
Manipulating Weights to Improve
Stress-Graph Drawings of 3-Connected

Planar Graphs

Alvin Chiu(B) , David Eppstein, and Michael T. Goodrich

Department of Computer Science, University of California, Irvine, USA

chiua13@uci.edu

Abstract. We study methods to manipulate weights in stress-graph
embeddings to improve convex straight-line planar drawings of 3-
connected planar graphs. Stress-graph embeddings are weighted versions
of Tutte embeddings, where solving a linear system places vertices at a
minimum-energy configuration for a system of springs. A major drawback
of the unweighted Tutte embedding is that it often results in drawings
with exponential area. We present a number of approaches for choosing
better weights. One approach constructs weights (in linear time) that
uniformly spread all vertices in a chosen direction, such as parallel to the
x- or y-axis. A second approach morphs x- and y-spread drawings to pro-
duce a more aesthetically pleasing and uncluttered drawing. We further
explore a “kaleidoscope” paradigm for this xy-morph approach, where
we rotate the coordinate axes so as to find the best spreads and morphs.
A third approach chooses the weight of each edge according to its depth
in a spanning tree rooted at the outer vertices, such as a Schnyder wood
or BFS tree, in order to pull vertices closer to the boundary.

Keywords: Tutte embedding · convex drawing · vertex spreading

1 Introduction

Sixty years ago, Tutte provided what is arguably one of the first graph drawing
algorithms [16] Given a simple, undirected 3-connected planar graph, G, Tutte’s
algorithm produces a1. straight-line, planar drawing of G such that each face
is convex. Tutte’s algorithm produces such a drawing of G by solving a set of
linear equations that determine the x- and y-coordinates of points to which the
vertices of G are assigned. Intuitively, the equations are based on “pinning” the
vertices of the outer face of G to the vertices of a convex polygon, and then
considering all the edges of G to be springs with an idealized length of 0. Solving

1 Proofs of Fáry’s Theorem, that any simple, planar graph can be embedded in the
plane without crossings so each edge is drawn as a straight line segment, came
earlier [7,15,17], but these proofs do not give specific coordinates for the vertices;
hence, it is not clear they can be called “graph drawing algorithms.”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. A. Bekos and M. Chimani (Eds.): GD 2023, LNCS 14466, pp. 141–149, 2023.
https://doi.org/10.1007/978-3-031-49275-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49275-4_10&domain=pdf
http://orcid.org/0009-0009-6863-859X
http://orcid.org/0000-0002-8943-191X
https://doi.org/10.1007/978-3-031-49275-4_10


142 A. Chiu et al.

Fig. 1. Tutte drawings can have exponential area.

the set of equations amounts to finding a minimum-energy configuration for the
springs given the pinned vertices of the outer face [4,13].

One unfortunate drawback of Tutte’s algorithm is that it can produce draw-
ings with exponential area or exponentially small edge lengths, depending on the
normalization of coordinates. Indeed, Eades and Garvan [5] show that this unde-
sirable result occurs even for the planar graphs formed by connecting two outer
vertices to each vertex of a simple path and to each other, as shown in Figs. 1a
and 1b. Intuitively, the idealized springs representing graph edges have equal
stress, which, in turn, “pull” groups of springs into unsightly vertex clusters.

Hopcroft and Kahn [11] generalize Tutte’s algorithm to spring systems with
different stress weights. In this framework, which we explore in this paper, we
assign a stress weight, wu,v, to each edge, (u, v), of G.2 We begin as in the Tutte
framework by “pinning” the vertices of an outer face, f , to be the vertices of
a convex polygon, and we then formulate two linear equations for each internal
vertex, u, of G, as follows:

∑

(u,v)∈E

wu,v(xu − xv) = 0, and
∑

(u,v)∈E

wu,v(yu − yv) = 0, (1)

where pv = (xv, yv) is the point to which vertex v is assigned. Note that for a
vertex, v, on the outer face, we pin pv = (x∗

v, y
∗
v); hence, xv = x∗

v and xv = y∗
v are

constants in our linear system. As Hopcroft and Kahn [11], as well as Floater [9],
show, if the stresses, wu,v, are all positive, except possibly for the edges of the
outer face, then the resulting drawing is a planar straight-line drawing with
each face being convex. In this paper, we experimentally explore the aesthetic
improvements to a Tutte embedding that can be achieved by manipulating the
stresses in such stress-graph drawings of 3-connected planar graphs.

Related Prior Results. We are not familiar with any prior work on the manip-
ulation of the weights in stress-graph drawings strictly for the purpose of improv-
2 Tutte’s approach can be viewed as being for the case when wu,v = 1 for each edge.



Manipulating Weights to Improve Stress-Graph Drawings 143

ing the aesthetic qualities. Nevertheless, the general technique of manipulating
stresses in stress-graph drawings is not without precedent. For example, Hopcroft
and Kahn [11] and Eades and Garvan [5] give conditions for stresses so that the
resulting drawing is the projection of a 3-dimensional convex polyhedron onto
the plane. Chrobak, Goodrich, and Tamassia [3] further explore this approach,
claiming to produce a 3-dimensional realization of a 3-connected planar graph as
the 1-skeleton of a 3-dimensional convex polyhedron with vertex resolution Ω(1)
and with linear volume.3 Indeed, their approach comes close to ours, in that they
first compute weights for a weighted Tutte drawing with good vertex resolution
(using a flow-based approach) and then apply the Maxwell–Cremona correspon-
dence to lift this drawing to a convex polyhedron. Their method does not nec-
essarily result in aesthetically pleasing drawings or convex polyhedra, despite
the good spacing for the x-coordinates. Researchers have also explored inter-
polating between stress-graph drawings to morph from one layout to another.
For example, Floater and Gotsman [10] use interpolation of the weights for two
convex embeddings to morph between them, albeit with vertex movements that
are represented implicitly. They also devise a method to obtain weights that will
produce a given drawing. Erickson and Lin [6] morph between two convex via
unidirectional morphs, where vertices move parallel to the direction of an edge.
Kleist et al. [12] turn drawings of planar 3-connected graphs into strictly convex
planar drawings with similar morphs.

Our Results. We propose several methods of weight manipulation. In the first,
we simplify (and correct) the approach of Chrobak, Goodrich, and Tamassia [3]
for finding drawings in which vertices have uniformly distributed coordinates.
Instead of using iterated flows, we find suitable weights in linear time by count-
ing certain paths in an st-orientation of the graph. Our implementation fixes the
outer face as a regular polygon; in the full version on arXiv we show that an
alternative choice allows all vertices, including outer face vertices, to have uni-
form x-coordinates. We experiment with a modified version of this method that
produces two planar straight-line drawings that evenly spread the x-coordinates
and the y-coordinates, respectively. We then construct a morph that averages the
weights of the x- and y-spread drawings. The idea is that this morph will have
fairly even spacing on both directions, e.g., as shown in Fig. 1c and Figs. 2a to 2d.
We also explore a “kaleidoscope” version of this approach, where we rotate the
coordinate axes to find the best spreads. In another approach, we weight edges
based on depth in spanning trees rooted at the outer vertices. Edges closer to
the outer vertices will have higher weight and thus more “pull”, spreading the
internal vertices away from the center of the outer face in a manner that pre-
serves the general structure. We explore two types of spanning trees: BFS and
(for fully triangulated graphs) Schnyder woods [1,8,14].

3 However, their proof is only valid for polyhedra that have a triangle face.



144 A. Chiu et al.

Fig. 2. Drawings of a planar graph with 30 vertices and 80 edges, G(30, 80).

2 Algorithms

Weight Manipulation to Spread Vertices Uniformly. To find weights
whose stress-graph embedding spreads vertices evenly, we first begin with an
unweighted Tutte drawing, rotating it if necessary so no edge is vertical. We
sort the vertices by x-coordinates in this drawing, and orient edges from left to
right, producing an st-orientation: an acyclic orientation in which each vertex vi
with 1 < i < n has both incoming and outgoing edges. Next, we choose new x-
coordinates xi for the interior vertices that are as evenly spaced as possible under
the constraint that they respect the sorted x-ordering of all the vertices. (The
same constraint is also present in the flow-based method of Chrobak et al. [3])
We can choose new positive edge weights for the Tutte drawing to produce the
chosen x-coordinates in linear time. Conceptually, we gradually increase weights
along a sequence of paths in the graph, starting with all weights zero. For each
edge e, we find a directed path from v1 to vn through e, and increase weights on
the edges of this path.

Along a single path through consecutive vertices vi, vj , vk, the spacing
between the vertex placements should be in the proportion xj − xi : xk − xj ,
which can be achieved by giving edges vivj and vjvk the weights 1/(xj − xi)
and 1/(xk − xj) respectively. Because these weights do not depend on the other
edges of the path, we can use this weight for each edge in all of the paths that
it belongs to and preserve the x-equilibrium. In total, the weight of any edge
vivj in the whole graph (summing its weights for each path it appears in) will
be nij/(xj − xi), where nij is the number of paths containing edge vivj .

To calculate these numbers efficiently, we compute two spanning trees in the
oriented graph: tree T1 directed out of v1, and tree Tn directed into vn (shortest-
path trees via BFS were used for the implementation). For each edge vivj , include
a path that follows T1 from v1 to vi, then edge vivj , then follow Tn from vj to
vn. We can count the number of these paths that use vivj as follows:

– There is one path defined in this way from vivj .



Manipulating Weights to Improve Stress-Graph Drawings 145

– Let Dj be the set of descendants of vj in T1 (including vj itself) and
d+(vk) be the number of outgoing edges from vk. If vivj belongs to T1, then∑

vk∈Dj
d+(vk) paths pass through vivj in T1 before crossing to Tn.

– Let Ai be the set of descendants of vi in Tn and d−(vk) be the number of
incoming edges at vk. If vivj belongs to Tn, then symmetrically

∑
vk∈Ai

d−(vk)
paths pass through vivj in Tn after crossing to Tn.

The sums of descendant out-degrees in T1, and of descendant in-degrees in
Tn, can be computed in linear time by a simple bottom-up tree traversal, after
which we can calculate the weight nij/(xj − xi) of all edges in linear time. A
weighted Tutte drawing with positive weights and convex outer face cannot intro-
duce crossings, so we get a convex drawing with spread out x-coordinates using
these new weights. To spread by a different direction, we can rotate the initial
unweighted Tutte drawing before doing the spread. Indeed, as we explore exper-
imentally, we consider a number of distinct rotation angles, producing drawings
similar to the way a kaleidoscope produces patterns as it is turned.

Moreover, we can produce an “xy-morph” drawing of the input graph. Let a
weighted Tutte drawing be represented by Γ = (Λ,P), where Λ is the coefficient
matrix containing the edge weights and P is the convex polygon chosen to be
the outer face. One can morph between the x-coordinate spread drawing Γ0 =
(Λ0,P) and y-coordinate spread drawing Γ1 = (Λ1,P) to obtain a more balanced
graph drawing Γ1/2. Intuitively, this is like stopping halfway in Floater and
Gotsman’s morphing algorithm [10], where we construct Γ1/2 = (Λ1/2,P) where
Λ1/2 = 1

2 · Λ0 + 1
2 · Λ1. (See Fig. 2.)

Weight Manipulation via Spanning Tree Depth. In our spanning-tree app-
roach, we first do a Tutte drawing, then we find a set of edge-covering spanning
trees, T , for the graph rooted at the outer vertices, such as BFS trees or Schny-
der woods [1,8,14]. Next, we assign weights to the edges of each tree, T , in a
top-down manner according to its depth in the spanning tree. With these new
weights, we do another stress-graph drawing.

Let the depth of an edge in a tree be the number of edges from the root to
the edge plus one (to include the edge itself). Then we assign an edge at depth i
with weight a/ri, where a is some initial constant and r is a scaling parameter.
When using BFS to find the shortest-path tree Tv rooted at an outer vertex v,
we assign weights to an edge according to its lowest depth from any of the outer
vertices. To do this, we create a dummy “super”-vertex, vs, connected to all the
outer vertices and run BFS from vs, which is akin to running BFS on all the
outer vertices simultaneously. For the case when the outer face is a triangle, we
also consider Schnyder woods, which form an edge-covering set of three spanning
trees that have nice “flow” properties [1,8,14]. (See Fig. 3.)

3 Experiments

Our experimental setup modifies the Open Graph Drawing Framework (OGDF)
C++ library [2]. One of our goals is to compare our weight manipulation meth-
ods against Tutte’s algorithm, which often produces exponentially small edge



146 A. Chiu et al.

Fig. 3. Drawings of a pseudorandom graph, G(50, 144).

lengths. Thus, the main metric we use is the edge-length ratio ρ(Γ ) of drawing
Γ , which is the longest edge length divided by the smallest edge length in the
drawing. In Table 1, we compare the edge-length ratios of the Tutte embeddings
of several pseudorandom planar graphs against the x-spread, the y-spread, the
xy-morph between the previous two, and the BFS-spread. For the BFS-spread,
we choose the parameter r to be the integer that minimizes the edge-length ratio
p(Γ ). We do not show the results for the Schnyder-spread, as they were almost
always worse than the BFS-spread.

Not surprisingly, our testing demonstrates that the x-spread and y-spread
drawings achieve edge-length ratio close to the number of vertices, n, because of
the uniform vertex spacing that they produce. Nevertheless, optimizing exclu-
sively for edge-length ratio can result in vertices that cluster close to a straight
line as can be seen in Table 1. In constrast, the xy-spread drawing often is more
aesthetically pleasing, as it tends to have better symmetry visualization than
either the x- or y-spread drawings without clustering. However, it usually results
in higher edge-length ratio than either of the two drawings it morphs. It may
even have a higher edge-length ratio than its corresponding Tutte drawing, as
seen by the xy-morph for G(50, 130) in Table 1.

The edge-length ratio of BFS-spread drawings tends to be smaller than Tutte
embeddings, while still preserving those drawings’ general structure and sym-
metry visualization.

We also experimented with a “kaleidoscope” drawing paradigm, where we
rotate the x- and y-axes by small angular increments and compute an xy-morph
for each angle. The edge-length ratios can vary dramatically in such drawings,
so the minima offer good choices. We show an example plot of edge-length ratios
in Fig. 4, with its worst and best rotations in Table 2. More figures can be found
in the full version on arXiv: https://arxiv.org/abs/2307.10527.

https://arxiv.org/abs/2307.10527.


Manipulating Weights to Improve Stress-Graph Drawings 147

Table 1. Drawing Gallery. ρ(Γ ) is the edge-length ratio, r is the scaling parameter.



148 A. Chiu et al.

Fig. 4. Edge-length ratios for kaleidoscope xy-morphs for G(90, 240), increments of
5◦C.

Table 2. Worst and best rotations for the graph of Fig. 4.

Acknowledgements. This research was supported in part by NSF grant CCF-
2212129.



Manipulating Weights to Improve Stress-Graph Drawings 149

References

1. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane
graphs. Algorithmica 47(4), 399–420 (2007)

2. Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Handbook of Graph Drawing and
Visualization, pp. 543–569. CRC Press (2013)

3. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two
and three dimensions. In: 12th Symposium on Computational Geometry (SoCG),
pp. 319–328. New York, NY, USA (1996). https://doi.org/10.1145/237218.237401

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Hoboken (1999)

5. Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In:
Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 212–223. Springer, Heidel-
berg (1996). https://doi.org/10.1007/BFb0021805

6. Erickson, J., Lin, P.: Planar and toroidal morphs made easier. In: Purchase, H.C.,
Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 123–137. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92931-2 9

7. Fáry, I.: On straight-line representation of planar graphs. Acta Scientiarum Math-
ematicarum 11(2), 229–233 (1948)

8. Felsner, S.: Lattice structures from planar graphs. The Electronic Journal of Com-
binatorics, pp. R15–R15 (2004)

9. Floater, M.S.: Parametric tilings and scattered data approximation. Int. J. Shape
Model. 04(03n04), 165–182 (1998). https://doi.org/10.1142/S021865439800012X

10. Floater, M.S., Gotsman, C.: How to morph tilings injectively. J. Comput. Appl.
Math. 101(1), 117–129 (1999). https://doi.org/10.1016/S0377-0427(98)00202-7,
https://www.sciencedirect.com/science/article/pii/S0377042798002027

11. Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms. Algorith-
mica 7(1–6), 339–380 (1992)

12. Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-
increasing morphs of planar graphs. Comput. Geom. 84, 69–88 (2019)

13. Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms.
arXiv preprint arXiv:1201.3011 (2012)

14. Schnyder, W.: Embedding planar graphs on the grid. In: 1st ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 138–148 (1990)

15. Stein, S.K.: Convex maps. Proc. Am. Math. Soc. 2(3), 464–466 (1951)
16. Tutte, W.T.: How to draw a graph. Proc. Lond. Math. Soc. 3(1), 743–767 (1963)
17. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Deutsch. Math.-

Verein. 46, 26–32 (1936)

https://doi.org/10.1145/237218.237401
https://doi.org/10.1007/BFb0021805
https://doi.org/10.1007/978-3-030-92931-2_9
https://doi.org/10.1142/S021865439800012X
https://doi.org/10.1016/S0377-0427(98)00202-7
https://www.sciencedirect.com/science/article/pii/S0377042798002027
http://arxiv.org/abs/1201.3011

	Manipulating Weights to Improve Stress-Graph Drawings of 3-Connected Planar Graphs
	1 Introduction
	2 Algorithms
	3 Experiments
	References


