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Abstract

We consider estimating matrix-valued model parameters with a dedicated focus on their
robustness. Our setting concerns large-scale structured data so that a regularization or
the matrix’s rank becomes indispensable. Though robust loss functions are expected to be
effective, their practical implementations are known difficult due to the non-smooth cri-
terion functions encountered in the optimizations. To meet the challenges, we develop a
highly efficient computing scheme taking advantage of the projection-free Frank-Wolfe
algorithms that require only the first-order derivative of the criterion function. Our meth-
odological framework is broad, extensively accommodating robust loss functions in con-
junction with penalty functions in the context of matrix estimation problems. We establish
the non-asymptotic error bounds of the matrix estimations with the Huber loss and nuclear
norm penalty in two concrete cases: matrix completion with partial and noisy observations
and reduced-rank regressions. Our theory demonstrates the merits from using robust loss
functions, so that matrix-valued estimators with good properties are achieved even when
heavy-tailed distributions are involved. We illustrate the promising performance of our
methods with extensive numerical examples and data analysis.
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1 Introduction

Massive data with informative structures from the data collection processes are becoming
increasingly available in many data-enabled areas. Examples include those from FMRI,
electroencephalogram (EEG), and tick-by-tick financial trading records of many assets.
Methodologically for multivariate data analysis, matrices as the model parameters are com-
monly analyzed in the core step(s) of many popular approaches including the principal
component analysis, canonical correlation analysis (Anderson, 2003), Gaussian graphical
model analysis (Lauritzen, 1996), reduced-rank regression (Reinsel & Velu, 1998), suffi-
cient dimension reduction (Cook, 2009), and many others.

Structural information—our foremost consideration in this study—is indispensable in
solving many matrix estimation problems with large-scale data. For matrix-valued model
parameters, a class of methods imposes restrictions on the rank of the targeted matrix. In
matrix completion with partial and noisy observations, for example, without such struc-
tural information, successfully recovering the signal is not possible. For multi-response
regression problems, structural information is vital for both methodological development
and practical implementation for drawing informative conclusions. Constraining the rank
of the parameter matrix in multi-response regression leads to the conventional reduced
rank regression (Reinsel & Velu, 1998).

Our primary goal in this study is to investigate robustness when estimating matrices
with large-scale data and structural information. Robustness is a foundational concern in
current data-enabled investigations. During massive data collection processes, observations
of heterogeneous quality are inevitable, and even erroneous records are common. On one
hand, due to the huge size of the data in modern large-scale investigations, validations and
error corrections become too daunting to be practical. Robust statistical methods in these
scenarios are thus highly desirable. On the other hand, however, in many existing methods,
though being convenient, commonly applied criterion functions including the squared loss
and the negative log-likelihood are unfortunately not robust to the violations of the model
assumptions in the aforementioned practical reality.

We are thus motivated to consider robustness in the context with structural information,
which is incorporated by constraining the rank of the matrix-valued model parameters. The
foremost challenge in this scenario is the fundamental computational difficulty. One source
contributing to the difficulty roots in the fact that constraining a matrix’s rank results in a
non-convex problem. As a rare example in reduced-rank multivariate regression, an ana-
lytic solution is available despite the non-convexity; see (Reinsel & Velu, 1998). Unfortu-
nately when considerations are broader, such a convenience generally no longer exists; and
how to solve optimization problems with rank constraints is generally difficult. To meet the
challenge, a convex relaxation of the problem leads to regularizing the nuclear norm of the
matrix-valued model parameter. From the statistical perspective, numerous works (Can-
dés & Tao, 2010; Negahban & Wainwright, 2011; Agarwal et al., 2012) have studied the
theoretical properties of this type of estimators constructed with the nuclear norm relaxa-
tion, and have proved that the resulting estimator achieves optimal or near-optimal statisti-
cal properties under different settings. Additional to the non-convexity, consideration of
robustness is further contributing to the computational difficulty. Resorting to robust loss
functions is a traditional class of influential methods for establishing more robust statisti-
cal methods; see Huber (2004) and Hampel et al. (2011). Though demonstrated effective
in conventional statistical analysis, substantial difficulties arise when handling large-scale
modern complex data-enabled problems. Computationally, in particular, their applications
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encounter major challenges because robust loss functions are not smooth whose second-
order derivatives do not exist. Analytically, establishing the statistical properties of the
matrix estimations is challenging in this scenario too, because the impacts from possibly
heavy-tailed errors are involved in studying large-scale problems. Existing methods using

the squared loss or the negative log-likelihood as the loss functions require the noises to be
sub-Gaussian in order to handle high-dimensional data. Robust methods can accommodate
noises with heavier tails than sub-Gaussian; meanwhile, the capacity for handling high-
dimensional data remains desirable.

There has been an active recent development in robust statistical methods with high-
dimensional data; see, for example, Loh (2017), Zhou et al. (2018), Sun et al. (2020),
and reference therein. Recently, there has been increasing interest in investigating robust
methods for matrix-valued model parameters. She and Chen (2017) studied the robust
reduced-rank regression in a scenario concerning outliers. They define the estimator as the
minimizer of a non-convex optimization problem, establish theoretical error bounds, and
propose to apply an iterative algorithm that alternatively solves for two parts of the model
parameters in their setting. Due to the nonconvexity, their algorithm does not guarantee the
convergence to the minimum. Wong and Lee (2017) studied matrix completion with Huber
loss. Their algorithm is developed by iteratively projecting non-robust matrix estimators,
which is computationally demanding with many projection operations required. Elsener
and van de Geer (2018) investigated robust matrix completion with the Huber loss function
and nuclear norm penalization. The computation algorithms in Elsener and van de Geer
(2018) involved a soft-thresholding step for singular values. This works well when the
solution is of exact low rank. However, when the solution is of approximately low rank, or
of modestly higher rank, such a step becomes computationally demanding. As pointed out
in She and Chen (2017), efficient algorithms are desirable for solving optimization prob-
lems with rank constraints and robust loss functions.

We attempt our study with a foremost consideration on an efficient computing scheme
for solving large-scale statistical problems with robustness. In particular, we aim to develop
efficient first-order algorithms by building a scheme with Frank-Wolfe-type algorithms
for robust matrix estimation problems. The Frank—Wolfe algorithm is a first-order method
and is drawing considerable attention recently (Jaggi, 2013; Lacoste-Julien & Jaggi, 2015;
Freund & Grigas, 2016; Freund et al., 2017; Kerdreux et al., 2018; Swoboda & Kolmogo-
rov, 2019). The key advantage of the Frank—Wolfe algorithms is their freedom from the
required projections in most proximal-type algorithms. In addition, as we shall see in our
algorithms in Sect. 2, for matrix estimation problems, in each iteration, the Frank-Wolfe
algorithm only requires computing the top one leading singular vectors, which can be
conducted efficiently even for huge-size problems. These merits make Frank-Wolfe-type
algorithms particularly appealing for solving large-scale robust low-rank matrix estimation
problems.

Our study makes two main contributions. Foremost, we develop a new computation
scheme for robust matrix estimation and demonstrate that the first-order optimization
technique makes solving large-scale robust estimation problems practically convenient.
We show extensively that our framework is broadly applicable, covering general robust
loss functions including those used in median and quantile regression; see Sect. 2. Sec-
ond, our theoretical analysis reveals the benefit from using robust loss functions and rank
constraints. Our non-asymptotic results demonstrate that our framework can accommodate
high-dimensional data. For matrix completion and reduced-rank regression, the resulting
matrix-valued estimator works satisfactorily even when the model error distributions are
heavy-tailed.
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The rest of this article is organized as follows. Section 2 elaborates a concrete frame-
work using the Frank-Wolfe algorithm to solve robust matrix estimation problems. We
present matrix completion and reduced-rank regression with various robust loss functions.
Section 3 justifies the validity of our method with theory on the algorithm convergence and
error bounds of the resulting estimators. Section 4 presents extensive numerical examples
demonstrating the promising performance of our methods.

For a generic matrix A, we denote By its transposeg,(A) its largest singular
value, ||A||, its nuclear norm, afid||- its Frobenius norm. Let,B) =tracdA’B) for
A,Be ™9, We denote By € IR*9 a generic matrix-valued model parameter. In this
study, we focus on two concrete cases. In one caée,=M where M is the signal to be
recovered in the matrix completion problem with a single copy of partial and noisy obser-
vations; the other one@s=C where C is the matrix-valued coefficients in the multi-
response regression problem. Furthermore, we show that our framework broadly applies in
solving a general class of problems.

2 Methodology
2.1 Matrix completion

We consider the matrix completion problem first. In this setting, one observes a noisy sub-
set of all entries of a matrid € R>9, which is the model parameter of interest. Let the set
of observed entries b&@ = (f,j,)}"_,, wherd, € (1,...,p} 3, € (1,... g} , and denote by

Xi.j, (i,.j;) € € the corresponding noisy observations such that

X :Mitvjr+ §, t:1,...,n.

Itdt
We assume thd}’s are independent and identically distributed random variables with
mean zero.

To effectively recover M with a single copy of partial and noisy observations over
Q, one popular approach is to assume that the underlying true matrix, déHigted by
is of low-rank thatranKM*) <r for somer <min(p,q). Then one can estimaté*
by so%ing a constrained optimization problem by minimizing the objective function
(2n) =L 20X, j, —M,,,) over M, subject tankM) <r for some loss functioff-).
Since the rank constraint is non-convex, solving the optimization is generally not tractable.
To obtain a practical solution, a common strategy is relaxing the rank constraint to the con-
vex nuclear norm constraint.

The Huber loss function leads to robust estimators because its design alleviates the
excessive contribution from a data point that is extremely deviated from the fit. Practically,
the Huber loss performs promisingly when handling a substantial portion of noisy observa-
tions whose distribution can be heavy-tailed; see Huber (2004).

By applying the Huber loss with a constraint on nuclear norm, we consider the follow-
ing robust matrix completion problem:

19
- Z’) =1 f’?()grrjr -

min L (M) :

MaRpa 7 M, ;). subjectto|M], < 4 )

wheret’n( -)is the classical Huber loss function:
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—x if x| <

£yx) = < x| ﬁr; other\lee

()

Heren is the tuning parameter of the Huber loss, ahds the tuning parameter regulariz-
ing the nuclear norm of M. In our numerical studies, we choose the tuning parameters by
applying the cross-validation.

Since t, is not smooth, those methods commonly applied in sdlyitugs prob-
lems—requiring second-order derivatives—do not directly apply. Computing optimiza-
tion problem (1) is generally hard; see the discussion in She and Chen (2017). Efficient
algorithms for solving (5) are lacking; the primary difficulty is due to the absence of the
second-order derivative of the Huber loss. It is even more challenging to minimize the
Huber loss on a restricted low-rank region, and to achieve the computational efficiency
with large-scale data. More broadly, non-smooth criterion functions are commonly the
case with general robust loss functions, with prominent examples including the least
absolute deviation loss of the median regression, check loss of the quantile regression,
and Tukey’s biweight loss besides the aforementioned Huber loss.

To address the computational difficulty when handling large-scale problems with
robust loss functions, we propose to apply the Frank-Wolfe algorithm to solve this prob-
lem. The Frank-Wolfe algorithm has been particularly powerful for convex optimiza-
tions. As a first-order approach that requires no second-order derivative of the criterion
function, it is particularly powerful for solving problems with non-smooth loss func-
tions, which is exactly the case for our problem (1). Briefly speaking, the Frank-Wolfe
algorithm pursues some constrained approximation of the gradient—the first-order
derivative of the criterion function evaluated at a given value. The algorithm runs itera-
tively, with the optimization proceeding along the direction as identified by the approxi-
mation of the gradient. Therefore, the Frank-Wolfe algorithm is practically appealing,
as one has the opportunity to best exploit some constrained approximation that can be
computed efficiently. For a detailed account of the Frank—Wolfe algorithms and recent
advances in the area, we refer to Freund and Grigas (2016), Freund et al. (2017), and
references therein.

Concretely in our setting, we develop an algorithm that runs iteratively. Specifically,
at the(k + 1)-th iteration with M® from the previous step, the matrix-valued gradient of
(1): VL(M®) e R9is analytically calculated by

X
VL(M(k)) 2217 .][[(M,.(f}[ - I“/[) (|M I}J}| = 77) (3)

¥ vsign(M}f}[ X MK =X ;1 > )]

whereJ, is a matrix witti;; =1 and all the other entried(0)is the indicator func-
tion, andsignx) =1if x is posmve and - 1 otherwise. Hence, evaluating the gradient can
be done efficiently, and it is a scalable process that can be efficiently distributed if multi-
ple computing units are available. Then, the Frank-Wolfe algorithm suggests computing a
descent direction in thé + 1)-th iteration:

Vi) & argmin VL (M™¥), v), subject tol| V||, < 4
v

In this step, a key observation is that
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vike) = 1 U1VT, (4)

whereu, and v, are the leading left and right singular vectors &fL (M¥)) . The required
singular decomposition can be computed efficiently by an existing algorithm that is imple-
mented in the standard “PROLACK" package in Matlab. Then, we conduct a descent step
to updateV¥) by

)

M) a4 og(”(V(k”) MK’

whereq,, , € 0, 1is a pre-specified step-size. For examptg,, ; = 1{ k+ 3) guarantees
convergence to an optimal solution. Meanwhile, line search is viable, and there are various
ways to further accelerate this algorithm.

Intuitively, the updating direction in Equation (4) is viewed as the best rank-one approx-
imation of the gradient matrix (3). Further, if we view the vectar, as the direction cor-
responding to the first principal component of the columns of M, then formula (4) is essen-
tially a column-wise update along this direction, with the step sizes proportional to the
components in the vecigr. From this perspective, the update formula (4) can also be
viewed as a computationally efficient matrix-valued coordinate descent along the direction
u, . Since the objective function (1) is convex, such an update progressing along the gradi-
ent direction ensures that the criterion function converges, approaching the minimum.

We summarize the algorithm in Algorithm 1.

Algorithm 1 Frank-Wolfe Algorithm for Robust Matrix Completion

Input: {Xi, j, }f=1, 7, {an}ren, A, MO, k=0
Output: M.

1: while stopping criterion is not met do

2:  wuy < left leading singular vector of VL, (M *))
3 v1 4 right leading singular vector of V.L,(M*))
4: v+l ). ulvir

5. MEHD o MF) 4o (VERD — pp(R)

6: k< k+1

7: end while

8 M <+ M®)

2.2 Reducedirank regression

In our second concrete problem with matrix-valued model parameters, we consider a mul-
tivariate linear regression

y,.j:xchj+ &, fori=1,...,n,j=1,...,q,

where§,-j ’s are model errors. We assume tié’;\ts are independent and identically distrib-
uted random variables with mean zero. Then, we have in a matrix form

Y=XC+ E,

whereY = Filoo X = Kilnp = Koo X)), C = By, ic)] € R andE = [£],,

In this setting, one may opt to restrict the rank off@sKC) <r (r < min(p, q)—lead-
ing to the conventional reduced-rank regression (Reinsel & Velu, 1998). Also by relaxing
the rank constraint with the nuclear norm, we consider the estimation problem as
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. LA 4 .
cQF'QxaL’i(C) = Ny 1{’n(y,-j —x'c;), subject to]|C|[, < 2 (5)
i=1 j=

wherec; denotes the j-th column of C, aﬁg( -)is the Huber loss function with parameger

Again, to address the computational challenges, analogous to problem (1), we pro-
pose to solve problem (5) also by applying Frank-Wolfe algorithm iteratively with the
steps described as follows. Denote byC'K) the solution after the k-th iteration. At the
(k+ 1)-th iteration, IetVLn(ko) be the gradient of the loss function at¥:

DIEDS
WL, () =7 7 D~y -yl < )
i=1 j=1 (6)

+ psignix'd -y (e —y;| > 7))

whereZl is a matrix with the j-th column beingx; and the remaining entries 0. Then, we
compute a descent direction from

Vi1« argminVL (c), v) subject to|| V||, < 4
VeRP4

with the solution
\/<k+1) — _A u1vtlr’

whereu, andv, are the leading left and right singular vector%g(c(“).
The algorithm follows Algorithm 1, with different input data and the gradient
matrix specified by (6).

2.3 Other robust loss functions

Our framework for developing efficient computation algorithms can easily accommo-
date a broad class of robust loss functions that are not smooth. Examples of the loss
functions are thef -loss (the least absolute deviation loss), the check-loss, Tukey’s
biweight loss, and more; see Hampel et al. (2011).

A scheme is developed as follows. The only necessary adjustment as in Algorithm 1
is calculating the gradient of loss functiorWL (- ). Then, the general updating step is

ek = @ + 0{<+1(V(k+1) _ é()),

whereq,, ; is some pre-specified step-sizé*’ = —1 u, v{, with u; andv, being the first
left and right singular vectors &L (0.

Table 1 presents gradients for several common loss functions in the context of matrix comp
tion and reduced-rank regression.
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Table 1 Gradients under different loss functions for matrix completi®i(M) ) and reduced-rank regres-
sion VL (C) ),dj = X; —M; ory; —x/c; depending on the context

Loss WVL(+)

¢ rloss WL(m) = é 121 Jy sigrid; ;)

fx) =A WL(C) = =, 7L, 2 signd;)

Check loss WVL(M) =L =" 1q,,<0) —©)

£ =X 10 i = zq 2 g 0l

Tukeys{ biweight loss VL(M) = g' Zt 1Jtd:,/, [1- @)2]21&,“0&
£ = t@ if x| >t VL(c) = =7, " L 21— B g s
! S1= - xt2P) ow.

3 Theory

3.1 Convergence of the algorithms

For self-completeness, we present the theoretical guarantees for the Frank—Wolfe algo-
rithm in the context of robust matrix estimations, together with a simple way to choose
the step-sizes.

We prove that by choosing the stepsize properly, the objective functions by using the
Huber loss in both matrix completion and reduced-rank regression problems converge
to the optimums at the rate d@(1/ k) , where k is the iteration counter. The next proposi-
tion is for reduced-rank regression problems, and the result for the matrix completion
problem can be proved similarly.

Proposition 1 Consider the loss functiQr);(.) . R® > R constructed from the Huber

loss function (2) with parameten) . For the reduced-rank regression problem (5), by the
Frank—Wolfe Algorithm with stepsize set as

. OVL,?(C“‘))T(C(’O _V(k+1)) °
Q1 =Min LJCW —viez " 1 ,forallk =1,

where L, is some positive number. Supposethe diameter of the feasible set is
D:=max, s |V; = Volle, wher€ = V: |V, < A]. Then, we have thac) is
monotonely decreasing in k, and we have
2L,D?

P

L,(C¥) -L,(cY) <

Proof Since the Huber loss function is differentiable everywhere, and we ha@_t!‘(ﬂ)
is Lipschitz-continuous. Thus, with, defined above its Lipschitz constant, by Theorem 1
of Freund et al. (2017), we have that the result holds as desired. o

We point out that for the matrix completion problem (1), the result holds by the same
argument by letting., = 1.

Meanwhile, our broad interests include some non-convex losses such as the Tukey’
biweight loss. A strategy for handling them is the approximation by a Lipschitz continuous
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function with arbitrary precision where simple smoothing techniques are applicable. Upon
applying the same stepsizes as discussed above, we can show that the algorithm converges
to a stationary point at the same rate; see the analysis of a recent work of Reddi et
(2016).

Recently, Charisopoulos et al. (2021) studied the low-rank matrix recovery algorithms
with the non-convex rank constraint and non-smooth loss functions. They established opti-
mization convergence rates for a prox-linear method and a subgradient method for matrix
completion. They proved that with a sufficient number of observations and an appropri-
ate initialization, both methods are guaranteed to converge to the truth. The prox-linea
method possesses a much faster convergence rétgl6f2¢)) but with a higher computa-
tional cost at each iteration in solving a convex subproblem. While the subgradient method
has a lower cost at each iteration with a subgradient evaluation step and a project step onto
the desired region, it has a slower rate. Compared with their algorithms, our method has a
lower computational burden in each iteration with no projection required and a relatively
slower convergence rate. It is worth studying minimizing a robust loss function directly
with the non-convex constraint in the future.

3.2 Statistical properties

We investigate the non-asymptotic error bounds in this section. We first introduce two con-
ditions for both matrix completion and reduced-rank regression models.

Assumption 1 The truthM*andC* has rank at most 0 < r < min(p, ).

Assumption 2 The noises 's are i.i.d. with zero mean and a distribution furfefion
satisfying

V=

Felm+ n) Felm— n) =5,

2

for anyjm| < mndn >0, where, =c,(n) is a constant depending only gn

Assumption 2 is key on the distribution of the noises.

It is very mild by only requiring non-vanishing probability masg betweenm — rand
m+ nfor a positiven and|m| < pavoiding assuming instead explicit conditions on its tail
probability and/or existence of its moments up to some order.

Since the condition holds fer >0 as long as the probability massé&{fiear 0 is not too
small, it is easily satisfied by a wide range of distributions including heavy-tailed ones; see
more discussion about this assumption and examples in Appendix 1.

3.21 Matrix completion

For any matrix A and some linear subspgdceflRP*9 , we defing,, as the projection of A
ontoM . We consider without loss of generality tpat g > 1. Recall thaf, (t = 1,...,n)
is a p X q random matrix, independent of ; and¢; , with one randomly chosen enthy
being 1 and the others B, ; can be written as
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2 X
M, =tr(GiM) = JpiM
i=1 j=1

for all (i,,j,) € 2 As a working model, we treaf,, as uniformly distributed over its sup-
port. That is, the probability ofs; ; being the t-th observation {gg) " . This assumes that
the observed entries in the target matrix are uniformly sampled at random (Koltchinskii
et al., 2011; Rohde & Tsybakov, 2011; Elsener & van de Geer, 2018), and we refer
Klopp (2014) for more discussions. Recht (2011) analyzed the matrix completion model
under this assumption. As pointed out in Recht (2011), this is a sampling with replacement
scheme and therefore may appear less realistic as it may result in duplicated entries; how-
ever, it has the benefit of simplifying the technical proof and assumptions. Overall, it is a
reasonable and informative showcase without requiring any prior information on the sam-
pling scheme. If additional information is available in the sampling process, other models
such as the weighted sampling model (Negahban & Wainwright, 2012) can be applied.

We first show that the estimator belongs to a restricted set. We consider the singular
value decomposition

M* =UAVT,

where U is ap X g matrix, A is a g X q diagonal matrix with diagonal entries the ordered
singular values; > g = --- =,g and V isqaxq matrix. Fok =1, 2,...,q, let, be
the k-th column of U, and, the k th column of V. For any positive intege< min{p,q} ,
let U, be the subspace dRP*9 spanned by, ... , andV, be the subspace spanned by
Vy,...,V, . Define a pair of subspacdRsf9 as

M,(U,V) := M e R |rowM) cV,, collM) <U,},

M

(U, V) := M e R |row(M) gV, col(M) cU'|,

whererow(M) andcol(M) denote the row and column space of M. For simplicity notation,
weuseM , =M (U,V)andM | =M (U, V). Lemma 1 indicates that the estimattt
belongs to the set

X
Mo=Me R [|4 ], <3|45 [I.+ 4 o A =M —M*.
’ ' k=r+1

To establish the error bounds, we need the following technical assumption.
Assumption 3 For anyM € M , there exists a real numiher 1, such that

”M M”max 'V;HM M”F

Assumptions of this type—referred to as the ‘spikiness condition’'—are assumed in exist-
ing literature on analogous problems, e.g., in Negahban and Wainwright (2012) for matrix
completion problems; see also a recent work Fan et al. (2021). Intuitively, this assumption
requires that favl € M , the entries 8 — M*are not overly ‘spiky’, or in other words, rel-
atively evenly distributed; so that the maximum discrepancy is not extremely far away from
the averaged discrepancy. We remark that here th%:qtealates to the aforementioned uni-

form sampling scheme setting, under which each entry is observed with the probélbility
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Hence, it reflects an increasingly more difficult high-dimensional problem due to sparse
entries in a single copy of large matrix. Instead, if the probability of each entry being observed
is a constant independent of p, g, this assumption is not required.

We consider the Lagrangian form of the problem (1):

M =argmifL (M) + o

Mngwr{ (M) + vl @)
wherey >0 is the corresponding regularization tuning parameted. £8t — M* and
A =M —M*. Theorem 1 establishes a non-asymptotic upper bound for the error for esti-
mating aM* of low rank.

Theorem 1 For problem (7), suppose that Assumption 1, 2, and 3 hold and the néises
are distributed symmetrically about zero. Mebe the solution to problem (7) with

log(g+ 1)

o
y =2y 400 Iog(;:’+ q) + 2 |qu+ q) . 8 |ogp+ q)

loglp+q) ¥
nq npgq 3n ’

with a constang, > 0. Whem > C(L) c2prlog(p+ q)log(g+ 1),

1 o

2rco+ ¢35

plog(p + g)log(q + 1
n

1 .
+—l4ll = Cicn
Pq

with probability at least| —3(p + q)~', for some constan@, ,c, @nd ¢, independent of n,
p, and q, and C(L) a constant only depending on L.

Theorem 1 is non-asymptotjcis chosen based on Lemma 7 in Appendix 2 as twice the
upper bound afy(VL,(M*)) . In Theorem 1, we only require the error terms satisfy Assump-
tion 2, which ing(m+ ) —Fg(m— 7) >C1—2 , fom >0 being the parameter in the Huber loss

1

(2) andim| < n Since this assumption is easily satisfied by many heavy-tailed distributions,
this result demonstrates the robustness of our method.
We note that in geneyatan be

loglp+q) , ¥
nq

o
)Iog(p+ q) |, 2lodp+q) 8logp+q)
n

K, -2 l4c, log(g+ 1 v 3

for any constank, = 1. Under the conditions in Theorem 1, we can also derive the upper
bounds of the estimation error in nuclear norm based on (23) in the Appendix:

@ _ o

2rcy + ¢y .

(p+ q)loglg+ 1)
n

“ v_ lo
v%’IIAH*S%C?n or P9

We may discuss the asymptotic propertied/ofvhenn - o . Matrix completion is a hard
problem attempting to recover a matrix-valued model parameter with a single incomplete
copy from the data generating process. The average estimation error converges to zero in
probability asn - « . That is, whenplog(p+ g)log(g+ 1) =o(n), (pg)~"[| 4]z » 0.
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Intuitively, if the rank of M*is r, then the number of free parameters is at the order of rp.
Hence it's reasonable to require a sample size at least of some larger order of rp, so as to
recover the model parameters consistently.

Without requiring the Gaussian assumption, our error rate is still comparable to the
statistical optimum established by Koltchinskii et al. (2011) for matrix completion prob-
lems under a low-rank constraint with Gaussian noises. Compared with the rate in the
lower bound given in Theorem 6 of Koltchinskii.et al. (2011), our upper bound in Theo-
rem 1 differs only in an additional logarithm term log(p + g)log(g + 1) and they in the
Huber loss.

The assumption in Theorem 1 that the model error is symmetrically distributed around
0 is needed in obtaining the upper bound af,(VL (M*)) ; see the proof of Lemma 7. It
assures that(E[VL(M*)]) =0. Similar assumptions are also found in Loh (2017).
Thanks to the symmetrization assumption, the convergence can be established with nc
strong extra requirement om. Without the symmetrization, as shown in Lemma 7 in the
Supplement Material, other conditions are required to control

al (X; —M) M;+n
e iy VX, —
) =, PO
so that
[ o)
. 1223 ol (X = M)
oy (E[VL(M¥)]) = Q(2— E[JJ,;]E T’] )
N1 i=1 j=1 | My
_ 1 - aln()QJ_M;)
=501 By r—
2pq aM; g

is stochastically small enough. With this extra term, the upper bound in Theorem 1
becomes

Vv
1 - Constant-¢2 2r ? aly(X; —M;) ° \
+— 4]l = o | [E[T] J
@ _ o
oyes plog(p+ g)log(g + 1) 2y + Gy

n

The extra term in (8) may then be viewed as a price paid to achieve robustness aga
noises with heavy-tailed distributions. This is an impact from applying the robust Huber

loss. It is a remarkable different feature from the study on matrix completionfuyithss.
Nevertheless, it is worth noting that fof ,-loss related studies, conditions are commonly
assumed to control the tail probability behavior of the model errors, for example, by the
sub-Gaussian distributions. In contrast, our development does not require such assumptions
on the tail probability properties, which is the gain in return by applying the Huber loss.

3.2.2 Reducedirank regression

The problem (5) is also expressed in the Lagrangian form:
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¢ =argmir L, (C) + yIl.), ©)
CeRpxa
wherey >0 is a regularization parameter, eln,;{c) is defined in Equation (5).
Again, we point out that the estimator belongs to a restricted set. By applying the
singular value decomposition t€*, we have

C*=UAV',
whereA =diagoy, ... ,aq) is the diagonal matrix containing all singular values@sf. For
r <min{p,q} , we define a pair of subspack&f? as
G(U,V) = (M€ R |row(M) cV,, collM) <U,},
Cf(u, V) = (M e R |row(M) V', col(M) cU;],

whereU, is a subspace spanned by the first r columns of U)aisithe subspace spanned
by theflrst r columns of V. For simplicity in notations, we denote by = G(U, V) and

C =C (U,V). Note thaG andG are not equal. Lemma 4 indicates that the estimagor
belongs to the set

o o
G= CeR: |4l =3l4ll+4  oua=Cc—C

k=r+1

We assume the following conditions on the random design matrix X.

Assumption 4 x,,x,,...,X, are i.i.d. random vectors sampling from a multivariate normal
distribution N(0, %) and without loss of generality, are standardized such that|- <1
04(2) = ¢(=) >0, where,(2) ando,,(2) denote the largest and smallest eigenvalugs of
respectively.

The multivariate normal distribution and its analogies are commonly assumed in the
literature (e.g., Negahban & Wainwright, 2011; Sun et al., 2020; Fan et al., 2021). The
setting with Assumption 4 facilitates achieving

the optimal convergence rate; other types of conditions are possible, at the expense of
a slower convergence rate.

Theorem 2 establishes a non-asymptotic upper bound|ffi.

Theorem 2 For problem (9), suppose that Assumption 1 and 2 hold anq the dpiseare
distributed symmetrically about zero. Suppose X satisfies Assumption@ begthe solu-
tion to the optimization problem (9) with

o

y =8noy(2) 6n(p+q) +3(p+gq) . (10)

Then forn > c2 i r(p + q) with probability at least — 3¢+,

0o
V— g(z) ep+rq . 3
. 1 p+q)  3(p+q)
I4]lr < Cye 2”70,, 5 —L. =1

wherec, andc, are constants.
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The value fory is selected based on Lemma 8 in Appendix 3 as twice the upper bound
for o4(VL,,(C*)) according to condition (10). Generally, for aty> 1and
v o
Y =Kz 870y Z)( 6nlp+q) +3(p+q) ,

our result remains valid and only differs in constant terms.
Under the same condition, we can establish the error bound in terms of the nuclear norm

2+ q, dba
g
e e

Whenr(p+ q) =o(n) , the Frobenius norm of the erdpf|[2 - 0in probability. Similarly,

the robustness of the method is seen as only a mild distributional Assumption 2 is required:
Fe(m+ n) -Fe(m— ) >C1—2 for|m| < nandy >0. Our estimator achieves a comparable
convergence rate as th1at in Negahban and Wainwright (2011) and Rohde and Tsybak
(2011), with the notable difference due to thé the Huber loss. Meanwhile, our method

does not require the errors to follow normal distributions, which is the case in those studies
with the £, loss. Here assuming symmetricity plays the same role as that in Theorem 1.
Based on the same discussions after Theorem 1, if the noises are not symmetrically distrib-
uted, then there will be an extra term in the upper bound.

4 Numerical examples

In this section, we conduct an extensive numerical investigation of the proposed method
using both simulated and real data sets. In all cases, we choose the tuning parameters by
ten-fold cross-validation. Specifically, for matrix completion problems, we first randomly
select9( of the observed entries as training samples and test the results using the remain-
ing 1% samples. We repeat the procedure 10 times and choose the best tuning parameter.
With extensive studies on simulated and real data sets, our results provide strong empirical
evidence that the proposed method provides robustness under different settings.

41 Jester joke data

We first test our method using the Jester joke data set. This data set contains more than 4.1
million ratings for 100 jokes from 73,421 users. This data set is publicly available through
http:/Avww. ieoberkdeyedu/ ~goldb ejggterdata/. The whole data set contains three
sub-datasets, which are: (1) jester-1: 24,983 users who rate 36 or more jokes; (2) jester-2:
23,500 users who rate 36 or more jokes; (3) jester-3: 24,938 users who rate between 15 and
35 jokes. More detailed descriptions can be found in Toh and Yun (2010) and Chen et al.
(2012), where the authors consider the nuclear-norm based approach to conduct matri
completion.

Due to the large number of users, we randomly seleeters’ ratings from the datasets.
Since many entries are unknown, we cannot compute the relative error using every entry.
Instead, we take the metric of the normalized mean absolute error (NMAE) to measure the
accuracy of the estimatd:
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(b) (c)

Fig.1 a We test our method orbt2e<512 Cameraman image. b A sample noisy image with heavy-
tailed noises and 40% missing entries. € A sample noisy image with heavy-tailed noises and 60% missing
entries

)y
iwea ¥ — M, &

Q‘Qﬁgx - rmin) ’

wherer ., andr ., denote the lower and upper bounds for the ratings, respectively. In the
Jester joke data set, the range-i$0, 10 . Thus, we havg,,, — min = 20.

In each iteration, we first randomly sefgctisers, and then randomly permute the
ratings from the users to generai? € Rw*100  Next, we uniformly sample SR for
SRe {15%, 20%, 0.284} entries to generate a set of observed indicesNote that we can
only observe the entry (j, k) ifj,k) € Q andM?, is available. Thus, the actual sampling
ratio is less than the input SR. We consider different settings,aind SR, and we report
the averaged NMAE and running times in Table 2 after running each setting 100 times. We
compare robust methods with, loss, Huber loss, and Tukey loss with the non-robust
loss. From Table 2, we see that robust matrix completion methods work promisingly.

NMAE =

4.2 Cameraman image denoising

We test our method using the popular Cameraman image, which is widely used in image
processing literature. We consider the “Cameraman” imagé#tk 512 pixels as shown

in Fig. 1a. We then generate random noise by first adding independent Gaussian noise to
each pixel with a standard deviation set as 3. Then, we add some heavy-tailed noises by
randomly choosing 10% pixels and replace the coefficient as 1000080. Furthermore,

we randomly select 40% or 60% pixels as missing entries. We provide two typical simu-

lated noisy images in the above of Fig. 1b, c, and provide the recovered images usi
the Tukey approach below them. The recovered images provide visual evidence that our
method is robust to heavy-tailed noises in practice. In addition, in Table 3, we provide
the averaged NMAE with standard deviations of different approaches after repeating the

data generating schemes 100 times. For the effective picture recovery and the NMAE, we
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Table 2 Averaged normalized mean absolute error with standard deviations in the parentheses for different
methods using Jester joke data set under different data generating schemes after 100 runs

Example (n,, SR Huber Tukey £, ?,

jester-1 (1000, 0.15)  0.155(0.006)  0.154(0.007)  0.173(0.009)  0.168(0.006)
(1000,0.20)  0.152(0.005)  0.150(0.006)  0.171(0.009)  0.165(0.006)
(1000, 0.25)  0.145(0.005)  0.143(0.006)  0.168(0.008)  0.153(0.004)
(1500, 0.15)  0.159(0.006)  0.155(0.006)  0.177(0.007)  0.169(0.009)
(1500,0.20)  0.154(0.006)  0.152(0.006)  0.174(0.007)  0.166(0.008)
(1500, 0.25)  0.151(0.006)  0.150(0.007)  0.173(0.006)  0.162(0.008)
(2000, 0.15)  0.160(0.006)  0.159(0.006)  0.180(0.006)  0.169(0.006)
(2000,0.20)  0.158(0.007)  0.156(0.006)  0.178(0.006)  0.164(0.007)
(2000,0.25)  0.155(0.005)  0.154(0.006)  0.175(0.006)  0.161(0.006)

jester-2 (1000, 0.15)  0.163(0.007)  0.161(0.008)  0.176(0.007)  0.169(0.008)
(1000, 0.20)  0.160(0.007)  0.159(0.008)  0.172(0.007)  0.167(0.008)
(1000, 0.25)  0.158(0.006)  0.155(0.007)  0.170(0.008)  0.166(0.007)
(1500, 0.15)  0.166(0.007)  0.164(0.008)  0.178(0.008)  0.171(0.007)
(1500,0.20)  0.164(0.006)  0.161(0.007)  0.176(0.007)  0.168(0.007)
(1500,0.25)  0.161(0.007)  0.160(0.007)  0.173(0.007)  0.164(0.008)
(2000,0.15)  0.170(0.006)  0.168(0.008)  0.180(0.007)  0.173(0.007)
(2000, 0.20) 0.166(0.007) 0.165(0.008) 0.177(0.007) 0.171(0.008)
(2000, 0.25)  0.163(0.006)  0.163(0.008)  0.175(0.008)  0.169(0.007)

jester-3 (1000,0.15)  0.175(0.008)  0.173(0.008)  0.184(0.008)  0.179(0.008)
(1000,0.20)  0.173(0.008)  0.171(0.008)  0.181(0.007)  0.177(0.008)
(1000, 0.25)  0.170(0.008)  0.168(0.009)  0.179(0.008)  0.176(0.008)
(1500,0.15)  0.177(0.008)  0.176(0.008)  0.187(0.008)  0.181(0.008)
(1500,0.20)  0.174(0.007)  0.174(0.008)  0.185(0.009)  0.178(0.009)
(1500,0.25)  0.173(0.008)  0.172(0.008)  0.184(0.008)  0.176(0.008)
(2000, 0.15) 0.179(0.008) 0.178(0.008) 0.188(0.008) 0.182(0.008)
(2000, 0.20)  0.177(0.009)  0.175(0.008)  0.187(0.009)  0.180(0.008)
(2000, 0.25)  0.174(0.008)  0.172(0.008)  0.185(0.008)  0.177(0.007)

Table 3 Averaged normalized mean absolute error with standard deviations in the parentheses for different
methods using Lena image after 100 runs

Missing rate Huber Tukey tsy ?4

40% 0.067(0.004) 0.062(0.005) 0.083(0.008) 0.079(0.006)
50% 0.071(0.005) 0.065(0.006) 0.089(0.011) 0.084(0.007)
60% 0.074(0.005) 0.069(0.007) 0.092(0.015) 0.088(0.007)

conclude that robust matrix completion has promising performance with partial and noisy
observations.
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4.3 Simulations

We first consider several similar simulation settings as described in She and Chen (2017)
to compare our method with their robust reduced-rank regresgtgmethod. In all cases,
we focus on testing the robustness by artificially introducing data corruption and outliers.
Setting 1: We first consider a low-dimensional case where =w&08gb =12,
g =8andr =3 or 5. We construct the design matrix X by generating its n rows by inde-
pendently sampling frooN(0,%,) , where we consider highly correlated covariates by let-
ting the diagonal elements &f, be 1’s and setting its off-diagonal elements as 0.5. For the
noise matrixz , we sample each row &findependently fromN(0,02%,) , whereZ, is the
g-dimensional identity matrix, and is set as 1. Next, we construct the coefficient matrix
C*. We generale* = B,B, , whereB; € R* ,B, € R, and all entries o, and B, are
independently sampled from N(0, 1). We then add outliers with a méttiky setting the
firsto% nrows ofU*as nonzero, where € {30, 35,.., 50 is the proportion of outliers,
and the j-th entry of any outlier row @f is the product of a Randemacher random variable
and a scalar € 0.75, ] times the sample standard deviation of the j-th colummnat™.
Finally, we set the response matrik= XC* + U* + Z. We report the mean and standard
deviation of the mean squared error (MSE) from 200 runs, where

MSE(XC) = XC* - XC|*A qn).

In addition, we also report the mean and standard deviation of the mean squared estimation
error, where

MSE(C) = & —C*IIXA qp).

Setting 2. We then test our method on heavy-tailed noise. Same as Setting 1, we |
n=100,p=12,9g=8, and =2, 3, or 4, and consider the same generating scheme to
construct the design matrix X, and then generate the noise matrix by the heavy-tailed t-dis-
tribution with a degree of freedom 3 or 5. Furthermore, we add outliers by the same gener-
ating scheme as in Setting 1 to genetitand lettingx =0.5, 0.7%r 1.

Setting 3: We consider a high-dimensional setting wher¢00,p =50andq = 50,
andr = 3or 5, where there are2, 500> 100 parameters in the matrix C to be estimated.
We consider the same data generating scheme as in Setting 1.

Settingl: Finally, we consider an ultrahigh-dimensionalsetting where n = 300,
p =100andq =400, and = 3or 5, where there a0, 000> 300parameters to be esti-
mated. We consider the same data generating scheme as in Setting 1.

The results are shown in Tables 4, 5, 6, and 7. We compare our method incorporating
Huber and Tukey loss functions with thé&* method when it is applicable. We note that
for high-dimensional Settings 3 and 4, th@* method of She and Chen (2017) cannot be
applied here because one of the iterations in their algorithm is not defined. We compare
our method with another robust method where we usé.tless in place of the Huber loss
in the objective with the nuclear norm constraint (Denoted gk In all four settings, both
Huber loss and Tukey loss achieve very promising performance, and Tukey loss slightly
outperforms Huber loss in settings with outliers.
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Table 4 Sample average of MSEC) and MSEC) for Setting 1 under different settings with sample stand-
ard deviation in parentheses after 200 runs

rooa %  MSEXC) MSE(C)

Huber Tukey R Huber Tukey R

3 075 30% 0.71(0.28) 0.56(0.31
35  0.82(0.44) 0.63(0.38

40%  0.96(0.49) 0.83(0.58

458,  1.11(0.97) 0.97(0.89

50% 1.23(1.01) 1.03(0.95

1.00 30% 1.02(0.42) 0.89(0.48

39%  1.12(0.46) 0.96(0.51

40%  1.34(0.64) 1.20(0.52

( ) 0.95(0.75) 0.12(0.05) 0.09(0.06) 0.23(0.12)

( ) 1.23(1.09) 0.13(0.07) 0.09(0.06) 0.25(0.17)

( ) 1.46(1.26) 0.16(0.08) 0.13(0.08) 0.28(0.20)

( ) 1.57(1.24) 0.18(0.09) 0.15(0.09) 0.30(0.21)

( ) 1.69(1.31) 0.19(0.11) 0.16(0.10) 0.33(0.23)

( ) 1.93(1.88) 0.12(0.07) 0.10(0.11) 0.25(0.37)

( ) 2.06(2.01) 0.18(0.08) 0.14(0.12) 0.34(0.34)

( ) 2.59(2.12) 0.22(0.10) 0.20(0.14) 0.42(0.35)

454 1.65(0.77) 1.39(0.85) 2.88(2.35) 0.27(0.12) 0.24(0.15) 0.48(0.40)
50% 1.83(0.84) 1.60(1.05) 3.28(2.76) 0.29(0.13) 0.25(0.18) 0.53(0.45)
5 075 30% 0.78(0.34) 0.64(0.44) 1.35(1.03) 0.13(0.05) 0.10(0.07) 0.26(0.15)
3% 0.87(0.42) 0.72(0.48) 1.78(1.15) 0.14(0.08) 0.11(0.08) 0.29(0.21)
40% 0.94(0.67) 0.88(0.58) 1.63(1.32) 0.17(0.08) 0.14(0.09) 0.31(0.23)
4545 1.15(0.82) 0.92(0.95) 1.85(1.49) 0.19(0.10) 0.16(0.10) 0.34(0.26)
(1.13) ) 2.04(1.63) 0.21(0.13) 0.19(0.11) 0.39(0.31)

( ) 2.02(1.95) 0.13(0.08) 0.10(0.12) 0.31(0.34)

( ) 2.13(2.15) 0.19(0.09) 0.17(0.13) 0.39(0.39)

( ) 2.64(2.27) 0.23(0.11) 0.23(0.15) 0.45(0.48)

( ) 3.06(2.48) 0.28(0.14) 0.26(0.16) 0.53(0.55)

( ) 3.31(2.78) 0.31(0.15) 0.28(0.19) 0.61(0.68)

506  1.32(1.13) 1.20(1.06
1.00 30% 0.71(0.62) 0.65(0.44
3%  1.19(0.54) 0.99(0.63
406  1.45(0.71) 1.15(0.75
486  1.77(0.84) 1.44(0.93
50%  1.90(0.95) 1.61(1.03

5 Intermediate theoretical results

Our estimators (1) and (5) are penalized M-estimators. We exploit the framework of
Negahban et al. (2012) in studying their statistical properties. Negahban et al. (2012) elab-
orates the notion of decomposability associated with some penalty function, which is a
key property for establishing the restricted strong convexity (RSC) property and the error
bounds of the penalized estimators.

For self-completeness, we outline the decomposability of penalizing with the nuclear
norm, and then derive the restricted strong convexity property for both models under the
Huber loss function.

5.1 Decomposability of nuclear norm

A ncirqﬂ -6 decomposable with respect to a pair of subspace ifAfer Mall and
Be M " with(M,M ) a pair of subspace BP9 satisfy

A+ Bl = All + Bl

To illustrate the decomposability of nuclear norm, recall
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Table 5 Sample average of MSEC) and MSEC) for Setting 2 under different settings with sample stand-
ard deviation in parentheses after 200 runs

dof «a r o MSEXE) MSEC)

Huber Tukey R Huber Tukey R

3 0.50 0.90(0.45) 0.70(0.42) 1.02(1.11) 0.14(0.08) 0.11(0.07) 0.20(0.14)
0.72(0.30) 0.52(0.28) 0.88(0.36) 0.12(0.05) 0.09(0.04) 0.15(0.17)
0.98(0.88) 0.65(0.81) 1.24(1.03) 0.17(0.14) 0.12(0.13) 0.39(0.28)

0.75 0.59(0.27) 0.40(0.23) 0.64(0.33) 0.10(0.05) 0.06(0.04) 0.30(0.21)

0.46(0.24) 0.23(0.14) 0.45(0.17) 0.08(0.04) 0.04(0.02) 0.12(0.09)

1.01(1.15) 0.66(1.06) 1.32(1.03) 0.18(0.19) 0.12(0.18) 0.19(0.12)

1.00 0.36(0.20) 0.20(0.12) 0.46(0.26) 0.06(0.03) 0.03(0.02) 0.08(0.03)

0.36(0.17) 0.15(0.09) 0.49(0.31) 0.07(0.03) 0.03(0.02) 0.09(0.04)

0.84(0.60) 0.50(0.58) 0.93(0.73) 0.15(0.11) 0.10(0.11)  0.20(0.05)
0.91(0.48) 0.74(0.45) 1.02(1.11) 0.14(0.08) 0.11(0.07) 0.15(0.06)
0.69(0.36) 0.51(0.36) 1.32(0.48) 0.12(0.06) 0.08(0.06) 0.16(0.04)
0.95(0.85) 0.76(0.91) 1.42(0.58) 0.17(0.15) 0.14(0.16) 0.19(0.09)
0.51(0.26) 0.36(0.20) 0.49(0.30) 0.08(0.05) 0.06(0.03) 0.08(0.06)
0.44(0.19) 0.21(0.12) 0.66(0.22) 0.08(0.04) 0.04(0.02) 0.13(0.06)
0.68(0.62) 0.63(0.67) 0.71(1.03) 0.18(0.29) 0.12(0.28) 0.23(0.14)
0.37(0.21) 0.21(0.16) 0.29(0.22) 0.06(0.04) 0.03(0.03) 0.06(0.03)
0.39(0.16) 0.13(0.08) 0.45(0.31) 0.07(0.03) 0.02(0.01)  0.09(0.04)
( (

0.42(0.39) 0.38(0.34) 0.92(0.73) 0.17(0.15) 0.12(0.16) 0.20(0.05)

5 0.50

= =

0.75

1.00

A ONDONMPDRONMPPONMNPPODNMP>PODN

M,(U,V) := Me R |rowM) <V, colM) <U,],

—1

M _(U,V) := Me R [rowM) €V, col(M) cU.}.

Note thatM , #M ,. Since U and V both have orthogonal columns, nuclear norm is
decomposable with respect to the péM ,, M . ). Note that if the rank ofV/*is equal or
smaller than r, thet/, andV, equal to or contain the column and row spaceufrespec-
tively, andvi* € M (U, V).

We present key intermediate results as lemmas below. The proofs of the lemmas are
given in the Appendix.

5.2 Results for matrix completion

The decomposability leads to the first lemma, which i§ a special case of Lemma 1 in
Negahban et al. (2012). It provides an upper bound fdf—. ||..

Lemma1 For anyy satisfying
vy 2204(WL,(M7)),

the error 4 satisfies
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Table 6 Sample average of MSEC) and MSEC) for Setting 3 under different settings with sample stand-
ard deviation in parentheses after 200 runs

roa %  MSEXC) MSE(C)

Huber Tukey 2 Huber Tukey 2

3 075 30% 1.23(1.19) 1.07(1.08
3%  1.44(1.64) 1.28(1.19

40% 1.65(1.25) 1.38(1.98

4545  1.72(1.33)  1.54(1.41

50% 1.83(1.46) 1.61(1.52

1.00 30% 1.34(1.89) 1.15(1.63
3% 1.45(1.84) 1.27(1.53

40% 1.52(1.80) 1.38(1.44

( ) 1.43(1.02) 0.02(0.02) 0.02(0.02) 0.04(0.02)
( ) 1.65(1.10) 0.03(0.03) 0.02(0.03) 0.05(0.03)

( ) 1.99(1.19) 0.03(0.04) 0.03(0.03) 0.06(0.03)

( ) 2.44(1.34) 0.03(0.04) 0.03(0.03) 0.08(0.04)

( ) 2.07(1.51) 0.04(0.05) 0.03(0.04) 0.08(0.05)

( ) 1.51(0.88) 0.03(0.02) 0.02(0.02) 0.03(0.04)

( ) 1.64(0.94) 0.03(0.03) 0.02(0.03) 0.04(0.02)

( ) 1.82(1.05) 0.03(0.04) 0.03(0.03) 0.04(0.03)

454 1.63(1.95) 1.46(1.67) 2.03(1.12) 0.04(0.04) 0.03(0.04) 0.05(0.03)

50% 1.75(2.03) 1.53(1.71) 2.19(1.40) 0.04(0.04) 0.03(0.04) 0.08(0.07)

5 075 30% 1.31(1.22) 1.12(1.05) 1.46(1.10) 0.02(0.03) 0.02(0.03) 0.04(0.03)
3% 1.50(1.72) 1.31(1.25) 1.73(1.16) 0.03(0.04) 0.02(0.03)  0.05(0.05)

40% 1.73(1.36) 1.44(2.05) 2.03(1.31) 0.03(0.05) 0.03(0.04) 0.07(0.06)

454 1.81(1.41) 1.63(1.49) 2.58(1.42) 0.04(0.05) 0.03(0.05) 0.09(0.05)

50% 1.90(1.55) 1.72(1.63) 2.19(1.59) 0.04(0.06) 0.04(0.04) 0.11(0.06)

1.00 30% 1.39(1.74) 1.23(1.85) 1.67(0.95) 0.03(0.04) 0.03(0.03) 0.05(0.06)

( ) ( )

( ) ( )

( ) ( )

( ) ( )

3%  155(1.92) 1.35(1.53) 1.79(1.09) 0.03(0.05) 0.03(0.03) 0.06(0.05

40% 1.67(1.79) 1.40(1.61) 1.96(1.21) 0.04(0.04) 0.04(0.04) 0.06(0.04

45% 1.74(1.85) 1.58(1.52) 2.14(1.37) 0.05(0.05) 0.04(0.05) 0.07(0.05

50% 1.89(1.93) 1.63(1.66) 2.25(1.19) 0.06(0.05) 0.05(0.05) 0.10(0.06
||AM—: Il =3lldg Il + 4 -

k=r+1
Lemma 1 indicates that the estimatdrbelongs to the set
)
My=Me R9: ||4WL||*53||4VT||*+4 O A =M —M*}.
! ' k=r+1
Note that if the rank ofM*is no greater than r, thenZ Z:M o, = 0and the projection of

J— J—
the error orlM | is solely controlled by the projection of errorldn, , so as the error itself,
since

I4]l, < Iﬁwllﬁ W Il < 4lldg |l

Now, consider the quantity
sL,(M,m*) =L, (M) —L,(M*) — (V,(M*),4).

For simplicity, we sometimes refer tﬁi_n(M, M*) aséL, . The next Lemma gives a lower
bound ochL,](M, M*), which is used to establish restricted strong convexity (RSC) and the

13
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Table 7 Sample average of MSEC) and MSEC) for Setting 4 under different settings with sample stand-
ard deviation in parentheses after 200 runs

roa %  MSEXC) MSE(C)

Huber Tukey 2 Huber Tukey 2

3 075 30% 1.32(1.22) 1.23(1.13
3%  157(152) 1.35(1.25

40%  1.65(1.46) 1.53(1.39

454  1.79(1.49) 1.64(1.57

50% 1.90(1.53) 1.75(1.63

1.00 30% 1.41(2.01) 1.34(1.45
3%  1.60(2.15) 1.49(1.61

40% 1.69(2.09) 1.60(1.77

( ) 1.52(1.23) 0.04(0.03) 0.04(0.03) 0.06(0.03)

( ) 1.81(1.34) 0.05(0.04) 0.04(0.03) 0.07(0.04)

( ) 2.03(1.51) 0.05(0.05) 0.04(0.04) 0.08(0.05)

( ) 2.21(1.53) 0.06(0.05) 0.05(0.04) 0.10(0.06)

( ) 2.28(1.65) 0.07(0.06) 0.05(0.05) 0.12(0.08)

( ) 1.63(1.09) 0.04(0.03) 0.04(0.03) 0.06(0.04)

( ) 1.85(1.30) 0.06(0.05) 0.05(0.04) 0.08(0.05)

( ) 2.09(1.49) 0.06(0.06) 0.05(0.04) 0.10(0.06)

454 1.81(2.13) 1.68(1.59) 2.20(1.53) 0.08(0.06) 0.06(0.04) 0.11(0.08)
50% 1.95(2.33) 1.79(212) 2.29(1.47) 0.09(0.06) 0.06(0.05) 0.12(0.10)

5 075 30% 1.45(1.39) 1.31(1.33) 1.65(1.19) 0.05(0.03) 0.04(0.03) 0.07(0.03)
39 1.61(1.48) 1.45(1.39) 1.89(1.25) 0.06(0.04) 0.05(0.03) 0.09(0.05)
40% 1.82(1.52) 1.62(1.51) 2.19(1.35) 0.07(0.06) 0.05(0.06) 0.10(0.06)
454 1.95(1.36) 1.78(1.59) 2.25(1.39) 0.08(0.06) 0.06(0.06) 0.12(0.07)
50% 2.04(1.58) 1.85(1.57) 2.37(1.44) 0.08(0.07) 0.07(0.06) 0.13(0.08)
1.00 30% 1.53(1.65) 1.38(1.42) 1.70(1.08) 0.05(0.03) 0.04(0.04) 0.08(0.04)
( ) ( )

( ) ( )

( ) ( )

( ) ( )

3%  1.66(1.74) 1.49(1.49) 1.83(1.29) 0.06(0.05) 0.05(0.04) 0.10(0.06
40% 1.79(1.79) 1.66(1.53) 2.07(1.27) 0.07(0.06) 0.06(0.06) 0.11(0.07
454 1.92(1.70) 1.81(1.62) 2.15(1.43) 0.08(0.07) 0.06(0.06) 0.12(0.08
50% 2.08(1.85) 1.93(1.59) 2.34(1.52) 0.09(0.08) 0.07(0.07) 0.14(0.08

upper bound for the error. The key to proving this lemma includes Lemma 1 and the appli-
cation of empirical process techniques.

Lemma2 (Lower bound oBL (M, M*)) Suppose Assumption 1 and 2 hold, and that the
regularization parameter in optimization problem (7) satisfies

y 220,(VL, (M)

Then for any > oandpm e (M : ||M —M*|max < 1) ™M,

oL, (M,M*) > AlR
ol ) =, cqu” Iz o
Vv — lo | — 2
B glp+q) log(p + q) 2m? 8
82 2mc, gt loglg+ 1)——— |+ g Hiall,

with probability at least — g,

By controlling the negative term, we have the restricted strong convexity property.
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Lemma 3 (Restricted Strong Convexity) Suppose that all the conditions in Lemma 2 and
Assumption 3 hold. Favl € (M : M —M*|| .« < 1] ™ o, with probability at least

1—glra,
1
8czpq

1

L, (M,M*) = [y

forn> C(L) c3prlog(p+ q)log(q+ 1), where C(L) is a a constant only depending on L.

5.3 Results of reducedirank regression

Recall

G(U,V) = (M€ R9 |row(M) <V, collM) <U,},

Gw.v)

[M e R |row(M) €V, collM) cU,'.
Lemma 1 can be easily extendedto

Lemma4 For anyy satisfying
v 2201(WL,(CY)),
A =C — C*satisfies
. . 2
g Il <3l Il +4 o
k=r+1
Lemma 4 indicates that the estimafbbelongs to the set
4
G =[Ce R9. ||ACLH*53||AQ||*+4 0,4 =C—C*.
’ k=r+1
The next result is to establish the RSC condition. Consider the quantity

5L,(C,C*) =L,(C) L,(C*) — (V,(C"),4).

Lemma5 (Lower bound aﬁLn(C, C*)) Consider the reduced-rank regression problem (9).
Suppose that Assumption 1, 2 and 4 hold, and the ngjsesre distributed symmetrically
about zero. Suppose the regularization parameter in optimization problem (9) satisfies

y 2204(WL,(CY)).
Then for any > 0andC e (C: ||C-C*|- < 5 &,
no, (%) v v

oz 4l —48 2oy () 4nlp+ q) +2nx+ 2p+ q) +x)[4ll,
1

8L,(C.C) =

with probability at least — g

13
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By controlling the negative term and setting the right side to be greater than 0, we have
the restricted strong convexity property.

Lemma 6 (Restricted Strong Convexity) Suppose that(a)ll the conditions in Lemma 5 hold,
* z [

then for ce [C: ||C-C*||r < n} & and n> C2:(_z)cfr(p+ q), where c, is a

constant,

no, (%)
4c2

1

8L,(C.C) = lal,

with probability at least — p+ q)~".

Appendices

Appendix 1: More on the assumption on the model errors

A key assumption in Theorem 1 and Theorem 2 is that the noigés are i.i.d. with zero
mean and a distribution functidf satisfying
Felm+ n) Fem— n) >——, (11)
: : c1(n)?

for any|m| < mnd some) >0, wherez, is a positive constant depending only gn This
is the same as requiringr(¢é € m— ym+ n])to be always positive for anym| < =and
n >0. Sinc&(¢) =0and0 € m— ym+ 7], this condition holds as long as the probabil-
ity mass near 0 is not too small, which is easily satisfied by a large class of distributions
including heavy-tailed ones. As an example, Fig. 2 gives the distribution of a t-distribution
with degree of freedom being 3. The area of the grey part reprEg@rnts 7) —FAm -7
whenm =1andn =2. Since the density function near 0 is strictly bounded from below,
the required condition (11) holds fpr> 0.

The Huber contamination model also satisfies Assumption 2. Specifi-
cally, supposethe errors ¢’s follow a Huber contamination model (1 —c)F + ¢G
with F being the distribution function of a normal random variable. Then
Pr(é € m— ym+ n]) =1—c)[F(m+ n) F(m— n)} €[ Gm+ n) Gm-n)] .
Then the first term creates no issue. Assumption 2 is easily met if G in the second term
is a continuous distribution with zero mean. When G is from a discrete distribution, it is a
step function. Then the second term is either 0 or a value bounded above from 1. Overall,
Assumption 2 is satisfied.
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0.25
1

0.15

0.10
\‘

0.05

0.00

Fig. 2 The distribution of a t-distribution with degree of freedom being 3. The area of the grey part repre-
sentsm;(m+ n) -F¢(m— nwhenm =1andn =2

Appendix 2: Proof for matrix completion

This section presents the proof related to the matrix completion.

Proof of Lemma 1 Note that

* * — T T _ *
My + MM L= oy, oV, =M".
r k=1 k=r+1

Using triangle inequalities and the decomposability of nuclear nortt pandM -,
M1, = W+ 4l = Wy, +ML+3M* +ﬁM—;II*
= My +A—LI| - m- + Al
= My, Il + IL\—LII - IMﬂII x| |-
Thus,
[IM*[1 = W1 =< 1M1~ vy 1l = lzﬁ—Lll* M LII* pirvain

=2[M 1]+ | [ = IAEWII*
r

By the convexity of the loss functidn, , together with the assumption pand the defini-
tion of the dual norm,

13
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L,(01) L, (M%) = (¥,(M"),4) = ~YIM").4)@
> —q(VL,(M ))||A||*_ L i L+ Wi 1)

SinceM is the optimizer of problem (7),

0= L,Mm +ﬂf/l|| an M)+ y ML)

z[_%\/l [/\HII—VMII%

> Z ||AMff||*—3||AW,H*—4||M%||*
Z

w=r+1 Ok » therefore the lemma holds. O

Notice thallM*_ ||, =
M

r

For simplicity, let

al,(X; _M;) al,(X; —M;)

aMl.;‘ a aM,-/-

(12)

My=M;
Before we look in the RSC condition, we first bound the teffWL , (M

Lemma7 (Upper bound for,(VL,(M*)) Suppose the noises are i.i.d with zero-mean and
are symmetrically distributed around zero, then for any0 , and a positive constazy

logp+q) ¥ ————=log(p+ q) 07 8
0'1(VL,](M*)) < 74c, n—q+ log(g + 1)T + % 3 [

with probability at least — g,
Proof of Lemma 7 Sinceo,( - )is a norm, the triangle inequality holds

o (VL,(M)) < oEIVL, (M) + q(VL, (M) — EIZ,(M).  (13)
It can be derived from Equation (1) that

1 JE ¥ aly(X; —M;)

VL,)(M*) :% . t it Jt,ij Y M/_}k
Since the noises are symmetrically distributed around zeré’—’%{ﬁM—’;) is an odd function
of the nois€; , we ha VE[ - (M* ’)] =0, and thus U
oy (E[VL,(M*)]) =0. (14)

To boundz; (WL, (M*) — E[V,(M*)]), first notice that

13
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o(WL,(M") — E[V,(M)]) = sup (W,WL,(M") — E[V,(M"])

ON0.© 1
we R™
Q@Y X -M)
— sup l <W"]I JII/L*U
Qe 1 2 i=1 j=1 *M;
we R
- t ti g%
i=1 j=1 ! o M;
o
= sup 1 f(M*)
@Pe 1 2
we R4
= Z.

Since the error; — Mi/’f arei.id.,
2
sup  f(M*) <2y and  sup  E[f(M*)] <
W], <1 W], <1 p
we IR Wwe R4

Q

by Theorem 2.3 in Bousquet (2002), we have fonanyd

N
2m?2  8xn
Z < IEZ:I + %*‘ TIE[Z] +§,

with probability at least —e™.
Moreover, since
V V J v
2 2 2
207 | %IE[Z] < 27, 8ﬁ[E[Z] < 2
npg n npq n npq 2

we have with probability at leabt- ™
v

Z <2E[Z] +

207, 8
noqg 3n’

By symmetrization inequality in Boucheron et al. (2013),

13
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¥ al(X; —M)
E[Z] < E[ sup —{W, ¢ i i
||W‘ |* <1 t=1 i=1j=1 ij
we R4
1 oo R al (X —M))
= - sup W, Jy Jijj Y )
Wil <1 l=t s d
we R4
1 al ()(it»/t MI*‘/ )
=cE s |7 e
[wll, <1 1= ot
we R9

where ¢,,...,¢, are iid. Rademacher variables with distribution

Plc,=1) = Ple= 4) =1, andare independentof ; |7 and 3},
No/v(v let E* denote e conditional expectatlon g|ven [ X ).+ 1=y - Notice that
al,(X; -

,r/[+”“) is an—Lipschitz function of W, ; . By Theorem 4.12 in Ledoux and Tala-
Mg

grand (2013), we have

X

W,

E*Z] <—E' sup ik
t=1

n
W], <1
wWe R

Then take expectation ovér, and we have for a positive constgnt

£ <26 sup getU,,W}g
" e &

We R
2 /4
<TE sup ol eJ)0H0H
" el =
we 9 (16)

@
< 20E(oy( 1 €g)
t=1

N
< 2nc, —|Og(gc-;- i + log(g+ 1)—|09(I;+ q):l

where the second inequality follows from the definition of dual norm, and the last inequal-
ity follows from Proposition 2 in Koltchinskii et al. (2011): it is simple to show that

Z X
mexa,(1 7 B9 0x(2 " EI)) =1,

13
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V

U(Z) < U(Z) =
t

€y €

H

lo

«Q
N,

whereU' is defined asU(Z“) =influ>0: [Eexp(%) <2} , then by concavity of loga-
rithm, we have

o o
Iogi = 1Iogq+ 1Iog(L)
log 2 2 2 log 2
o
Iog(q +

1 -
2 2Iog£ < loglg+ 1),

finally, using Proposition 2 in Koltchinskii et al. (2011), we he¥e 0 and a constar,

19 x+logp+q) Y ———x+log(p+q) %
P 01(5 . eJ) =6 g + log(g+ ﬂf <e
Then
19 “ 19
Elo(= €J)] = P(oy( €J,) =s)ds
n . tJt Q ., tJt
logp+q) ¥ ————=log(p+ q)
< _— | 1) ——=
o| 2P Toglgr 12
o
& 1 log(q + 1
+~C0 e — b
Vi 2 ng(x+ log(p + q)) n
J_© o
since;_1—7 < 2 J—, PRSI N , after simplification, we have
X+log(p+q) X log(p+q)
1 loglp+q) ¥ ————loglp+ q)
< _— | 1) ———
|E[01(n _ etJr)] =Cy ng + 09(q+ ) n 17)

By Equation (13), together with Equation (14), (15), (16) and (17), we have with prob-
ability at leastl —e™

o1(VL,(M7)) <

log(p+ q) . ¥ ————=log(p+ q) QW 8x
< 74c, n—q+ log(g + 1)T + +

npq " 3n [

o
Proof of Lemma 2 5L,7(M, M*) can be written as

13
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sL,

&,+ Ed,] - EB,]
Ed, - [EB,] - b,

Y

In the following, we establish the lower bound E{ESL,?(M, M*)] and the upper bound for
|E[6L (M, M*)] — &,(M,M")|, respectively, far € (M : M —M*|| < 1} M ¢
GivenanyM € (M : M —M*||pax < 7} M gandd =M —M*,

12 Z’ X al,(X; —M;)

ElsL,(M,M*)] = 2”: o 1Jt,ij[ln(Xij —My) =, (X; —M;) — e 4
12X . aln()gj—MU’f)
= 2ng i EL/,(X; —M;)] — B (X; _M,-j)] - E M l4;,
al,(X;—M7) . . .
whereT is defined in Equation (12).
i .
Sincel, (X; —M;) andd"’(”T”) are continuous function &,
oM
GMU - HM,]
= (M; —X;)dF(X;) + dF(X;) — dF(X;
QM,/—X|<17 ij Ij) ( I]) %”—X,-ﬁn ( I]) %,}—Xﬁ—n ( I])
=y~ [ —  ELx )
= W = A ]M”_%rﬂ ij /ST
+ 77:(Mij -1 - hE F(Mij + 7))
Mii+n )
= F(X;)dx; —
@, TP
(18)
whereF (- is the cdf ofx; , and
o 2E[1, (X; — M;)]
i — M
TR T < Fwy + ) (M — )
2 i i
aMl.j
Apply Taylor’s theorem tB[/,(X; —M;)], and we have for somye= 0, 1)
o 19eq .
E[sL,(M,M*)] _qu [ (M + ;A5 + 1) (M,.I. + tA — ;7)]4;
i=1 j=1
1 9
= % [F’g’(tiinj + 1) ‘Fg(tiinj - 77)]4; (19)
i=1 j=1
1
= 4],
4cipq

where the inequality follows from the Assumption 2.
Next, we consider the upper boumFE[f@t,}] - B,]‘. The techniques used here are

similar to those in the proof Lemma 7.

. /(, ,)
Letsl, ; =1,(X; —M;) —In(X,-j—M,.l.) -

A

j » sincé, isn— Lipschitz,
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$.8 2000 24 (20)

ForanyM e M ,, led =M —M*, we have

* 9 * 1 Z]
lE[aLy;(M’M )] - Bn(M’M ) = Z) (aln,idr E[Jn,irj,])
t=1
12 [A[E = f(M)
= 5| fulM)| ===~ 21
2n — 1t( )‘ 2n — ||A”: ( )
CHAlE o P )
2n MEMO t=1 HAH:
LetZ _—su n fulM) Equation (20)’1’( ) <4 and[E[ )] <’7 for an
1 ek G =1 90.86 Y —1 alp = 1aTF y

M e IR’X‘? Since the error¥; M*are i.i.d., by Theorem 2.3 in Bousquet (2002) for any
x=0
N

2 1
7, <2E(z,) +2 % + é_c;‘” (22)

with probability at least —e™.
Let ¢ 's be iid. Rademachervariables. Then, by symmetrizationinequality in
Boucheron et al. (2013),

1 f1r(M
EZ =—[E su
1] MeMpo 1@»
sg[E sup K i
n MeMO Al

LetE* denote the conditional expectation g|{/ ’[7 r
By contraction principle in Theorem 4.4 f Ledoux and Talagrand (2013), since
| n'tlr| _2

’tx/[ [

] [ ]

L Ol 4 4
E* sup g———=| <4nE* sup e
MeM t=1 A“/r ||A“: MeM , t=1 ||A”:
Then
M (Jp, 4)
7 t
ElZ,| <—E su €
&) =3 MeMpog 9o
>
<8yE sup I
! & 90,90
<8E o (0 1eJ) sup iy
L 2P Ses0e
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The second inequality follows form the definition of the dual norm.
By Lemma 1, we have fad € M jandr > 0,

X
141l <31l4g [1+4 o
’ k=r+1

Note that
ran 4y ) =ranka — 4.)

=rankU,UA(l —=v,V') + &,V]) <2r.

Then we have for aM € R”@and4 =M — M*

&
VOIOPD OO VPG 109001 o,
i 0 k=r+1 (23)
<4 2rQ0/0% o,
k=r+1
If M*is exactly low-rank witllanKM*) <r , thenZ Z:M o, =0, in this case
J o
E[Z,] <32 2rmE o, 16,Jt)
=1 1
glp+q) log(p + q)
<32 2mc, g + loglg+1) -
where the last inequality follows from Equation (17).
Then, by Equation (22)
v (p+a , Y (p+q) ¢
P log(p + q ——=loglp+ g 202 160
Z1S64 2!’77C0 n—q+2 |Og(q+ 1)T + W;?q'i':a—n,
with probability at least —e™.
Therefore, by Equation (21), with probability at lebste™.
$ - ga,§ a2 R
— lo vV — 2
glp+q) log(p + q) 207 8xy, o
< B2 2, g + log(g+ 1) p + e * 3 HiAg-

Together with Equation (19), we have with probability at léas¢™,
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]

S, = —— a2
7~ acpq o
v — lo Ve 2
glp + log(p + 2m?  8x
- B2 26 %+ gl 29+ 9 |, ot 3 14l
(24)
O

Proof of Theorem 1 Construct M, =M*+ t(M —M*) in the following way. If
M —M*||ax < 1, then t =1, othervvlse chooset such that ||[M, — M*||..x = n Let
A, =M, —M* = t(M —M*) =tA . Notice

oL, (M,) =L (M) —L(M*) — (V(M7),4,)
<tL(M) + {1 -t)L(M*) L(M*) - (¥(M"),4,)
=toL,(M).

SinceM is the optimizer of problem (7 )

A

)+ Wl =L — e =

Therefore,
oL, =L,(M) L, (M*) - (V,(M*),4)
< ¥ (00O m@v s
< 7999 (WL, (V") 09o
3
= 57 999
Then by Lemma 2, for any> 0, with probability at leagt—e™
1 3
Qm —yéﬁi@@
4c2pq 2
/ YA /
VS loglp+q) ¥ ———=loglp+ q) 272 8x
[ = b
+ (32 chor nq + log(g+ 1) - + npq+ 3njm

Divided both sides of the inequality biy||- , we have
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1 3 000
4cipq
/ 0— -
= | loglp+q)  Vi———xlogp+q) | 207 8
+ 132 2rncy g + log(g+ 1) p + oa t 3
S L J
<6y 2r
& _
v v 5
+ 132 2rney W + log(g+ 1)@ + % + 83i:

with probability at least! —e™ . The second inequality follows from Equation (23) when
M* has rank smaller than r and the fack that,(VL(M*)) with probability at least
1—-e*byLemma?7. J

Takex =log(p+ g)andn> C(L) ¢ 2plog(p+ q)log(g+ 1) with C(L) with being

some constant depending on L, we Hayg, ., < "LT—q”AtHF < 7. Then by the construction

of M, t = 1. Finally, we have with probability at Idast2e™ —e? =1-3(p+ q)~,

1 . log(p + q) log(g + 1 v —
+—ll4dllr =C; -y ploglp + d)loglq )( 2rcy + c3),
pPq n
whereC, ,c, ,c; are absolute constants. g

Appendix 3: Proof for reduced ' rank regression

Lemma8 (Upper Bound fow(VL,(C*))) Suppose thd},’s are i.i.d. with zero mean and
symmetrically distributed around zero, then for any0 , we have with probability at least
1-e™*

N
01(WL,(C")) <4no,(2 )( 4nlp+q) +2nx+ 2(p+ q) +x)

Proof of Lemma 8 Note TL( {"{yu x'ci)x, . Let g; = t;f{y,-j -x'c),

I
G = Bjlnxg @andG*the value of G whe@ = C*, therVL, (C*) = X'G"

a;(VL,(C*) = sup sup (Xv,G*u).
llull, =1 [lvil, =1
uelF ve R

Following the proof of Lemma 3 Negahban and Wainwright (2011) (the proof is given in
its supplementary material), we have
®<Xv, G*u) °

P(@4X'G*)@ 45n) <89 max max P —— 2 >4
llull =1 [Ivil, =1 n (25)

uelRR velR

13



2756 Machine Learning (2023) 112:2723-2760

It remains to boun§<Xv, G*u) . Let

/2
wv,x)(u, g,

Z:= 1<XV, G'uy =
n i=1

1
n

whereg’is the i-th row of G*. Sincef; 's are symmetrically distributed around zero and
lifx ) is an odd function,E[G*] =0.Hence,E{{v,x;)(u, g} =0. Further, for k being any
posmve integer,

E{(v, x)%*(u, g) %) ?flE0<v,X,->2k

i=1 i=1

e rup
= Aol S (2K — 1)
<n%n(2k — o, (2) *

IA

By Berstein’s inequality, for arty> 0 and u, v satisfyingul|, =1, ||v|l, =1,
PZ> nq(Z)(\/ 2Vn+t/n)) <e.
Combining with Equation (25), we have
P(@dX G*)@ amo, (=) Y 2/ n+t/'n)) <89,
Taket =2(p + g) +xfor anyx> 0, and then we have

N -
P(@4X'G* )9 4n0,(2)( 4n(p+q) +2nx+ 2(p+q) +x)) <e™.

sL,= &, + Eld,] - EB,]
> Eld,] oL, - Eld,)]

Proof of Lemma 5
n the followijng, we establish the lower bound E6L,| and the upper bound for
oL, — [E[c[,;]l, respectively, f@ e G, N C: ||[C-C*|r < 7

€GN C: [[C—-C*|f < njandd =C —C*, for som¢; € 0, 1

Given an
o G
ElL,] = EL(v; =X/ )] — By —x'c)] — Bfty; —x/c/)(—x/4))]]

0
= Ex[( Fetjx 4+ 1) F:t;x 4, — )}k 4))?]

2 o1 j=1
1 O@
22 [E()(I.TA]-)2
1 i=1 j=1
n 2 nan( ) 2
>—0, X Alls = All,
22 n()j:1\|,||,: 22 Al
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where the equality follows from Taylor's theorem, and the first inequality follows from

Assumption 2 and Assumption 4. For the calculatlon—% please refer to the
calculation o."M in the case of matrix completion problems.

For any /—1 nj=1,.,q, there exist ;€ 0,17, such that
£,y —x'¢) — Ay —x’. C/*) = ﬁy =X )X (c -¢), where g =c'+ 1;j(cj—cj*).
Therefore,

oL,(C) = (Y,(C) — V,(c"),.c-C.
Then
$. - €a,% L0 - vchc-c) - EL,Q - Yc)c-c)
= X'G- XTG*,C—C> - EX'G-X"G*,C—-C")
< [aloy(X"(G-6") - E"(G-G").
Following the proof in Lemma 8, we have for any 0
. N
X'(G— EG) ~G*)) <12)04(2)( 4n(p+ q) +2nx+ 2(p+ q) +x),

with probability at least —e™.
Similar to Eguation (23), it can be showq th&t*ihas rank smaller than r, then
SUReec, ” I‘b: <4 2r.Hence, forC € G ||4]l, <4 2r||4||z . Now we have with probabil-

ity at least! —e™,
_ no,(2)

oL, >
Ui 20?

v _ v
1Al —48 2rnoy(2)( 4n(p+q) +2nx+ 2(p+ q) +x) |14l

O

Proof of Theorem 2 Construct C, =C*+t(C—C*) in the following way. If
|C—C*||r < n, then t =1, otherwise, choose ¢ such that ||C, —C*|| = 7. Let
A, =C,—C*=t(C—C*) =tA. Notice

oL,(C) =L,(C) —L,(C) — (V,(C).4)
<tL,(C) + 1-t)L,(C") —L,(C) - (V,(C"),4)
=1tsL,(C).

SinceC is the optimizer of problem (9), we have

L,(C) + vl <L,(C*) + vyl

Therefore,

13



2758 Machine Learning (2023) 112:2723-2760

6L,(C) =L,(C) —L,(C") — (¥,(C).4)

Al - €l +8,c.a§

vHll.+ &(VL,(C)IIAl.

3 ~
< 2yl

IA

IA

By Lemma 5, for anyx > 0, with probability at leadt—e™,

3t R \/ —_ \/— no, ( ) 2
SylAll. +48 2mo,(Z)( 4nlp+ q) +2nx+ 2(p+ q) +x)[1 4 = 22 ll41E-

The second inequality follows from Equation (23) wihhas rank smaller than r and the

fact that the selection ¢f >20,(VL (M*)) with probability at least — e by Lemma 7.
Further, by Equation (23) and the fact that >20,(VL (C*)) with probability at least
1—-e>*by Lemma 8, we have

no,(2) 3 V= —
o2 14l < y4 2r + 48 2rncr1( ) 4nlp+ q) +2nx+ 2(p+ q) +x)
2

with probability at leagl —e™>)?, Takex =p+ q andn> C, - Z ( cz(p+ q)r with C,

being some constant, we th‘?HF < 5. Then by the constructlonﬁ‘f t =1. Finally, we
have with probability at lea$t— 26 —e 2 =1 — 3¢~P+a),
9o__ o
V_— o,z
||A||FS48 2,.7761( ) 6(p+Q)+ 3(p+q)

2_03 o,(2) n n
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