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Abstract—Large Language Models (LLMs) can revolutionize 

how we deploy and operate Open Radio Access Networks (O- 
RAN) by enhancing network analytics, anomaly detection, and 
code generation and significantly increasing the efficiency and 
reliability of a plethora of O-RAN tasks. In this paper, we present 
ORAN-Bench-13K, the first comprehensive benchmark designed 
to evaluate the performance of Large Language Models (LLMs) 
within the context of O-RAN. Our benchmark consists of 13,952 
meticulously curated multiple-choice questions generated from 
116 O-RAN specification documents. We leverage a novel three- 
stage LLM framework, and the questions are categorized into 
three distinct difficulties to cover a wide spectrum of ORAN- 
related knowledge. We thoroughly evaluate the performance 
of several state-of-the-art LLMs, including Gemini, Chat-GPT, 
and Mistral. Additionally, we propose ORANSight, a Retrieval- 
Augmented Generation (RAG)-based pipeline that demonstrates 
superior performance on ORAN-Bench-13K compared to other 
tested closed-source models. Our findings indicate that current 
popular LLM models are not proficient in O-RAN, highlighting 
the need for specialized models. We observed a noticeable 
performance improvement when incorporating the RAG-based 
ORANSight pipeline, with a Macro Accuracy of 0.784 and a 
Weighted Accuracy of 0.776, which was on average 21.55% and 
22.59% better than the other tested LLMs. 

Index Terms—O-RAN, LLMs, Benchmarks, LLM-Benchmark, 
Dataset, ChatGPT, Gemini, RAG 

 
I. INTRODUCTION 

The telecommunications landscape is undergoing a 
paradigm shift with the emergence of Open Radio Access 
Networks (ORAN), a disruptive approach promoting openness, 
flexibility, and innovation in mobile network architectures 
[1]. ORAN’s modular and interoperable framework enables 
operators to integrate components from diverse vendors, fos- 
tering a more dynamic and cost-effective ecosystem. As O- 
RAN gains traction globally, its significance in shaping the 
future of mobile communications cannot be overstated [1] [2]. 
Concurrently, the advent of Large Language Models (LLMs) 
has sparked a revolution in Natural Language Processing 
(NLP) and Artificial Intelligence (AI), elevating text gener- 
ation, comprehension, and interaction to unprecedented levels 
of sophistication [3]. Large Language Models (LLMs), such 
as OpenAI’s Generative Pre-trained Transformer (GPT) series 
and open-source variants like the Mistral family of models, 
have demonstrated remarkable capabilities in understanding 
and generating human-like text [4] [5]. 

We have seen the impact of LLMs and related NLP tech- 
nologies in multiple domains like Finance and medicine [6] 
with revolutionary applications and a recent advent in research 
for the telecommunications and wireless industry [6]. LLMs 
have been used for automated code refactoring and design 
[7], recommending troubleshooting solutions [8], generating 
network configurations [9], optimization tasks like load bal- 
ancing [10], and even for prediction-based beamforming [11], 
and traffic load prediction [12]. The domain of O-RAN is 
still in the nascent stages of LLM applications with papers 
working towards Intent Processing and Network Optimization 
[13], and countless surveys on the possible avenues of research 
for LLMs in O-RAN and related avenues [14] [13] [15]. 

It is important to understand that the inclusion of such LLMs 
is only possible after creating thorough evaluation strategies as 
existing benchmark datasets in multiple domains have played 
a crucial role in assessing model performance and guiding 
architectural design [6], with prominent examples being FLUE 
[16] and MultiMedQA [17]. Evaluating performance for these 
specialized language models is not as straightforward as tra- 
ditional ML applications [18], and It is extremely important 
to have a comprehensive evaluation strategy to deploy such 
LLMs due to the excessive computational costs that are ob- 
served during retraining and architecture creation. It is possible 
to assess the efficacy of LLM-based solutions by qualitatively 
observing the generated outputs by human feedback. However, 
the process would require immense effort and resources to 
analyze comprehensively and still be susceptible to human 
errors and biases. Due to the hallucination problem [19] 
in LLMs, without skilled evaluators, assessing an LLM’s 
performance for a specific domain would become difficult, 
and inaccurate. There are a few papers that have leveraged an 
LLM-based or a generative solution to create Multiple Choice 
Question benchmarks by using a large corpus of documents, 
with promising results. The use of the MCQ styles benchmark 
has also been heavily proposed in the literature [17] [6]. 

Considering the impact LLMs can have in O-RAN and due 
to the absence of any evaluation or benchmarking tools, this 
paper offers the following primary contributions: 

• It aims to create a novel benchmark named ORAN- 
Bench-13K that can accurately assess an LLM’s per- 
formance for O-RAN specifications knowledge. This is 
constructed by leveraging three different LLM instances 
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Fig. 1. A high-level overview for the proposed MCQ Generation Pipeline. 

 

resulting in a total of 13952 MCQs spanning three 
different difficulty levels. 

• The paper also assesses different publicly available and 
closed-source LLMs, that have been proven useful in a 
multitude of applications including Chat-GPT, Gemini- 
1.5, and Mistral-7B. 

• We also propose a novel Retrieval Augmented Generation 
(RAG) [20] based LLM pipeline called ORANSight that 
operates on a Facebook AI Similarity Search (FAISS) 
database [21] and a corpus of specifications documents 
to understand the efficacy of RAG for O-RAN and the 
possibility of creating an O-RAN Centric LLM. 

• Our findings entail that though models like Chat-GPT 
and Gemini-1.5 [22] are not proficient enough in O-RAN 
knowledge, we could observe state-of-the-art (SOTA) 
performance from our ORANSight solution. 

 
Staying abreast of the latest O-RAN specifications is also 

both crucial and challenging. The sheer volume and com- 
plexity of these documents can be overwhelming, making it 
difficult for engineers, researchers, and industry professionals 
to efficiently extract and apply the necessary information [23]. 
The use of LLMs that are well-versed in O-RAN specifications 
can offer significant benefits and assist in rapid development. 
As the incorporation of RAG with LLMs would help in 
inducing domain knowledge, we also explore the possibility 
of leveraging ORANSight for a Specification Assistant as an 
auxiliary task. 

Paper Organization. This paper is organized as follows: 
Section II presents the Data Sources, Section III provides an 
overview of the Benchmark Generation process, and Section 
IV discusses the proposed RAG framework, ORANSight. 
Other tested LLMs are outlined in Section V, followed by 
the presentation of results in Section VI. Concluding remarks 
are offered in Section VII, and sample questions from the 
benchmark are included in Section VIII. 

 

 
 

Fig. 2. Central Tendencies for the specification documents and total words. 
 
 

II. DATA SOURCES 
We source all available specification documents from [24] 

resulting in a total of 116 documents with an average of 21778 
words per specification document and a total of 2.53 million 
words. The data processing pipeline will be explained thor- 
oughly in the subsequent sections, and the central tendencies 
of the total number of words are mentioned in Figure 2. 

III. BENCHMARK GENERATION 
The MCQ generation is performed in a multi-stage process 

as depicted in the Figure 1. The primary aspect of this 
pipeline is inspired by the papers [23] [6] and contains the 
generator and validator pair of LLMs which would determine 
the total number of acceptable generated questions. All the 
LLM instances in the generation process use Gemini-1.5 as 
it has a higher yield rate than a Mistral-7B from initial 
experiments. The entire process can be explained as: 

• The specification documents are converted to small 
chunks of text, with a size of 1536 and an overlap of 
256 characters. This specific number for obtained by 
experimenting with different context sizes, as a larger 



number would result in losing out on important O-RAN 
content, and a smaller value would simply not have 
enough meaning to generate a valid MCQ. The overlap 
is added to preserve semantic context between chunks. 

• Generator LLM: This is the first LLM instance in this 
system, which is prompted to use the provided content or 
chunk to generate a valid MCQ specific for an O-RAN 
benchmark. It is only prompted to generate one question 
per chunk to avoid repetition. The generated text is then 
parsed for the Question, Options, and Answer tags, 

• Validator LLM: This is solely responsible for assessing 
the generated questions, it is provided the context, the 
generated questions, and the options, and prompted to 
generate an answer as an Extractive QnA [25] task. This 
shows us if the generated question has semantic meaning 
with the provided chunk, and if the options and answer 
are coherent as well. If the validator’s answer and the 
generated answer are the same we proceed with the next 
steps, or else the question is rejected. 

• Categorizer LLM: This model is prompted to segregate 
the valid questions into three categories based on the 
descriptions: 
– Easy: Questions that focus on basic concepts and 

known facts. 
– Intermediate: Questions that require comprehension 

and application of concepts, or involve moderate 
calculations or reasoning. 

– Difficult: Questions that demand a deep understand- 
ing of Open RAN standards, or the ability to syn- 
thesize multiple pieces of information. 

• The final outputs are appended to a database and the 
process on the aforementioned O-RAN Specification doc- 
uments results in 1139 ’Easy’, 9570 ’Intermediate’, and 
3243 ’Difficult’ questions. 

The entire benchmark is available online at 1 along with the 
required supplementary files. 

IV. ORANSIGHT 

The proposed RAG framework consists of three main 
parts, the Embedding Generator, the FAISS database, and the 
Mistral-7B LLM. The reason we leverage the Mistral model 
is to keep ORANSight open source and easily adaptable to 
existing LLM-based O-RANuse cases. We use a BGE-Small- 
1.5 (BAAI General Embeddings) model [26] as our embedding 
generator, BGE stands for three model sizes: small (24M), 
base (102M), and large (326M), representing an embedding 
dimension of 384, 786, and 1024 respectively [26]. We choose 
BGE to main an open-source implementation and the small 
variant for the increased computational efficiency. 

FAISS can be perceived as an efficient library for fast 
similarity search and clustering of dense vectors. As it is 
designed to handle large-scale data, FAISS is optimized for 
both memory usage and computational speed, making it ideal 

1https://github.com/prnshv/ORAN-Bench-13K 

for high-dimensional text embeddings [21]. The core function- 
ality of FAISS includes indexing methods that enable rapid 
approximate nearest neighbor (ANN) searches, allowing for 
real-time retrieval of relevant vectors that can be used to obtain 
the original text which is a document chunk. FAISS has been 
used as a critical component for various RAG-based systems 
[21] further validating its use in ORANSight. 

 

Fig. 3. A high-level overview for ORANSight inference and database 
generation. 

 
The inherent function of ORANSight as depicted in the 

Figure 3 can be explained as: 
• Embedding Generation: Here all document chunks are 

also obtained by a Recursive Text Splitter (using a chunk 
size of 1024, and an overlap of 256) and are converted 
into a set of 1D vectors using a BGE instance with a 
dimension of 384. 

• Inference: Once a processed database is ready, for each 
user query, the top 5 relevant documents are retrieved and 
appended into the query resulting in a new prompt. The 
final prompt with added context is used by the Mistral-7B 
to make predictions. 

To implement a conversational chatbot through the RAG 
computational chain, we append the system with a Buffer 
Memory [27] which would facilitate extended conversations 
and initial tests on ORANSight as a specification assistant. 

V. TESTED LLMS 

We experiment with three main models, ChatGPT-3.5, 
Gemini-1.5, and Mistral-7B, all three are instruction-tuned. 
The total parameter and architectural specifications aren’t 
available but the utility of such general-purpose models can 
be seen in a variety of domains including telecommunications. 
The Mistral-7B on the other hand is also based on the Trans- 
former architecture and leverages Sliding Window Attention, 



 

 
 
 

Fig. 4. Primary Accuracy Scores, here, ORANSight indicates a Mistral + 
RAG model. 

which is considerably faster to compute than the vanilla variant 
[5]. It also uses a Rolling Buffer Cache which further enhances 
the computational efficiency while offering SOTA results on 
general-purpose NLP benchmarks. 

VI. RESULTS 
This section elaborates on the obtained results using dif- 

ferent LLMs on our benchmark. All the experiments were 
conducted by leveraging the Langchain library [27], GPT 
was implemented using the OpenAI extension, Gemini by the 
Google-GenAI extension, and both BGE and Mistral-7B were 
implemented using Huggingface [28]. 

As shown in Figure 4, it can be inferred that ORANSight 
(i.e., using RAG with Mistral) is the best-performing model 
with superlative results in all three categories. There was an 
absolute increase of 14.85%, 19.26 %, and 18.17% across 
Easy, Intermediate and Difficult categories. It is also important 
to note that a Mistral model only has 7 billion parameters, 
when compared with other prominent architectures which are 
estimated to have at least 175 billion parameters [29], the re- 
sults hold immense value. The Gemini model was obtained to 
be better suited for O-RAN than ChatGPT as it was relatively 
better across all three categories. The worst-performing model 
was a vanilla Mistral and both the baseline and the RAG- 
enhanced model performed relatively better on the difficult 
benchmark than the intermediate questions. 

 
TABLE I 

CUMULATIVE PERFORMANCE OF ALL TESTED MODELS. 
 

Model Macro Accuracy Weighted Accuracy 
Gemini 0.683 0.680 
GPT 0.642 0.630 
Mistral 0.610 0.589 
ORANSight 0.784 0.776 

 

The results were further reinforced by the table I which 
showcases the Macro and Weighted scores for all tested 
models. The weighted accuracy is calculated by using the 
no.of generated questions as weight values which can be 
referred to in section III. The Macro Accuracy symbolizes 

an average score without assuming any weight values. The 
ORANSight pipeline had an average increase in performance 
by the magnitude of 21.55% and 22.59% for Macro and 
Weighted scores. These findings underscore the effectiveness 
of the RAG-based approach in enhancing LLM performance 
within the specialized domain of ORAN. While the evaluated 
models, including Gemini, GPT, and Mistral, were better than 
a random classifier (signifying a 25% score) it is still far from 
optimal. This further highlights the necessity for developing 
and utilizing specialized models to achieve higher accuracy in 
domain-specific tasks within the O-RAN context. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper aimed to create a comprehensive benchmark for 

evaluating the performance of LLMs for ORAN-centric tasks. 
By leveraging a novel multi-stage process with three LLM 
instances we have created a benchmarking set consisting of 
13952 Multilpe Choice Questions. These were further segre- 
gated into three distinct difficulty criteria, Easy, Intermediate, 
and Difficult symbolizing varying degrees of proficiency with 
1139, 9570, and 3243 questions respectively. We also propose 
a RAG-based pipeline named ORANSight that would add 
domain-specific knowledge to a Mistral-7B model. After a 
thorough analysis of three different LLM architectures Chat- 
GPT, Gemini-1.5, and Mistral 7B, we conclude that though 
the benchmark scores are better than a random classifier, the 
LLMs are not proficient in O-RAN. A significant performance 
boost can be obtained by leveraging RAG as we could observe 
an average increase of 21.55% and 22.59% for both macro and 
weighted scores against the other tested models. For future 
work, we wish to create an open-source fine-tuning dataset 
that can be used to train O-RAN-proficient LLMs and also 
explore a coding-based benchmark that can assess a model’s 
ability to perceive O-RAN codes. 
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IX. APPENDIX: A 
This section contains sample questions from the ORAN- 

Bench-13K for all the aforementioned categories. 

A. Easy 
Question: In the context of O-RAN, what is the primary 

purpose of the Alarm List? 
Options: 
1) To store a history of alarm events detected by the IMS. 
2) To manage the configuration of logging levels for vari- 

ous O-RAN components. 
3) To provide a centralized repository for all O-RAN 

network performance metrics. 
4) To facilitate the real-time monitoring of network traffic 

patterns. 
Answer: 1 



Question: Which of the following protocols is used for 
communication between the O-DU and O-RU in an O-RAN 
network? 

Options: 
1) F1AP 
2) NGAP 
3) FH-eCPRI 
4) HTTP2 
Answer: 3 
Question: Which component of the O-RAN architecture is 

responsible for controlling the radio access network in near 
real-time? 

Options: 
1) gNB-CU 
2) Near-RT RIC 
3) O-CU-CP 
4) FHGW 
Answer: 2 

B. Intermediate 
Question: Which of the following is a method used by 

the Service Management and Orchestration Framework to 
dynamically operate and maintain an O-RAN network? 

Options: 
1) Configuring IP addressing for PNFs and VNFs. 
2) Managing software updates for existing NFs. 
3) Adding, removing, or modifying NFs. 
4) All of the above. 
Answer: 4 
Question: What is the purpose of the NESPolicy Informa- 

tion Object Class (IOC) in O-RAN? 
Options: 
1) To configure the callHomeClientInfo data type. 
2) To provide policies for enabling or disabling energy- 

saving features in the O-RU. 
3) To manage the Shared O-RU Host role configuration. 
4) To define attributes for the Shared O-RU Host role. 
Answer: 2 
Question: In a ladder topology for Open Radio Access 

Networks (O-RAN), what is the primary purpose of having 
redundant sync flows from two different GMs? 

Options: 
1) To improve the overall capacity of the network. 
2) To ensure failover and extended sync outages. 
3) To enable carrier aggregation across different leaf net- 

works. 
4) To reduce latency in data transmission. 
Answer: 2 

C. Difficult 
Question: What does the ”I USE” status of the sync- 

source-status parameter in the ptp-status container indicate? 
Options: 
1) The device is synchronized to an alternate master clock. 

2) The device is synchronized to the current master clock. 
3) The device is not synchronized to any master clock. 
4) The device is attempting to synchronize to an alternate 

master clock. 
Answer: 2 
Question: Which of the following is the purpose of the 

OR.CellUA.MinPscellUeUl performance counter in O-RAN? 
Options: 
1) To measure the maximum number of Primary Serving 

Cells (PSCells) in a cell. 
2) To track the minimum number of User Equipment (UEs) 

connected to a PSCell in the uplink (UL) every 100 
milliseconds. 

3) To monitor the average number of UEs connected to a 
PSCell over a specified time period. 

4) To calculate the total number of UEs in a cell. 
Answer: 2 
Question: Which of the following is NOT a required testing 

tool for verifying the removal of an SN terminated split bearer 
initiated by the MN (eNB)? 

Options: 
1) Test UE or UE emulator capable of supporting both LTE 

and NR 
2) Core or Core emulator (EPC with EN-DC capabilities) 
3) Application test server for UDP and TWAMP traffic 
4) Radio Frequency Analyzer for observing RF signals 
Answer: 4 

X. APPENDIC: B 
This section contains sample text generated by ORANSight 

indicating a possible use case as a specification assistant. 
 

Prompt: Could you clarify the differences between the 
O-RAN fronthaul and midhaul interfaces? 
Generated Response: The O-RAN fronthaul interface is the 
connection between the O-DU (Distributed Unit) and the 
O-RU (Remote Unit) in the O-RAN (Open Radio Access 
Network) architecture. It is responsible for transporting user 
data and control information between the O-RU and the 
O-DU. 

On the other hand, the O-RAN midhaul interface is 
the connection between the O-CU (Central Unit) and the 
O-DU. It is responsible for transporting user data and control 
information between the O-CU and the O-DU, and it is 
considered part of the Midhaul transport architecture by 
O-RAN WG5. In D-RAN and RAN architectures that do not 
employ an HLS (Higher Layer Split), then these interfaces 
will typically be considered part of the Backhaul network. 

 
Prompt: Please explain the concept of virtualization in 
the context of ORAN. 
Generated Response: In the context of O-RAN (Open 
Radio Access Network), virtualization refers to the process 
of running network functions (such as O-RU and O-DU) 
on software rather than dedicated hardware. This allows for 



increased flexibility, scalability, and cost-effectiveness by 
enabling the sharing of resources among multiple network 
functions and the ability to easily update or replace network 
functions without affecting the overall system. Virtualization 
in O-RAN is a key enabler for cloud-native network 
deployments and enables the realization of the vision of a 
disaggregated, open, and interoperable RAN. 

 
Prompt: Give a step-by-step guide to implementing the 
O-RAN RIC (RAN Intelligent Controller) API. 
Generated Response: To implement the O-RAN RIC (RAN 
Intelligent Controller) API, follow these steps: 

1) Understand the O-RAN architecture and its components, 
including the Near-RT RIC, Non-RT RIC, O-CU, O-CU- 
CP, O-CU-UP, and DU (Distributed Unit). 

2) Familiarize yourself with the O-RAN RIC API speci- 
fications, which define the interfaces and functions for 
controlling and optimizing RAN elements and resources. 

3) Implement the Near-RT RIC API, which enables near- 
real-time control and optimization of RAN elements and 
resources via fine-grained data collection and actions 
over E2 interface. 

4) Implement the Non-RT RIC API, which enables non- 
real-time control and optimization of RAN elements and 
resources, AI/ML workflow including model training 
and updates, and policy-based guidance of applica- 
tions/features in Near-RT RIC. 

5) Integrate the Near-RT RIC and Non-RT RIC APIs with 
the O-CU-CP and O-CU-UP components to enable 
seamless communication and control of the RAN. 

6) Test the implementation to ensure that it meets the 
specified requirements and functions correctly. 

7) Deploy the O-RAN RIC API in a network environment 
and monitor its performance to identify any issues and 
make necessary adjustments. 
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