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Abstract

We study multi-agent games within the innovative framework of  decision-
dependent games, which establishes a feedback mechanism that population data
reacts to agents’ actions and further characterizes the strategic interactions among

agents. We focus on finding the Nash equilibrium of decision-dependent games
in the bandit feedback setting. However, since agents are strategically coupled,

classical gradient-based methods are infeasible without the gradient oracle. To over-
come this challenge, we model the strategic interactions by a general parametric
model and propose a novel online algorithm,Online Performative Gradient Descent

(OPGPDwhich leverages the ideas of online stochastic approximation and projected

gradient descent to learn the Nash equilibrium in the context of function approx-
imation for the unknown gradient. In particular, under mild assumptions on the

function classes defined in the parametric model, we prove that the OPGRIgorithm

finds the Nash equilibrium efficiently for strongly monotone decision-dependent
games. Synthetic numerical experiments validate our theory.

1 Introduction

The classical theory of learning and prediction fundamentally relies on the assumption that data
follows a static distribution. This assumption, however, does not account for many dynamic real-
world scenarios where decisions can influence the data involved. Recent literature on performative
classification (Hardt et al., 2016; Dong et al., 2018; Miller et al., 2020) and performative prediction
(Perdomo et al., 2020) offers a variety of examples where agents are strategic, and data is performative.
For instance, in the ride-sharing market, both passengers and drivers engage with multiple platforms
using various strategies such as “price shopping". Consequently, these platforms observe performative
demands, and the pricing policy becomes strategically coupled.

In this paper, we explore the multi-agent performative prediction problem, specifically, the multi-
agent decision-dependent games, as proposed by Narang et al. (2022). We aim to develop algorithms
to find Nash equilibria with the first-order oracle. In this scenario, agents can only access their utility
functions instead of gradients through the oracle. Finding Nash equilibria in decision-dependent
games is a challenging task. Most existing works primarily focus on finding performative stable
equilibria within the single-agent setting, an approach that approximates the Nash equilibrium and is
relatively straightforward to compute (Mendler-Diinner et al., 2020; Wood et al., 2021; Drusvyatskiy
and Xiao, 2022; Brown et al., 2022; Li and Wai, 2022).

There are two major challenges associated with this problem: (i) the distribution shift induced by

performative data, and (ii) the lack of first-order information for the performative gradient. To address
these two challenges, we propose a novel online gradient-based algorithm, Online Performative
Gradient Descent (OPGPIn particular, our algorithm employs a general parametric framework to
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model the decision-dependent distribution, which provides an unbiased estimator for the unknown
gradient, and leverages online stochastic approximation methods to estimate the parametric functions.

1.1 Major Contributions

Our work provides new fundamental understandings of decision-dependent games.  Expanding
upon the linear parametric assumption in Narang et al. (2022), we propose a more comprehensive
parametric framework that models decision-dependent distributions of the observed data. We also
derive sufficient conditions under this parametric framework that guarantee a strongly monotone
decision-dependent game, thereby ensuring a unique Nash equilibrium.

From the algorithmic perspective, we propose OPGDthe first online algorithm to find the Nash
equilibrium under linear and kernel parametric models. The core problem in decision-dependent
games is estimating the performative gradient. We remark that the existing algorithm only handles
the linear case and cannot be extended to the non-linear parametric model (Section 3), and OPGses
an essentially different method to learn the strategic interaction. To elaborate, under the proposed
parametric framework, learning the Nash equilibrium in decision-dependent games can be formulated
as a bilevel problem, where the lower level is learning the strategic model and the upper level is
finding equilibriums. The OPGRIgorithm leverages the ideas of online stochastic approximation
for the lower problem and projected gradient descent to learn the Nash equilibrium. ~ Moreover,
we acknowledge this learning framework bridges online optimization and statistical learning with
time-varying models.

We further prove that under mild assumptions, OPG[2onverges to the Nash equilibrium. For the
linear function class, OPGRchieves a convergence rate of O(t ™' ), matching the optimal rate of SGD
in the strongly-convex setting, where { represents the number of iterations. For the kernel function
class H associated with a bounded kernel K, we posit that the parametric functions reside within
the power space H P and evaluate the approximation error of OPGinder the @-power norm, where
Q represents the minimal value that ensures the power space H® possesses a bounded kernel. We
present the first analysis for online stochastic approximation under the power norm (Lemma 4), in
contrast to the classical RKHS norm (Tarres and Yao, 2014; Pillaud-Vivien et al., 2018; Lei et al.,
2021). The difference between the RKHS H and the power space H P makes the standard techniques
fail under the power norm, and we use novel proof steps to obtain the estimation error bound. We
demonstrate that OPGeverages the embedding property of the kernel K to accelerate convergence

_"pa
and achieves the rate of O(t 52 ). Moreover, OPG3an handle the challenging scenario, where
parametric functions are outside the RKHS. See Section 4.2 for more details.

1.2 Related Work

Performative prediction. The multi-agent decision-dependent game in this paper is inspired by
the performative prediction framework (Perdomo et al., 2020). This framework builds upon the
pioneering works of strategic classification (Hardt et al., 2016; Dong et al., 2018; Miller et al., 2020),
and extends the classical statistical theory of risk minimization to incorporate the performativity
of data. Perdomo et al. (2020); Mendler-Diinner et al. (2020); Miller et al. (2021) introduce the
concepts of performative optimality and stability, demonstrating that repeated retraining and stochastic
gradient methods converge to the performatively stable point. Miller et al. (2021), in pursuit of
the performatively optimal point, model the decision-dependent distribution using location families
and propose a two-stage algorithm. Similarly, 1zzo et al. (2021) develop algorithms to estimate the
unknown gradient using finite difference methods. More recently, Narang et al. (2022); Piliouras and
Yu (2022) expand the performative prediction to the multi-agent setting, deriving algorithms to find
the performatively optimal point.

Learning in continuous games. Our work aligns closely with optimization in continuous games.
Rosen (1965) lays the groundwork, deriving sufficient conditions for a unique Nash equilibrium in
convex games. For strongly monotone games, Bravo et al. (2018); Mertikopoulos and Zhou (2019);
Lin et al. (2021) achieve the convergence rate and iteration complexity of stochastic and derivative-
free gradient methods. For monotone games, the convergence of such methods is established by
Tatarenko and Kamgarpour (2019, 2020). Additional with bandit feedback settings, zeroth-order
methods (or derivative-free methods) achieve convergence (Bravo et al., 2018; Lin et al., 2021;
Drusvyatskiy et al., 2022; Narang et al., 2022), albeit with slow convergence rates (Shamir, 2013;
Lin et al., 2021; Narang et al., 2022). Relaxing the convex assumption, Ratliff et al. (2016); Agarwal
et al. (2019); Cotter et al. (2019) study non-convex continuous games in various settings.
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Learning with kernels. Our proposed algorithm closely relies on stochastic approximation, utiliz-
ing online kernel regression for the RKHS function class. Prior research investigates the generalization
capability of least squares and ridge regression in RKHS De Vito et al. (2005); Caponnetto and
De Vito (2007); Smale and Zhou (2007); Rosasco et al. (2010); Mendelson and Neeman (2010).
Meanwhile, extensive works study algorithms for kernel regression. For instance, Yao et al. (2007);
Dieuleveut and Bach (2016); Pillaud-Vivien et al. (2018); Lin and Rosasco (2017); Lei et al. (2021)
propose offline algorithms with optimal convergence rates under the RKHS norm and L ? norm using
early stopping and stochastic gradient descent methods, while Ying and Pontil (2008); Tarres and
Yao (2014); Dieuleveut and Bach (2016) design online algorithms with optimal convergence rates.
The convergence of kernel regression in power norm (or Sobolev norm) is studied in Steinwart et al.
(2009); Fischer and Steinwart (2020); Liu and Li (2020); Lu et al. (2022), with offline spectral filter
algorithms achieving the statistical optimal rate under the power norm (Pillaud-Vivien et al., 2018;
Blanchard and Miicke, 2018; Lin and Cevher, 2020; Lu et al., 2022).

Notation. We introduce some useful notation before proceeding. Throughout this paper, we denote the
set1, 2, - - -, by [n] for any positive integer 1. For two positive sequences {@ nf nen and 0} v,
we write @ = O(bn) or @ < bn if there exists a positive constant C such that @& < C - b, For
any integer d, we dengte the d-dimensional Euclidean space by Rd, with inner produce -, -/and the
induced norm /-7 = (, -2 For a Hilbert space H, let /*/ 14 be the associated Hilbert norm. For a
set X and a probability measure Px on X, let L3, be the L2 space on X induced by the measure Px ,

equipped with inner product ¢ *), and L2 norm 7* /p, = = , ), . For any matrix A = (a j ),
the Frobenius norm and the operator norm (or spectral norm) of A are /A7 = ( i aﬁ )2 and
IAT o, =0 1(A), where 01(A) stands fgr the largest singular value of A. For any square matrix
A =(aijj), denote its trace by tr(A) =  ; @;j.Forany y € RY, we denote its projection onto a set
XcRY by projx (y) = arg min yox X = Y/ . The set denoted by Nx (x) represents the normal cone
to a convex set X at X € X  namely, Nx (x) ={v eR a: @, y-x)<0, v €X} Forany metric
space £ with metric d(-, -), the symbol P(Z) will denote the set of Radon probability measures M on
Z with a finite first moment Ez—; [d(z, z9)] < o for some Zy € £ .

2 Problem Formulation and Preliminaries

We briefly introduce the formulation of 1-agent decision-dependent games based on Narang et al.
(2022). In this setting, each agent i €[n] takes the action X; € X from an action set X; c R a4
Define thejqintnactionx = (X 1, X2, - * *, %) € X and the joint actionset X = X 1 X -+ - XX CRd,
where d:= ., O Foralli e[n], we write x = (x i, Xi ), where X-; denotes the vector of all
coordinates except Xi. Let L; : X - R be the utility function of agent /. In the game, each agent /
seeks to solve the problem

min Li(xi» X-i), where Li(x) = E fi(x, zi). (1)

XjeX i z;i~D j(x)

Here Zi € Z; represents the data observed by agent /, where the sample space Z; is assumed to be
Zj =RP with p €N throughout this paper. Moreover, D; : X - P(Z /) is the distribution map,
and € : RY*Z; _ R denotes the loss function. During play, each agent / performs an action X;
and observes performative data Zi ~D j(x), where the performativity is modeled by the decision-

dependent distribution Dj(x) . In the round £, the agent / only has access to Z', - = *, Z 1 as well as
x1, -+, %1 and seeks to solve the ERM version of (1). We assume the access to the first-order
oracle, namely, loss functions i are known to agents but distribution maps D; are unknown.
Definition 1. (Nash equilibrium). In the game (1), a joint actionX™ = (X {: X5, = * *, &) is a Nash
equilibrium (Nash Jr, 1996) if all agents play the best response against other agents, namely,
X{ =arg min Li(xi, X}; ) = arg min E bi(xir X5, Z), vieln] )
XieX XieX Zi~Di(Xi:X:,')

In general continuous games, Nash equilibria may not exist or there might be multiple Nash equilibria
(Fudenberg and Tirole, 1991). The existence and uniqueness of a Nash equilibrium in a continuous

game depend on the game’s structure and property. In general, finding the unique Nash equilibrium is
only possible for convex and strongly monotone games (Debreu, 1952).

Definition 2. (Convex game). Game (1) is a convex game if setsXi are non-empty, compact, convex
and utility functions Li(xi, X=i ) are convex inX; when X are fixed.



Suppose that utility functions L; are differentiable, we use ViLi(x) to denote the gradient of L ; (x)
with respect to X; (the /-th individual gradient). We say the game (1) is C'-smooth if the gradient
ViLi(x) exists and is continuous for all i €[n] . Using this notation, we define the gradient H(x)
comprised of individual gradients

HOO) = (7 4L4(x), - -, BLa ().

Definition 3. (Strongly monotone game). For a constantT2 0 , a C'-smooth convex game (1) is
called T-strongly monotone if it satisfies

HX) = H(x ), x=x22TX=X 12, forallX, X €X.

Note that a T -strongly monotone game (T > 0 ) over a compact and convex action set X admits a
unique Nash equilibrium (Rosen, 1965). According to the optimal conditions in convex optimization
(Boyd et al., 2004), this Nash equilibrium X~ is characterized by the variational inequality

0 eH(Xx ")+ Nx(x"). (3)

We briefly talk about the challenges and our idea of designing the algorithm. In decision-dependent
games, the classical theory of risk minimization does not work. The primary obstacles to finding
the Nash equilibrium in the game (1) include: (i) the distribution shift induced by performative
data, and (i) the lack of first-order information (gradient). To make it clear, standard methods,
such as gradient-based algorithms, necessitate the gradient H(x) . However, H(X) is unknown since
distributions D; are unknown, and estimating H(x) is complex due to the dependency between
Dj(x) and X. Mathematically, assuming C'-smoothness, the chain rule directly yields the following
expression for the gradient
ViLi(x) = Vili(xi, X<i v Z) + —— Ci(xir X=i + % ,

iLi(x) zf~DEf(x) iti(Xi i 4)+ au; b B i(xi i 4) Vo (@)
where Vi€ (x, zi) denotes the gradient of?; (x, zi) with respect toX;. The main difficulty is estimating
the second term in (4) due to the absence of closed-form expressions.

To estimate the unknown gradient H(X) , we impose a parametric assumption on the observed data
Z; and model the distribution maps D; using parametric functions. Note that the linear parametric
assumption was first proposed in Narang et al. (2022). In this paper, we extend this assumption
to a general framework and show that under the parametric assumption, the gradient H(x) hasa
closed-form expression, which yields an unbiased estimator for H(x) .

Assumption 1. (Parametric assumption). Suppose there exists a function class F and P-dimensional
functions fi : X = RP over the joint action set X such thatfi € F P and

zi ~Di(x) &==zi=fi(x)+€i» vieln),
where € € RP are zero-mean noise terms with finite variance 92, namely, E€i =0 and Efei1? <02,

Under Assumption 1, assuming that f; are differentiable and letting P; be the distribution of the noise
term €, we derive the following expression for the utility functionsL(x) = E 2 - (%) ti(x, zi) =
Ee, -, , li(x, fi(x) + €i). Then the individual gradient would be ViLi(x) = V iEz, .o (0 ti(x, zi) =
VilEe, -, ,bi(x, fi(x) + €i)]. Consequently, the chain rule directly implies the following expression

of i (x)
ViLi(x) = Viti(x zi) + M V, li(x zi 5
iLi(x) Z;~DEi(x) iti(x, zi) X, Z;~DEi(x) z;ti(X, zi), %)
where Vz,€i(x, zi) denotes the gradient of ¢ (x, zi) with respect to Zi. Given a joint action X, each
agent | observes data Zi ~ D j(x) . Equation (5) suggests the following unbiased es'timator for H(x) :
. !

of
Bx) = UiLixx)y = Vibi(x, zi) + # V. ti(x, zi) . (6)
ieln] X .

However, direct computation of Ib(x) is infeasible because fi are unknown. To overcome this
challenge, we approximate the unknown functions f; with the function class F P. In fact, the
estimation of f; can be formed as a noré—parametric regression problem, namely,

fi = arg min 1Zi - f(x)s 2dpi,  vi e[n), (7)
feF P XxZ

where P; is the joint distribution of (X, zi) induced by X ~P x and Zi ~D j(x). Here Px isa
user-specified sampling distribution on X .



3 The OPGRIgorithm

In this section, we consider F to be the linear and kernel function classes and derive gradient-based
online algorithms to find the Nash equilibrium in the game (1), namely, the Online Performative
Gradient Descent (OPGPIn each iteration {, assuming that X' = (x t1, *++, ¥) is the output of the
previous iteration, OPG[@erforms the following update for all i € [n] :

(i) (Estimation update). Update the estimation of fi by online stochastic approximation for (7).

(i) (Individual gradient update). Compute the estimator (6) and perform projected gradient steps

X = projy, (xf =1 BiLix),  vielnl

Linear Function Class. Let F be the linear function class, namely, fi(x) = A ;X forie[n] ,
where Aj € R P are unknown matrices. Then (7) becomes the least square problem A; =
argming g s Eqiyiypo Vi~ A Ui 12 with random variables Ui ~P x, ¥ ~D j(ui). We use
the gradient of the least square objective 4/ —A jU;/? to derive the online least square update:

Anew A — V(Au ;i ~ y/‘)u,-T (Dieuleveut et al., 2017; Narang et al., 2022). In each iteration , we
suppose that Al is the estimation of A; from the previous iteration, OPGBamples U} ~pP x and
yi~D i(uf) and performs the following estimation update:

(i) Al=AF" —ve AUl -yl il ®)

Recalling (5), the individual gradient is ViLi(x) =E 2 b (0 Vibi(x, z) + Ail V2, 0i(x, zi) ,
where Aji = of i(x)/0x i € RP*¥ denotes the submatrix of A; whose columns are indexed by the
agent /. After step (i), OPGDiraws a sample Zf ~D j(x") and compute the estimator (6) to perform
the projected gradient step:

(i) X' = projx, Xi =Nt Vilix', Z)y+(AL) Vi blix' 3y - )

Kernel Function Class. Now we consider F as the kernel function class, namely, we suppose
fi e(H) P, where H is an RKHS induced by a Mercer kernel K: X x X - R and a user-
specified probability measure Px . By the reproducing property of H, f; can be represented as
fiix) = i» & u, where ¢ : X - H is the feature map, ie. ®x =K(-,x) €H forany
X € X | Therefore, (7) becomes the kernel regression arg mirger » Ewiviyo Vi~ @ 2.
However, asH is generally an infinite-dimensional space, the aforementioned regression problem
might lead to ill-posed solutions. Consequently, we consider the regularized kernel ridge regression
arg minver o Eqyiyp Wi = @ w20 12/2 + A ¢ 12 In each iteration t, we suppose that fi
is the estimation of f; from the previous iteration, the OPGRIgorithm samples ut ~px, ¥ ~D i(uf)
and takes gradient steps on the kernel ridge objective /f — , ¢ ut HI2/2+ A I 17 ie. it takes
the online kernel ridge update (Tarres and Yao, 2014; Dieuleveut and Bach, 2016):
h [
@ Fi=ff" —ve 170 i) -yl Su+AdT (10)

We suppose that the kernel K is 2-differentiable, i.e., K € C 2(X, X ) Define 0j¢: X — H as the
partial derivative of the feature map @ with respect to X;, namely, 0;®x = 9 K(x, -) = OK(x, -)/ox .
Steinwart and Christmann (2008, Lemma 4.34) shows that 0; ®x exists, continuous and 0;®x € H

By the reproducing property Of j (x)/x i = d(f i» §xn/0X ; = (f i, 0;Px u, the individual gradient
ViLi(x) has the form ViLi(x) = E 2,9 [Vili(x, zi) + (Fis 00x2n) " V2, li(x, zi)]. After step
(i), OPGMIraws a sample Z{ ~ D j(x") and performs the projected gradient step:

(i) X' < projx, Xt =N Vilix', 2+ ([ 0k ) Vo bi(x' 3) - (11)

We remark that the gradient steps M, Vi and regularization terms A¢ should be chosen carefully to
ensure convergence gsee Theorem 2). Specifically, the regularization termsA¢ must shift to O gradually.
If At is a constant, f; in (10) converges to the solution of a regularized kernel ridge regression, which
is a biased estimator of f;. Thus (11) fails to converge because the gradient estimation has a constant
bias. We present the pseudocode of OPGDor the linear setting as Algorithm 1 and for the RKHS
setting as Algorithm 2 in Appendix A.



Comparison with Narang et al. (2022). We clarify the difference between OPGIAnd the Adaptive
Gradient Method (AGM) proposed in Narang et al. (2022). To elaborate, AGM samples Z[,-t ~Di(x"
at current the action and let agents play again with an injected noisd!’ to obtainGf ~D i (x"+u ). The
algorithm is based on the fact that E[gf = Z]|u’, X'] = A ;jU", which is not related to X*. Thus, A; can
be estimated by online least squares. We remark that E[¢f — Z t,-t |u’, X] depends on agents’ actions in
the non-linear (RKHS) cases, because E[qf =Z [ U, X'] = j(x"+u ")=F i(x") = F i» ucrayt =@ xt .
Thus, the change of action will bring additional error that makes the estimation fail to converge. In
contrast, OPGDkets agents play ul ~px to explore the action space and learn the strategic behavior
of other agents. OPG[Rstimates the parametric function by solving the ERM version of (7) using
online stochastic approximation (8) and (10). This learning framework can be applied to RKHS and
potentially beyond that, such as overparameterized neural networks using the technique of neural
tangent kernel (Allen-Zhu et al., 2019).

4 Theoretical Results

We provide theoretical guarantees for OPGDn both linear and RKHS settings. We first impose some
mild assumptions. Similar assumptions are adopted in Mendler-Diinner et al. (2020); 1zzo et al.
(2021); Narang et al. (2022); Cutler et al. (2022).

Assumption 2. (T-strongly monotone). The game (1) is U-strongly monotone.
Assumption 3. (Smoothness). H(X) is L -Lipschitz continuous:
H(x 1) = H(x 2) SLix 1= Xah WXy, X €X.

Assumption 4. (Lipschitz continuity in Z). Define D =D 1 XDy % - - xDy 1 X , P(2) , whereZ
is the sample space Z =7 X Z % - - XZy Foralli €[n], x € X , there exists a constant & > 0,

m
~Tc<

//Vz,-ei(X, Zi)//2 <o

Assumption 5. (Finite variance). There exists a constant { > 0,

E Wiz lix,z)- E Vizlix, z)1?<{% vieln), weX,
z; ~-D i(X) z; ~D i(X)

where Viz bi denotes the gradient of ¥i (X, zi) with respect to Xi and Z;.

We remark that Assumption 3 is the standard smoothness assumption for the utility functions L ; (x)
(Boyd et al., 2004; Nesterov et al., 2018). Since X isa com1‘37act set within Rd, Assumption 4
holds if ¢i (x, zi) is Lipschitz continuous in Z; and the gradient V', ¢i(x, zi) is continuous in X, and
Assumption 5 holds if i(x, zi) is Lipschitz in X and Z; (thus Vz,%i(x, zi) has a bounded norm).
Assumption 5 implies that the variances of V¥ (x, zi) and Vz,¢i(x, zi) are both bounded by ¢? for
any X € X and Zj ~ D j(x). We provide sufficient conditions for Assumption 2 in Appendix B.1.

4.1 Convergence Rate in the Linear Setting

We introduce two assumptions necessary to derive theoretical guarantees for the linear function class.

Assumption 6. (Linear assumption). Suppose that the parametric assumption holds (Assumption 1)
andfi(x) = A iX fori €[n], where Ai € RP*? are unknown matrices.

Assumption 7. (Sufficiently isotropic). There exists constants |1, I, R > 0 such that

i1 <sE up, uu’”, Eup,MI2<], Eyp, MI2uu’” <RE, ,, uu’.

Assumption 7 has been studied in the literature on online least squares regression (Dieuleveut et al.,
2017; Narang et al., 2022). Essentially, this requires the distribution Px to be sufficiently isotropic
and non-singular, and it ensures the random variable Ul ~Px in the online estimation update step (8)
can explore all the "directions" of RP. A simple example that satisfies Assumption 7 is the uniform
distribution Px = U [0, 1]in which case li=1,=1/3, R=3/5 .

The next theorem provides the convergence rate of OPGDnder the linear setting.

Theorem 1. (Convergence in the linear setting). Suppose that Assumptions 2, 3, 4, 5, 6, and 7 hold.
Set Ny =2/T (t+1t o)), Ve =2/ 1(t + t o)), where Lo is a constant that satisfies ty = 21 ;R/ 2. For



all iterations t 2 1, the X* generated by the OPGLyigorithm in Section 3 for linear function class
satisfies

(D1 +2D(to+ NT)(to+2)2/t o+ 1)2 , (to+ 1)21x 1 = x 12

Exi-x*12¢<
T2(t+to) (t+1t0)?

, (12)

where D 4 and D4 are constants that

Pa

2t L AD—AiIZ  8nly02(tg + 2)2
D, = 422(1+2(M/At o+1)+ sup /A ;12)), D,:=252M, M .= 20 =t "I F 0Nt (to _
BRI )/selfnr]) RN 2= 20 (to+1)3 I3(to +1)2

We refer the reader to Appendix C.1 for complete proof. Next, we illustrate the parameters involved
in Theorem 1: T is the strongly monotone parameter of the game (1), /1, b, R are intrinsic parameters
describing the isotropy of the distribution Px (Assumption 7), 02 is the variance of the noise term €
defined in Assumption 1, ¢ and O describe the continuity of £; (Assumption 4, 5), g is a sufficiently
large value, A? is the initial estimation of A;, X' is the initial input. Theorem 1 is a combination
of Lemma 2 and Lemma 3, where Lemma 2 is the statistical error of the online approximation step
(8) and Lemma 3 is the one-step optimization error of the projected gradient step (9). Theorem 1
implies the convergence rate of OPGDn the linear setting is O(t ' ), which matches the optimal rate
of stochastic gradient descent in the strongly-convex setting.

4.2 Convergence Rate in the RKHS Setting

Suppose that K : X %X - R is a continuous Mercer kernel, by Mercer’s theorem, it has the spectral
representation K = _, i€ © & where {1i}2, are eigenvalues,{€i} 2, are eigenfunctions, and
® denotes the tensor product. Moreover, €}, is an orthogonal basis of L3, and {H e o s

[

the orthogonal basis of H, which induces the representation H ={ = _, aill,-1 e {ai};; €2},
Definition 4. (Power space). For a constanta = 0, the Q-power space of an RKHS H is defined by
(o )
H? = a,-[,lf’/z € :{ai};:‘] el2 ,
=1

P o
e%uipped with the Q-power norm I'!a and inner product ¢, &, where I _, ai”?/z €lg =
) 1/2 [~ 0 )
oA P ana ¢ Toaue, T obu e =" 7, ab.
We remark that: (i) H' = H and H® cH# forgny O > B, (ii) /44 = 14 w and #"/ o = 11 p, , and
(iii) H* is an RKHS on X with kernel K¢ =~ _, H['€ ©€; and measure Px . We review more
properties of RKHS and power spaces in Appendix Sections B.3 and B.4.

We present assumptions on the kernel function class, similar assumptions can be found in the literature
on kernel regression and stochastic approximation (Caponnetto and De Vito, 2007; Steinwart et al.,
2009; Dicker et al., 2017; Pillaud-Vivien et al., 2018; Fischer and Steinwart, 2020).

Assumption 8. (Source condition). Suppose Assumption 1 holds and there exists an RKHS,H | with
a bounded differentiable Mercer kernel, K , and constants B, k > 0 such that supxex K(X, X) <k 2

andfi €H B P forali en].

pssumption 9. (Embedding property). There exist constants a € (0, 1], A > 0 such that K (x, x) =
o HIE(X)<A 2 forallX €X.

Assumption 10. (Lipschitz kernel). Suppose Assumption 9 holds and there exists € > 0 such that
P95 1a <& foranyi €[n] andX €X' where 9% : X — H % is the feature map of the kernel K ° .

Assumption 8 holds when K is bounded, differentiable, and each coordinate of parametric functions
fi lies in the power space H P When B <1, Assumption 8 includes the challenging scenario, namely,
fi &(H) P Assumption 9 holds if there exists a power space H% such that the kernel K% is bounded.
Thus, Assumption 9 holds with @ = 1 for any bounded kernel K . We further propose Proposition
1 as sufficient conditions for the embedding g ogerty following Mendelson and Neeman (2010).
Recalling the definition of gar‘tial derivative 0;9” : X ~ H “ (Section 3), Assumption 10 holds if
0;0,,y K (x, x) =10 9912 <&E2 for any X € X _i.e. it holds for any Lipschitz kernel K ¢.



Proposition 1. (Sufficient conditions for Assumption 9) Suppose there exist constantsC, D, p > 0
and q € (0, 1) such that

supklrejl, <C  and M <Di ~Va,

ieN
where I'1 o denotes the L® norm. Then Assumption 9 holds for any a >2p + q.

P 00 —
Propositi01'1_,1 follows from the inequality: supxex K (X, X) = SUp xex o4 (ufei(x)) 2ui2 <
C2Dao2p ~ 7 j~@20)/q < oo  We refer readers to Appendix B.4 for examples that satisfy these

assumptions. Next, we provide the convergence of the proposed algorithm under the RKHS setting.

Theorem 2. (Convergence in the RKHS setting). Suppose that Assumptions 2, 3, 4, 5 hold, Assump-
tion 8 holds for some B € (0, 2], and Assumptions 9, 10 hold for some a € (0, 1] and @ <B . For
all iterations t 2 1 and positive constant 4, definet =t +t o, where ly is a constant that satisfies
to = (ak 2 + 1)2. Set the gradient steps and regularization terms as

_— B-a+1

— 1
=@, wi=a -t /=2, A=g' T 5oz

p
fa<’” (B-a+2)/(B-a)t o+ DAt o+2)k2 A the X' generated by the OPGLigorithm
in Section 3 using kernel K for online estimation steps (10) and projected gradient steps (11) satisfies

Ex' =X 120t " mor). (13)

See Appendix C.2 for complete proof. We remark that bounding the estimation errorE /f F=fir 3
under the Y-power norm for some y €[a, B) and y <1 (Lemma 4) plays a key role in the proof of
Theorem 2, and we regard this lemma as the most challenging part of our theory. Lemma 4 extends
the classical theory of online stochastic approximation under the RKHS norm /*/4 into a continuous
scale. For 8> 1 and y =1 , this rate would be O(t " #~"B*) ) and matches the optimal rate
under the RKHS norm Ying and Pontil (2008); Tarres and Yao (2014).If the embedding property
(Assumption 9) holds for some o < 1, we choose y = a to achieve a faster rate O(t ~F-aV(B-a+2) )
(which further leads to Theorem 2). To prove Lemma 4, we derive novel proof steps, where we
decouple the power norm by considering semi-population iteration and recursive decomposition, we
refer the reader to Appendix E.1 for more explanations.

We demonstrate the parameters involved in Theorem 2. Parameters O, B, K, T, A are intrinsic: B, K, A
are determined by source condition (Assumption 8), & is determined by embedding property (As-
sumption 9), and T is the strongly monotone parameter. Parameters & Iy are user-specified: {j is
a sufficiently large value, @ is characterized by the inequality @< =~ (B-a+2)/(B-a)(t o+
DAt o + 2)k ©2 A~" when { is determined, a smaller @ leads to a larger constant term in (13).

Theorem 2 implies that OPGDeverages the embedding property (Assumption 9) to obtain better

convergence rates. For any bounded kernel, Assumption 9 holds for a = 1, thus Theorem 2 guaran-

oy . .
tees the rate O(t 57 ). Moreover, suppose that the kernel satisfies some good embedding property,
that is, o < 1, since larger/3 — O leads to faster convergence rates. In that case, we obtain a better
B

rate O(t pa2 ) by setting the gradient steps and regularization terms V¢, A; corresponding to @, B,
Besides, OPG2an handle the challenging scenario ( fi & (H) P if B <1 ) when the embedding
property of kernel holds for O <f3 .

5 Numerical Experiments

In this section, we conduct experiments on decision-dependent games in both the linear and the
RKHS settings to verify our theory. All experiments are conducted with Python on a laptop using 14
threads of a 12th Gen Intel(R) Core(TM) i7-12700H CPU.

Basic Setup. We consider two-agent decision-dependent games with 1-dimensional actions.
Namely, for alli €[2], define the game

min Li(x), where Li(x) = E ti(x, zi), (14)

i~D i (x)

where X = [0, 1] x [0, 1], X € X, Zi R, and ¥ (x, zi) is the loss function to be determined. Let the
distribution map be Dj(x) ~ N (f i(x), 0.2), where f; is the parametric function determined by the
specific function class. Then the game (14) follows the parametric assumption (Assumption 1) with
Zi =f j(x) + €i, where € ~ N (0, 0.2) the independent Gaussian noise term.

8
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Figure 1: (a) Linear setting: The X- ax1s represents the iteration from 1 to 10, 000 while the Y-axis
represents the norm-squared error of X' to the Nash equilibrium X* = (1/2, 1) , averaged over 20
random seeds. The blue solid line represents the output of OPG[nd the orange dashed line represents
the theoretical rate O(t ™" ). (b) RKHS setting: The X-axis represents the iteration from 1 to 10, 000
while the Y-axis represents the norm-squared error to the Nash equilibriumX * = (1/2, 1/2) , averaged
over 400random seeds. The blue solid line represents the output of OPGIand the orange dashed line

represents the theoretical rate O(t ~2 ).

Linear function class. Let the loss function be ¢i (x, zi) = =z i + x ? and set the linear parametric
function as f1(x) = x 4 and f5(x) = 2x 2, namely, the parametric model is Z = A ;X + €; where
A; =[10] and A, =[02]. The the game (14) has the gradient H(X) = (2x 1 -1, 2x2 —2),
therefore, the game (14) is convex, C'-smooth, 1-strongly monotone and the Nash equilibrium is
=(1/2, 1) . We set the sampling distribution as Px = U [0, 1] x U [0, 1] the initial point as
~ P x , and the initial estimation as zero. Moreover, letting {g = 10, we set the gradient step sizes
asfr =6/(t+t o), i =6/t+1 o).

Kernel function class. Let X =1[0, 1] x [0, 1] , Px = U [0, 1] x U [0, 1] and define the kernel
Q((X1: X2), (Y1 ¥2)) = K(x 1: ¥4) - K(x 2: ¥2) as the product kernel of K(X, y) =40B 4+({x —y}) .
Suppose that H is the RKHS onX induced by the kernel @ and the distribution Px . Set the parametric
function as the product of two 3-order Bernoulli polynomials, namely, f(x 1, X2) =B 3(X1) -
Bj(x2) = (x 3-3x 2/2+x 1/2)-(x 3-3x3/2+x 2/2).Set¥i(x, zi) = -z i +cos(2mx4) cos(2mx)—-
Xi +x? andlet fi(x) =cos(2mx 1) cos(2mx) for I €[2]. Then the gradient of this game is
H(x) = (2x 1 -1, 2x2 — 1), thus, this game is convex, C'-smooth, 1-strongly monotone and the
Nash equilibrium is X* = (0.5, 0.5). Following Example 1, Assumption 8, 9, 10 hold for any 8 > 1
andanya > 1/4 . Setty =10,a=7,M = 6/(t+t ), v = a/t+t ¢)¥*,andA; = 1/(a(t+t o)"*).
Following Theorem 2, the convergence rate is O(t ~"2 ).

Results. We perform experiments for both parametric settings to verify the convergence rates and
compare the theoretical and simulated rates, as shown in Figure 1, where both X and Y axes take
the log scale. Figure 1(a) shows the converge rate of the linear setting within 10, 00Giterations, the
simulated rate matches our prediction, i.e. it is close to O(t ™" ). Figure 1(b) shows the convergence
rate of the RKHS setting, it implies that the simulated rate is close to the theoretical rate O(t ~2 )
when the iteration { is larger than 1, 000 These results validate Theorems 1 and 2.

6 Conclusion and Discussion

In this paper, we study the problem of learning Nash equilibria in multi-agent decision-dependent
games with access to the first-order oracle. We propose a parametric assumption to handle the
distribution shift and develop a novel online algorithm OPGDn both the linear and RKHS settings.
We derive sufficient conditions to ensure the decision-dependent game is strongly monotone under
the parametric assumption. We show that OPGRonverges to the Nash equilibrium at a rate of O(t ™)

in the linear setting and O(t P ) in the RKHS setting.
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