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Abstract
While sketch-based network telemetry is attractive, realizing its
potential benefits has been elusive in practice. Existing sketch so-
lutions offer low-level interfaces and impose high effort on op-
erators to satisfy telemetry intents with required accuracies. Ex-
tending these approaches to reduce effort results in inefficient
deployments with poor accuracy-resource tradeoffs. We present
SketchPlan, an abstraction layer for sketch-based telemetry to re-
duce effort and achieve high efficiency. SketchPlan takes an en-
semble view across telemetry intents and sketches, instead of ex-
isting approaches that consider each intent-sketch pair in isola-
tion. We show that SketchPlan improves accuracy-resource trade-
offs by up-to 12x and up-to 60x vs. baselines, in single-node
and network-wide settings. SketchPlan is open-sourced at: https:
//github.com/milindsrivastava1997/SketchPlan.
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• Networks → Network measurement; Programmable net-
works; Network monitoring; In-network processing.
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1 Introduction
Network telemetry is essential to observe traffic and drive down-
stream management tasks such as traffic engineering and anomaly
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Figure 1: SketchPlan raises the level of abstraction for sketch-
based telemetry.
detection. Operators specify telemetry intents to measure statistical
properties of network traffic in different dimensions such as “the
number of unique 5-tuples in the network” or “top 10 source IPs
sending traffic to the network”.

While sketches [7, 10, 15] are a promising solution to reduce
resource usage and thus telemetry costs, practically realizing the
benefits of sketches is challenging on two fronts:
• High operator effort: To meet intents’ accuracy needs, existing
solutions require manual effort to understand algorithms, map
each high-level intent to suitable sketches, and configure sketch
resources appropriately. Even recent novel sketches [20, 27, 31, 33],
sketch optimizations [19, 23, 32], and data plane frameworks (e.g.,
Sketchovsky [24], HeteroSketch [4]) lack high-level interfaces.

• Inefficient configuration: Extending existing approaches to pro-
vide a high-level interface, results in inefficient accuracy-resource
tradeoffs. A key reason is that existing solutions [4, 23, 24, 28]
view each intent in isolation. Thus, these are fundamentally in-
efficient for practical use where operators care about measuring
and optimizing multiple intents jointly, not just one intent.

We argue that reducing operator effort requires raising the level of
abstraction of sketch-based telemetry. Instead of requiring operators
to manually map their telemetry intents and configure sketches, we
envision an abstraction layer called SketchPlan. In SketchPlan, the
operator specifies high-level intents of interest with accuracy tar-
gets, such as measuring the entropy and cardinality of 5-tuples with
90% and 95% accuracy, respectively. SketchPlan automatically maps
these intents to sketches with appropriate resource configurations.

By raising the level of abstraction, SketchPlan also enables novel
opportunities for efficiency via an ensemble view of all intents and
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sketches. Instead of viewing each intent-sketch combination in
isolation, SketchPlan leverages inherent opportunities for cross-
intent and cross-sketch optimization to offer significantly better
resource-accuracy trade-offs. For instance, MRAC [17] and CountS-
ketch [7] may be optimized to measure entropy and heavy hitters
in isolation; but given both intents, a single UnivMon [20] instance
may be optimal.

We address key technical challenges in realizing SketchPlan’s
vision. We provide the first practical formulation for mapping an en-
semble of intents to sketches. SketchPlan implements an extensible
sketch coverage map capturing the coverage capability of sketches
for various queries. To achieve desirable accuracy-resource trade-
offs for the intent ensemble, SketchPlan uses offline error-resource
profiles that characterize different query-sketch maps. We show a
practical and robust mechanism for generating such profiles. Finally,
we show how SketchPlan provides benefits in practical single-node
and network-wide settings.

We evaluate SketchPlan on diverse operator intents and deploy-
ment regimes. SketchPlan improves accuracy-resource tradeoffs
over strawman solutions by up-to 12x on a single node and up-to
60x in network-wide settings; successfully providing a high-level
and efficient sketch abstraction layer. We show that SketchPlan’s
benefits are robust in the face of progressively-older error-resource
profiles and that SketchPlan’s design is crucial to providing efficient
sketch-based telemetry.

2 Motivation and Related Work
We illustrate how the status quo in sketch-based telemetry imposes
significant effort and inefficiency on operators, and why prior work
does not address these problems.

2.1 Background on Sketch-based Telemetry
Operators want to specify high-level telemetry intents to measure
statistical properties that drive their monitoring use cases. Each
intent specifies a query to measure and an optional accuracy target.
Each query specifies a statistic/metric to measure on a certain flow-
key. Operators may also specify bounds on data plane resources
to be used for telemetry. For example, an operator may want to
measure the entropy and cardinality of traffic with 90% and 95% ac-
curacy, respectively, with only 512KB memory resources. Accuracy
targets are driven by requirements from downstream use cases.

Since processing all traffic is expensive and traditional sampling
techniques can be ineffective, sketches emerged as a promising
telemetry solution. A sketch is a randomized approximation al-
gorithm to summarize data streams such as network traffic, and
generate approximate estimates of various statistics. For instance,
CountMin [10] can identify large network flows (heavy hitter) while
MRAC [17] can estimate entropy.

2.2 Illustrative Scenario
To understand the limitations of the status quo, consider a simpli-
fied operational use case. An operator in a Network Operations
Center [3] wants to monitor the network for traffic engineering
and anomaly detection tasks. To support these, they are interested
in measuring the cardinality, entropy and top 50 heavy hitter flows
with some target accuracies.
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Intent 4

(1) Selection (2) Configuration (3) End-to-end Estimation
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E!ort:

Figure 2: Practically leveraging sketches to estimate intents
requires high operator effort.

Prior work Selection Configuration End-to-end
Novel sketches
[20, 27, 31] X X X

Optimized data planes
[19, 23, 24, 32] X X X

Network-wide
orchestration [4] X X �

Sketch-based
compilers [18, 28] X � X

SketchPlan � � �

Table 1: Prior work in sketches provides operators with low-
level interfaces that entail high effort.

Supporting these intents using sketches is easier said than done.
Let us conceptually walk through the effort that an operator must
exert today to estimate these intents [21] (Figure 2).
• Sketch selection: The operator must manually search the sketch
literature to find specific sketches that support each intent. The
design space here is large and complicated – should they pick a
query-specific sketch like MRAC [17] for entropy, or should they
pick a “general” sketch like UnivMon [20]. Either way, there are
multiple query-specific and general sketches that the operator
must pick from.With no guidelines to follow, the operator is forced
to speculate on the sketches to deploy. Poor sketch selection can
undermine or even nullify the value of using sketches (see §4).

• Configuration: They must speculate about which sketch is efficient
in their deployment, and guess the amount of data plane resources
to allocate to each sketch. Again, there is little support in existing
literature to guide such configurations, and how theoretical error
guarantees may translate into workload-specific empirical behav-
ior. Poor configuration can lead to estimation errors that cause
cascading failures in the operator’s downstream tasks.

• End-to-end estimation: The operator needs end-to-end estimates
of their intents across the network and across various traffic
sub-populations of interest such as specific ports and origin-
destination pairs. While there are some recent efforts on this
front [4], they do not address the first two requirements, entail
high effort and are inefficient.

2.3 Related Work and Limitations
Existing work in sketch-based telemetry can be classified into four
broad themes that we discuss below.
Novel sketches: There are several novel sketches for supporting
multiple metrics [20, 27, 31], or multiple flow-keys with the same
data plane implementation [6, 9, 33]. While valuable, these works
provide low-level interfaces that do not address the selection and
configuration tasks discussed above.
Optimized data plane: Recent efforts [11, 19, 23, 24, 32] have pro-
posed optimizations to existing sketch implementations or collec-
tions of sketches, e.g., Sketchovsky [24] re-uses data plane resources
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Figure 3: Strawman solutions for sketch selection and con-
figuration offer poor accuracy-resource tradeoffs.

Approach Sketches Resource
Usage Errors

〈AnyFeasible,Uniform〉 HLL: 256KB
MRAC: 256KB 512KB 0.7%, 9.7%

〈Greedy, Proportional〉 UnivMon: 512KB 512KB 18.4%, 2.7%

SketchPlan UnivMon: 320KB
MRB: 128KB 448KB 2.8%, 0.4%

Table 2: Toy scenario showing inefficiency of strawman solu-
tions.

across multiple sketches to reduce resource overhead. These works
too require the operator to manually select and configure sketches.
Networkwide orchestration:HeteroSketch [4] orchestrates sketches
in a network-wide fashion, but provides a low-level interface, requir-
ing operators to specify the sketches to deploy and their resource
configurations.
Sketch compilers: AutoSketch [28] compiles a stateful operation
like reduce or distinct to a sketch. However, it does not address
operator effort in selection and end-to-end estimation, and con-
siders each intent in isolation, leading to poor accuracy-resource
tradeoffs. MAFIA [18] requires operators to select and configure
sketches manually.

3 SketchPlan’s Design
Case for an Abstraction Layer: In the previous section, we saw
that while sketches are a powerful capability, current sketch-based
solutions offer low-level interfaces that require high operator effort.
To bridge the significant disconnect between an operator’s high-
level intents and the existing low-level sketch-based offerings, we
argue for a sketch abstraction layer for operators to specify high-
level intents. Here, each intent specifies a query to measure and an
accuracy target.

3.1 Strawman Solutions and Limitations
Building this abstraction layer entails two parts: (1) Intent-to-sketch
Selection: Determining sketches to support an ensemble of intents;
and (2) Resource Configuration: For each selected sketch, we need
to allocate data plane resources.

We consider a few seemingly-natural solutions for sketch selec-
tion and configuration. Intent-to-sketch selection can be done by
(1) 〈AnyFeasible〉: randomly picking a sketch capable of estimating
an intent, or (2) 〈Greedy〉: using a general sketch like UnivMon [20]
to cover as many intents as possible and 〈AnyFeasible〉 for other
intents. Resource configuration can be done by (1) 〈Uniform〉: as-
signing equal resources to each sketch, or (2) 〈Proportional〉: assign-
ing resources proportional to the number of intents estimated by a
sketch. We can combine these to create four strawman approaches.
Figure 3 shows two illustrative strawman combinations.

Consider a scenario where the operator wants to measure cardi-
nality and entropywith 512KB of memory. Table 2 shows the sketch

Sketch library Ensemble of Intents Resource
Constraints

Optimizer
Mapper

Profiler

Sketch coverage map

Error-resource profiles

Intent-to-sketch selection Resource configuration

3/5
1/5
2/5

SketchPlan

Inputs:

Outputs:

Figure 4: SketchPlan’s three modules take an ensemble view
of intents and sketches to estimate intents optimally.

selection and configuration of Figure 3’s strawman approaches,
and their poor accuracy in measuring these intents. SketchPlan
achieves both better average accuracy and lower resource usage.

3.2 SketchPlan’s Key Insight: Ensemble view
Instead of myopically optimizing for each intent in isolation, our
approach takes an ensemble view across intents and sketches. This
allows SketchPlan to leverage cross-intent and cross-sketch inter-
actions, and achieve high efficiency for the entire ensemble. We
argue for an ensemble view along two dimensions:
• Query coverage: Our first insight is to explicitly map the queries
that can be estimated by each sketch. This allows SketchPlan to
explore different sketch selections for a given ensemble of intents.

• Accuracy-resource tradeoffs: Our second insight is to empirically
capture the accuracy-resource tradeoffs for different sketch-query
pairs, allowing SketchPlan to explore the space of resource con-
figurations for a set of sketches to deploy.

An ensemble view is beneficial due to three reasons. (1) First, even
sketches not designed to be “general” can estimate multiple queries;
e.g., CountSketch [7] can estimate heavy hitters, change detec-
tion, and entropy. (2) Next, while a sketch could estimate multiple
queries, it may not be optimal at estimating all of them. For e.g.,
UnivMon [20] can estimate both heavy hitters and cardinality but
is outperformed by HyperLogLog [15] for cardinality estimation,
intuitively explaining why 〈Greedy〉 strawmen perform poorly. (3)
Last, accuracy-resource tradeoffs vary for different queries, and
exhibit different shapes; e.g., doubling the resources of a sketch
may halve the error of one query, but provide only 10% gain for
another. Thus, optimal sketch selection and configuration depends
on the queries to measure and available resources; explaining why
resource-agnostic strawmen like 〈Uniform〉 and 〈Proportional〉 per-
form poorly.

3.3 Detailed Design
Figure 4 provides an overview of SketchPlan. SketchPlan takes
three inputs: (1) a library of sketches, (2) an ensemble of intents,
and (3) data plane resource constraints. Each intent specifies a query
and an optional accuracy target. Each query specifies a metric to
measure, the flow-key of traffic to measure it on, and an OD-pair to
measure traffic between. Similar to prior work [4, 20], each OD-pair
specifies an origin and destination network node and represents
traffic flowing between these. SketchPlan’s output is a selected
sketch for each intent and resource configurations for each sketch,
on each network node.
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Notation Definition
Inputs

𝐼 Set of intents. Each intent 𝑖 has a query 𝑞 and an optional error bound
𝑒𝑟𝑟 .

𝑄 Set of queries. Each query 𝑞 is a metric, flow-key, and OD-pair tuple
(𝑚, 𝑓 , 𝑝 ) .

𝑝𝑝𝑎𝑡ℎ Set of nodes on the path of OD-pair 𝑝 .
𝑆 Library of available sketches.
𝑛𝐵 Resource bound on node 𝑛.
𝑜𝑏 𝑗 Objective function to minimize.

Outputs
𝐷 Set of sketch deployments. Each sketch deployment 𝑑 (𝑠,𝑓 ,𝑛,𝑟 ) repre-

sents the deployment of sketch 𝑠 configured with flow-key 𝑓 and
resources 𝑟 on node 𝑛.

𝑚𝑎𝑝 (𝑖 ) Function that maps each intent 𝑖 to a sketch deployment 𝑑 .
Internal functions

𝑐𝑜𝑣 (𝑠, 𝑞) Boolean function representing if sketch 𝑠 can estimate query 𝑞.
𝑒𝑟𝑟 (𝑞,𝑑 ) Function representing the error in estimating query 𝑞 by sketch de-

ployment 𝑑 .

Table 3: Notation for optimization problem formulation.

To produce this output configuration, SketchPlan leverages the
three modules described below:
Mapper: This module allows SketchPlan to have an ensemble view
of query coverage. Given a library of sketches, this module exam-
ines the coverage capability of each sketch and generates a sketch-
metric coverage map (represented by a bipartite graph similar to
Figure 3). By selecting different edges in the map, SketchPlan can
explore diverse sketch ensembles to estimate an intent ensemble.
§3.5 specifies the entire set of sketches and metrics we implement.
Profiler: This module allows SketchPlan to have an ensemble view
of accuracy-resource tradeoffs. Given a library of sketches and his-
torical traces, this module generates error-resource profiles for each
sketch-metric pair. An error-resource profile captures the estima-
tion error of a sketch for a given metric with changes in resource
configuration. To generate these profiles, the Profiler runs sketches
offline on the historical traces and considers the median error across
traces. Empirical profiling allows SketchPlan’s Optimizer (discussed
below) to quantitatively compare different intent-to-sketch selec-
tions and configurations, and identify the optimal solution.
Optimizer: The Optimizer takes an ensemble view of the opera-
tor’s intents, resource constraints, sketch coverage capabilities, and
error-resource tradeoffs. It formulates a network-wide optimization
problem that explores deployments where each intent can be esti-
mated by any candidate sketch (as given by the Mapper) and any
resource configuration that satisfies its accuracy target (as given by
the Profiler). For network-wide intents, the selected sketch can be
deployed on any node on its OD-pair’s path. The Optimizer’s out-
put (Figure 4) is the optimal intent-to-sketch selection and resource
configurations for each sketch, on each network node.
Scope:We scope SketchPlan to static configuration of sketches for a
given ensemble of intents. SketchPlan only needs to run the Mapper
and Profiler once. For a new set of intents, we run the Optimizer
to produce an optimal configuration. §6 discusses our future work
to dynamically configure sketches in response to rapidly changing
intents and traffic.

3.4 Optimization Problem Formulation
Next, we formulate the optimization problem that maps intents to
sketches and selects resource configurations. Table 3 defines the

Minimize O1: 𝑎𝑣𝑔𝑖∈𝐼𝑒𝑟𝑟 (𝑖 .𝑞,𝑚𝑎𝑝 (𝑖 ) ) or O2: ∑
𝑑∈𝐷

𝑑.𝑟

subject to: ∀𝑖 ∈ 𝐼 | 𝑐𝑜𝑣 (𝑚𝑎𝑝 (𝑖 ) .𝑠, 𝑖 .𝑞) == 1 (1)
∀𝑖 ∈ 𝐼 | 𝑚𝑎𝑝 (𝑖 ) .𝑓 == 𝑖 .𝑞.𝑓 (2)

∀𝑖 ∈ 𝐼 ∃𝑛 ∈ (𝑖 .𝑞.𝑝 )𝑝𝑎𝑡ℎ | 𝑚𝑎𝑝 (𝑖 ) .𝑛 == 𝑛 (3)

∀𝑛 ∈ 𝑁 |
( ∑︁
𝑑∈𝐷 |𝑑.𝑛==𝑛

𝑑.𝑟

)
≤ 𝑛𝐵 (4)

∀𝑖 ∈ 𝐼 | 𝑒𝑟𝑟 (𝑖 .𝑞,𝑚𝑎𝑝 (𝑖 ) )≤𝑖 .𝑒𝑟𝑟 (5)

Figure 5: Optimization problem solved by SketchPlan.

symbols used in this formulation. Figure 5 shows the constraints
and objective function.

Inputs: Each intent 𝑖 ∈ 𝐼 has a query 𝑞 and an optional error
bound 𝑒𝑟𝑟 . Each query 𝑞 is a metric, flow-key and OD-pair tuple
(𝑚, 𝑓 , 𝑝). Each OD-pair 𝑝 is specified using a set of devices 𝑝𝑝𝑎𝑡ℎ .
Additionally, the operator can specify (1) resource bounds 𝑛𝐵 for
each node 𝑛, and (2) the objective function 𝑜𝑏 𝑗 to minimize (details
below).

Outputs: The output is (1) a set of sketch deployments 𝐷 , and (2)
the function𝑚𝑎𝑝 . Each sketch deployment 𝑑 (𝑠,𝑓 ,𝑛,𝑟 ) ∈ 𝐷 denotes
a sketch 𝑠 configured with flow-key 𝑓 and resources 𝑟 to be de-
ployed on node 𝑛. The𝑚𝑎𝑝 function maps each intent 𝑖 to a sketch
deployment 𝑑 .

Internal functions: The boolean function 𝑐𝑜𝑣 (𝑠, 𝑞), given by the
Mapper’s output, represents whether sketch 𝑠 can estimate the
query 𝑞. The function 𝑒𝑟𝑟 (𝑞, 𝑑), corresponding to the Profiler, cap-
tures the error-resource profile i.e. the error in estimating a query
𝑞 given a sketch deployment 𝑑 (𝑠,𝑓 ,𝑛,𝑟 ) ∈ 𝐷 . Note that different
resource configurations of the same sketch are considered different
sketch deployments.

Constraints: (1) Each intent 𝑖 must be mapped to a sketch de-
ployment that “covers” the intent’s query 𝑞 (Eq. 1). (2) The sketch
deployment used to estimate an intent should be configured with
the intent’s query’s flow-key 𝑖 .𝑞.𝑓 (Eq. 2). (3) The sketch deploy-
ment should be deployed on a node that is on its OD-pair’s path
(Eq. 3). (4) The resource usage of sketch deployments on a node
must not violate the node’s resource bound (Eq. 4). (5) The error for
an intent 𝑖 should be no more than the specified bound 𝑖 .𝑒𝑟𝑟 (Eq. 5).

Objective function: We consider two goals: the operator may
choose to minimize the average error across all intents (O1) or the
resource usage of all sketch deployments (O2).

3.5 Implementation
We implement 5 metrics– heavy hitter, entropy, cardinality, change
detection, and flow size distribution; and support any subset of
the 5-tuple (src/dst IP/port, protocol) as a valid flow-key. We im-
plement 8 sketches– CountMin [10], CountSketch [7], MRAC [17],
LinearCounting [29], MRB [14], LogLog [13], HyperLogLog [15],
and UnivMon [20]. Unless mentioned, the Profiler uses 18 traces
of 30 sec each, from the CAIDA dataset [1] to empirically measure
the error for each sketch-metric pair. It considers the median error
across all epochs and derives a single error-resource profile for each
sketch-metric. We implement the Optimizer’s ILP in Python and
use Gurobi’s Python binding [2] to solve it.
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Figure 6: SketchPlan achieves up-to 12x lower error than
strawman approaches for various intents.

4 Results
Since there are no existing abstraction layers for sketch-based
telemetry, we demonstrate SketchPlan’s benefits by comparing
against the four strawman solutions from §3.1. We show that: (1)
Across various intent ensembles, SketchPlan provides up-to 12x
lower error compared to strawman solutions; (2) SketchPlan’s ben-
efits extend to network-wide settings, providing accurate telemetry
with up-to 60x lower resources than strawman solutions, across
various intent ensembles; (3) SketchPlan’s benefits are robust to
stale error-resource profiles; and (4) SketchPlan’s design choices
are crucial to achieving these benefits.
Evaluation setup: For each ensemble of intents, we use Sketch-
Plan to select sketches and configure them optimally. We perform
experiments on Cloudlab [12] using the c220g2 node (Intel Xeon
Processor E5-2660 v3, 20 2.6 GHz cores). For each strawman ap-
proach, we use five different seeds for random sketch selection.
Unless mentioned, we evaluate each solution by replaying unseen
traces (different from those used by the Profiler) from the CAIDA
dataset [1]. We consider 18 epochs, each of 30 sec, with around
20-30M packets and 1M unique flows (based on destination IP and
destination port). For each trace, we collect query estimates based
on the sketch selection and configuration done by SketchPlan or
strawman solutions. We measure query error compared to ground
truth,1 based on standard error measures [31].
Single-node benefits: We compare SketchPlan’s benefits over
strawman solutions for different ensembles of intents. We associate
five metrics from §3.5 with the same flow-key (dstIP, dstPort) to
generate five intents. We consider all intent ensembles of size 4 and
the single ensemble of size 5. For each ensemble, we set a resource
bound of 128kB. We run SketchPlan with the objective function to
minimize the average error of the intent ensemble (O1 from §3.4).

Figure 6 shows SketchPlan’s benefits measured as the ratio of
strawman’s average error to SketchPlan’s average error for a given
ensemble. SketchPlan achieves up-to 12x benefits over strawman
solutions for a diverse set of intents with the median benefit varying
from 2x to 7x depending on the exact ensemble. While this result
is for a 128KB resource budget, we see similar results for other
budgets as well. Interestingly, SketchPlan’s benefits over ⟨Greedy⟩
strawmen are almost always higher than ⟨AnyFeasible⟩ strawman;
implying that a general sketch may not always be more optimal.
1For brevity, for heavy hitters and change detection, we only show results for estimat-
ing flow sizes, and not precision/recall of flow-keys

Figure 7: SketchPlan uses up-to 60x lower resources than
strawman approaches for various network-wide intent en-
sembles.

Experiment Experimental setting Optimizer runtime

Single-node Num. of intents = 4 2.8 sec (128KB budget)
5.1 sec (1MB budget)

Num. of intents = 5 12.9 sec (128KB budget)
21.4 sec (1MB budget)

Network-wide Num. of intents = 4 128.7 sec
Num. of intents = 5 1090.5 sec

Table 4: Runtime for SketchPlan’s Optimizer.

Network-wide benefits: To illustrate SketchPlan’s benefits in a
network-wide setting, we consider a Fat-tree network topology [5]
of degree 6 and generate 50 randomOD-pairs.We consider six intent
ensembles as before and associate each intent in each ensemble
with all 50 OD-pairs, yielding one ensemble of 250 network-wide
intents and five ensembles of 200 network-wide intents.

We evaluate different ensembles with varying accuracy targets
and compare SketchPlan’s resource usage to that of strawman
approaches in Figure 7 (O2 from §3.4). For the loosest accuracy
target, SketchPlan achieves up-to 60x benefit in reducing network-
wide resource usage compared to strawman solutions2. The x-axis
shows different intent ensembles. The y-axis quantifies benefit by
dividing the strawman’s resource usage by SketchPlan’s resource
usage. Each scatter point denotes a particular strawman solution
and seed. Appendix B provides exact numbers for the accuracy
targets and shows similar trends for stricter targets as well.

Table 4 shows the runtime of SketchPlan’s Optimizer for the
single-node and network-wide settings. Since we envision Sketch-
Plan being used in an offline manner by operators, this does not
introduce any significant overhead in obtaining telemetry. Even
so, insights from prior work [4] could accelerate network-wide
planning.
SketchPlan’s robustness: A natural question is if SketchPlan’s
benefits are robust to stale resource-accuracy profiles. To answer
this, we train the Profiler on six progressively older CAIDA traces
and learn error-resource profiles for each trace. 𝑃1 denotes the
profile from the oldest trace, 𝑃6 from the newest. For each profile,
we evaluate SketchPlan on the newest trace, corresponding to 𝑃6
for the ensemble with 5 intents. We do this for three different sets
of six traces. In Figure 8, the left-most point on the x-axis denotes
the oldest profile (𝑃1 with “age” 5); the right-most point (𝑃6 with
“age” 0) shows the profile trained and tested on the same trace.
2We use offline profiles to decide accuracy target compliance. In practice, SketchPlan’s
errors on unseen traces are similar to those on offline profiles.
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Figure 8: SketchPlan’s benefits over strawman solutions are
robust in the face of stale error-resource profiles.

Figure 9: SketchPlan’s design is crucial to its benefits.

These results show that SketchPlan’s offline Profiler can still offer
significant benefits robust to workload changes over small time
scales. We defer SketchPlan’s evaluation on, and robustness to,
longitudinal changes to future work (§6).
Design benefits: To examine the benefits of SketchPlan’s Mapper
and Profiler, we enable one of these modules at a time and replace
the other with naïve strawmen. We compare SketchPlan with i)
⟨AnyFeasible, SketchPlan⟩, ii) ⟨Greedy, SketchPlan⟩,
iii) ⟨SketchPlan,Uniform⟩, and iv) ⟨SketchPlan, Proportional⟩. i) and
ii) replace the Mapper with naïve strawmen. iii) and iv) replace the
Profiler with naïve strawmen. Figure 9 compares SketchPlan vs.
intermediate versions of SketchPlan. Versions with only theMapper
enabled (⟨SketchPlan,Uniform⟩, ⟨SketchPlan, Proportional⟩) outper-
form versionswith only the Profiler enabled (⟨AnyFeasible, SketchPlan⟩,
⟨Greedy, SketchPlan⟩), implying that gains from the Mapper are
greater. In fact, versions with only the Profiler enabled sometimes
perform even worse than strawman solutions (benefits < 1). Thus,
the Mapper’s systematic mapping of the coverage capability of
sketches is crucial to providing benefits.

5 Other Related Work
Non-sketch intent-based telemetry: These frameworks [16, 25,
30] translate intents to data plane primitives. Unfortunately, most
of these consider intents in isolation and support exact telemetry
primitives that are prohibitively expensive.
Sketch error estimation:Multiple works [8, 22] estimate errors
based on statistical properties of sketch counters. Their estimation
logic can be integrated with SketchPlan’s abstraction layer for
dynamic configuration capabilities.
Dynamic query workloads: FlyMon [34] and DynaMap [26] al-
low dynamic workloads with sketches and map-reduce queries,

respectively. These frameworks are orthogonal to, and can be inte-
grated with, SketchPlan.

6 Limitations and Future Work
Before we conclude, we discuss some key limitations and directions
for future work to realize the benefits of SketchPlan in practice.
Long-term robustness: While SketchPlan’s error-resource pro-
files are robust to small-scale network changes, they may not be
immune to longer changes in network traffic. Our future work in-
cludes extending SketchPlan to be robust to such long-term drifts.
One direction is to build a model that can predict a sketch’s accu-
racy based on properties of network traffic such as cardinality and
entropy. Given this, one could actively measure incoming traffic
(e.g., using sketches) and use this to predict the accuracy of other
sketches in the data plane. If a sketch’s accuracy falls below the op-
erator’s requirement, SketchPlan could re-generate error-resource
profiles using the Profiler and re-run the Optimizer to generate a
sketch deployment. Theoretical techniques [8] that model a sketch’s
error using its counters at runtime can also be a promising solution.
Dynamic reconfiguration:While SketchPlan’s high-level inter-
face allows the operator to easily specify new intents, SketchPlan
only supports offline planning and sketch deployment to satisfy
these intents. Future work includes runtime data plane reconfigu-
ration to satisfy new intents. For e.g., given unusually high traffic
volume, the operator may deploy new intents for DDoS detection.
While the operator could re-run the Optimizer offline and re-deploy
sketches, this could be prohibitively expensive for a large intent en-
semble. Ideally, SketchPlan should support new intents at runtime.
A possible solution is to run the Optimizer online incrementally for
the new intents while considering the reduced data plane resources
from the already-deployed sketches. While this may not be globally
optimal, it will reduce latency and allow dynamic sketch deploy-
ment for new intents at runtime. Simultaneously, the Optimizer
can be run in background for the entire set of intents to generate a
globally optimal sketch deployment. Prior works [34] can be used
to reduce downtime during data plane reconfiguration.

7 Conclusions
While sketches offer powerful capabilities, operators have been
missing a high-level interface to use them efficiently with low
effort, stymieing practical adoption. SketchPlan addresses this key
missing piece by building an abstraction layer on sketches using
an ensemble view, thereby reducing operator effort and improving
efficiency in sketch-based telemetry.
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(a) Loose targets

(b) Medium targets

(c) Strict targets

Figure 10: SketchPlan’s benefit in resource reduction over
strawman solutions for three progressively-stricter accuracy
targets

A Ethics
This work does not raise any ethical issues.

B Network-wide results for other policies

heavy
hitter entropy cardinality flow size

distribution
change
detection

Loose 7% 20% 10% 75% 10%
Medium 5% 15% 7% 75% 10%
Strict 5% 15% 7% 70% 7%
Table 5: Three progressively-stricter accuracy targets

Note that FSD errors are high due to its error metric, which
matches flow sizes exactly between the true and estimated distri-
butions. Computing the error on binned flow sizes yields much
smaller errors.

8


	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Background on Sketch-based Telemetry
	2.2 Illustrative Scenario
	2.3 Related Work and Limitations 

	3 SketchPlan's Design
	3.1 Strawman Solutions and Limitations
	3.2 SketchPlan's Key Insight: Ensemble view
	3.3 Detailed Design
	3.4 Optimization Problem Formulation
	3.5 Implementation

	4 Results
	5 Other Related Work
	6 Limitations and Future Work
	7 Conclusions
	Acknowledgments
	References
	A Ethics
	B Network-wide results for other policies



