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Abstract
We consider a class of assortment optimization
problems in an offline data-driven setting. A firm
does not know the underlying customer choice
model but has access to an offline dataset con-
sisting of the historically offered assortment set,
customer choice, and revenue. The objective is
to use the offline dataset to find an optimal as-
sortment. Due to the combinatorial nature of
assortment optimization, the problem of insuffi-
cient data coverage is likely to occur in the offline
dataset. Therefore, designing a provably efficient
offline learning algorithm becomes a significant
challenge. To this end, we propose an algorithm
referred to as Pessimistic ASsortment opTimizA-
tion (PASTA for short) designed based on the prin-
ciple of pessimism, that can correctly identify the
optimal assortment by only requiring the offline
data to cover the optimal assortment under general
settings. In particular, we establish a regret bound
for the offline assortment optimization problem
under the celebrated multinomial logit model. We
also propose an efficient computational procedure
to solve our pessimistic assortment optimization
problem. Numerical studies demonstrate the su-
periority of the proposed method over the existing
baseline method.

1. Introduction
One of the most critical problems faced by a seller is to
select products for presentation to potential buyers. Often
faced with limited display spaces and storage costs in both
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brick-and-mortar and online retailing, the seller needs to
carefully choose a set of products from the vast collection of
all available products for displaying to its customers. In this
line, the problem of selecting an assortment, i.e., a collection
of products from all available products, in order to maximize
the seller’s revenue is the assortment optimization problem.
Obviously, the choice behavior of customers (McFadden,
1981) is of great importance in the problem of assortment op-
timization. Without loss of generality, we assume the choice
of each customer can be described by a preference vectorθ˚ .
This subsumes the seminal multinomial logit (MNL) model
(McFadden, 1973) which is arguably the most well-studied
and widespread models in assortment optimization literature
(Please see Section 6 for more details) (Talluri & van Ryzin,
2004; Caro & Gallien, 2007; Rusmevichientong et al., 2010;
Davis et al., 2013; Chen et al., 2021a; Aouad et al., 2022).

In practice, θ˚ is often unknown and needs to be estimated.
Assuming no historical data of customers, dynamic assort-
ment optimization adaptively learns θ˚ in a trial-and-error
fashion by updating the assortment and observing the sub-
sequent choices of customers sequentially (Caro & Gallien,
2007; Chen et al., 2020; Rusmevichientong et al., 2020;
Chen et al., 2021b; Li et al., 2022). Meanwhile, in our era
of Big Data, companies often collect abundant customer
data. Therefore, it is often in companies’ best interest to
learn from the existing (potentially massive) offline datasets
rather than starting from scratch. Moreover, offline learn-
ing is beneficial since online exploration can sometimes be
expensive or infeasible. Hence, we take the first stab to
formally study the following important question faced by
every seller.

Research Question: Given a pre-collected offline dataset
of historically offered assortment, customers choices, and
revenue, how can we find an efficient and theoretically justi-
fied offline algorithm to estimate the optimal assortment set
without unrealistic assumptions on the offline dataset?

When the dataset is not adaptively collected, it is not un-
common to encounter the challenge of insufficient coverage
of data. For estimators such as the maximum likelihood
estimator (MLE) to approximate θ˚ accurately, the offline
dataset must include sufficiently many assortments and cus-
tomer choices. In other words, the data-collecting process
needs to sufficiently explore different assortments (by the
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seller) and different choices (by the customers). This is un-
likely to happen for offline datasets because the seller would
not choose unreasonable assortments whose expected rev-
enues are obviously suboptimal, and the customers would
not choose products against their preferences.

Major Contributions. The main contribution of this work
is two-fold. First, based on the principle of pessimism, we
propose the Pessimistic ASsortment opTimizAtion (PASTA
for short) framework, which correctly identifies the optimal
assortment. In particular, our framework only requires that
the offline dataset covers the optimal assortment set instead
of all possible (combinatorially many) assortment sets. Sec-
ond, we derive the first finite-sample regret bound for offline
assortment optimization under the multinomial logit (MNL)
model (Please see Section 6), one of the most widely used
models for modeling customers’ choices. We subsequently
propose an algorithm, also with the name PASTA, that can
efficiently solve the pessimistic assortment optimization
problems. Experiments on the simulated datasets (so that θ˚

is known) corroborate the efficacy of pessimistic assortment
optimization.

Paper Organization. We briefly review the related work in
Section 2 and the preliminaries in Section 3. We propose
the pessimistic assortment optimization in Section 4. In
Section 5, we present the theoretical results. In Section 6, we
study pessimistic assortment optimization under the MNL
model as a concrete example. In Section 7, we propose an
algorithm that can solve the problem efficiently. We provide
experimental results in Section 8, after which we conclude.

2. Related Work
Assortment Optimization. The assortment optimization
problem under the MNL model without any constraints
was first studied in (Talluri & van Ryzin, 2004). Then
more complicated assortment optimization problems un-
der various types of constraints, including space require-
ment (Rusmevichientong et al., 2009) and cardinality (Rus-
mevichientong et al., 2010), were considered. (Davis et al.,
2013) proposed a linear programming (LP) formulation of
the assortment optimization problem that includes several
previous works as special cases corresponding to different
constraints in the formulation of LP. This line of work as-
sumes that the true parameters of the customer models are
known (or at least can be accurately estimated) (Gallego &
Topaloglu, 2014; Feldman & Topaloglu, 2015; Flores et al.,
2019; Désir et al., 2020; Liu et al., 2020; Aouad et al., 2021).
Another closely related line of work is dynamic assortment
optimization (Caro & Gallien, 2007). In the setting of dy-
namic assortment optimization, the seller without any prior
information about the customers, has finite selling horizons
in which it observes the choices of customers and, based
on the observed behaviors, optimize their assortments in

an adaptive, trial-and-error fashion (Sauré & Zeevi, 2013;
Wang et al., 2018; Chen et al., 2021a; Rusmevichientong
et al., 2020; Chen et al., 2020; 2021b). In comparison with
the online setting used in dynamic assortment optimization,
our work departs from the existing literature by focusing
on the offline setting where the seller only has collected
datasets but not any control on the data-collecting process.

Pessimism in Offline Learning. The principle of pes-
simism has been successfully used in reinforcement learn-
ing (RL) for finding an optimal policy with pre-collected
datasets. On the empirical side, it has helped with improv-
ing the performance of both the model-based approach and
value-based approach in offline setting (e.g., Yu et al., 2020;
Kidambi et al., 2020; Kumar et al., 2020). The importance
of pessimism has been analyzed and verified theoretically
in the setting of RL (Jin et al., 2021; Fu et al., 2022). Our
work main contribution is to take a pessimistic approach
to assortment optimization problems and demonstrate its
empirical and theoretical values. Moreover, our work differs
from the above works by focusing on a decision-making
problem with exponentially many choices.

3. Preliminary
Let rN s

.
“ t 1, 2, .., Nu denote the set of N distinct items.

For each item i , a feature vector x i P Rd is available.
Assume that t x i uiPrN s are fixed vectors. Denote the col-
lection of all possible assortments under consideration by
S Ď 2rN sztHu . For the offline data, we define a random
vector pS, A, Rq from each customer, where S  Ď rN sde-
notes an assortment presented to the customer, A PS  Y t0u
denotes the item purchased by the customer for A P S
(A “ 0 where no purchase is made), and R denotes the
corresponding revenue. The ultimate goal of assortment
optimization is to find an optimal set of items s˚ P S for
all customers to maximize the expected revenue. A specific
goal of this work is to study how to leverage the offline
data, which consists of i.i.d. samples of the random triplet
pS, A, Rq in order to learn an optimal assortment.

For the assortment optimization with offline data, a fun-
damental question is to estimate the expected revenue for
an unexplored assortment s PS. This amounts to address-
ing the causal relationship between assortment and revenue.
Under the celebrated potential outcome framework (Rubin,
1974), let the random variable Rpsqbe the potential revenue
under an intervention that the assortment is set to be s PS.
Our goal is to find an optimal assortment

s˚ Parg max
sPS

ErRpsqs.

Note that the expected potential revenue ErRpsqsdefined in
the counterfactual world may not be identifiable from the
observed data without additional assumptions. Throughout
this paper, we make the following standard consistency and
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un-confoundedness assumptions in causal inference.

Assumption 3.1. [CONSISTENCY ] With probability one,
the observed revenue coincides with the potential revenue of
the observed assortment. That is, R “ RpSqalmost surely.

Assumption 3.2. [UN-CONFOUNDEDNESS ] The potential
revenues are independent variables of the observed assort-
ment, i.e., tRpsqusPS KKS.

Assumption 3.1 ensures that the observed revenue is consis-
tent with the potential revenue of purchasing item A ‰p 0q,
or no purchase if A “ 0, under the observed assortment S.
Assumption 3.2 rules out possible unobserved factors that
could confound the causal effect of assortment on revenue1.

Denote πSpsq
.
“ PpS “ sq as the probability of observ-

ing assortment s in the offline data. To non-parametrically
identify ErRpsqsfor every s P S, we further require the
following positivity assumption (Imbens & Rubin, 2015).

Assumption 3.3. [POSITIVITY EVERYWHERE ] For all s P
S, the probability πpsqof observing assortment s is positive
(i.e. πps  q ą0).

Assumption 3.3 requires that every assortment can be ob-
served with a positive chance in the offline data. This is
a strong assumption that will be later relaxed it Assump-
tion 5.1 (I), i.e., requiring positivity only at optimum. With
Assumptions 3.1–3.3, we can identify the effect of an assort-
ment set via inverse propensity score weighting (Rosenbaum
& Rubin, 1983): for any s PS,

ErRps  “qs E
"

IpS “ sqR
πSpsq

*
, (1)

where the expectation in the right-hand-side is taken with
respect to the data distribution of pS, A, Rq. However, when
the number of possible assortments |S|grows exponentially
in N , Assumption 3.3 rarely holds for all s PS in practice,
given potentially limited offline data particularly when N is
large. Moreover, when an assortment s corresponds to an
inferior expected revenue ErRpsqs, it may not be considered
by the seller at all. As a consequence, the probability of
observing such an assortment πSpsq is zero. These may
prevent us from estimating (1) for every assortment s PS.

We may tempt to use the following identification strategy:

ErRps  “qs EpR|S “ sq pby Assumptions 3.1-3.2q

“ ErEpR|S “ s, A  “qs
ÿ

iPsYt 0u

πA pi |s; xqr s,i , (2)

1With the observed features t x j uj PrN s, it can be possible to
relax Assumption 3.2 to a more plausible condition: the inde-
pendence holds conditional on the observed features. However,
for notation simplicity, without loss of generality, we consider
Assumption 3.2.

where x .
“ t x j uj PrN s are the features across items,

πA pi |s; xq
.
“ PpA “ i |S “ sq is the customer’s choice

probability (McFadden, 1973) of purchasing the i -th item
given an assortment s, r s,i

.
“ EpR|S “ s, A “ iq is the

conditional expected revenue given the assortment s with
the i -th item being purchased. For ease of notation, we omit
the features x in πA when there is no confusion. Identifying
ErRpsqsas above requires the knowledge of πA pi |sq and
r s,i , which can be learned from data. Although such an
identification approach does not explicitly depend on πSpsq,
full identification of πA pi |sqand r s,i requires the positivity
of πSpsqfor every s PS as assumed above.

Despite the aforementioned challenge of insufficient cov-
erage over assortments, we argue that finding an optimal
assortment s˚ may not necessarily require πSps  q ą0 every-
where but only at the optimal assortment s˚ . In particular,
based on (2), when computing

s˚ Parg max
sPS

ÿ

iPsYt 0u

πA pi |sqr s,i , (3)

we may not necessarily need to estimate πA pi |sqand r s,i

well for s ‰ s˚ , as long as sub-optimal assortments can
be safely ruled out during the optimization. Our insight
is that the estimation of πA pi |sqand r s,i for the less seen
assortment s in the data often incurs large errors. Deploying
pessimism by taking the estimation error into consideration
can rule out those assortments (Jin et al., 2021), while stan-
dard predict-then-optimize (Bertsimas & Kallus, 2020) or
empirical maximization approaches (Zhao et al., 2012) may
suffer from an overestimation ofErRpsqs. Hence, in our pro-
posed pessimistic assortment optimization framework, we
only require the positivity at optimum πSps˚  q ą0, which
is a much weaker assumption than that of Assumption 3.3.

In this paper, we focus on handling the estimation error
from πA pi |sqwhile assuming that r s,i is known. This is a
typical assumption in the literature of assortment optimiza-
tion (Talluri & van Ryzin, 2004; Davis et al., 2013; Flores
et al., 2019; Aouad et al., 2021). Our framework can be
naturally extended to the scenario where we need to esti-
mate r s,i ’s. For optimization tractability, we further assume
that r s,i “ r i that the expected revenue depends only on the
purchased item but not on the underlying assortment. This
assumption is reasonable in many applications where the
revenue is a deterministic consequence of a purchased item.
This can also be easily extended under our pessimism frame-
work but could result in a more complicated assortment
optimization problem.

Below, without loss of generality, we assume that r i ě 0 for
i  P rN s, while r 0 “ 0 (no purchase incurs zero revenue).
For any vector x, let xJ and ||x||2 respectively denote the
transpose and ℓ2-norm of x . For any set A , let |A|denote the
cardinal number of A . For any two sequences tϖpnquně 1
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and t γpnquně 1, we write ϖpn  q Á γpnq (resp. ϖpN  q À
γpnq) whenever there exist constants c1 ą 0 (respectively
c2 ą 0 such that ϖpn  q ě c1γpnq (resp. ϖpn  q ďc2γpnq).
Moreover, we write ϖpnq≂ γ pnqwhenever ϖpn  q Áγpnq
and ϖpn  q Àγpnq.

4. Pessimistic Offline Assortment Optimization
In this section, we introduce our pessimistic offline assort-
ment optimization framework. To this end, based on Eq. (2),
we first estimate the choice probability πA pi |sqfrom offline
data. Subsequently we calculate optimizing values in op-
timization problem (3) using a plug-in estimator of πA ¨p q.
Consider a generic form of model πA pa|s; θ̊ , xqwith the
unknown true parameter θ˚ . Again, for ease of notation, we
omit the features x in πA when there is no confusion. We
remark that θ˚ could be either finite-dimensional or infinite-
dimensional. Given an offline dataset D “ t Si , Ai , Ri un

i “ 1,
where n is the sample size, one can estimate the model
parameter θ˚ via maximum likelihood estimator (MLE).
Specifically, define the likelihood-based loss functionpL npθq
as

pL npθ  “ ´q
1
n

nÿ

i “ 1
log πA pA i |Si ; θq.

Then the MLE of the unknown parameter θ˚ is pθML,n P
arg minθPΘ

pL npθq, where Θ is a pre-specified parameter
space. Let

Vps; pθML,n q
.
“
ÿ

iPs

πA pi |s; pθML,n qr i .

Here, we define Vps; θ̊ qas the value function of s with the
customer choice model for πA depending on the parameter
θ˚ . The plug-in estimator of the optimal assortment based
on (3) is

psML,n Parg max
sPS

!
Vps; pθML,n q

)
.

The MLE-based approach first plugs in the MLE of θ˚ , and
then directly optimizes the corresponding estimated value
function.

As discussed before, a disadvantage of the above estimate-
then-optimize approach is that the estimation error of pθML,n

caused by insufficient data coverage may result in the over-
estimation of Vps; θ̊ q, which will propagate to downstream
optimization. Alternatively, we can quantify the estimation
uncertainty by considering the following likelihood-ratio-
test-based confidence region (Owen, 1990):

Ωnpαnq
.
“ t θ PΘ : pL npθ  ´q pL nppθML,n  q ďαnu,

where αn ą 0 is pre-specified. Later we analyze the MNL
model as a special case (Please see Section 6). With αn

chosen as Opd{nq, we establish in Theorem 6.1 that θ˚ P

Ωnpαnqwith high probability. Such a guarantee does not
require any data coverage assumption on assortments.

For now on, for simplicity, we drop αn and write Ωn for
Ωnpαnqwhen there is no ambiguity.

In order to robustify assortment optimization against plug-in
estimation errors, we consider a pessimistic version of (3)
by taking the estimation uncertainty from Ωn into account.
Specifically, we propose the Pessimistic ASsortment opTi-
mizAtion (PASTA) by solving

psPASTA,n Parg max
sPS

min
θPΩn

Vps; θq. (4)

Here, for a fixed assortment s PS, the inner layer of mini-
mization computes the worst-case value among all possible
model parameters θ within the confidence set Ωn . In par-
ticular, if the estimated value Vps; pθML,n q for s is highly
uncertain due to insufficient data coverage, the worst-case
value minθPΩn

Vps; θqis likely much smaller than Vps; θ̊ q.
In that case, the outer layer of (4) may prefer another assort-
ment with a relatively higher worst-case value. In this way,
the inner layer of (4) rules out those assortments with less
frequency in the offline data. Hence, one essential advantage
of such a strategy is that it avoids an overestimation of the
value function. In other words, by the plug-in approach, with
a non-negligible chance, the estimated value Vps; pθML,n q
can be much larger than the truth Vps; θ̊ q, which further
leads to a possibly sub-optimal assortment but optimized
by the MLE-based approach. In contrast, PASTA is aware
of insufficient data coverage, and hence more pessimistic
about those highly uncertain value estimates. In the next sec-
tion, we theoretically analyze the advantage of the PASTA
approach.

5. Theoretical Results
In this section, we show that the PASTA method (4) en-
joys a generic regret guarantee under a weak assumption
of positivity at optimum that is πSps˚  q ą 0. Specifically,
given psPASTA,n in (4), we adopt the following regret as the
performance metric to evaluate the PASTA’s performance

RppsPASTA,n  “q Vps˚ ; θ̊  ´q VppsPASTA,n ; θ̊ q.

We aim to derive a regret bound for RppsPASTA,n q under
generic conditions. Denote Lpθ  “q E ´r log πA pA|S; θqs
as the population loss function. All detailed proofs can be
found in the Appendix 9.

We first show that whenever θ˚ P Ωn that the confidence
region covers the true parameter, the regret of the PASTA
method can be calibrated by the worst-case estimation error
among θ PΩn of the value function at the optimal assort-
ment s˚ .

Lemma 5.1. Let psPASTA,n be the solution by the PASTA
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method defined in (4). If θ˚ PΩn , then

RppsPASTA,n  q ďmax
θPΩn

␣
Vps˚ ; θ̊  ´q Vps˚ ; θq

(
.

Proof of Lemma 5.1.

Vps˚ ; θ̊  ´q VppsPASTA,n ; θ̊ q

ď Vps˚ ; θ̊  ´q min
θPΩn

VppsPASTA,n ; θq pby θ˚ PΩnq

ď Vps˚ ; θ̊  ´q min
θPΩn

Vps˚ ; θq pby psPASTA,n solves (4)q

“ max
θPΩn

␣
Vps˚ ; θ̊  ´q Vps˚ ; θq

(
.

Lemma 5.1 highlights the benefit of pessimistic optimiza-
tion. In particular, guarantees for the regret of estimate-then-
optimize approaches require the control of estimation error
uniformly over all s P S, that is, supsPS

ˇ̌
Vps; pθML,n  ´q

Vps; θ̊ q
ˇ̌
, in order to control error caused by the greedy pol-

icy, i.e.,
ˇ̌
VppsML,n , pθML,n  ´q VppsML,n , θ̊ q

ˇ̌
. This may typ-

ically entail that the value function is estimated uniformly
well across s P S. It further explains the reason why an
estimate-then-optimize approach would require the positiv-
ity Assumption 3.3 for all s P S. In contrast, our Lemma
5.1 suggests that controlling the estimation error at s˚ can
be enough. Therefore, it is sufficient for our PASTA method
to require the positivity only at optimum.

Next, we impose the following assumptions to obtain the
regret guarantee of our algorithm.

Assumption 5.1.
(I) [P OSITIVITY AT OPTIMUM ] The probability of observ-
ing the optimal assortment is positive, that is, πSps˚  q ą0.
(II) [L IKELIHOOD -BASED CONCENTRATION ] For any
0 ă δ ă 1, with probability at least 1 ´ δ, we have: (1)
θ˚ PΩn , and (2)

sup
θPΩn

ˇ̌
ˇLpθ  ´q Lpθ˚  ´q

´
pL npθ  ´q pL npθ˚ q

¯ ˇ̌
ˇ ď αn .

We emphasize that PASTA only requires the positivity at
optimum. Compared to the positivity at all assortments in
Assumption 3.3, our Assumption 5.1 (I) is much weaker and
hence more plausible to be satisfied. Assumption 5.1 (II) is
a generic condition for likelihood-based concentration. We
later justify that (II) above indeed holds under the general
MNL model in Theorem 6.2. In particular, Statement (1)
of Part (II) requires the validity of the likelihood-ratio-test-
based confidence region Ωn while Statement (2) of Part (II)
requires the concentration of the likelihood-based localized
empirical process (van der Vaart & Wellner, 1996).

The positivity at optimum is associated with a finite constant
Cs˚ “ 1{πsps˚ q related to the learning performance. We
also denote r s˚

.
“ maxj Ps˚ r j as the largest possible rev-

enue among all items in s˚ . Notice that both constants Cs˚

and r s˚ depend on the optimal assortment s˚ only. In the
following lemma, we establish the estimation error bound
at the optimal assortment s˚ .

Lemma 5.2. Under Assumption 5.1, for any 0 ă δ ă 1,
with probability at least 1 ´ δ, we have for any θ PΩn ,

Vps˚ ; θ̊  ´q Vps˚ ; θ  q À r s˚ Cs˚
? αn .

Combining Lemmas 5.1 and 5.2, we summarize the regret
bound for PASTA in the following theorem.

Theorem 5.3. Under Assumption 5.1, for any 0 ă δ ă 1,
with probability 1 ´ δ, we have

RppsPASTA,n  q À r s˚ Cs˚
? αn .

6. Application: Multinomial Logit Model
In this section, we consider the Multinomial Logit Model
(MNL) for customer choices πA pa|sq. This is one of the
most widely used models in assortment optimization liter-
ature (Feng et al., 2022). Under the MNL model, we will
verify Assumption 5.1 (II) and establish the regret bound
for PASTA in this case.

Given the item-specific features t x i uiPrN s, MNL assumes
that customer’s preference for the i -th item is proportional
to exppxJ

i θ˚ q, where θ˚ P Θ is the underlying unknown
parameter. Here, we assume that the parameter space Θ Ď
Rd is compact with θmax

.
“ supθPΘ }θ}2  `8ă . Given an

assortment s, the customer choice probability under MNL
is given by

πA pi |s; θ̊  “q
exppxJ

i θ˚ q
1 `

ř
j Ps exppxJ

j θ˚ q
, @i Ps. (5)

Moreover, the probability of no-purchase is normalized to
πA p0|s; θ̊  “q 1{p1 `

ř
j Ps exppxJ

j θ˚ qq. Based on (3) and
the MNL model (5), the objective function for assortment
optimization can be written as

Vps; θ  “q
ř

iPs r i exppxJ
i θq

1 `
ř

iPs exppxJ
i θq

.

We first justify Statement (1) of Assumption 5.1 under the
MNL model. To this end, given the compactness of Θ, there
exists a finite constant CA ą 0 such that for all θ PΘ, s PS
and i Ps, we have 1{πA pi |s; θ  q ďCA .

Lemma 6.1. Consider the MNL model (5) with a compact
set Θ. Assume that θ˚ P Θ. For any 0 ă δ ă 1, with
probability at least 1 ´ δ, we have

pL npθ˚  ´q pL nppθML,n  q À
CA d

n ¨ log
θmax

δ
.
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Lemma 6.1 suggests that, with αn chosen as CA d
n log θmax

δ ,
we can guarantee that θ˚ PΩn with high probability, which
justifies Statement (1) of Assumption 5.1 (II). In particular,
the order of αn is Opd{nq. Notice that Lemma 6.1 does
not depend on the distribution of S, which implies that no
data coverage assumption on the observed assortments is
required. The assumption that θ˚ P Θ for Θ a compact
set requires that given any assortment, every product has a
chance of being selected by the customer in the data. This
is a mild requirement as θ˚ is always finite.

Next, we justify Statement (2) of Assumption 5.1 (II) in the
following theorem.

Lemma 6.2. Consider the MNL model (5). Suppose con-
ditions in Lemma 6.1 hold, and Lpθq and L npθq are uni-
formly and strongly convex. Let αn ≂ CA d

n log θmax
δ . For

0 ă δ ă 1, with probability  ě p1 ´ δq, we have

sup
θPΩn

ˇ̌
ˇLpθ  ´q Lpθ˚  ´q

´
pL npθ  ´q pL npθ˚ q

¯ ˇ̌
ˇ ď αn .

Finally, with the Assumption of positivity only at optimum
(Assumption 5.1 (I)), we can apply Theorem 5.3 to establish
the regret bound for PASTA in MNL.

Theorem 6.3. Consider the MNL model (given in Equation
(5)). Assume that the conditions in Lemma 6.2 hold and that
πSps˚  q ą0. Fix a δ  P p0, 1q. Suppose psPASTA,n is output
of PASTA with αn ≂ CA d

n log θmax
δ . Then with probability

at least 1 ´ δ, we have

RppsPASTA,n  q À r s˚ Cs˚

c
CA d

n ¨ log
θmax

δ
.

We remark that under the MNL model (given in Equation
(5)), the order of regret is Op

a
d{nq. This is due to the

concentration rate of MNL’s empirical likelihood ratio in
Lemma 6.1. Such a rate of regret bound matches those in
the literature under parametric model assumptions (Qian
& Murphy, 2011; Mo & Liu, 2022). However, existing
literature requires the positivityπSps  q ą0 at everys PS. In
contrast, Theorem 6.3 only requires positivity πSps˚  q ą0
at the optimal assortment s˚ . Furthermore, we can show that
min iPN πA pi | S “ r N s; θ  q ď1{N for any θ PΘ, which
implies that CA ě N . Therefore, our regret is of order at
least

?
N , where N is the total number of available items.

It is an interesting problem to establish the minimax lower
bound of offline assortment optimization in terms of N, n, d
and the cardinal number of s˚ . This will investigated in a
subsequent work.

7. PASTA Algorithm
In this section, we propose an efficient algorithm for solving
the max-min problem given in Optimization Problem (4) for

the MNL model. Specifically, let

Vps; θ  “q
ÿ

iPs

r i exppxJ
i θq

1 `
ř

j Ps exppxJ
j θq

and given the confidence set Ωn , we wish to solve

max
sPS

min
θPΩn

Vps; θq.

The proposed iterative algorithm is executed for a maximum
of T iterations. At the t-th iteration, given st and θt from the
previous iteration, we consecutively execute the following
two steps:

• Step 1: Compute the optimal assortment st ` 1 given θt

(see Section 7.1).

• Step 2: Compute the optimal θt ` 1 using st ` 1 (see
Section 7.2).

The corresponding pseudo-code is presented in Algorithm 1
below.

Algorithm 1 PASTA

Input: offline dataset tpSi , Ai , Ri quni “ 1; αn ; t r i uN
i “ 1;

t x i uN
i “ 1; maximum number of iterations T

Output: the solution to pessimistic assortment optimiza-
tion ps
pL npθq

.
“ ´ 1

n

ř n
i “ 1 log πA pA i |Si ; θq

pθML,n Ð arg minθPΘ
pL npθq

Ωn  Ð t θ PΘ : pL npθ  ´q pL nppθML,n  q ďαnu
t Ð 0; θt Ð pθML,n /* Initialize θ0 as pθML,n */
for t “ 1 to T do

st Ð SolveLPpθt ´ 1, t r i uN
i “ 1, t x i uN

i “ 1q
/* Section 7.1 */

θt Ð SolveGDpst , Ωn , t r i uN
i “ 1, t x i uN

i “ 1q
/* Section 7.2 */

end for
ŝ Ð sT

7.1. Optimal Assortment Computation
Given the MNL model parameter θt , computing the as-
sortment st ` 1 that maximizes the expected revenue can be
formulated as a linear programming (LP) problem.

Suppose that an assortment s can be represented by an N -
dimensional binary vector γ  P t0, 1uN where γj “ 1 if
and only if j P s. Suppose that s P S corresponds to
the following feasible set for γ with M linear inequality
constraints:

Γ “

#

γ  P t0, 1uN :
ÿ

j PN

aij γj ď bi for i  P rM s

+

,

where the matrix of constraint coefficients raij siPrM s,j PrN s

is a totally unimodular matrix (Pang, 2017). In other words,
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based on the one-to-one correspondence between s and γ,
we have s PS if and only if γ PΓ .

Next, we denote vi “ exppxJ
i θtq as the preference score

for the i -th item. The customer choice probability under
the MNL model (5) becomes πA pi |s  “q v i

1`
ř

j Ps v j
. The

optimization for st ` 1 can be formulated as

max
γPΓ

ř
iPrN s

r i vi γi

1 `
ř

iPrN s
vi γi

, (6)

which is equivalent to the following linear programming
problem (Davis et al., 2013):

max
w j :j PrN sYt 0u

ÿ

j PrN s

r j wj

subject to
ÿ

j PrN s

wj ` w0 “ 1

ÿ

j PrN s

aij
wj

vj
ď bi w0 @i  P rM s

0 ď
wj

vj
ď w0 @j  P rN s.

(7)

In particular, we can recover the optimal solution to Prob-
lem (6), denoted as γ ˚ , using the optimal solution to Prob-
lem (7), denoted by w˚ , via the following formula:

γ ˚
j “

w˚
j

vj w˚
0

@j  P rN s. (8)

To conclude, at the t-th iteration, in order to compute an
optimal assortment st ` 1 for a given θt , we first solve an
LP problem in (7) for w˚ . Then we recover γ ˚ via (8).
Finally, the updated assortment st ` 1 is obtained by the
correspondence i Pst ` 1 if and only if γ ˚

j “ 1.

7.2. Model Parameter Computation
For a given optimized assortment st ` 1 from Section 7.1, we
aim to search for the worst-case MNL parameter θt ` 1 from
the confidence set Ωn that minimizes the expected revenue.
In particular, we employ a gradient descent with line search
(GDLS) method to compute θt ` 1 by solving the following
problem

min
θPΩn

Vpst ` 1; θq. (9)

Here, we remark that Vpst ` 1; θ  “q
ř

i Ps t ` 1
r i exppx J

i θq

1`
ř

i Ps t ` 1
exppx J

i θq is

a locally Lipschitz function in θ. Given a feasible initial
parameter θp0q P Ωn , we run at most L gradient descent
steps. Suppose βℓ is the step size for gradient descent in the
ℓ-th step. At each step ℓ “ 1, 2,̈  ¨ ,̈ L, we do a line search
to maintain the feasibility. In particular, given θpℓ ´ 1q PΩn ,
we first evaluate the gradient as ξℓ “ ∇ θVpst ` 1; θpℓ ´ 1qq.
Then we initiate βℓ with a pre-specified step size βℓ “ rβ,
and check whether θpℓq “ θpℓ ´ 1q ´ βℓ ξℓ is feasible, i.e.

θpℓq PΩn . If not, we set βℓ Ð cβℓ for some pre-specified
c  P p0, 1q, and recompute θpℓq “ θpℓ ´ 1q ´ βℓ ξℓ . Such a
search is repeated until θpℓq is feasible. We provide the
pseudocode in Algorithm 2 for the overall process. Note
that L, rβ, care all hyper-parameters. In all of our numerical
studies, we set L “ 2, rβ “ 0.01and c “ 1

2 , which performs
well empirically.

Algorithm 2 Gradient Descent with Line Search (GDLS)
Input: assortment st ` 1; feasible set Ωn ; initial parameter
θp0q; initial step size β̃; step shrinkage constant c; number
of descent steps L
Output: the updated parameter θt ` 1
ℓ Ð 0
for ℓ “ 1 to L do

ξℓ “ ∇ θVpst ` 1; θpℓ ´ 1qq /* compute the gradient */
βℓ Ð rβ
θpℓq Ð θpℓ ´ 1q ´ βℓ ξℓ

while θpℓq RΩn do
βℓ Ð cβℓ /* decrease the step size */
θpℓq Ð θpℓ ´ 1q ´ βℓ ξℓ

end while
end for
θt ` 1 Ð θpℓq

8. Experiments
We compare the PASTA method with assortment optimiza-
tion without pessimism (referred to as the baseline method
in the sequel). Our method and the baseline method are eval-
uated on synthetic data for which the optimal assortment s˚

and true parameter θ˚ are known so that the true regrets can
be computed. We describe the data generation process and
the baseline method in details below.

8.1. Data Generation
We consider the assortment optimization scenarios de-
scribed by N , K , d, n and p, where N is the total number
of available products; K is the cardinality constraint of the
assortments, i.e., S “ t s : |s| ďK u; d is the dimension of
θ˚ and t x j uN

j “ 1; n is the sample size of the offline dataset;
p is the probability for sampling the optimal assortment
s˚ . Similar to (Chen et al., 2020), we first generate the
true preference vector θ˚ as a uniformly random unit d-dim
vector. For i  P t1, . . . , Nu, we generate r i (the reward of
product i ) uniformly from the range r0.5, 0.8s and gener-
ate x i (the feature of product i ) as uniformly random unit
d-dim vector such that exppxJ

i θ˚  q ďexp ´p 0.6q to avoid
degenerate cases, where the optimal assortments include
too few items. Given such information, the true optimal
assortment s˚ can be computed. Then, we generate an of-
fline dataset D “ tp Si , Ai , Ri quni “ 1 with n samples. For
i  P t1, . . . , nu, we generate Si following the distribution πS

7
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such that πSps˚  “q p and πSps  “q 1´ p
|S|´ 1 , where 0 ă p ă 1

is the probability of observing the optimal assortment s˚ .
After the assortment Si is sampled, the customer choice (ac-
tion) A i is sampled according to the probability computed
by MNL as in Eq. (5) with the true parameter θ˚ .

8.2. Baseline
In our experiments, we use the gradient descent method
to find pθML,n that minimizes the empirical negative log-

likelihood function. Then given pθML,n , the baseline method
solves the assortment optimization problem by solving the
linear programming problem in (7).

8.3. Performance Comparison
For a given pN, K, d, n, pq, we repeat the data generation
process in Section 8.1 to randomly generate 50 offline
datasets. The solutions of PASTA and the baseline method
are recorded in these experiments. For hyper-parameters,
we set αn “ 2pL ML where pL ML “ pL nppθML,n qand the max-
imum of iteration T “ 30. We measure the performance
with two metrics: (1) the average regret of the solutions
which indicates how far the performance of the solutions
is to that of the optimal performance (i.e., revenue of s˚ );
(2) the assortment accuracy of the solutions (with respect
to the optimal assortment s˚ ). The assortment accuracy
of an assortment s is defined as the ratio of the number of
correctly chosen products to the number of products in s˚ .
The key results are summarized below.

Effect of Sample Size. We set N “ 40, K “ 8, d “ 16
and p “ 0.9. We then gradually increase the number of
samples n . The result is presented in Figure 1 indicating
that PASTA significantly outperforms the baseline method.
While the performance of the baseline method improves
with increasing number of samples, the PASTA method
maintains a regret that is less than25%of that of the baseline
method. The same experiment repeated with an increased
number of products (N “ 60, K “ 15) demonstrates that
the gain of the PASTA method is stable, as presented in
Figure 1.

Effect of Probability of Sampling Optimal Assortment
in Offline Data. We set N “ 40, K “ 8, d “ 16, n “ 150,
and let p  P t0.1, 0.3, 0.5, 0.7, 0.9u. We also study the effect
of p in scenarios with an increased total number of products
(N “ 60, K “ 15). As can be seen in Figure 2, the gain of
pessimistic assortment optimization is consistent and robust
for varying values of p.

Effect of Dimension of Features. We set N “ 20, K “ 5,
p “ 0.9, n “ 150, and let d  P t8, 20, 32, 64, 128u. In order
to characterize the effect of dimension d, we generate d
elements of θ˚ independently from Uniform ´r 1, 1s. The
results are presented in Figure 3. We observe that while
both the regret of the baseline method and that of the pes-

Figure 1.Performance comparison between PASTA and the base-
line method with varying number of samples (n). On the left is the
average regret (the lower the better) while the assortment accuracy
(the higher the better) is on the right.

simistic assortment optimization increase with increasing
dimensions of features, the PASTA method maintains its
performance gain as the dimension d varies.

Figure 3.Comparison between PASTA and the baseline method
with increasing dimensions of product features (d).

9. Conclusion
This work addresses the issue of insufficient data coverage
in offline assortment optimization problems. This becomes
more challenging as the number of choices grows quickly as
a function of the number of items N . We presented a frame-
work of pessimistic assortment optimization and provided
theoretical justifications for our approach. We then per-
formed an in-depth study of the Multinomial Logit Model
(MNL), and derived a finite-sample regret bound of pes-
simistic assortment optimization for this popular model. We
presented an efficient algorithm to solve the pessimistic as-
sortment optimization problem for MNL, and demonstrated
significant improvements of our approach over the baseline
method by extensive numerical studies.
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Figure 2.Comparison between PASTA and the baseline method
with varying probability of the optimal assortment (p). Top row:
N “ 40; bottom row: N “ 60.
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A. Proof of Theoretical Results
Throughout the proofs, we use θ˚ to denote the true parameter and n to denote the number of samples. We use pL n to
denote the empirical negative log-likelihood function, i.e., pL npθ  “ ´q 1

n

ř n
i “ 1 log πA pA i |Si ; θqwhere tpSi , Ai , Ri quni “ 1

is the offline dataset. We use L and pθML,n to respectively denote the negative log-likelihood function , i.e., Lpθ  “q

´ Erlog πA pA|S; θqs, and the MLE of θ˚ , i.e., pθML,n P arg minθPΘ

!
pL npθq

)
. The confidence region Ωn is defined as

Ωn
.
“ t θ PΘ : pL npθ  ´q pL nppθML,n  q ďαnu.

For a general pair of random variables pX, Y q, assume that the conditional probability density function of Y given X is
parameterically modeled by ppy|x; θqfor parameter θ. For technical reasons, we will consider the following distances.

Definition A.1 (Squared Hellinger Distance).

h2pp ¨|p x; θ1q, p ¨|p x; θ2  “qq
1
2

ż ´ a
p1py|x; θ1  ´q

a
p2py|x; θ2q

¯2
dy. (10)

Definition A.2 (Hellinger Distance).

hpp ¨|p x; θ1q, p ¨|p x; θ2  “qq
a

h2pp ¨|p x; θ1q, p ¨|p x; θ2qq. (11)

Definition A.3 (Generalized Squared Hellinger Distance).

H 2pθ1, θ2  “q EX

”
h2pp ¨|p X; θ1q, p ¨|p X; θ2qq

ı
. (12)

Definition A.4 (Generalized Hellinger Distance).

H pθ1, θ2  “q EX

”a
h2pp ¨|p X; θ1q, p ¨|p X; θ2qq

ı
. (13)

In our theoretical results, we particularly consider ppy|x; θ  “q πA pa|s; θqas the conditional density of A given S (hereafter
denoted as A|S).

A.1. Proof of Lemma 5.2
Under Assumption 5.1, for any 0 ă δ ă 1, with probability at least 1 ´ δ, we have for any θ PΩn ,

Vps˚ ; θ̊  ´q Vps˚ ; θ  q À r s˚ Cs˚
? αn , (14)

where r s˚
.
“ maxj Ps˚ r j is the largest possible revenue among all items in the optimal assortment.

Proof of Lemma 5.2. For any θ such that pL npθ  ´q pL nppθML,n  q ďαn , i.e., θ PΩn , we have

Vps˚ ; θ̊  ´q Vps˚ ; θ  q ď
ˇ̌
ˇ̌Vps˚ ; θ  ´q Vps˚ ; θ̊ q

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌Vps˚ ; θ  ´q Vps˚ ; pθML,n  `q Vps˚ ; pθML,n  ´q Vps˚ ; θ̊ q

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌Vps˚ ; θ  ´q Vps˚ ; pθML,n q

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌Vps˚ ; pθML,n  ´q Vps˚ ; θ̊ q

ˇ̌
ˇ̌

ď 2 max
θPΩn

ˇ̌
ˇ̌Vps˚ ; θ  ´q Vps˚ ; pθML,n q

ˇ̌
ˇ̌ (By Assumption 5.1 (II) θ˚ PΩn ).

With Lemma B.2, we have that for any θ PΘ,
ˇ̌
ˇ̌Vps˚ ; θ  ´q Vps˚ ; pθML,n q

ˇ̌
ˇ̌ ď r s˚ Cs˚ ES

„
||πA ¨|p S; θ  ´q πA ¨|p S; pθML,n ||q 1

ȷ

11
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where || ¨ ||1 is the ℓ1-norm, r s˚
.
“ maxj Ps˚ r j is the largest possible revenue among all items and Cs˚ “ 1{πSps˚ q.

In Lemma B.3, we establish that

ES

„
||πA ¨|p S; θ  ´q πA ¨|p S; pθML,n ||q 1

ȷ
ď 2

?
2
b

H 2pθ, pθML,n q,

where H 2 is the generalized squared Hellinger distance defined in (12) with ppy|x; θ  “q πA pa|s; θq as the conditional
density of A|S.

Combining the above two inequalities, we have that for any θ PΘ,
ˇ̌
ˇ̌Vps˚ ; θ  ´q Vps˚ ; pθML,n q

ˇ̌
ˇ̌ À r s˚ Cs˚

b
H 2pθ, pθML,n q. (15)

In the following, we use the fact that log x ď 2p
?

x ´ 1qfor any x ě 0 to show that for any s PS and any θ:

´
ż

πA pa|s; θ̊ qlog
πA pa|s; θq
πA pa|s; θ̊ q

da

 ´ě 2
ż

πA pa|s; θ̊ q

˜ d
πA pa|s; θq
πA pa|s; θ̊ q

´ 1

¸

da

“
ż ´

πA pa|s; θ̊  `q πA pa|s; θ  ´q 2
a

πA pa|s; θqπA pa|s; θ̊ q
¯

da

“
ż ´ a

πA pa|s; θ̊  `q
a

πA pa|s; θq
¯2

da

ě
ż ´ a

πA pa|s; θ̊  ´q
a

πA pa|s; θq
¯2

da,

which implies that
Lpθ  ´q Lpθ˚  q ě2H 2pθ; θ̊ q. (16)

By Lemma B.4, we have that for any θ PΩn ,

H 2pθ, pθML,n  q ď2H 2pθ˚ , θ  `q 2H 2pθ˚ , pθML,n  q ďLppθML,n  ´q Lpθ˚  ` q tLpθ  ´q Lpθ˚ qu. (17)

From Assumption 5.1, we have that with probability at least 1 ´ δ, for any θ PΩn ,
ˇ̌
ˇLpθ  ´q Lpθ˚  ´q

´
pL npθ  ´q pL npθ˚ q

¯ˇ̌
ˇ ď αn .

In other words, under Assumption 5.1, with probability at least 1 ´ δ for any θ PΩn ,

Lpθ  ´q Lpθ˚  q ď
ˇ̌
pL npθ  ´q pL npθ˚ q

ˇ̌
` αn ď 2αn . (18)

Plugging Eq. (18) into Eq. (17), we have that with probability at least 1 ´ δ, for any θ PΩn ,

H 2pθ, pθML,n  q ď4αn . (19)

Combining the above inequality and Eq. (15), we have that, with probability at least 1 ´ δ,
ˇ̌
Vps˚ ; θ  ´q Vps˚ ; pθML qq

ˇ̌
À

r s˚ Cs˚
? αn for all θ PΩn . This concludes the proof.

A.2. Proof of Lemma 6.1
Consider the MNL model (5) with a compact set Θ. Assume that θ˚ PΘ. For 0 ă δ ă 1, with probability at least 1 ´ δ, we
have

pL npθ˚  ´q pL nppθML,n  q À
CA d

n log
θmax

δ
. (20)

12
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Proof of Lemma 6.1. Fix 0 ă δ ă 1. Suppose αn ≂ CA d
n log 2θmax

δ . Define an oracle confidence set as

rΩn
.
“ t θ PΘ : Lpθ  ´q Lpθ˚  q ďαnu.

In particular, θ˚ P rΩn . By Lemmas B.1 and A.2, we also have with probability at least 1 ´ δ{2,

LppθML,n  ´q Lpθ˚  q ď2CA H 2ppθML,n , θ̊  q Àαn ,

that is, pθML,n P rΩn .

Define Fn
.
“

!
log πA pA |S;θ ˚ q

πA pA |S;θ q : θ P rΩn

)
. In particular, for any f P Fn , we have }f }8 ď 2 log CA . Let }Pn ´ P}F n

.
“

supf PF n |pPn ´ Pqpf |q be the envelope. By Talagrand’s inequality, with probability at least 1 ´ δ{2, we have for any
f PFn ,

pPn ´ Pqpf  q ÀE}Pn ´ P}F n `

gf
f
e 1

n

#

plog CA qE}Pn ´ P}F n ` sup
f PF n

Epf ´ Ef q2

+

log
2
δ `

log CA

n log
2
δ

. (21)

For the variance term, we have

σ2
F n

.
“ sup

f PF n

Epf ´ Ef q2 ď sup
θPrΩn

E
ˆ

log
πA pA|S; θ̊ q
πA pA|S; θq

˙ 2

ď sup
θPrΩn

E
␣
2CA h2`πA ¨|p S; θ̊ q, πA ¨|p S; θq

˘(
pby Lemma B.5q

“ 2CA sup
θPrΩn

H 2pθ˚ , θq

ď 2CA sup
θPrΩn

rLpθ  ´q Lpθ˚ qs pby (17)q

“ 2CA αn . pby definition of rΩnq

For the expected envelope, our goal below is to apply Sen (2018, Theorem 7.13) (stated in Theorem B.6). Consider the
covering number N pϵ, Fn , L2pQqqfor any given ϵ ą 0 and finitely supported probability measure Q. By Lemma A.1, based
on the MNL model (5), for some L  `8ă , Fn is a class of L-Lipschitz functions with respect to the index space pΘ, } ¨ }2q.
Then in terms of the bracketing number N rs and covering number N , for any ϵ ą 0 and probability measure Q, we have

N pϵL, Fn , L2pQ  qq ďN rsp2ϵL, Fn , L2pQ  qq ďN pϵ, Θ,} ¨ }2q.

By Θ Ď Rd and Θ is compact, we further have N pϵ, Θ,} ¨ }2  q À
` 1

ϵ

˘d
. Therefore,

N pϵ, Fn , L2pQ  qq À
ˆ

L
ϵ

˙ d

.

By Theorem B.6, we further have

E}Pn ´ P}F n À

d
d
n

σ2
F n

log
L

σF n

_
"

d
n ˆ 2 logpCA qlog

L
σF n

*
À

c
CA d

n
αn ≂

CA d
n

c

log
2θmax

δ À αn .

The Talagrand’s inequality (21) becomes
pPn ´ Pqpf  q Àαn .

In particular, in the case of pθML,n P rΩn corresponding to f ppθML,n  q PFn , we have

pL npθ˚  ´q pL nppθML,n  “ ´q Pn f ppθML,n   ´q À Pf ppθML,n  `q αn “ Lpθ˚  ´q LppθML,n q
l jh n

ď 0

` αn ď αn .

This complete the proof.

13
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Lemma A.1. Consider the MNL model:

πA pi |s; θ  “q
exppxJ

i θq
1 `

ř
j Ps exppxJ

j θq
; πA p0|s; θ  “q

1
1 `

ř
j Ps exppxJ

j θq
; @i Ps, s PS, θ PΘ.

Let θmax
.
“ maxθPΘ }θ}2, xmax

.
“ maxj PrN s }x j }2. If Θ is compact, that is, θmax  `8ă , then the log-likelihood ratio

log πA pA |S;θ ˚ q
πA pA |S;θ q is a uniformly Lipschitz function in θ PΘ.

Proof of Lemma A.1.

››››
B
Bθ log

πA pA|S; θ̊ q
πA pA|S; θq

››››
2
“

1
πA pA|S; θq

››››
BπpA|S; θq

Bθ

››››
2

“ r1 ´ πA pA|S; θqs

›››››
xA `

ÿ

j PS

exppxJ
j θqpxA ´ x j q

›››››
2

ď xmax ` 2Nx max exppxmax θmax q
.
“ L  `8ă .

(22)

That is, θ ÞÑlog πA pA |S;θ ˚ q
πA pA |S;θ q is L-Lipschitz.

Lemma A.2 (Concentration of Parametric MLE in Hellinger Distance). Consider the MNL model (5). For 0 ă δ ă 1, with
probability at least 1 ´ δ, we have

H 2ppθML,n , θ̊  q À
d
n log

θmax
δ

.

Proof of Lemma A.2. We follow from Fu et al. (2022, Corollary 2) as a special case, where our data are generated i.i.d.
instead of being a general Markov chain.

A.3. Proof of Lemma 6.2
Consider the MNL model (5). Suppose conditions in Lemma 6.1 hold, and Lpθqand L npθqare uniformly and strongly
convex. Let αn ≂ CA d

n log θmax
δ . For 0 ă δ ă 1, with probability at least 1 ´ δ, we have

sup
θPΩn

ˇ̌
ˇLpθ  ´q Lpθ˚  ´q

´
pL npθ  ´q pL npθ˚ q

¯ ˇ̌
ˇ ď αn .

Proof of Lemma 6.2. Fix 0 ă δ ă 1. By the strong convexity assumption on Lpθqand L npθq, there exists a constant µ ą 0
such that for any θ PΘ,

µ}θ ´ θ˚ }2
2 ď Lpθ  ´q Lpθ˚ q; µ}θ ´ pθML,n }2

2 ď pL npθ  ´q pL nppθML,n q.

By Lemma 6.1, with probability at least 1 ´ δ{2, we have pθML,n P rΩn . Then for any θ PΩn , we have

}θ ´ θ˚ }2  }ď θ ´ pθML,n }2 ` } pθML,n ´ θ˚ }2 pby triangular inequalityq

ď
1
? µ

b
pL npθ  ´q pL nppθML,n  `q

1
? µ

b
LppθML,n  ´q Lpθ˚ q pby strong convexityq

À
? αn pby θ PΩn and pθML,n P rΩn respectivelyq.

The above implies that with probability at least 1 ´ δ{2, we have Ωn Ď sΩn , where sΩn is a ball centered around θ˚ with
radius

?
αn :

sΩn
.
“
␣
θ PΘ : }θ ´ θ˚ }2 ď

?
αn

(
.

14
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Define sFn
.
“

!
log πA pA |S;θ ˚ q

πA pA |S;θ q : θ P sΩn

)
. Let }Pn ´ P} sF n

.
“ supf P sF n |pPn ´ Pqpf |q be the envelop. By Talagrand’s

inequality, with probability at least 1 ´ δ{2, we have for any f P sFn ,

|pPn ´ Pqpf | q ÀE}Pn ´ P} sF n `

gf
f
e 1

n

#

plog CA qE}Pn ´ P} sF n ` sup
f P sF n

Epf ´ Ef q2

+

log
2
δ `

log CA

n log
2
δ

. (23)

For the variance term, we have

σ2
sF n

.
“ sup

f P sF n

Epf ´ Ef q2 ď sup
θPsΩn

E
ˆ

log
πA pA|S; θ̊ q
πA pA|S; θq

˙ 2

À sup
θPsΩn

}θ ´ θ˚ }2
2 pby Lipschitzness in Lemma A.1q

ď αn pby definition of sΩnq.

For the expected envelope, by Theorem B.6, we further have

E}Pn ´ P} sF n À

d
d
n

σ2
sF n

log
L

σ sF n

_
"

d
n ˆ 2 logpCA qlog

L
σ sF n

*
À

c
d
n

αn À αn .

Therefore, the Talagrand’s inequality (23) gives that for any f P sFn

|pPn ´ Pqpf | q Àαn .

In other words, with probability at least 1 ´ δ, Ωn Ď sΩn corresponding to t f pθquθPΩn Ď sFn , we have

sup
θPΩn

ˇ̌
ˇLpθ  ´q Lpθ˚  ´q

´
pL npθ  ´q pL npθ˚ q

¯ ˇ̌
ˇ ď sup

f P sF n

|pPn ´ Pqpf | q Àαn .

B. Technical Lemmas

Lemma B.1. Suppose CA ą 2 and CA ě 1{πA pi |s; θq for all θ PΘ, s PS and i Ps. Then for any θ PΘ:

|Lpθ  ´q Lpθ˚ | q ď2CA H 2pθ, θ̊ q, (24)

Proof of Lemma B.1. By definition,

|Lpθ˚  ´q Lpθ | “q
ˇ̌
ˇ̌E

"
EA

„
log

πA pA|S; θ̊ q
πA pA|S; θq

ˇ̌
ˇ̌S

*ȷ ˇ̌
ˇ̌ .

In particular, for a fixed s  P rN s, we have

E
„
log

πA pA|S; θ̊ q
πA pA|S; θq

ˇ̌
ˇ̌S “ s

ȷ
“ KL

´
πA ¨|p s; θ̊ q

ˇ̌
ˇ
ˇ̌
ˇπA ¨|p s; θq

¯

ď
logpCA ´ 1q

1 ´ 2{CA

!
1 ´

“
1 ´ h2pπA ¨|p s; θ̊ q, πA ¨|p s; θqq

‰2
)

pby log-Sobolev inequality (Diaconis & Saloff-Coste, 1996, Theorem A.1)q

“
CA logpCA ´ 2 ` 1q

CA ´ 2
t 2h2 ´ ph2q2u

´
with h2 “ h2`πA ¨|p s; θ̊ q, πA ¨|p s; θq

˘¯

ď 2CA h2pπA ¨|p s; θ̊ q, πA ¨|p s; θqq.

Therefore,
|Lpθ˚  ´q Lpθ | q ďE

␣
2CA h2pπA ¨|p S; θ̊ q, πA ¨|p S; θqq

(
“ 2CA H 2pθ˚ , θq.
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Lemma B.2. Let Cs˚
.
“ 1

πS ps˚ q and r s˚
.
“ maxj Ps˚ r j , then the following inequality holds for any θ1, θ2 PΘ:

ˇ̌
ˇ̌Vps˚ ; θ1  ´q Vps˚ ; θ2q

ˇ̌
ˇ̌ ď r s˚ Cs˚ ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 1

ȷ

where || ¨ ||1 denotes the L 1 norm.

Proof of Lemma B.2.
ˇ̌
ˇ̌Vps˚ ; θ1  ´q Vps˚ ; θ2q

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ES

«
IpS “ s˚ q

πSpSq

ÿ

iPS

r i,S

ˆ
πA pi |S; θ1  ´q πA pi |S; θ2q

˙ ff ˇ̌
ˇ̌ (25)

ď ES

«ˇ̌
ˇ̌IpS “ s˚ q

πSpSq

ÿ

iPS

r i,S

ˆ
πA pi |S; θ1  ´q πA pi |S; θ2q

˙ ˇ̌
ˇ̌
ff

(26)

ď
ˇ̌
ˇ̌
ˇ̌
ˇ̌IpS “ s˚ q

πSpSq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
8

ES

«

IpS “ s˚ q
ˇ̌
ˇ̌
ÿ

iPS

r i,S

ˆ
πA pi |S; θ1  ´q πA pi |S; θ2q

˙ ˇ̌
ˇ̌
ff

(27)

ď Cs˚ ES

«

IpS “ s˚ q
ÿ

iPS

ˇ̌
ˇ̌r i,S

ˆ
πA pi |S; θ1  ´q πA pi |S; θ2q

˙ ˇ̌
ˇ̌
ff

(28)

ď r s˚ Cs˚ ES

«
ÿ

iPS

ˇ̌
ˇ̌
ˆ

πA pi |S; θ1  ´q πA pi |S; θ2q
˙ ˇ̌
ˇ̌
ff

(29)

“ r s˚ Cs˚ ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 1

ȷ
, (30)

where Eq. (25) comes from the sample-based estimation of ErRpsqs(Eq. (1)), Eq. (27) comes from the Hölder’s inequality,

Eq. (28) comes from the fact that

ˇ̌
ˇ̌
ˇ̌
ˇ̌ IpS“ s˚ q

πS pSq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
8

“ Cs˚ because IpS“ s˚ q
πS pSq has the value zero everywhere except at s “ s˚ .

The last equality follows from the definition of L 1 norm.

Lemma B.3. For any θ1, θ2 PΘ,

ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 1

ȷ
ď 2

?
2
a

H 2pθ1, θ2q.

Proof of Lemma B.3. We first use the facts that (1) L 1 “ 1
2 TV where TV is the total variation distance and (2) TV ď?

2h (Harsha, 2011) where h is the Hellinger distance to have that for any s PS,

||πA ¨|p s; θ1  ´q πA ¨|p s; θ2 ||q 1 ď 2
?

2h
`
πA ¨|p s; θ1q, πA ¨|p s; θ2q

˘
. (31)

From (31), we have

||πA ¨|p s; θ1  ´q πA ¨|p s; θ2 ||q 1 ď 2
?

2h
`
πA ¨|p s; θ1q, πA ¨|p s; θ2q

˘
,

||πA ¨|p s; θ1  ´q πA ¨|p s; θ2 ||q 2
1 ď 8h2`πA ¨|p s; θ1q, πA ¨|p s; θ2q

˘
.

Taking expectation with respect to S on both sides, we have

ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 2

1

ȷ
ď 8ES

„
h2pπA ¨|p S; θ1q, πA ¨|p S; θ2qq

ȷ
,

ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 2

1

ȷ
ď 8H 2pθ1, θ2q.

By the Jensen’s inequality, we have
„
ES ||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 1

ȷ 2

ď ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 2

1

ȷ
.
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This implies that

ES

„
||πA ¨|p S; θ1  ´q πA ¨|p S; θ2 ||q 1

ȷ
ď 2

?
2
a

H 2pθ1, θ2q.

Lemma B.4 (Properties of H and H 2). For any θ1, θ2, θ3 PΘ, the following inequalities hold:

H pθ1, θ2q ď H pθ1, θ3  `q H pθ2, p3q;
`
H pθ1, θ2q

˘2
ď H 2pθ1, θ2  q ďH pθ1, θ2q;

H 2pθ1, θ2q ď 2H 2pθ1, θ3  `q 2H 2pθ2, θ3q.

Proof of Lemma B.4. For ease of notation, for i “ 1, 2, 3, we use pi to denote πA parametrized by θi , i.e., pi pa|s  “q
πA pa|s; θi q.

(1) Notice that for any s P S,
a

h2pp1 ¨|p sq, p2 ¨|p sqqis just the regular Hellinger distance that satisfies the triangular
inequality. Hence we have

a
h2pp1 ¨|p sq, p2 ¨|p s  qq ď

a
h2pp1 ¨|p sq, p3 ¨|p s  `qq

a
h2pp2 ¨|p sq, p3 ¨|p sqq. (32)

Take expectation of both side of Eq. (32) with respect to S, we have

ES

”a
h2pp1 ¨|p Sq, p2 ¨|p Sqq

ı
ď ES

”a
h2pp1 ¨|p Sq, p3 ¨|p Sqq

ı
` ES

”a
h2pp2 ¨|p Sq, p3 ¨|p Sqq

ı
.

By the definition of H , this means that

H pθ1, θ2  q ďH pθ1, θ3  `q H pθ2, θ3q.

(2) For the first inequality, by applying the Jensen’s inequality, we have
ˆ

E
„a

h2pp1 ¨|p Sq, p2 ¨|p Sqq
˙ȷ 2

ď E
„ ´ a

h2pp1 ¨|p Sq, p2 ¨|p Sqq
¯2

ȷ
. (33)

Then the inequality follows.

For the second inequality, we have

H pθ1, θ2  ´q H 2pθ1, θ2  “q ES

”
hpp1 ¨|p Sq, p2 ¨|p S  ´qq h2pp1 ¨|p Sq, p2 ¨|p Sqq

ı
(34)

“ ES

”´
1 ´ hpp1 ¨|p Sq, p2 ¨|p Sqq

¯
hpp1 ¨|p Sq, p2 ¨|p Sqq

ı
. (35)

Note that for any s,
´

1 ´ hpp1 ¨|p sq, p2 ¨|p sqq
¯

is a non-negative function because the Hellinger distance is no larger than 1,

and hpp1 ¨|p sq, p2 ¨|p sqqis also a positive function because it is a metric. We have Eq. (35) as the expectation of non-negative
functions, and thus we have

ES

”´
1 ´ hpp1 ¨|p Sq, p2 ¨|p Sqq

¯
hpp1 ¨|p Sq, p2 ¨|p Sqq

ı
ě 0.

Then the inequality follows.

(3) Notice that for any a, b, c, we have pa ´ bq2 ď 2pa ´ cq2 ` 2pb ´ cq2. With this fact, we have that for any s,

h2pp1 ¨|p sq, p2 ¨|p s  “qq
1
2

ż ´ a
p1pa|s  ´q

a
p2pa|sq

¯2
da (36)

ď
1
2

ż
2
´ a

p1pa|s  ´q
a

p3pa|sq
¯2

` 2
´ a

p2pa|s  ´q
a

p3pa|sq
¯2

da (37)

“ 2 ¨
1
2

ż ´ a
p1pa|s  ´q

a
p3pa|sq

¯2
da ` 2 ¨

1
2

ż ´ a
p2pa|s  ´q

a
p3pa|sq

¯2
da (38)

“ 2h2pp1 ¨|p sq, p3 ¨|p s  `qq 2h2pp2 ¨|p sq, p3 ¨|p sqq. (39)
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This implies that
H 2pθ1, θ2  q ď2H 2pθ1, θ3  `q 2H 2pθ2, θ3q. (40)

Lemma B.5 (Log-Density Ratio Variance Bound). Suppose X „ p is an R-valued random variable with probability density
function p, and p1, p2 are two other probability density functions for X such that p1 and p2 are uniformly bounded from
below by C´ 1 on the support of p. Then we have

EX „ p

ˆ
log

p1pX q
p2pX q

˙ 2

ď 2Ch2pp1, p2q,

where h2 is the squared Hellinger distance in (10).

Proof of Lemma B.5. By logpx  q ď2p
?

x ´ 1qfor any x ě 0, we have

EX „ p

ˆ
log

p1pX q
p2pX q

˙ 2

“
ż ˆ

log
p1pX q
p2pX q

˙ 2
ppxqdx

ď 4
ż

max

$
&

%

˜ d
p1pxq
p2pxq

´ 1

¸ 2

,

˜ d
p2pxq
p1pxq

´ 1

¸ 2,.

-
ppxqdx

“ 4
ż

max
"

1
p2pxq

´ a
p1px  ´q

a
p2pxq

¯2
, 1

p1pxq

´ a
p2px  ´q

a
p1pxq

¯2
*

ppxqdx

ď 4C
ż ´ a

p1px  ´q
a

p2pxq
¯2

dx

“ 2Ch2pp1, p2q.

Theorem B.6 (Sen (2018, Theorem 7.13)). Let F be a measurable function class, such that supf PF }f }8 ď f max for some
constant f max  `8ă . Assume that for A ě ef max , d ě 2, 0 ď ϵ ď f max , and every finitely supported probability measure
Q, we have the covering number (Sen, 2018) as:

N pϵ, F , L2pQ  qq À
ˆ

A
ϵ

˙ d

. (41)

Let σ2
F

.
“ supf PF Epf ´ Ef q2. Then we have

E}Pn ´ P}F À

c
d
n

σ2
F log

A
σF

_
"

d
n

f max log
A
σF

*
.

Proof of Theorem B.6. In this proof, we denote X as the underlying random variable, tX i un
i “ 1 are n i.i.d. copies of X , and

for any f P F , Pnpf q
.
“ 1

n

ř n
i “ 1 f pX i q, Ppf q

.
“ Erf pX qs. Without loss of generality, assume that 0 P F , and for any

f PF , Ppf  “q 0. Let t ϵi un
i “ 1 be i.i.d. Rademacher random variables that are independent of tX i un

i “ 1. By symmetrization,
we have

E}Pn ´ P}F ď 2E sup
f PF

ˇ̌
ˇ̌
ˇ
1
n

nÿ

i “ 1

ϵi f pX i q

ˇ̌
ˇ̌
ˇ
. (42)

Conditional on tX i un
i “ 1, by Dudley’s entropy bound, we have

Eϵ sup
f PF

ˇ̌
ˇ̌
ˇ

nÿ

i “ 1

ϵi
f pX i q?

n

ˇ̌
ˇ̌
ˇ
ď
ż σF,n

0

a
log Npu, F, L 2pPnqqdu, (43)
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where we consider the L 2pPnqas the metric on F , that is, for any f P F , }f }2
L 2pPn q “

1
n

ř n
i “ 1

f pX i q2. We also denote
σ2

F,n
.
“ supf PF }f }2

L 2pPn q, and Eϵ to emphasize that the expectation is taken with respect to the Rademacher random
variables t ϵi un

i “ 1 but holding tX i un
i “ 1 as fixed. By (41) with Q chosen as Pn , we have

(43) À
?

d
ż σF,n

0

c

log
A
δ dδ

ď 2
?

dσF,n

d

log
A

σF,n
pby Lemma B.7q.

(44)

In particular, logpA{σF,n  q ě logpA{f max  q ě1 by assumption, which satisfies the condition for Lemma B.7. Combining
(42), (43) and (44), we have

E}Pn ´ P}F À

c
d
n ˆ E

d

σ2
F,n log

A
σF,n

ď

c
d
n ˆ

d
1
2

Epσ2
F,n qlog

A2

Epσ2
F,n q

˜

by the concavity of u ÞÑ

c

u log
A2

u

¸

,

(45)

where E takes expectation with respect to tX i un
i “ 1. Notice that

Epσ2
F,n  “q E sup

f PF
Pnpf 2  q ďE sup

f PF

!
|pPn ´ Pqpf 2 | `q Ppf 2q

)
ď E}Pn ´ P}F 2 ` σ2

F ,

where we define F 2 .
“ t f 2 : f PF u. We aim to apply (42), (43), (44), (45) to F 2. Notice that supf 2PF 2 }f 2}8 ď f 2

max ,
σ2

F 2 ,n
.
“ supf 2PF 2 }f 2}2

L 2pPn q ď f 2
max supf PF }f }2

L 2pPn q “ f 2
max σ2

F,n . By }f 2 ´ g2}L 2pPn q “
a

Pn rpf ` gq2pf ´ gq2  s ď

2f max
a

Pnpf ´ gq2 “ 2f max }f ´ g}2
L 2pPn q for any f, g PF , we further have

N p2f max ϵ, F2, L2pPn  qq ďN pϵ, F , L2pPn  qq À
ˆ

A
ϵ

˙ d

.

Therefore, applying (42), (43), (44) and (45) to F 2, we have

E}Pn ´ P}F 2 À

c
d
n ˆ

d
1
2

f 2
max Epσ2

F,n qlog
4A2

Epσ2
F,n q

.

Define B .
“
b

1
2 Epσ2

F,n qlog A 2

Epσ2
F,n q. Then we have

Epσ2
F,n  ´q σ2

F À

c
d
n

f max B.

By u ÞÑ u log A 2

u is non-decreasing on u  P p0, A2{esand non-increasing on u  P rA2{e,`8q , we have

B 2 “
1
2

Epσ2
F,n qlog

A2

Epσ2
F,n q

À
1
2

#˜

σ2
F `

c
d
n

f max B

¸

^
A2

e

+

log
A2

´
σ2

F `
b

d
n

f max B
¯
^ A 2

e

.

In particular, B ď
b

A 2

2e , σ2
F ď f 2

max ď A2{e2 ă A2{e. Then the cap A2{e is inactive as d{n Ñ 0 asymptotically.
Therefore,

B 2 À

˜

σ2
F `

c
d
n

f max B

¸

log
A
σF

.

In particular, B is bounded by both roots of the corresponding quadratic equation:

B À
1
2

$
&

%

c
d
n

f max log
A
σF

`

d
d
n

f 2
max

ˆ
log

A
σF

˙ 2

` 4σ2
F log

A
σF

,
.

-
À

# c
d
n

f max log
A
σF

+

_
c

σ2
F log

A
σF

.
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Combined with (45), we further have

E}Pn ´ P}F À

c
d
n

B À

c
d
n

σ2
F log

A
σF

_
"

d
n

f max log
A
σF

*
.

Lemma B.7. Suppose a, A ą 0 such that logpA{a  q ě1. Then we have

ż a

0

c

log
A
u du ď 2a

c

log
A
a

.

Proof of Lemma B.7. Define

f paq
.
“

#
2a
b

log A
a ´

şa

0

b
log A

u du, a ą 0;
0, a “ 0.

Then f is continuous at 0. Moreover, for a ą 0, we have

f 1pa  “q

c

log
A
a ´

1
b

log A
a

,

which is nonnegative if logpA{a  q ě1. As a Ñ 0` , we further have

f paq
a “ 2

c

log
A
a ´

1
a

ż a

0

c

log
A
u du

“

c

log
A
a ´

1
2a

ż a

0

1
b

log A
u

du pby integration-by-partq

ě

c

log
A
a ´

1

2
b

log A
a

;

lim inf
aÑ 0`

f paq
a  `8ě .

Therefore, for any a ě 0, we have f pa  q ě0, which concludes the proof.
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