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Abstract
We consider a class of assortment optimization
problems in an offline data-driven setting. A firm
does not know the underlying customer choice
model but has access to an offline dataset con-
sisting of the historically offered assortment set,
customer choice, and revenue. The objective is
to use the offline dataset to find an optimal as-
sortment. Due to the combinatorial nature of
assortment optimization, the problem of insuffi-
cient data coverage is likely to occur in the offline
dataset. Therefore, designing a provably efficient
offline learning algorithm becomes a significant
challenge. To this end, we propose an algorithm
referred to as Pessimistic ASsortment opTimizA-
tion (PASTA for short) designed based on the prin-
ciple of pessimism, that can correctly identify the
optimal assortment by only requiring the offline
data to cover the optimal assortment under general
settings. In particular, we establish a regret bound
for the offline assortment optimization problem
under the celebrated multinomial logit model. We
also propose an efficient computational procedure
to solve our pessimistic assortment optimization
problem. Numerical studies demonstrate the su-
periority of the proposed method over the existing
baseline method.

1. Introduction

One of the most critical problems faced by a seller is to
select products for presentation to potential buyers. Often
faced with limited display spaces and storage costs in both
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brick-and-mortar and online retailing, the seller needs to
carefully choose a set of products from the vast collection of
all available products for displaying to its customers. In this
line, the problem of selecting an assortment, i.e., a collection
of products from all available products, in order to maximize
the seller’s revenue is the assortment optimization problem.
Obviously, the choice behavior of customers (McFadden,
1981) is of great importance in the problem of assortment op-
timization. Without loss of generality, we assume the choice
of each customer can be described by a preference vector® .
This subsumes the seminal multinomial logit (MNL) model
(McFadden, 1973) which is arguably the most well-studied
and widespread models in assortment optimization literature
(Please see Section 6 for more details) (Talluri & van Ryzin,
2004; Caro & Gallien, 2007; Rusmevichientong et al., 2010;
Davis et al., 2013; Chen et al., 2021a; Aouad et al., 2022).

In practice, & is often unknown and needs to be estimated.
Assuming no historical data of customers, dynamic assort-
ment optimization adaptively learns & in a trial-and-error
fashion by updating the assortment and observing the sub-
sequent choices of customers sequentially (Caro & Gallien,
2007; Chen et al., 2020; Rusmevichientong et al., 2020;
Chen et al., 2021b; Li et al., 2022). Meanwhile, in our era
of Big Data, companies often collect abundant customer
data. Therefore, it is often in companies’ best interest to
learn from the existing (potentially massive) offline datasets
rather than starting from scratch. Moreover, offline learn-
ing is beneficial since online exploration can sometimes be
expensive or infeasible. Hence, we take the first stab to
formally study the following important question faced by
every seller.

Research Question: Given a pre-collected offline dataset
of historically offered assortment, customers choices, and
revenue, how can we find an efficient and theoretically justi-
fied offline algorithm to estimate the optimal assortment set
without unrealistic assumptions on the offline dataset?

When the dataset is not adaptively collected, it is not un-

common to encounter the challenge of insufficient coverage
of data. For estimators such as the maximum likelihood

estimator (MLE) to approximate & accurately, the offline
dataset must include sufficiently many assortments and cus-
tomer choices. In other words, the data-collecting process
needs to sufficiently explore different assortments (by the
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seller) and different choices (by the customers). This is un-
likely to happen for offline datasets because the seller would
not choose unreasonable assortments whose expected rev-
enues are obviously suboptimal, and the customers would
not choose products against their preferences.

Major Contributions. The main contribution of this work
is two-fold. First, based on the principle of pessimism, we
propose the Pessimistic ASsortment opTimizAtion (PASTA
for short) framework, which correctly identifies the optimal
assortment. In particular, our framework only requires that
the offline dataset covers the optimal assortment set instead
of all possible (combinatorially many) assortment sets. Sec-
ond, we derive the first finite-sample regret bound for offline
assortment optimization under the multinomial logit (MNL)
model (Please see Section 6), one of the most widely used
models for modeling customers’ choices. We subsequently
propose an algorithm, also with the name PASTA, that can
efficiently solve the pessimistic assortment optimization
problems. Experiments on the simulated datasets (so that &
is known) corroborate the efficacy of pessimistic assortment
optimization.

Paper Organization. We briefly review the related work in
Section 2 and the preliminaries in Section 3. We propose
the pessimistic assortment optimization in Section 4. In
Section 5, we present the theoretical results. In Section 6, we
study pessimistic assortment optimization under the MNL
model as a concrete example. In Section 7, we propose an
algorithm that can solve the problem efficiently. We provide
experimental results in Section 8, after which we conclude.

2. Related Work

Assortment Optimization. The assortment optimization
problem under the MNL model without any constraints
was first studied in (Talluri & van Ryzin, 2004). Then
more complicated assortment optimization problems un-
der various types of constraints, including space require-
ment (Rusmevichientong et al., 2009) and cardinality (Rus-
mevichientong et al., 2010), were considered. (Davis et al.,
2013) proposed a linear programming (LP) formulation of
the assortment optimization problem that includes several
previous works as special cases corresponding to different
constraints in the formulation of LP. This line of work as-
sumes that the true parameters of the customer models are
known (or at least can be accurately estimated) (Gallego &
Topaloglu, 2014; Feldman & Topaloglu, 2015; Flores et al.,
2019; Désir et al., 2020; Liu et al., 2020; Aouad et al., 2021).
Another closely related line of work is dynamic assortment
optimization (Caro & Gallien, 2007). In the setting of dy-
namic assortment optimization, the seller without any prior
information about the customers, has finite selling horizons
in which it observes the choices of customers and, based
on the observed behaviors, optimize their assortments in

an adaptive, trial-and-error fashion (Sauré & Zeevi, 2013;
Wang et al., 2018; Chen et al., 2021a; Rusmevichientong
et al., 2020; Chen et al., 2020; 2021b). In comparison with
the online setting used in dynamic assortment optimization,
our work departs from the existing literature by focusing

on the offline setting where the seller only has collected

datasets but not any control on the data-collecting process.

Pessimism in Offline Learning. The principle of pes-
simism has been successfully used in reinforcement learn-
ing (RL) for finding an optimal policy with pre-collected
datasets. On the empirical side, it has helped with improv-
ing the performance of both the model-based approach and
value-based approach in offline setting (e.g., Yu et al., 2020;
Kidambi et al., 2020; Kumar et al., 2020). The importance
of pessimism has been analyzed and verified theoretically
in the setting of RL (Jin et al., 2021; Fu et al., 2022). Our
work main contribution is to take a pessimistic approach
to assortment optimization problems and demonstrate its
empirical and theoretical values. Moreover, our work differs
from the above works by focusing on a decision-making
problem with exponentially many choices.

3. Preliminary

LetrNs< t 1, 2, .., Nudenote the set of N distinct items.
For each item /, a feature vector X; P R? is available.
Assume that tX;upn ¢ are fixed vectors. Denote the col-
lection of all possible assortments under consideration by
S D 2NsztHu . For the offline data, we define a random
vector pS; A, Rqfrom each customer, where S D N s de-
notes an assortment presented to the customer, A PS'Y t0u
denotes the item purchased by the customer for A P S
(A “ 0 where no purchase is made), and R denotes the
corresponding revenue. The ultimate goal of assortment
optimization is to find an optimal set of items S P S for
all customers to maximize the expected revenue. A specific
goal of this work is to study how to leverage the offline
data, which consists of i.i.d. samples of the random triplet
pS, A, Rgin order to learn an optimal assortment.

For the assortment optimization with offline data, a fun-
damental question is to estimate the expected revenue for
an unexplored assortment S P S. This amounts to address-
ing the causal relationship between assortment and revenue.
Under the celebrated potential outcome framework (Rubin,
1974), let the random variable RpSqbe the potential revenue
under an intervention that the assortment is set to be S P S.
Our goal is to find an optimal assortment

S Parg maxErRpsgs
SPS

Note that the expected potential revenue ErRpSqsdefined in
the counterfactual world may not be identifiable from the
observed data without additional assumptions. Throughout
this paper, we make the following standard consistency and
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un-confoundedness assumptions in causal inference.

Assumption 3.1. [CONSISTENCY | With probability one,
the observed revenue coincides with the potential revenue of
the observed assortment. That is, R “ RpSqalmost surely.

Assumption 3.2. [UN-CONFOUNDEDNESS ] The potential

revenues are independent variables of the observed assort-
ment, i.e., t RpSqups KKS.

Assumption 3.1 ensures that the observed revenue is consis-
tent with the potential revenue of purchasing item A p%0q,
or no purchase if A “ 0, under the observed assortment S.
Assumption 3.2 rules out possible unobserved factors that

could confound the causal effect of assortment on revenue!.

Denote TlspSq “ PpS “ Sqas the probability of observ-
ing assortment S in the offline data. To non-parametrically
identify ErRpSqsfor every S P S, we further require the
following positivity assumption (Imbens & Rubin, 2015).

Assumption 3.3. [POSITIVITY EVERYWHERE ] For all S P
S, the probability TTpSqof observing assortment S is positive

(i.e. IpSq a0).

Assumption 3.3 requires that every assortment can be ob-
served with a positive chance in the offline data.  This is
a strong assumption that will be later relaxed it Assump-
tion 5.1 (1), i.e., requiring positivity only at optimum. With
Assumptions 3.1-3.3, we can identify the effect of an assort-
ment set via inverse propensity score weighting (Rosenbaum
& Rubin, 1983): for any SP S,
«p PS¢ SR

ErRpsgs “E Topq (1)
where the expectation in the right-hand-side is taken with
respect to the data distribution of pS, A, Rq However, when
the number of possible assortments |S| grows exponentially
in N, Assumption 3.3 rarely holds for all S P Sin practice,
given potentially limited offline data particularly when N is
large. Moreover, when an assortment S corresponds to an
inferior expected revenue ErRpSqs it may not be considered
by the seller at all. As a consequence, the probability of
observing such an assortment 7IspSqis zero. These may
prevent us from estimating (1) for every assortment S P S.

We may tempt to use the following identification strategy:

ErRpSgs “EpR|S “ Sq pby Assumptions 3.1-3.2q

“ ErEpRIS « s, Ags Tapls; xdsiv (2)
iPSYt Ou

'With the observed features tX;j U prn s, it can be possible to
relax Assumption 3.2 to a more plausible condition: the inde-
pendence holds conditional on the observed features. However,
for notation simplicity, without loss of generality, we consider
Assumption 3.2.

where X “t Xjuypwg are the features across items,
Tap|s; xq ¢ PpA “ i|S “ sqis the customer’s choice
probability (McFadden, 1973) of purchasing the /-th item
given an assortment S, I's; ¢ EpR|S « S, A« Iqis the
conditional expected revenue given the assortment S with
the /-th item being purchased. For ease of notation, we omit
the features X in 77a when there is no confusion. Identifying
ErRpsgsas above requires the knowledge of 7 p [Sqand
I'si, which can be learned from data. Although such an
identification approach does not explicitly depend on 7Ts pSq,
full identification of Tla p [Sqand I's,i requires the positivity
of s pSq for every S P S as assumed above.

Despite the aforementioned challenge of insufficient cov-
erage over assortments, we argue that finding an optimal
assortment S may not necessarily require 7lspSq g0 every-
where but only at the optimal assortment S . In particular,
based on (2), when computing

S Parg max
SPS

Tap |Sq's,i 3)

iPSYt Ou

we may not necessarily need to estimate 7ap [Sqand Is,i
well for S %o S, as long as sub-optimal assortments can
be safely ruled out during the optimization. Our insight
is that the estimation of Tap/[Sqand I's,i for the less seen
assortment S in the data often incurs large errors. Deploying
pessimism by taking the estimation error into consideration
can rule out those assortments (Jin et al., 2021), while stan-
dard predict-then-optimize (Bertsimas & Kallus, 2020) or
empirical maximization approaches (Zhao et al., 2012) may
suffer from an overestimation of ErRpSgs Hence, in our pro-
posed pessimistic assortment optimization framework, we
only require the positivity at optimum 7lspS q g0, which
is a much weaker assumption than that of Assumption 3.3.

In this paper, we focus on handling the estimation error
from TTa p [Sqwhile assuming that 's; is known. This is a
typical assumption in the literature of assortment optimiza-
tion (Talluri & van Ryzin, 2004; Davis et al., 2013; Flores
etal., 2019; Aouad et al., 2021). Our framework can be
naturally extended to the scenario where we need to esti-
mate I's,i ’s. For optimization tractability, we further assume
that I's; “ I that the expected revenue depends only on the
purchased item but not on the underlying assortment. This
assumption is reasonable in many applications where the
revenue is a deterministic consequence of a purchased item.
This can also be easily extended under our pessimism frame-
work but could result in a more complicated assortment
optimization problem.

Below, without loss of generality, we assume that/; & O for
P Ngwhiley“ 0 (no purchase incurs zero revenue).
For any vector X, let XY and | X | p respectively denote the
transpose and ¢5-norm of X. For any setA, let |A | denote the
cardinal number of A. For any two sequences t Wpquig 1



Pessimistic Assortment Optimization

and tYplquis 1, we write @plq A Ypiq(resp. @pNq A
Yp19) whenever there exist constants €1 g 0 (respectively
C, g 0 such that WP1q & C;Yplq(resp. Wplq d' C,Ypq).
Moreover, we write @p1q= y plqwhenever @plq AYplq
and @Wpq Aypig

4. Pessimistic Offline Assortment Optimization
In this section, we introduce our pessimistic offline assort-
ment optimization framework. To this end, based on Eq. (2),
we first estimate the choice probability 7Ta g [Sq from offline
data. Subsequently we calculate optimizing values in op-
timization problem (3) using a plug-in estimator of 7Ta p'q
Consider a generic form of model Ta pd|s; 6 , Xqwith the
unknown true parameter & . Again, for ease of notation, we
omit the features X in 7Ta when there is no confusion. We
remark that € could be either finite-dimensional or infinite-
dimensional. Given an offline dataset D « t S, Ai, Rid. 1
where N is the sample size, one can estimate the model
parameter & via maximum likelihood estimator (MLE).
Specifically, define the likelihood-based loss functionPn pPq
as

Y
pnFﬁq « ﬁ

j«

log mpAi |Si; &g
]

Then the MLE of the unknown parameter & is 8y, P

arg mingpg PnpPq where O is a pre-specified parameter
space. Let

Vis; Bun a¢ ° Tap|s; BuLn -

ipPs

Here, we define Vps; 8 qas the value function of S with the
customer choice model for 774 depending on the parameter
0 . The plug-in estimator of the optimal assortment based
on (3) is

! )

BuLn Pargmax Vpsi@unq -
SPS
The MLE-based approach first plugs in the MLE of € , and
then directly optimizes the corresponding estimated value
function.

As discussed before, a disadvantage of the above estimate-
then-optimize approach is that the estimation error of €y,
caused by insufficient data coverage may result in the over-
estimation of Vps; 8 q which will propagate to downstream
optimization. Alternatively, we can quantify the estimation
uncertainty by considering the following likelihood-ratio-
test-based confidence region (Owen, 1990):

erﬂnq“ tOPO: pn&q 'pn&r\/u_,n q donu

where 0n g 0is pre-specified. Later we analyze the MNL
model as a special case (Please see Section 6). With 0
chosen as Opfd| Nq we establish in Theorem 6.1 that & P

On pn qwith high probability. Such a guarantee does not
require any data coverage assumption on assortments.

For now on, for simplicity, we drop @n and write Qn for
QnpXn qwhen there is no ambiguity.

In order to robustify assortment optimization against plug-in
estimation errors, we consider a pessimistic version of (3)
by taking the estimation uncertainty from Qn into account.
Specifically, we propose the Pessimistic ASsortment opTi-
mizAtion (PASTA) by solving

Brastan Parg maxmin Vps; & 4)
SPS OPQn

Here, for a fixed assortmentS P S, the inner layer of mini-
mization computes the worst-case value among all possible
model parameters 8 within the confidence set Qn. In par-
ticular, if the estimated value Vps; 8y, qfor S is highly
uncertain due to insufficient data coverage, the worst-case
value minepq, Vps; is likely much smaller than Vps; 6 g
In that case, the outer layer of (4) may prefer another assort-
ment with a relatively higher worst-case value. In this way,
the inner layer of (4) rules out those assortments with less
frequency in the offline data. Hence, one essential advantage
of such a strategy is that it avoids an overestimation of the
value function. In other words, by the plug-in approach, with
a non-negligible chance, the estimated value VpS; ﬂv"_,n q
can be much larger than the truth Vps; 8 q which further
leads to a possibly sub-optimal assortment but optimized
by the MLE-based approach. In contrast, PASTA is aware
of insufficient data coverage, and hence more pessimistic
about those highly uncertain value estimates. In the next sec-
tion, we theoretically analyze the advantage of the PASTA
approach.

5. Theoretical Results

In this section, we show that the PASTA method (4) en-
joys a generic regret guarantee under a weak assumption
of positivity at optimum that is TlspS q g 0. Specifically,
given PpasTan in (4), we adopt the following regret as the
performance metric to evaluate the PASTA’s performance

Rpgeastan a4 “VpS ;6 q * Vpteastan ; 6 g

We aim to derive a regret bound for R MBrasTan gunder
generic conditions. Denote L pPq “ Er’ log e pA |S; &gs
as the population loss function. All detailed proofs can be
found in the Appendix 9.

We first show that whenever & P Qn that the confidence
region covers the true parameter, the regret of the PASTA
method can be calibrated by the worst-case estimation error

among 6 P Qn of the value function at the optimal assort-
ment S .

Lemma 5.1. Let Bpastan be the solution by the PASTA
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method defined in (4). If & P Qn, then
(

Rpfpastan g d’g;gx Vs 6q Vs e
Proof of Lemma 5.1.
VS ;69 ViBeastan ;6 g
dVes;0q " i ViBeastan ; &
d VpS;0q minVpS &)  poyPeastan solves (4)
.o .
« 4 . "V . )
max Vps ;649 "V & =

py & Pnq

Lemma 5.1 highlights the benefit of pessimistic optimiza-
tion. In particular, guarantees for the regret of estimate-then-
optimize approaches require the control of estimation error
uniformly overall S P S, that is, supsps Vps;BuLn q
Vis; 6 d, in order to control error caused by the greedy pol-
icy, i.e., VBuLn »8un a4 ~ VeBuLn » € g. This may typ-
ically entail that the value function is estimated uniformly
well across S P S. It further explains the reason why an
estimate-then-optimize approach would require the positiv-
ity Assumption 3.3 for all S P S. In contrast, our Lemma
5.1 suggests that controlling the estimation error at S can
be enough. Therefore, it is sufficient for our PASTA method
to require the positivity only at optimum.

Next, we impose the following assumptions to obtain the
regret guarantee of our algorithm.

Assumption 5.1.
(D) [POSITIVITY AT OPTIMUM ] The probability of observ-
ing the optimal assortment is positive, that is, TlspS q g0.
(II) [LIKELIHOOD -BASED CONCENTRATION ] For any
0 & 94 1, with probability at least 1" 0, we have: (1)
8 P, and (2)

—v

supLifa L q * Paf Pupf g " @
PQn

We emphasize that PASTA only requires the positivity at

optimum. Compared to the positivity at all assortments in
Assumption 3.3, our Assumption 5.1 (I) is much weaker and
hence more plausible to be satisfied. Assumption 5.1 (II) is
a generic condition for likelihood-based concentration. We
later justify that (II) above indeed holds under the general
MNL model in Theorem 6.2. In particular, Statement (1)
of Part (II) requires the validity of the likelihood-ratio-test-
based confidence region Qn while Statement (2) of Part (II)
requires the concentration of the likelihood-based localized
empirical process (van der Vaart & Wellner, 1996).

The positivity at optimum is associated with a finite constant
Cs “ 1{TpS qrelated to the learning performance. We
also denote 'ss “ maxjps I as the largest possible rev-
enue among all items in S . Notice that both constants Cs

and I's: depend on the optimal assortment S~ only. In the
following lemma, we establish the estimation error bound
at the optimal assortment S .

Lemma 5.2. Under Assumption 5.1, for any 08 0 & 1,
with probability at least 1" 0, we have for any 6 P Qn,

o . . ?
Vs ;0q " Vps ;80 Ars Cs ™ .

Combining Lemmas 5.1 and 5.2, we summarize the regret
bound for PASTA in the following theorem.

Theorem 5.3. Under Assumption 5.1, forany 08 0a 1,
with probability 1" 0, we have

N ?
RpBpastan q Ars Cs ™ Oy

6. Application: Multinomial Logit Model

In this section, we consider the Multinomial Logit Model

(MNL) for customer choices TTapa|Sq This is one of the

most widely used models in assortment optimization liter-
ature (Feng et al., 2022). Under the MNL model, we will

verify Assumption 5.1 (II) and establish the regret bound

for PASTA in this case.

Given the item-specific features t X Upn 5, MNL assumes
that customer’s preference for the /-th item is proportional
to exppXy € q where & P O is the underlying unknown
parameter. Here, we assume that the parameter space © D
RY is compact with G0 ¢ supspg |6}2 & '8 . Given an
assortment S, the customer choice probability under MNL
is given by

. J g
T[Aﬁ |S, 9 q « . :.;expp(l q

, @Ps. (5
1 szepr(fgq )

Moreover, the probability of no-purchase is normalized to
Tals; 6. “1[p1" | ps expp¥} € qgBased on (3) and
the MNL model (5), the objective function for assortment
optimization can be written as

¥
ips i exppX? Oq

V . 113 )
P 8T 4 ips €xppX; 6g

We first justify Statement (1) of Assumption 5.1 under the
MNL model. To this end, given the compactness of O, there
exists a finite constant Ca g 0 such that forall PO, SP S
and/ PS, we have 1{Tap|s; @) dCa.

Lemma 6.1. Consider the MNL model (5) with a compact
set ©. Assume that & P ©. Forany 0 & 0 & 1, with
probability at least 1" O, we have

, . Cuad 6
pnpﬁ q 'p”FpML,n q A% N |Og méax.
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Lemma 6.1 suggests that, with On chosen as Cﬁ d log %gi,

we can guarantee that & P Qn with high probability, which
justifies Statement (1) of Assumption 5.1 (I). In particular,
the order of Opn is Opd{Ng Notice that Lemma 6.1 does

not depend on the distribution of S, which implies that no
data coverage assumption on the observed assortments is

required. The assumption that & P © for © a compact
set requires that given any assortment, every product has a

chance of being selected by the customer in the data. This

is a mild requirement as 6 is always finite.

Next, we justify Statement (2) of Assumption 5.1 (II) in the
following theorem.

Lemma 6.2. Consider the MNL model (5). Suppose con-
ditions in Lemma 6.1 hold, and LpPqand L nPqare uni-
Jformly and strongly convex. Let On = =£=log 9%%. For

04 04 1, with probability & pl* 9q we have

;upitﬁq ‘Lf q PapPg Papf g d an.
PQn

Finally, with the Assumption of positivity only at optimum
(Assumption 5.1 (1)), we can apply Theorem 5.3 to establish
the regret bound for PASTA in MNL.

Theorem 6.3. Consider the MNL model (given in Equation
(5)). Assume that the conditions in Lemma 6.2 hold and that
TispS q g0. FixaOP P, 1q Suppose Brastan is output
of PASTA withQn = C%d log %% Then with probability
at least 1° 0, we have
c_ 00
Cuad 6

max

Rpgeastan q Afs Cs o~ log—5—

We remark that under the MNL, model (given in Equation
(5)), the order of regretis Op Wq This is due to the
concentration rate of MNL’s empirical likelihood ratio in
Lemma 6.1. Such a rate of regret bound matches those in
the literature under parametric model assumptions (Qian
& Murphy, 2011; Mo & Liu, 2022). However, existing
literature requires the positivity7IspSq g0 at everyS P S. In
contrast, Theorem 6.3 only requires positivity lspS q g0
at the optimal assortmentS . Furthermore, we can show that
minipy Tap | S “ rNg 8y d1{N for any 6 P ©, which
impligs that Ca & N. Therefore, our regret is of order at
least N, where N is the total number of available items.
It is an interesting problem to establish the minimax lower
bound of offline assortment optimization in terms of N, n, d
and the cardinal number of S . This will investigated in a
subsequent work.

7. PASTA Algorithm

In this section, we propose an efficient algorithm for solving
the max-min problem given in Optimization Problem (4) for

the MNL model. Specifically, let

\/m &q « y rf.l eXpr(IJ eq
, ips 1 jPs exppr 9q

and given the confidence set Qn, we wish to solve

max min Vps;

SPS 6PQn rs; &

The proposed iterative algorithm is executed for a maximum
of T iterations. At the t-th iteration, given St and 6 from the
previous iteration, we consecutively execute the following
two steps:

« Step 1: Compute the optimal assortment St 1 given 6
(see Section 7.1).

« Step 2: Compute the optimal & 1 using St 1 (see
Section 7.2).

The corresponding pseudo-code is presented in Algorithm 1
below.

Algorithm 1 PASTA
Input: offline dataset tpSi, Ais Riqd 1; Qn; tridh 4
tX; u,N 4; maximum number of iterations T
Output: the solution to pessimistic assortment optimiza-
tion P ¥
bapbg¢ * L log mpAilSi; 6
GuLn B arg mingp PP
D tOPO: anﬁq ’ pn[ﬁML,n q ddnu
th 0;8D By, /* Initialize Oy as By, */
fort < 1to T do
St b SolveLPrﬂz' o tridy 1:tXiuf\i o]
/* Section 7.1 */
6 B SolveGDpSt, On tridk 4, tXid 1q
/* Section 7.2 */

end for
SP St

7.1. Optimal Assortment Computation

Given the MNL model parameter 6, computing the as-
sortment S+ ¢ that maximizes the expected revenue can be
formulated as a linear programming (LP) problem.

Suppose that an assortment S can be represented by an N -
dimensional binary vector ¥ P 10, W' where Yi “ 1if
and only if / P S. Suppose that S P S corresponds to
the following feasible set for ¥ with M linear inequality
constraints:

# . +
r< ypo A" aydbripMs

jPN

where the matrix of constraint coefficients r&jj Spm sj prN s
is a totally unimodular matrix (Pang, 2017). In other words,
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based on the one-to-one correspondence between S and V,
we have S PSifand only if ¥ PT.

<«

Next, we denote Vi “ exppX} Biqas the preference score
for the /-th item. The customer choice probability under
the MNL model (5) becomes Tap/[Sq © ﬁﬁ The
optimization for St 1 can be formulated as

f
g iViYi

max —

ypr 1

(6)

J
iPrN s viVi

which is equivalent to the following linear programming
problem (Davis et al., 2013):

y
mﬁx riw;
i ij PriN -sYt Ou jPiN's
. y N [13
subject to Wt Wy <A1
JPiN's

y ©

wi o, ,
a - dbhw, @P Ms
JjPrN's /

wW; .
Od’v—j’d’Wo @P Ns

In particular, we can recover the optimal solution to Prob-
lem (6), denoted as ¥ , using the optimal solution to Prob-
lem (7), denoted by W | via the following formula:

; .
VW, @PNs (8)

y; (13
To conclude, at the {-th iteration, in order to compute an
optimal assortment St 1 for a given 6, we first solve an
LP problem in (7) for W' . Then we recover ¥~ via (8).
Finally, the updated assortment St 1 is obtained by the
correspondence / PS¢ 1 if and only if V, “ 1.

7.2. Model Parameter Computation
For a given optimized assortment St ¢ from Section 7.1, we
aim to search for the worst-case MNL parameter & 1 from
the confidence set (0n that minimizes the expected revenue.
In particular, we employ a gradient descent with line search
(GDLS) method to compute 8 1 by solving the following
problem
gnin Vise +; & )
r

Here, we remark that VpSe 4; 8 < -

ips, o i exppi Oq

' iPSg 4 exppX; Oq 18
a locally Lipschitz function in 6. Given a feasible initial
parameter 69 P O, we run at most L gradient descent
steps. Suppose Bt is the step size for gradient descent in the
{_th step. Ateachstep £ “ 1,2, " 7 L, we do a line search
to maintain the feasibility. In particular, given & 19 P Qp,
we first evaluate the gradient as § “ VoVpSt q; & 1ag
Then we initiate B¢ with a pre-specified step size Br « B,
and check whether 6Pd « 6" 19" B,&, is feasible, i.e.

699 P 3. If not, we set B¢ B By for some pre-specified
CP 1, 1 and recompute 8¥9 « 0¥ 19" B,& Sucha
search is repeated until 674 s feasible. We provide the
pseudocode in Algorithm 2 for the overall process. Note
that L, B, Care all hyper-parameters. In all of our numerical
studies, we setL « 2,8« 0.01and C“ %, which performs
well empirically.

Algorithm 2 Gradient Descent with Line Search (GDLS)
Input: assortment St ¢; feasible set O ; initial parameter
6709 initial step size B; step shrinkage constant C; number
of descent steps L
Output: the updated parameter & 4
tp o
for?“ 1toL do

&« VoVpsy 1; @ 199 /* compute the gradient */
B:b B

oap 60 19 B&

while 79 RQ, do

B B cB  /* decrease the step size */
eap & 197 B,§,
end while
end for
6. 4D Oa

8. Experiments

We compare the PASTA method with assortment optimiza-
tion without pessimism (referred to as the baseline method
in the sequel). Our method and the baseline method are eval-
uated on synthetic data for which the optimal assortment S’
and true parameter & are known so that the true regrets can
be computed. We describe the data generation process and
the baseline method in details below.

8.1. Data Generation

We consider the assortment optimization scenarios de-
scribed by N, K, d, N and P, where N is the total number
of available products; K is the cardinality constraint of the
assortments, i.e., S“ t s : |S| dKu; dis the dimension of
6 and tX; Lf’ 45 1 is the sample size of the offline dataset;
P is the probability for sampling the optimal assortment
S . Similar to (Chen et al., 2020), we first generate the
true preference vector & as a uniformly random unit 0-dim
vector. For/ P t1,..., N we generate /i (the reward of
product /) uniformly from the range r0.5, 0.8 and gener-
ate X; (the feature of product /) as uniformly random unit
d-dim vector such that exppX} & q d'expp’” 0.6qto avoid
degenerate cases, where the optimal assortments include
too few items. Given such information, the true optimal
assortment S can be computed. Then, we generate an of-
fline dataset D “ tp Sj, Aj, Riqy. ; with N samples. For
iPH,..., 0we generate Si following the distribution 7Ts
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such that TlspS” q “ P and TlspSq “ fsi—,p“ where 08 Pa 1
is the probability of observing the optimal assortment S .
After the assortment S; is sampled, the customer choice (ac-
tion) A; is sampled according to the probability computed
by MNL as in Eq. (5) with the true parameter 6 .

8.2. Baseline

In our experiments, we use the gradient descent method

to find By, that minimizes the empirical negative log-
likelihood function. Then given BML,n , the baseline method
solves the assortment optimization problem by solving the
linear programming problem in (7).

8.3. Performance Comparison

For a given p\V; K, d, N, Pg we repeat the data generation

process in Section 8.1 to randomly generate 50 offline
datasets. The solutions of PASTA and the baseline method
are recorded in these experiments. For hyper-parameters,
we set 0 “ 2Py where Py “ PnpByLn, qand the max-
imum of iteration T “ 30. We measure the performance
with two metrics: (1) the average regret of the solutions

which indicates how far the performance of the solutions

is to that of the optimal performance (i.e., revenue of S );
(2) the assortment accuracy of the solutions (with respect
to the optimal assortment S ). The assortment accuracy

of an assortment S is defined as the ratio of the number of
correctly chosen products to the number of products in S .
The key results are summarized below.

Effect of Sample Size. We set N “ 40,K « 8 d« 16
and P “ 0.9, We then gradually increase the number of
samples 1 . The result is presented in Figure 1 indicating
that PASTA significantly outperforms the baseline method.
While the performance of the baseline method improves
with increasing number of samples, the PASTA method
maintains a regret that is less than25%of that of the baseline
method. The same experiment repeated with an increased
number of products (N “ 60, K “ 15) demonstrates that
the gain of the PASTA method is stable, as presented in
Figure 1.

Effect of Probability of Sampling Optimal Assortment
in Offline Data. We setN « 40,K « 8, d« 16,n“ 15Q
andlet PP 0.1, 0.3, 0.5, 0.7, 0u9We also study the effect
of P in scenarios with an increased total number of products
(N « 60,K “ 15). As can be seen in Figure 2, the gain of
pessimistic assortment optimization is consistent and robust
for varying values of P.

Effect of Dimension of Features. We setN « 20 K « 5
p« 0.9n“ 150 and let d P 8, 20, 32, 64, 128In order
to characterize the effect of dimension 0, we generate d
elements of & independently from Uniformr’ 1, s The
results are presented in Figure 3. We observe that while
both the regret of the baseline method and that of the pes-

0008+, -+« Baseline 9%
—— PASTA
o N=40,K=10 - >

0.004

regret

= Baseline
e PASTA
N=40,K=10

0.002

0.000 I
50 150 500 750 1000 50 150 500 750 1000

n n

0004 e, -«= Baseline
L —— PASTA

N=60,K=15

0.003

regret

0.002

= Baseline
= PASTA
N=60,K=15

0.001

92+
50 150 500 750 1000 50 150 500 750 1000
n n

Figure 1. Performance comparison between PASTA and the base-
line method with varying number of samples (17). On the left is the
average regret (the lower the better) while the assortment accuracy
(the higher the better) is on the right.

simistic assortment optimization increase with increasing
dimensions of features, the PASTA method maintains its
performance gain as the dimension d varies.

= Baseline
PASTA

* Baseline et e
PASTA ey, Lt

0.025 "*
92.5

0.020 90.0

=
0.015 875 voul

regret

v
© 85.0
0.010 825

0.005

77.5

Figure 3. Comparison between PASTA and the baseline method
with increasing dimensions of product features ().

9. Conclusion

This work addresses the issue of insufficient data coverage
in offline assortment optimization problems. This becomes
more challenging as the number of choices grows quickly as
a function of the number of items N . We presented a frame-
work of pessimistic assortment optimization and provided
theoretical justifications for our approach. We then per-
formed an in-depth study of the Multinomial Logit Model
(MNL), and derived a finite-sample regret bound of pes-
simistic assortment optimization for this popular model. We
presented an efficient algorithm to solve the pessimistic as-
sortment optimization problem for MNL, and demonstrated
significant improvements of our approach over the baseline
method by extensive numerical studies.
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0.007 Baseline 94
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45 0.005 2\‘1 92
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@ 0.004 e
90 -
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0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Y p
95
0.0035
0.0030 94
. 9
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Figure 2. Comparison between PASTA and the baseline method
with varying probability of the optimal assortment Q). Top row:
N < 40; bottom row: N « 60.
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A. Proof of Theoretical Results

Throughout the proofs, we use & to denote the true parameter and 1 to.denote the number of samples. We use Pn to

denote the empirical negative log-likelihood function, i.c., Pngfq « * 1" [, log m pAi |Si; &gwhere tpSi, A, Rigd.

is the offline dataset. We use L and By, to respectively denote the negat)ive log-likelihood function, i.e., Lpfq «
" Erlog apA|S; &ys and the MLE of & | ie., By, P argmingpg Pnpdq . The confidence region Qn is defined as
Qn“tGPG):aneq ’pnﬁwL,nQd,anU

For a general pair of random variables pX, Y g assume that the conditional probability density function of Y given X is
parameterically modeled by Pp |x; 6q for parameter 6. For technical reasons, we will consider the following distances.

Definition A.1 (Squared Hellinger Distance).
z- -

) ) 17 a a 2
2wk 61a Ap'k; Baa <5 PipYlx; 61q © Pap/lx; B Y. (10)
Definition A.2 (Hellinger Distance).
a
hpop™k; 61g Bk; 6299« h2@Pp’k; 61 Po'k; 6204 (11)

Definition A.3 (Generalized Squared Hellinger Distance).

2

|
H2,, 6q “Ex h?*pp’X; 61 P7X; 6299- (12)

Definition A.4 (Generalized Hellinger Distance).

2

a |
Hb 6q “Ex  h?pop’X; 619 AX; 62q9- (13)

In our theoretical results, we particularly consider PR |x; 6q “ TTa pa|s; @as the conditional density of A given S (hereafter
denoted as A |S).

A.1. Proof of Lemma 5.2
Under Assumption 5.1, forany 08 0 & 1, with probability at least 1~ O, we have for any 8 P Qn,

N . N ?
Vs ;6q  Vps ;g Ars Cs ™ Ty, (14)

where I'ss “ maxjps ] is the largest possible revenue among all items in the optimal assortment.
Proof of Lemma 5.2. For any 6 such that Pnpfq " RPnpPyLn q dn, ie., 8 PQn, we have
Vs i6q VP e dVs e Vs 6 g

dVes ;8 Vs ;Buwna VS ;0w VS ;0q

dVps ;8 VoS ;0uwnag VS Buwng VS 6q

d ZGng?X:VpSG ceq Vs :BuLn d (By Assumption 5.1 (I1) & P Qn).

With Lemma B.2, we have that for any opPo,

; : ) )
Vs @ VS Bungd s Cs Es |ap’S; @  Tap’lS; Gun qld

11
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where || " 4|{s the £1-norm, I's- ¢

In Lemma B.3, we establish that
b

» ] ')7 -
Es [ITaplS; 60 "Tap’[S;Oun alf d2 2 H2,8y., g

maxjps j is the largest possible revenue among all items and Cs “ 1{TlspS’ q

where H? is the generalized squared Hellinger distance defined in (12) with PR/ |x; 6q  TTapAls; @y as the conditional

density of A |S.

Combining the above two inequalities, we have that for any 6 P ©,
: : b
Vs 6 VS Bun gATs G H20, 8y, g

)
In the following, we use the fact that log xd 2p X~ 1qfor any X & 0 to show that for any S P Sand any

z
; Tapdls; &
TapAls; 6 glog ﬁda
, Thapals: 6 q ’

. : Thpd|s; & ,
& 2 Mpals;0q Tm 1 da

7 - ’ _

. a

€ TapAls;6q Tapdls; 8 ‘2 Tapdls; &fapdls; 6 q da

Z'a a T2
« TMpls;6q° Taplls;6 da

Z'a a T2
e Tapdls;6q " Tapls; 6 da

which implies that ) .
Lpq 'Ly q é2H?m; 6 g

By Lemma B.4, we have that for any 6 P Qn,
H200, 8un o d2H?F , 8 2H?F B  dLpPus g "L g Lfg "Lf qu
From Assumption 5.1, we have that with probability at least 1 0, for any 6 P Qn,
Lifq ‘Lef q ' Popfly " Bapf q “d 0.
In other words, under Assumption 5.1, with probability at least 1~ O for any 6 P Qn,
Leg "Lpf q d'Papfg " Pnpf g A d 200
Plugging Eq. (18) into Eq. (17), we have that with probability at least 1" O, for any 8 P Qn,

HZ&I BML,I"I q d’4an-

(15)

(16)

amn

(18)

19)

Combinjng the above inequality and Eq. (15), we have that, with probability at least 1" 0, vaSD 16q Vs ;8 qd A

rs Cs * Uy for all O PQy . This concludes the proof.

A.2. Proof of Lemma 6.1

O

Consider the MNL model (5) with a compact set ©. Assume that & P©. For 08 0 & 1, with probability at least 1 0, we

have

. .Chd 6
Prp? q "PaPuLn q A%Iog 5

12

(20)
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29max

Proof of Lemma 6.1. Fix 08 0& 1. Suppose On . Define an oracle confidence set as

O “t0PO:LPq LP q dasu.
In particular, & P €. By Lemmas B.1 and A.2, we also have with probability at least 1"~ 02,
L q "Lpf g d2CaH?P, - 6 g Adn,
that is, By, |':)Qn

! )
Define Fp ¢ |09%H3§Leqq 6Py . Inparticular, forany f PF,, wehave |f}g d 2log Gi. Let |Pn * P}f, ¢

suprpr, |~ Pgp q|be the envelope. By Talagrand’s inequality, with probability at least 1° {2, we have for any
fPF,,

# +
s P 1 2.1 2
Pn” Papq AE|Pn~ Pjr, * © - og CaCE|Pn " PlF, " fSL,J__p Ep © Efc log 5 ognC4 logs (21
PF,

For the variance term, we have

A

, S;6q?
02« sup Eff " Ef¢d supE log Pt
Fo 0Pt Tl pA|S &1
d supE'_QCAhz Tap’lS; 6 g Thp'lS; & pby Lemma B.5q
6P,
“« 2Ca sup H?(fF , &
6P,
d 2Ca suprLfq "Lf gs poy (17)q
6P,
“ 2Ca0p. pby definition of n q

For the expected envelope, our goal below is to apply Sen (2018, Theorem 7.13) (stated in Theorem B.6). Consider the
covering number N £, Fn, L2pQqgfor any given € g 0 and finitely supported probability measure Q. By Lemma A.1, based
on the MNL model (5), for some L & '8 , Fp is a class of L-Lipschitz functions with respect to the index space p@, | ~ 3q
Then in terms of the bracketing number N ¢ and covering number N , for any € g 0 and probability measure Q, we have

N L, Fa, L?pQaq oNgi2el, o L?pQag dN e, ©,] ~ 3g

. T
By © D RY and O is compact, we further have N pe, ©,] " 4q A 1 °. Therefore,

A~

L- d
Ngg Fo L2pQqq A £

By Theorem B.6, we further have
d " *

’ A d 2
E}Pn " Plr, A —OR

‘cid cd® el
Aan: A IgZQmaX

Aa,.
n n A Qp

The Talagrand’s inequality (21) becomes .
Pn Pad q Adn-
In particular, in the case of BML,n P & corresponding to f [:pML,,, q FFn, we have

Prp? q " Popfhun a < Pofphun g A PR, g "0 < LP g thBMan ap d dp.

do

This complete the proof. O
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Lemma A.1. Consider the MNL model:

exppX! 6g 1

. Tapls; By « —F . @PS, SPS,0PO.
jps exppY} 6q | 1" ps expp} b

Mgl & * o

Let Onax “ maxepo }9}2, Xmax ¢ maxipns|Xj|a. If © is compact, that is, Onax @ '8 , then the log-likelihood ratio

log %I‘S;T(f is a uniformly Lipschitz function in 6 P ©.

Proof of Lemma A.1.

VvV

o ) > >
B g PSS 6 1 I BPAlS; &
B O mAS; &, TWRAlS &’ B,

>
> y >
“r1’ TapAlS;&asXa  expp Bapa Xig 22
> )
jPS )
d Xmax ~ 2NX max €XPP¥max emax qd La '8
That is, & PRlog "%5/S9_ 3 is |.Lipschitz. O

Lemma A.2 (Concentration of Parametric MLE in Hellinger Distance). Consider the MNL model (5). For0& 0 & 1, with
probability at least 1”0, we have
6rT'I

ax

. d
HzFﬁML,n d 6 q Aﬁ |Og

Proof of Lemma A.2. We follow from Fu et al. (2022, Corollary 2) as a special case, where our data are generated i.i.d.
instead of being a general Markov chain. O

A.3. Proof of Lemma 6.2

Consider the MNL model (5). Suppose conditions in Lemma 6.1 hold, and L pPqand L » pPqare uniformly and strongly
convex. Let Op = Cﬁ d log “mg. For 0& 0 1, with probability at least 1~ O, we have

v —v

SUpVL&q 'LFﬁcq ’ pnrﬂq ’pnpﬁcq Vd’ a,.

0PQn

Proof of Lemma 6.2. Fix 08 0 & 1. By the strong convexity assumption on L pfgand L » g, there exists a constant H g 0
such that for any 6 P ©,

po 812dLppg Lef g MO B, lid Papg “PopPuis g

By Lemma 6.1, with probability at least 1 0[2, we have 8., P €. Then for any 8 P Qn, we have

16 9°gz d 16" Bunlz | Bun | CRP poy triangular inequalityq
, 1 1 , .
d 25 brfg “ PnpPuLn q 5 LoBun g "L g poy strong convexityq
L ?
A O poy O PQn and Oy, P O respectivelyq

The abgve implies that with probability at least 1" 0[2, we have Qn D &, where & is a ball centered around & with
radius O, : >
& ¢ BPO:|6" 6,d qa,

14
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! . )
Define By ¢ log %\% :0P®&n . Let |Pn " Plg, “ suprpm, |Pn ~ Pap q|be the envelop. By Talagrand’s
inequality, with probability at least 1 0[2, we have for any f P8y,

# +
R 1 2 1 2
®n° Padal AEIPr Ple,’ © 1 fogGacEPn P, supEP C EfG logs S Tiogs.  (23)
f P,
For the variance term, we have
, ; mAlS; 6 q
0% “ supEp " Efdd SupE log——5
o fPFSFZ 4 ¢ QPQF: 97, PAlS; &
A supl@ 62 pby Lipschitzness in Lemma A.1q
P&,

d an poy definition of & q

For the expected envelope, by Theorem B.6, we further have
d " * c
, .od L d_ L ., d
E} Pn P} ’, A ﬁo-,%n |Og @ _ ﬁ 2 IogﬁA q|Og @ A ﬁan A an .

Therefore, the Talagrand’s inequality (23) gives that for anyf P/,

|0~ Pad q| Adn-
In other words, with probability at least 1 6, Qn D & corresponding to tf Pawpa, D Bn, we have

supLpfg "Lf q ° Papfg “Pnpf q “d sup [Pn* Papq| Adn.
ePQn fPEn

O
B. Technical Lemmas
Lemma B.1. Suppose Ca g 2and Ca & 1{Tap|s; &for all O PO, SPSand i PS. Then for any 6 P O:
Lfq "L q| d2CaH?@. O q (24)
Proof of Lemma B.1. By definition,
o, N A
. v TAlS; 6 o .
L L “E Ea log ==~ 48S ..
Lef q "Lpfal A log 7 Aisa
In particular, for a fixedS P N g we have
”» 3 : ] ’ = -
TpAlS; 8 o T I
El ’ VS“S“KL]T ewn' .
ST A & AP’k 6 g Tap’s; &
!
,logeCa " 1, , ., A . %
d f?czjc T4 1 h2ups; 6 g Thps; @ig
| YA
pby log-Sobolev inequality (Diaconis & Saloff-Coste, 1996, Theorem A.1)q
Cal "2 1 ' ‘ : -
« 2 Ogng, =22 phu with h2 < h? Tap’s; 6 g hps: &
d 2Cah2pTap’s; 6 g T p's; B1q
Therefore, ) . ( )
L q "Lpfal dE™2Cah?plap’S; 6 g Tap'lS; Gaq « 2CaH? . &y
O

15
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Lemma B.2. Let Cs ¢ 7T ;S andls max,- ps' I'j, then the following inequality holds for any 61, & P ©:
- J

Vs ;69 VS ; Gzordf Cs Es |Tap’lS; 60 " Tap’S; &al

where || 1| Henotes the L norm.
Proof of Lemma B.2.
. v v« ) . s
“, o M IpS« s qY . . . :
Vis' g Vi 6g ¢ Es p,’c;psq ris TaplS; 6 TplS;6q - (25)
SP29  jps
~ . jff
; vIpS“ . . ¥
d Es is Tap|S;6q ‘Tag|S; &q - (26)
PS ips
M - ff
,wl « ~ - VY .
15" SO kg 1gSe S0 his Tapils;iBq plS: 6 @n
spS 8 iPS
Lo A
, A
dCsEs IpS“ Sq Tis Tag|S;6q TaglS; &q - (28)
iPS
« . o - Af
, y < . . ¥
drs Cs Es - Tap[S; 6q "Tap|S; &q - (29)
iPS J
“rs Cs Es [Map’lS; &g " Tap’S; &qly - (30)

where Eq. (25) comes from the sample-based-estimation of ErRpsqgs(Eq. (1)), Eq. (27) comes from the Hélder’s inequality,
Eq. (28) comes from the fact that %X “ Cs because %Z?q has the value zero everywhere exceptat S © S .
8

The last equality follows from the definition of L ' norm. O

Lemma B.3. Forany6;, 6 PO,
2 J ';) 7a -
Es [Tap’S; 60 "TapS;6qli d2 2 H2p,, &q

Broof of Lemma B.3. We first use the facts that (1) L1« 1TV where TV is the total variation distance and (2) TV d
2h (Harsha, 2011) where N is the Hellinger distance to have that for any SPS

|TTap’k; Bq "Apls@quZ 2h "Apbaqmpb@q (31)

From (31), we have

. y
|Tap’s; 6 "Tap'k; &ql) d 2 2h Tap'k; 6g Thp’k; 69
|lap’s; 6 " Tap’k; 6qlf o 8h% Tap's; 6ig Thp's; &4 -

Taking expectation with respect to S on both sides, we have
2 J » J
Es |Map’S; 69 "Tap’S; &ql|t d 8Es Mplap’ls; 6iq Tap’lS; &qq-
2 J
Es [lap’lS; 6 "TaplS; &qlf d 8H*h &g

By the Jensen’s inequality, we have
2 ]2 2 J
Es|Map’S; 69 "Tap’S; 6ql{ d Es |ap’S; 69 "Tap’lS; &qlf -

16
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This implies that
» J

?a___
Es |Tap’lS; 6 "Tap’S; &ql} d2 2 H2,, bq

Lemma B.4 (Properties of H and H?). For any 6y, &, 6 P ®, the following inequalities hold:

. HP6q d Hp, 8q "Hp g
Hif 8q° d H2h, Bq dHf, g
H?b,, 6q d 2H*, Bq " 2H?*t,, Bq
Proof of Lemma B.4. For ease of notation, for I “ 1,2, 3 we use Pj to denote 7a parametrized by 6, i.e., Pip2|Sq «
TapA|s; Gq

a
(1) Notice that forany S P 'S, h2g0;p"Bg Bp Bqqis just the regular Hellinger distance that satisfies the triangular
inequality. Hence we have

a - - a - - a - -
h2gpip"Sq Pp'Faq & h2pipBq PspFag * M2pp’Fq Psp’Fag (32)
Take expectation of both side of Eq. (32) with respect to S, we have

a [ a [ "a [
Es h2op'Bq RpBaq d Es  h2wp"Sq KpBaq ™ Es  h2po,pSq Bsp Saq-

By the definition of H , this means that

Hb, 6q dH B, 6q " Hb,, g

(2) For the first inequality, by applying the Jensen’s inequality, we have
- > a J. 2 » i’ a - 2 l
E  h2pipSalpBag dE  h2poip'Sq pPag - (33)

2

Then the inequality follows.

For the second inequality, we have

”»

|
Hph, 6q "H?P1, 6q “Es hppip'Sq Rp"Baq "h*pPipSq P Baq (34)
|
“Es 1" hppyp'Sq Pp Baq hpip™Sq ApSqg- (35)

Note that for any S, 1" hpdyp"Bq Rp'Bqq is a non-negative function because the Hellinger distance is no larger than 1,

and hpP1p”Bq Pp”Bqgis also a positive function because it is a metric. We have Eq. (35) as the expectation of non-negative
functions, and thus we have

7 - |
Es 1" hpoip'Sq PpSaq "1’ Bq RpSag € 0.
Then the inequality follows.

(3) Notice that for any & b, Cwe have p2” bt d 202" ¢ 2pb" Ccf. With this fact, we have that for any S,
z- -

) e 17 a a 2
h2Wip’fa p'faa “5  PipAlSq © PopSq da (36)
1% a a 2 a a 2
d s 2 Pipalsa’ Pepisq " 2 PpRlSq T PapRiSg da (37
1% a a 2, 1%’a a 2
“275 pipa|sq © PypalsSq da‘ 2 5 ppalsq © Pypalsq da (38)
“ 2n°P1p"Bq Pyp Baq " 2h*@op” g Pp Baq 39)

17
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This implies that
H2h,, 6,q d2H?F;, 6q * 2H?*P,, Bq (40)

O

Lemma B.5 (Log-Density Ratio Variance Bound). Suppose X ,, P is an R-valued random variable with probability density
function P, and Py, P> are two other probability density functions for X such that Py and Py are uniformly bounded from
below by C" ' on the support of P. Then we have

A

.2
Ex p» log Z;&g d 2Ch2p;, P

where h? is the squared Hellinger distance in (10).

]
Proof of Lemma B.5. By logpq d2p X * 1qforany X & 0, we have

A - A

z ' 2
pipXq 2 PipX q
Ex_p log « log PpXadx
” p p
2 fp);q .2 ~2%xq .2
’ p1 qu ’ pZD(q ’ ’
d 4 max 1 1 P X
%  PypXq PipXq . o
i " , — , _—
1 a a 2 1 a a__ 2
<« 4 4 s 14
_ﬁax PG P1p’<q7 P2pXq Pioq PopXq © PipXq  PpXodx
: Z2'a____a 2
d 4C PipXq © PopXq dx
“ 2Ch*wy, g

O

Theorem B.6 (Sen (2018, Theorem 7.13)). Let F be a measurable function class, such that supr e | |g d fmax for some
constant oy 8 '8 . Assume that for A & ef ax, d8 2 0d €d fax, and every finitely supported probability measure
Q, we have the covering number (Sen, 2018) as:

A

N F, Ppgq A

A d
= A1)

Let 0% “ suprpr EPf ° Ef . Then we have

c " *
A

L LA, A d
E} Pn P}F A HGF IOg a _ ﬁfmax |Og a

Proof of Theorem B.6. In this proof, we denote X as the underlying random variable, tX; . ; are 1 i.i.d. copies of X, and
forany f PF, Papfq¢ 1 7 1 fpXiq Pofq¢ Erf pXgs Without loss of generality, assume that 0 P F | and for any
f PF,Ppfq “0. Let t& U 4 be i.i.d. Rademacher random variables that are independent of t Xj U ;. By symmetrization,
we have

EIP, " Pl d 2Esupl— &fpXiq- (42)
fee Mo,
Conditional on t XU\ 4, by Dudley’s entropy bound, we have
:W f . , z Orn g
Ee fsupj € J.p)%]j d log Npd, F, L2pPsqaiu, (43)
PF e« 4 0

18



Pessimistic Assortment Optimization

2 « 1r

L2ppnq T 7 1 fpXi?. We also denote
suprpe |F12, o and Ee to emphasize that the expectation is taken with respect to the Rademacher random

variables t € U ; but holding t XU , as fixed. By (41) with Q chosen as Pn, we have

where we consider the L 2pPn qas the metric on F, that is, forany f PF |f})
0'2 o«
En

o Zoag, C —r

@43)A d log 5d5

> A (44)
d2 doep,  log — pby Lemma B.7¢g
UF,n

In particular, logp? [ Or,n q &logpA|fmaxq &1 by assumption, which satisfies the condition for Lemma B.7. Combining
(42), (43) and (44), we have

c d
E|P," Pjr A = E O, IogUF
N
c d1 v ) C (45)
|~ —EpI?, qlog ——>— th ity of U R log—
d o 5 Fng”QOQEpG,%‘nq by the concavity of U N ulog—

where E takes expectation with respect to t X U ;. Notice that
!

! )
Ep%%, q “E supPopf?q dE sup | Pag®q| "Pp%q d EJPn " Pz O,
P P
where we define F2 < t f2 : f PFu We aim to apply (42), (43), (44), (45) to F2. Notice that supr 2pr 2 12} o f2,,,
Glzzz,n; SUpr 2pF 2 ]Ifz}zzppnqd, fr%ax SUpr pr J[f}fzpp,,q“ fr%axo-lzr,n ~BY}f2’ gz}szan“ Pnrrf ’ ngrf ’ qus d’
2fmax  Pnpf 9 € 2fmax )T g}fzppanoranyf,g P F , we further have

A

. A
Npimaxe’ F2’ LZFPHCICI dN Ff’ F, Lzld:’”qq A €
Therefore, applying (42), (43), (44) and (45) to F 2, we have

" d

1 4A2
8 _f2 2 - .
o max EWF,I‘I C||Og EFgI%,n q
Define B ¢

%E[ﬂ,z:,n glog %ﬁ%' Then we have

c

Epfnq ‘02 A B

max —

S| Qf

ByUN u |ogAT2 is non-decreasing on U P, A%{€sand non-increasing on U P A2{€,°8q , we have

A2 g °a © a2 A2
1 L1
B2« _ 2 - g2 _f B ~ __ , b —
2Eij,n qIOQ Elﬂlz:n qA 2 F n max e IOg o2 - df B ~ A2
! F n - max e
b Ao ~
In particular, B d %, o0 d f2,, d A2(€2 5§ A2[e. Then the cap A?[€is inactive as d[N N 0 asymptotically.
Therefore, ~ c
. . A
B2 oZ° ﬁfmaxB |oga.
In particular, B is bounded by both roots of the corresponding quadratic equation
$ c __ d U > # cC __ + C
& d, AL d, A 2 A d, A A
B A 50, 7 max 1095 Al max 109 5 40% log o- A plmaxlogg— _ OFlog o

OF
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Combined with (45), we further have

C o " *
oy g A A d A
E} Pn P}F A EB A EO-IQ: IOg a _ ﬁ max |Og a

Lemma B.7. Suppose & A g 0 such that logpA{aq &1. Then we have

2 a c A
log ;;du d 2a log T

0

Proof of Lemma B.7. Define

# D A, S b A
f g 2a logz ", logzdu, @g 0;
0, a“ .
Then f is continuous at 0. Moreover, for @ g 0, we have
C
1 A, 1
floag « log 5~ b——
a A
log 7
which is nonnegative iflogpA{@q &1.As @N 0 , we further have
> . C
f @q [13 ’ 1 Z ?
3 2 Iog5 2 . IogUdu
S AL 4%y
“ log="’ b——du pby integration-by-partq
a 2a g (g4
097
c__
. A 1
é Iog5 [ - S
2 Iog%
f
lim inf —P9 ¢ g
aNo @

Therefore, for any @ & 0, we have f pAq &0, which concludes the proof.

20



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

