probability at least 1 −
2Zk3(c log n)52−(c logn)/8 for some constant Z > 0.

Proof We first consider k-mergers with
√

c log n ≤ k < c log n. Each such k-
merger will call WindowSort k3

c logn < (c log n)2 times, with each call working
on at most (c log n)2 elements. Therefore, using a similar argument to Lem-
mas 2 and 3 and a union bound, the resulting sequence after (c log n)2 calls to
windowSort will have maximum dislocation at most (3c/2) log n with proba-
bility at least 1 − 2(c log n)42−(c logn)/8.

We then consider the case k ≥ c log n. We have
√

k left
√

k-mergers, along
with a

√
k-merger R. Each left merger inductively outputs k3/2 elements with

dislocation at most 3
2c log n, which is used as the input to the

√
k-merger R that

also inductively outputs k3/2 elements with dislocation at most 3
2c log n. Using

a similar argument to Lemma 2, the output queue of the k-merger will also
have dislocation at most 3

2c log n. To find the success probability, we consider
the number of times windowSort is called. Since the number of invocations
of smaller k-mergers is bounded by 2k3/2 + 2

√
k, the number of invocations of

windowSort, I(k), satisfies the recurrence relation

I(k) =

{
(2k3/2 + 2

√
k)I(

√
k) k ≥ c log n

1
√

c log n ≤ k < c log n,
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which has solution I(k) = Zk3 log k for some constant Z > 0 using a similar
derivation to the one in Lemma 6. Therefore, using a union bound, the proba-
bility that a k-merger outputs k3 elements with maximum dislocation at most
3
2c log n is at least 1 − 2Zk3(c log n)52−(c logn)/8. ��
Theorem 4 Given an array A of n distinct comparable elements, and assuming
B = Ω(log n), one can deterministically sort A subject to comparison errors with
probability pe ≤ 1/16, so as to have maximum dislocation of at most c

2 log n for
some constant c > 0 w.h.p., with at most O( n

B logM/B
n
B ) cache misses in the

cache-oblivious model, and taking O(n log2 n) time in a RAM model.

Proof By induction, each of the n1/3 input sequences given to the n1/3-merger
has maximum dislocation at most 3c

2 log n w.h.p. From Lemma 7, we have that
a n1/3 merger outputs n elements with maximum dislocation at most 3c

2 log n

with probability at least 1 − 2Zn(c log n)52−(c logn)/8 for some constant Z > 0.
Choosing an appropriate value for c establishes this theorem. ��

We now bound the work complexity of WindowFunnelSort, by first
bounding the work complexity Wk of a k-merger.

Lemma 8 The work complexity Wk of one invocation of a k-merger is
O(k3 log2 n).

Proof We first consider k-mergers with
√

c log n ≤ k < c log n. The k-merger
reads 3c log n elements from k input queues, each of which have maximum dislo-
cation at most O(log n) from Theorem 4, for a total of 3kc log n elements, then
performs window-sort on these elements, which takes O(k log2 n) time. To out-
put k3 elements, the k-merger needs to repeat this O( k3

logn ) times, taking a total
of O(k4 log n) time, which is bounded by O(k3 log2 n) since k < c log n.

For k-mergers where k ≥ c log n, to output k3 elements, the left mergers and
right merger are invoked at most k3/2 + 2

√
k and k3/2 times respectively. The

k-merger also has to check before each invocation of R whether any of the buffers
are empty. This takes O(

√
k) time and is repeated exactly k3/2 times, for a total

of O(k2) time. Therefore the total work complexity W (k) of a k-merger satisfies
the following recurrence relation:

Wk ≤ (2k3/2 + 2
√

k)W√
k + O(k2).

Using a derivation similar to the one in Lemma 6, we can show that Wk =
O(k3 log2 n) by induction. ��
Theorem 5 The work complexity W (n) of windowFunnelSort is O(n log2 n)
for any input sequence of n elements.

Proof We have the recurrence

W (n) = n1/3W (n2/3) + Wn1/3 .
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From Lemma 8, we have Wn1/3 = O(n log2 n). Therefore the recurrence simplifies
to

W (n) = n1/3W (n2/3) + O(n log2 n),

which has solution W (n) = O(n log2 n) by induction. ��

5 Conclusions and Future Work

We provided efficient sorting algorithms that tolerate noisy comparisons and are
cache efficient in both cache-aware and cache-oblivious external memory models.
In [6], the authors introduced another cache-oblivious sorting algorithm based on
distribution-sort, that has the same work and cache complexities as funnel-sort.
One direction for future work could be to design and analyze a windowed version
of the cache-oblivious distribution sort algorithm that has similar bounds on the
work and cache complexities.
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