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Abstract
We consider estimating matrix-valued model parameters with a dedicated focus on their 
robustness.  Our  setting  concerns  large-scale  structured  data  so  that  a  regularization  on 
the matrix’s rank becomes indispensable. Though robust loss functions are expected to be 
effective, their practical implementations are known difficult due to the non-smooth cri-
terion functions encountered in the optimizations. To meet the challenges, we develop a 
highly  efficient  computing  scheme  taking  advantage  of  the  projection-free  Frank–Wolfe 
algorithms that require only the first-order derivative of the criterion function. Our meth-
odological framework is broad, extensively accommodating robust loss functions in con-
junction with penalty functions in the context of matrix estimation problems. We establish 
the non-asymptotic error bounds of the matrix estimations with the Huber loss and nuclear 
norm penalty in two concrete cases: matrix completion with partial and noisy observations 
and reduced-rank regressions. Our theory demonstrates the merits from using robust loss 
functions, so that matrix-valued estimators with good properties are achieved even when 
heavy-tailed  distributions  are  involved.  We  illustrate  the  promising  performance  of  our 
methods with extensive numerical examples and data analysis.
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1 Introduction

Massive data with informative structures from the data collection processes are becoming 
increasingly  available  in  many  data-enabled  areas.  Examples  include  those  from  FMRI, 
electroencephalogram  (EEG),  and  tick-by-tick  financial  trading  records  of  many  assets. 
Methodologically for multivariate data analysis, matrices as the model parameters are com-
monly  analyzed  in  the  core  step(s)  of  many  popular  approaches  including  the  principal 
component analysis, canonical correlation analysis (Anderson, 2003), Gaussian graphical 
model analysis (Lauritzen, 1996), reduced-rank regression (Reinsel & Velu, 1998), suffi-
cient dimension reduction (Cook, 2009), and many others.

Structural  information—our  foremost  consideration  in  this  study—is  indispensable  in 
solving many matrix estimation problems with large-scale data. For matrix-valued model 
parameters, a class of methods imposes restrictions on the rank of the targeted matrix. In 
matrix completion with partial and noisy observations, for example, without such struc-
tural  information,  successfully  recovering  the  signal  is  not  possible.  For  multi-response 
regression problems, structural information is vital for both methodological development 
and practical implementation for drawing informative conclusions. Constraining the rank 
of  the  parameter  matrix  in  multi-response  regression  leads  to  the  conventional  reduced-
rank regression (Reinsel & Velu, 1998).

Our  primary  goal  in  this  study  is  to  investigate  robustness  when  estimating  matrices 
with large-scale data and structural information. Robustness is a foundational concern in 
current data-enabled investigations. During massive data collection processes, observations 
of heterogeneous quality are inevitable, and even erroneous records are common. On one 
hand, due to the huge size of the data in modern large-scale investigations, validations and 
error corrections become too daunting to be practical. Robust statistical methods in these 
scenarios are thus highly desirable. On the other hand, however, in many existing methods, 
though being convenient, commonly applied criterion functions including the squared loss 
and the negative log-likelihood are unfortunately not robust to the violations of the model 
assumptions in the aforementioned practical reality.

We are thus motivated to consider robustness in the context with structural information, 
which is incorporated by constraining the rank of the matrix-valued model parameters. The 
foremost challenge in this scenario is the fundamental computational difficulty. One source 
contributing to the difficulty roots in the fact that constraining a matrix’s rank results in a 
non-convex problem. As a rare example in reduced-rank multivariate regression, an ana-
lytic solution is available despite the non-convexity; see (Reinsel & Velu, 1998). Unfortu-
nately when considerations are broader, such a convenience generally no longer exists; and 
how to solve optimization problems with rank constraints is generally difficult. To meet the 
challenge, a convex relaxation of the problem leads to regularizing the nuclear norm of the 
matrix-valued  model  parameter.  From  the  statistical  perspective,  numerous  works  (Can-
dès & Tao, 2010; Negahban & Wainwright, 2011; Agarwal et al., 2012) have studied the 
theoretical properties of this type of estimators constructed with the nuclear norm relaxa-
tion, and have proved that the resulting estimator achieves optimal or near-optimal statisti-
cal  properties  under  different  settings.  Additional  to  the  non-convexity,  consideration  of 
robustness is further contributing to the computational difficulty. Resorting to robust loss 
functions is a traditional class of influential methods for establishing more robust statisti-
cal methods; see Huber (2004) and Hampel et al. (2011). Though demonstrated effective 
in conventional statistical analysis, substantial difficulties arise when handling large-scale 
modern complex data-enabled problems. Computationally, in particular, their applications 
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encounter major challenges because robust loss functions are not smooth whose second-
order  derivatives  do  not  exist.  Analytically,  establishing  the  statistical  properties  of  the 
matrix estimations is challenging in this scenario too, because the impacts from possibly 
heavy-tailed errors are involved in studying large-scale problems. Existing methods using 
the squared loss or the negative log-likelihood as the loss functions require the noises to be 
sub-Gaussian in order to handle high-dimensional data. Robust methods can accommodate 
noises  with  heavier  tails  than  sub-Gaussian;  meanwhile,  the  capacity  for  handling  high-
dimensional data remains desirable.

There has been an active recent development in robust statistical methods with high-
dimensional  data;  see,  for  example,  Loh  (2017),  Zhou  et  al.  (2018),  Sun  et  al.  (2020), 
and reference therein. Recently, there has been increasing interest in investigating robust 
methods  for  matrix-valued  model  parameters.  She  and  Chen  (2017)  studied  the  robust 
reduced-rank regression in a scenario concerning outliers. They define the estimator as the 
minimizer of a non-convex optimization problem, establish theoretical error bounds, and 
propose to apply an iterative algorithm that alternatively solves for two parts of the model 
parameters in their setting. Due to the nonconvexity, their algorithm does not guarantee the 
convergence to the minimum. Wong and Lee (2017) studied matrix completion with Huber 
loss. Their algorithm is developed by iteratively projecting non-robust matrix estimators, 
which  is  computationally  demanding  with  many  projection  operations  required.  Elsener 
and van de Geer (2018) investigated robust matrix completion with the Huber loss function 
and nuclear norm penalization. The computation algorithms in Elsener and van de Geer 
(2018)  involved  a  soft-thresholding  step  for  singular  values.  This  works  well  when  the 
solution is of exact low rank. However, when the solution is of approximately low rank, or 
of modestly higher rank, such a step becomes computationally demanding. As pointed out 
in She and Chen (2017), efficient algorithms are desirable for solving optimization prob-
lems with rank constraints and robust loss functions.

We attempt our study with a foremost consideration on an efficient computing scheme 
for solving large-scale statistical problems with robustness. In particular, we aim to develop 
efficient  first-order  algorithms  by  building  a  scheme  with  Frank–Wolfe-type  algorithms 
for robust matrix estimation problems. The Frank–Wolfe algorithm is a first-order method 
and is drawing considerable attention recently (Jaggi, 2013; Lacoste-Julien & Jaggi, 2015; 
Freund & Grigas, 2016; Freund et al., 2017; Kerdreux et al., 2018; Swoboda & Kolmogo-
rov, 2019). The key advantage of the Frank–Wolfe algorithms is their freedom from the 
required projections in most proximal-type algorithms. In addition, as we shall see in our 
algorithms in Sect. 2, for matrix estimation problems, in each iteration, the Frank–Wolfe 
algorithm  only  requires  computing  the  top  one  leading  singular  vectors,  which  can  be 
conducted efficiently even for huge-size problems. These merits make Frank–Wolfe-type 
algorithms particularly appealing for solving large-scale robust low-rank matrix estimation 
problems.

Our  study  makes  two  main  contributions.  Foremost,  we  develop  a  new  computation 
scheme  for  robust  matrix  estimation  and  demonstrate  that  the  first-order  optimization 
technique  makes  solving  large-scale  robust  estimation  problems  practically  convenient. 
We  show  extensively  that  our  framework  is  broadly  applicable,  covering  general  robust 
loss functions including those used in median and quantile regression; see Sect. 2. Sec-
ond, our theoretical analysis reveals the benefit from using robust loss functions and rank 
constraints. Our non-asymptotic results demonstrate that our framework can accommodate 
high-dimensional data. For matrix completion and reduced-rank regression, the resulting 
matrix-valued estimator works satisfactorily even when the model error distributions are 
heavy-tailed.



2726 Machine Learning (2023) 112:2723–2760

1 3

The rest of this article is organized as follows. Section 2 elaborates a concrete frame-
work  using  the  Frank–Wolfe  algorithm  to  solve  robust  matrix  estimation  problems.  We 
present matrix completion and reduced-rank regression with various robust loss functions. 
Section 3 justifies the validity of our method with theory on the algorithm convergence and 
error bounds of the resulting estimators. Section 4 presents extensive numerical examples 
demonstrating the promising performance of our methods.

For  a  generic  matrix  A,  we  denote  by A⊤  its  transpose, 𝜎1(A)  its  largest  singular 
value, ‖A‖∗  its  nuclear  norm,  and ‖A‖F  its  Frobenius  norm.  Let ⟨A, B⟩ =trace(A⊤B)  for 
A,B ∈ ℝp×q .  We  denote  by 𝛩 ∈ ℝp×q  a  generic  matrix-valued  model  parameter.  In  this 
study, we focus on two concrete cases. In one case, 𝛩 =M where M is the signal to be 
recovered in the matrix completion problem with a single copy of partial and noisy obser-
vations;  the  other  one  is 𝛩 =C  where  C  is  the  matrix-valued  coefficients  in  the  multi-
response regression problem. Furthermore, we show that our framework broadly applies in 
solving a general class of problems.

2  Methodology

2.1  Matrix completion

We consider the matrix completion problem first. In this setting, one observes a noisy sub-
set of all entries of a matrix M ∈ ℝp×q , which is the model parameter of interest. Let the set 
of observed entries be 𝛺 = {(i t, jt)}n

t=1 , where it ∈ {1,… , p} ;jt ∈ {1,… q} , and denote by 
Xit ,jt , (it, jt) ∈ 𝛺 , the corresponding noisy observations such that

We  assume  that 𝜉t ’s  are  independent  and  identically  distributed  random  variables  with 
mean zero.

To  effectively  recover  M  with  a  single  copy  of  partial  and  noisy  observations  over 𝛺 ,  one  popular  approach  is  to  assume  that  the  underlying  true  matrix,  denoted  by M∗ , 
is  of  low-rank  that rank(M∗) ≤r  for  some r ≤min(p, q) .  Then  one  can  estimate M∗ 
by  solving  a  constrained  optimization  problem  by  minimizing  the  objective  function 
(2n)−1 ∑ n

t=1 𝓁( Xit ,jt −Mit ,jt )  over  M,  subject  to rank(M) ≤r  for  some  loss  function 𝓁(⋅) . 
Since the rank constraint is non-convex, solving the optimization is generally not tractable. 
To obtain a practical solution, a common strategy is relaxing the rank constraint to the con-
vex nuclear norm constraint.

The  Huber  loss  function  leads  to  robust  estimators  because  its  design  alleviates  the 
excessive contribution from a data point that is extremely deviated from the fit. Practically, 
the Huber loss performs promisingly when handling a substantial portion of noisy observa-
tions whose distribution can be heavy-tailed; see Huber (2004).

By applying the Huber loss with a constraint on nuclear norm, we consider the follow-
ing robust matrix completion problem:

where 𝓁 𝜂(⋅) is the classical Huber loss function:

Xit ,jt =Mit ,jt + 𝜉t, t = 1,… , n.

(1)min
M∈ℝp×q

L 𝜂(M) =∶ 1
2n

n�

t=1
𝓁 𝜂(Xit ,jt −Mit ,jt ), subject to‖M‖∗≤ 𝜆,
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Here 𝜂 is the tuning parameter of the Huber loss, and 𝜆 is the tuning parameter regulariz-
ing the nuclear norm of M. In our numerical studies, we choose the tuning parameters by 
applying the cross-validation.

Since 𝓁 𝜂  is  not  smooth,  those  methods  commonly  applied  in  solving 𝓁 2-loss  prob-
lems—requiring second-order derivatives—do not directly apply. Computing optimiza-
tion problem (1) is generally hard; see the discussion in She and Chen (2017). Efficient 
algorithms for solving (5) are lacking; the primary difficulty is due to the absence of the 
second-order derivative of the Huber loss. It is even more challenging to minimize the 
Huber loss on a restricted low-rank region, and to achieve the computational efficiency 
with large-scale data. More broadly, non-smooth criterion functions are commonly the 
case  with  general  robust  loss  functions,  with  prominent  examples  including  the  least 
absolute deviation loss of the median regression, check loss of the quantile regression, 
and Tukey’s biweight loss besides the aforementioned Huber loss.

To  address  the  computational  difficulty  when  handling  large-scale  problems  with 
robust loss functions, we propose to apply the Frank-Wolfe algorithm to solve this prob-
lem.  The  Frank–Wolfe  algorithm  has  been  particularly  powerful  for  convex  optimiza-
tions. As a first-order approach that requires no second-order derivative of the criterion 
function,  it  is  particularly  powerful  for  solving  problems  with  non-smooth  loss  func-
tions, which is exactly the case for our problem (1). Briefly speaking, the Frank–Wolfe 
algorithm  pursues  some  constrained  approximation  of  the  gradient—the  first-order 
derivative of the criterion function evaluated at a given value. The algorithm runs itera-
tively, with the optimization proceeding along the direction as identified by the approxi-
mation of the gradient. Therefore, the Frank–Wolfe algorithm is practically appealing, 
as one has the opportunity to best exploit some constrained approximation that can be 
computed efficiently. For a detailed account of the Frank–Wolfe algorithms and recent 
advances in the area, we refer to Freund and Grigas (2016), Freund et al. (2017), and 
references therein.

Concretely in our setting, we develop an algorithm that runs iteratively. Specifically, 
at the (k + 1)-th iteration with M(k) from the previous step, the matrix-valued gradient of 
(1): ∇L (M(k)) ∈ ℝp×q is analytically calculated by

where Jt  is  a  matrix  with Jt,it jt = 1  and  all  the  other  entries  0, 1(⋅)  is  the  indicator  func-
tion, and sign(x) =1 if x is positive and − 1 otherwise. Hence, evaluating the gradient can 
be done efficiently, and it is a scalable process that can be efficiently distributed if multi-
ple computing units are available. Then, the Frank–Wolfe algorithm suggests computing a 
descent direction in the (k + 1)-th iteration:

In this step, a key observation is that

(2)𝓁 𝜂(x) ={ 1
2
x2 if |x| ≤ 𝜂,𝜂 ⋅( |x| −1

2
𝜂) otherwise.

(3)
∇L (M(k)) = 1

2n

n∑

t=1
Jt[(M

(k)
it ,jt

−Xit ,jt )1(|M
(k)
it ,jt

−Xit ,jt| ≤ 𝜂)
+ 𝜂sign(M(k)

it ,jt
−Xit ,jt )1(|M

(k)
it ,jt

−Xit ,jt| > 𝜂)],

V(k+1) ← argmin
V

⟨∇L (M(k)),V⟩, subject to‖V‖∗≤ 𝜆.
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where u1 and v1 are the leading left and right singular vectors of ∇L (M(k)) . The required 
singular decomposition can be computed efficiently by an existing algorithm that is imple-
mented in the standard “PROLACK" package in Matlab. Then, we conduct a descent step 
to update M(k) by

where 𝛼k+1 ∈ [0, 1] is a pre-specified step-size. For example, 𝛼k+1 = 1∕( k + 3) guarantees 
convergence to an optimal solution. Meanwhile, line search is viable, and there are various 
ways to further accelerate this algorithm.

Intuitively, the updating direction in Equation (4) is viewed as the best rank-one approx-
imation of the gradient matrix (3). Further, if we view the vector u1 as the direction cor-
responding to the first principal component of the columns of M, then formula (4) is essen-
tially  a  column-wise  update  along  this  direction,  with  the  step  sizes  proportional  to  the 
components  in  the  vector v1 .  From  this  perspective,  the  update  formula  (4)  can  also  be 
viewed as a computationally efficient matrix-valued coordinate descent along the direction 
u1 . Since the objective function (1) is convex, such an update progressing along the gradi-
ent direction ensures that the criterion function converges, approaching the minimum.

We summarize the algorithm in Algorithm 1.

2.2  Reduced‑rank regression

In our second concrete problem with matrix-valued model parameters, we consider a mul-
tivariate linear regression

where 𝜉ij ’s are model errors. We assume that 𝜉ij ’s are independent and identically distrib-
uted random variables with mean zero. Then, we have in a matrix form

where Y = [yij ]n×q, X = [xij ]n×p = [x1,… , xn]⊤, C = [c1,… , cq] ∈ ℝp×q , and 𝛯 = [𝜉ij ]n×q.
In this setting, one may opt to restrict the rank of C—rank(C) ≤r (r ≤min(p, q))—lead-

ing to the conventional reduced-rank regression (Reinsel & Velu, 1998). Also by relaxing 
the rank constraint with the nuclear norm, we consider the estimation problem as

(4)V(k+1) = −𝜆 ⋅u1v⊤1 ,

M(k+1) ← M(k) + 𝛼k+1
(
V(k+1) −M(k)) ,

yij = x⊤i cj + 𝜉ij , for i = 1,… , n, j = 1,… , q,

Y =XC+ 𝛯,
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where cj denotes the j-th column of C, and 𝓁 𝜂(⋅) is the Huber loss function with parameter 𝜂
.

Again, to address the computational challenges, analogous to problem (1), we pro-
pose to solve problem (5) also by applying Frank–Wolfe algorithm iteratively with the 
steps described as follows. Denote by C(k) the solution after the k-th iteration. At the 
(k + 1)-th iteration, let ∇L 𝜂(C(k)) be the gradient of the loss function at C(k):

where Zij is a matrix with the j-th column being xi and the remaining entries 0. Then, we 
compute a descent direction from

with the solution

where u1 and v1 are the leading left and right singular vectors of ∇L 𝜂(C(k)).
The  algorithm  follows  Algorithm  1,  with  different  input  data  and  the  gradient 

matrix specified by (6).

2.3  Other robust loss functions

Our framework for developing efficient computation algorithms can easily accommo-
date a broad class of robust loss functions that are not smooth. Examples of the loss 
functions  are  the 𝓁 1-loss  (the  least  absolute  deviation  loss),  the  check-loss,  Tukey’s 
biweight loss, and more; see Hampel et al. (2011).

A scheme is developed as follows. The only necessary adjustment as in Algorithm 1 
is calculating the gradient of loss function ∇L (⋅) . Then, the general updating step is

where 𝛼k+1 is some pre-specified step-size, V(k+1) = −𝜆 ⋅u1v⊤1 , with u1 and v1 being the first 
left and right singular vectors of ∇L (𝛩(k)).

Table 1 presents gradients for several common loss functions in the context of matrix comple-
tion and reduced-rank regression.

(5)min
C∈ℝp×q

L 𝜂(C) =∶
n�

i=1

q�

j=1
𝓁 𝜂(yij −x⊤i cj), subject to‖C‖∗≤ 𝜆,

(6)
∇L 𝜂(C(k)) =

n∑

i=1

q∑

j=1
Zij [(x⊤i c(k)j −yij )1(|x⊤i c(k)j −yij| ≤ 𝜂)

+ 𝜂 sign(x⊤i c(k)j
−yij )1(|x⊤i c(k)j

−yij| > 𝜂)],

V(k+1) ← argmin
V∈ℝp×q

⟨∇L (C(k)),V⟩ subject to‖V‖∗≤ 𝜆,
V(k+1) = −𝜆 ⋅u1v⊤1 ,

𝛩(k+1) = 𝛩(k) + 𝛼k+1
(
V(k+1) − 𝛩(k)) ,
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3   Theory

3.1  Convergence of the algorithms

For self-completeness, we present the theoretical guarantees for the Frank–Wolfe algo-
rithm in the context of robust matrix estimations, together with a simple way to choose 
the step-sizes.

We prove that by choosing the stepsize properly, the objective functions by using the 
Huber loss in both matrix completion and reduced-rank regression problems converge 
to the optimums at the rate of O(1∕ k) , where k is the iteration counter. The next proposi-
tion is for reduced-rank regression problems, and the result for the matrix completion 
problem can be proved similarly.

Proposition  1  Consider  the  loss  function L 𝜂(⋅) ∶ ℝn×p → ℝ  constructed  from  the  Huber 
loss function (2) with parameter 𝜂 . For the reduced-rank regression problem (5), by the 
Frank–Wolfe Algorithm with stepsize set as

where Lz
 is some positive number. Suppose the diameter of the feasible set is 

D ∶= maxV1,V2∈𝕊 ‖V1 −V2‖F ,  where 𝕊 = {V ∶ ‖V‖∗≤ 𝜆} .  Then,  we  have  that L (C(k))  is 
monotonely decreasing in k, and we have

Proof  Since the Huber loss function is differentiable everywhere, and we have that ∇L 𝜂(C) 
is Lipschitz-continuous. Thus, with Lz defined above its Lipschitz constant, by Theorem 1 
of Freund et al. (2017), we have that the result holds as desired.   ◻

We point out that for the matrix completion problem (1), the result holds by the same 
argument by letting Lz = 1.

Meanwhile,  our  broad  interests  include  some  non-convex  losses  such  as  the  Tukey’s 
biweight loss. A strategy for handling them is the approximation by a Lipschitz continuous 

𝛼k+1 =min

�
∇L 𝜂(C(k))⊤(C(k) −V(k+1))

Lz‖C(k) −V(k+1)‖2
, 1

�

, for all k ≥ 1,

L 𝜂(C(k)) −L 𝜂(C∗) ≤
2LzD

2

k
.

Table 1  Gradients under different loss functions for matrix completion ( ∇L (M) ) and reduced-rank regres-
sion ( ∇L (C) ), dij =Xij −Mij or yij −x⊤i cj depending on the context

Loss ∇L (⋅)

𝓁 1-loss ∇L (M) = −1
2n

∑ n
t=1 Jt sign(dit ,jt )𝓁( x) = |x| ∇L (C) = −

∑ n
i=1

∑ q
j=1 Zij sign(dij )

Check loss ∇L (M) = 1
2n

∑ n
t=1 Jt(1{dit ,jt <0} −c)𝓁 c(x) =x(c−1{x<0} ) ∇L (C) =

∑ n
i=1

∑ q
j=1 Zij (1{dij<0} −c)

Tukey’s biweight loss ∇L (M) = −1
2n

∑ n
t=1 Jtdit ,jt [1− (

dit ,jt

t
)2]21{�dit ,jt�<t}

𝓁 t(x) =

{
t2

6
if |x| ≥t

t2

6
(1− [1− (x∕ t)2]3) o.w.

∇L (C) = −
∑ n

i=1
∑ q

j=1 Zij dij [1− (dij

t
)2]21{�dij�<t}
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function with arbitrary precision where simple smoothing techniques are applicable. Upon 
applying the same stepsizes as discussed above, we can show that the algorithm converges 
to  a  stationary  point  at  the  same  rate;  see  the  analysis  of  a  recent  work  of  Reddi  et  al. 
(2016).

Recently, Charisopoulos et al. (2021) studied the low-rank matrix recovery algorithms 
with the non-convex rank constraint and non-smooth loss functions. They established opti-
mization convergence rates for a prox-linear method and a subgradient method for matrix 
completion. They proved that with a sufficient number of observations and an appropri-
ate  initialization,  both  methods  are  guaranteed  to  converge  to  the  truth.  The  prox-linear 
method possesses a much faster convergence rate of O(1∕( 2k)) but with a higher computa-
tional cost at each iteration in solving a convex subproblem. While the subgradient method 
has a lower cost at each iteration with a subgradient evaluation step and a project step onto 
the desired region, it has a slower rate. Compared with their algorithms, our method has a 
lower computational burden in each iteration with no projection required and a relatively 
slower  convergence  rate.  It  is  worth  studying  minimizing  a  robust  loss  function  directly 
with the non-convex constraint in the future.

3.2  Statistical properties

We investigate the non-asymptotic error bounds in this section. We first introduce two con-
ditions for both matrix completion and reduced-rank regression models.

Assumption 1   The truth M∗ and C∗ has rank at most r, 0 < r < min(p,q).

Assumption  2  The  noises 𝜉 ’s  are  i.i.d.  with  zero  mean  and  a  distribution  function F𝜉 
satisfying

for any |m| ≤ 𝜂 and  𝜂 >0 , where c1 = c1(𝜂) is a constant depending only on 𝜂.
Assumption 2 is key on the distribution of the noises.
It is very mild by only requiring non-vanishing probability mass of 𝜉 between m− 𝜂 and 

m+ 𝜂 for a positive 𝜂 and |m| ≤ 𝜂 , avoiding assuming instead explicit conditions on its tail 
probability and/or existence of its moments up to some order.

Since the condition holds for  𝜂 >0 as long as the probability mass of 𝜉 near 0 is not too 
small, it is easily satisfied by a wide range of distributions including heavy-tailed ones; see 
more discussion about this assumption and examples in Appendix 1.

3.2.1  Matrix completion

For any matrix A and some linear subspace M  of ℝp×q , we define AM  as the projection of A 
onto M  . We consider without loss of generality that p > q > 1 . Recall that Jt (t = 1,… , n) 
is a p×q random matrix, independent of Xit ,jt and 𝜉t , with one randomly chosen entry Jt,it jt 
being 1 and the others 0. Mit,jt can be written as

F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) ≥1
c2

1

,
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for all (it, jt) ∈ 𝛺 . As a working model, we treat Jt as uniformly distributed over its sup-
port. That is, the probability of Mit ,jt being the t-th observation is (pq)−1 . This assumes that 
the observed entries in the target matrix are uniformly sampled at random (Koltchinskii 
et  al.,  2011;  Rohde  &  Tsybakov,  2011;  Elsener  &  van  de  Geer,  2018),  and  we  refer  to 
Klopp (2014) for more discussions. Recht (2011) analyzed the matrix completion model 
under this assumption. As pointed out in Recht (2011), this is a sampling with replacement 
scheme and therefore may appear less realistic as it may result in duplicated entries; how-
ever, it has the benefit of simplifying the technical proof and assumptions. Overall, it is a 
reasonable and informative showcase without requiring any prior information on the sam-
pling scheme. If additional information is available in the sampling process, other models 
such as the weighted sampling model (Negahban & Wainwright, 2012) can be applied.

We first show that the estimator belongs to a restricted set. We consider the singular 
value decomposition

where U is a p×q matrix, 𝛬 is a q×q diagonal matrix with diagonal entries the ordered 
singular  values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎q ,  and  V  is  a q×q  matrix.  For k = 1, 2,… , q ,  let uk  be 
the k-th column of U, and vk the k-th column of V. For any positive integer r ≤min{p,q} , 
let Ur be the subspace of ℝp×q spanned by u1,… , ur , and Vr be the subspace spanned by 
v1,… , vr . Define a pair of subspace of ℝp×q as

where row(M) and col(M) denote the row and column space of M. For simplicity notation, 
we use M r =M r (U, V) and M

⟂

r =M
⟂

r (U, V) . Lemma 1 indicates that the estimator M̂ 
belongs to the set

To establish the error bounds, we need the following technical assumption.

Assumption 3   For any M ∈ M 0 , there exists a real number L > 1 , such that

Assumptions of this type—referred to as the ‘spikiness condition’—are assumed in exist-
ing literature on analogous problems, e.g., in Negahban and Wainwright (2012) for matrix 
completion problems; see also a recent work Fan et al. (2021). Intuitively, this assumption 
requires that for M ∈ M 0 , the entries of M −M∗ are not overly ‘spiky’, or in other words, rel-
atively evenly distributed; so that the maximum discrepancy is not extremely far away from 
the averaged discrepancy. We remark that here the term 1

√
pq

 relates to the aforementioned uni-
form sampling scheme setting, under which each entry is observed with the probability 1

pq
 . 

Mit ,jt = tr(J⊤t M) =
p∑

i=1

q∑

j=1
Jt,ijMij ,

M∗=U𝛬V⊤,

M r (U, V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

M
⟂

r (U, V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } ,

M 0 = {M ∈ ℝp×q ∶ ||𝛥
M

⟂
r

||∗≤ 3||𝛥M r
||∗+ 4

q∑

k=r+1
𝜎k, 𝛥 =M −M∗} .

‖M −M∗‖max ≤
L

√
pq

‖M −M∗‖F.
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Hence,  it  reflects  an  increasingly  more  difficult  high-dimensional  problem  due  to  sparse 
entries in a single copy of large matrix. Instead, if the probability of each entry being observed 
is a constant independent of p, q, this assumption is not required.

We consider the Lagrangian form of the problem (1):

where  𝛾 >0  is  the  corresponding  regularization  tuning  parameter.  Let 𝛥̂ =M̂ −M∗  and 𝛥 =M −M∗ . Theorem 1 establishes a non-asymptotic upper bound for the error for esti-
mating a M∗ of low rank.

Theorem 1   For problem (7), suppose that Assumption 1, 2, and 3 hold and the noises 𝜉t ’s 
are distributed symmetrically about zero. Let M̂ be the solution to problem (7) with

with a constant c0 > 0 . When n > C(L) ⋅c2
1pr log(p+ q) log(q+ 1),

with probability at least 1−3(p+ q)−1 , for some constants C1 , c2 and c3 independent of n, 
p, and q, and C(L) a constant only depending on L.

Theorem 1 is non-asymptotic; 𝛾 is chosen based on Lemma 7 in Appendix 2 as twice the 
upper bound of 𝜎1(∇L 𝜂(M∗)) . In Theorem 1, we only require the error terms satisfy Assump-

tion 2, which is F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) >1
c2

1
 , for  𝜂 >0 being the parameter in the Huber loss 

(2) and |m| < 𝜂 . Since this assumption is easily satisfied by many heavy-tailed distributions, 
this result demonstrates the robustness of our method.

We note that in general 𝛾 can be

for any constant K1 ≥ 1 . Under the conditions in Theorem 1, we can also derive the upper 
bounds of the estimation error in nuclear norm based on (23) in the Appendix:

We may discuss the asymptotic properties of M̂ when n → ∞ . Matrix completion is a hard 
problem attempting to recover a matrix-valued model parameter with a single incomplete 
copy from the data generating process. The average estimation error converges to zero in 
probability  as n → ∞ .  That  is,  when rp log(p+ q) log(q+ 1) =o(n) , (pq)−1‖𝛥̂‖2

F → 0 . 

(7)M̂ = argmin
M∈ℝp×q

{L 𝜂(M) + 𝛾‖M‖∗} ,

𝛾 =2𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2 log(p+ q)

npq
+

8 log(p+ q)
3n

⎫
⎪
⎬
⎪
⎭

,

1
√

pq
‖𝛥̂‖F ≤C1c2

1𝜂� p log(p+ q) log(q+ 1)
n

�√
2rc2 + c3

�
,

K1 ⋅2𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
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n
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+
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2 log(p+ q)

npq
+
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⎫
⎪
⎬
⎪
⎭

,

1
√

pq
‖𝛥̂‖∗≤ 4C1c2

1𝜂√ 2r

�
p log(p+ q) log(q+ 1)

n

�√
2rc2 + c3

�
.
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Intuitively, if the rank of M∗ is r, then the number of free parameters is at the order of rp. 
Hence it’s reasonable to require a sample size at least of some larger order of rp, so as to 
recover the model parameters consistently.

Without requiring the Gaussian assumption, our error rate is still comparable to the 
statistical optimum established by Koltchinskii et al. (2011) for matrix completion prob-
lems under a low-rank constraint with Gaussian noises. Compared with the rate in the 
lower bound given in Theorem 6 of Koltchinskii et al. (2011), our upper bound in Theo-
rem 1 differs only in an additional logarithm term 

√
log(p+ q) log(q+ 1) and the 𝜂 in the 

Huber loss.
The assumption in Theorem 1 that the model error is symmetrically distributed around 

0 is needed in obtaining the upper bound of 𝜎1(∇L (M∗)) ; see the proof of Lemma 7. It 
assures  that 𝜎1(𝔼[∇L (M∗)]) =0 .  Similar  assumptions  are  also  found  in  Loh  (2017). 
Thanks  to  the  symmetrization  assumption,  the  convergence  can  be  established  with  no 
strong extra requirement on 𝜂 . Without the symmetrization, as shown in Lemma 7 in the 
Supplement Material, other conditions are required to control

so that

is  stochastically  small  enough.  With  this  extra  term,  the  upper  bound  in  Theorem  1 
becomes

The  extra  term  in  (8)  may  then  be  viewed  as  a  price  paid  to  achieve  robustness  against 
noises with heavy-tailed distributions. This is an impact from applying the robust Huber 
loss. It is a remarkable different feature from the study on matrix completion with 𝓁 2-loss. 
Nevertheless, it is worth noting that for 𝓁 2-loss related studies, conditions are commonly 
assumed to control the tail probability behavior of the model errors, for example, by the 
sub-Gaussian distributions. In contrast, our development does not require such assumptions 
on the tail probability properties, which is the gain in return by applying the Huber loss.

3.2.2  Reduced‑rank regression

The problem (5) is also expressed in the Lagrangian form:

𝔼[ 𝜕 l𝜂(Xij −M∗
ij )

𝜕 M∗
ij

] =∫

M∗
ij+𝜂

M∗
ij−𝜂 F(Xij )dXij − 𝜂,

𝜎1(𝔼[∇L (M∗)]) = 𝜎1( 1
2n

n∑

t=1

p∑

i=1

q∑

j=1
𝔼[JtJt,ij ]𝔼[ 𝜕 l𝜂(Xij −M∗

ij
)

𝜕 M∗
ij

]

)

= 1
2pq

𝜎1(

[ 𝔼[ 𝜕 l𝜂(Xij −M∗
ij )

𝜕 M∗
ij

]

]

p×q

)

(8)

1
√

pq
‖𝛥̂‖F ≤

Constant⋅c2
1

√
2r

√
pq

𝜎1

⎛
⎜
⎜
⎝

�𝔼[ 𝜕 l𝜂(Xij −M∗
ij )

𝜕 M∗
ij

]

�

p×q

⎞
⎟
⎟
⎠

+ C1c2
1𝜂� p log(p+ q) log(q+ 1)

n

�√
2rc2 + c3

�
.
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where  𝛾 >0 is a regularization parameter, and L 𝜂(C) is defined in Equation (5).
Again,  we  point  out  that  the  estimator  belongs  to  a  restricted  set.  By  applying  the 

singular value decomposition to C∗ , we have

where 𝛬 =diag(𝜎1,… ,𝜎q) is the diagonal matrix containing all singular values of C∗ . For 
r ≤min{p,q} , we define a pair of subspace of ℝp×q as

where Ur is a subspace spanned by the first r columns of U, and Vr is the subspace spanned 
by the first r columns of V. For simplicity in notations, we denote by Cr =Cr (U, V) and 
C
⟂

r =C
⟂

r (U, V) . Note that Cr and Cr are not equal. Lemma 4 indicates that the estimator Ĉ 
belongs to the set

We assume the following conditions on the random design matrix X.

Assumption 4  x1, x2,… , xn are i.i.d. random vectors sampling from a multivariate normal 
distribution N(0,𝛴)  and without loss of generality, are standardized such that ‖xi‖F ≤ 1 . 𝜎1(Σ) ≥ 𝜎n(Σ) > 0 , where 𝜎1(Σ) and 𝜎n(Σ) denote the largest and smallest eigenvalues of Σ , 
respectively.

The multivariate normal distribution and its analogies are commonly assumed in the 
literature (e.g., Negahban & Wainwright, 2011; Sun et al., 2020; Fan et al., 2021). The 
setting with Assumption 4 facilitates achieving

the optimal convergence rate; other types of conditions are possible, at the expense of 
a slower convergence rate.

Theorem 2 establishes a non-asymptotic upper bound for ‖𝛥̂‖F.

Theorem 2   For problem (9), suppose that Assumption 1 and 2 hold and the noises 𝜉ij ’s are 
distributed symmetrically about zero. Suppose X satisfies Assumption 4. Let Ĉ be the solu-
tion to the optimization problem (9) with

Then for n > C2
𝜎1(Σ)𝜎n(Σ)

c2
1r(p+ q) with probability at least 1−3e−(p+q),

where C2 and C3 are constants.

(9)Ĉ = argmin
C∈ℝp×q

{L 𝜂(C) + 𝛾‖C‖∗} ,

C∗=U𝛬V⊤,

Cr (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

C
⟂

r (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } ,

C0 =

�

C ∈ ℝp×q ∶ ‖𝛥
C
⟂
r

‖∗≤ 3‖𝛥Cr
‖∗+ 4

q�

k=r+1
𝜎k,𝛥 =C−C∗

�

.

(10)𝛾 =8𝜂𝜎1(Σ)
�√

6n(p+ q) +3(p+ q)
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.

‖𝛥̂‖F ≤C3c2
1
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2r𝜂𝜎1(Σ)𝜎n(Σ)
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6(p+ q)
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The value for 𝛾 is selected based on Lemma 8 in Appendix 3 as twice the upper bound 
for 𝜎1(∇L 𝜂(C∗)) according to condition (10). Generally, for any K2 ≥ 1 and

our result remains valid and only differs in constant terms.
Under the same condition, we can establish the error bound in terms of the nuclear norm

When r(p+ q) =o(n) , the Frobenius norm of the error ‖𝛥̂‖2
F → 0 in probability. Similarly, 

the robustness of the method is seen as only a mild distributional Assumption 2 is required: 
F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) >1

c2
1
  for |m| < 𝜂  and  𝜂 >0 .  Our  estimator  achieves  a  comparable 

convergence  rate  as  that  in  Negahban  and  Wainwright  (2011)  and  Rohde  and  Tsybakov 
(2011), with the notable difference due to the 𝜂 in the Huber loss. Meanwhile, our method 
does not require the errors to follow normal distributions, which is the case in those studies 
with the 𝓁 2 loss. Here assuming symmetricity plays the same role as that in Theorem 1. 
Based on the same discussions after Theorem 1, if the noises are not symmetrically distrib-
uted, then there will be an extra term in the upper bound.

4  Numerical examples

In this section, we conduct an extensive numerical investigation of the proposed method 
using both simulated and real data sets. In all cases, we choose the tuning parameters by 
ten-fold cross-validation. Specifically, for matrix completion problems, we first randomly 
select 90% of the observed entries as training samples and test the results using the remain-
ing 10% samples. We repeat the procedure 10 times and choose the best tuning parameter. 
With extensive studies on simulated and real data sets, our results provide strong empirical 
evidence that the proposed method provides robustness under different settings.

4.1  Jester joke data

We first test our method using the Jester joke data set. This data set contains more than 4.1 
million ratings for 100 jokes from 73,421 users. This data set is publicly available through 
http:// www. ieor. berke ley. edu/ ~goldb erg/ jester- data/. The whole data set contains three 
sub-datasets, which are: (1) jester-1: 24,983 users who rate 36 or more jokes; (2) jester-2: 
23,500 users who rate 36 or more jokes; (3) jester-3: 24,938 users who rate between 15 and 
35 jokes. More detailed descriptions can be found in Toh and Yun (2010) and Chen et al. 
(2012),  where  the  authors  consider  the  nuclear-norm  based  approach  to  conduct  matrix 
completion.

Due to the large number of users, we randomly select nu users’ ratings from the datasets. 
Since many entries are unknown, we cannot compute the relative error using every entry. 
Instead, we take the metric of the normalized mean absolute error (NMAE) to measure the 
accuracy of the estimator M̂:

𝛾 =K2 ⋅8𝜂𝜎1

�
Σ)(

√
6n(p+ q) +3(p+ q)

�
,

‖𝛥‖∗≤ 8C3c2
1r𝜂𝜎1(Σ)𝜎n(Σ)

��
6(p+ q)

n
+

3(p+ q)
n
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.
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where rmin and rmax denote the lower and upper bounds for the ratings, respectively. In the 
Jester joke data set, the range is [−10, 10] . Thus, we have rmax− rmin = 20.

In  each  iteration,  we  first  randomly  select nu  users,  and  then  randomly  permute  the 
ratings  from  the  users  to  generate M0 ∈ ℝnu×100 .  Next,  we  uniformly  sample  SR  for 
SR∈ {15%, 20%, 0.25%} entries to generate a set of observed indices 𝛺 . Note that we can 
only observe the entry (j, k) if (j,k) ∈ 𝛺 , and M0

j,k is available. Thus, the actual sampling 
ratio is less than the input SR. We consider different settings of nu and SR, and we report 
the averaged NMAE and running times in Table 2 after running each setting 100 times. We 
compare robust methods with 𝓁 1 loss, Huber loss, and Tukey loss with the non-robust 𝓁 2 
loss. From Table 2, we see that robust matrix completion methods work promisingly.

4.2  Cameraman image denoising

We test our method using the popular Cameraman image, which is widely used in image 
processing literature. We consider the “Cameraman" image with 512×512 pixels as shown 
in Fig. 1a. We then generate random noise by first adding independent Gaussian noise to 
each pixel with a standard deviation set as 3. Then, we add some heavy-tailed noises by 
randomly choosing 10% pixels and replace the coefficient as 1000 or −1000 . Furthermore, 
we randomly select 40% or 60% pixels as missing entries. We provide two typical simu-
lated  noisy  images  in  the  above  of  Fig.    1b,  c,  and  provide  the  recovered  images  using 
the Tukey approach below them. The recovered images provide visual evidence that our 
method  is  robust  to  heavy-tailed  noises  in  practice.  In  addition,  in  Table  3,  we  provide 
the averaged NMAE with standard deviations of different approaches after repeating the 
data generating schemes 100 times. For the effective picture recovery and the NMAE, we 

NMAE =

∑
(j,k)∈𝛺 �̂Mjk −M0

jk�

�𝛺�(rmax− rmin)
,

Fig. 1  a  We  test  our  method  on  the 512×512  Cameraman  image.  b  A  sample  noisy  image  with  heavy-
tailed noises and 40% missing entries. c A sample noisy image with heavy-tailed noises and 60% missing 
entries
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conclude that robust matrix completion has promising performance with partial and noisy 
observations.

Table 2  Averaged normalized mean absolute error with standard deviations in the parentheses for different 
methods using Jester joke data set under different data generating schemes after 100 runs

Example (nu, SR) Huber Tukey 𝓁 2 𝓁 1

jester-1 (1000, 0.15) 0.155(0.006) 0.154(0.007) 0.173(0.009) 0.168(0.006)
(1000, 0.20) 0.152(0.005) 0.150(0.006) 0.171(0.009) 0.165(0.006)
(1000, 0.25) 0.145(0.005) 0.143(0.006) 0.168(0.008) 0.153(0.004)
(1500, 0.15) 0.159(0.006) 0.155(0.006) 0.177(0.007) 0.169(0.009)
(1500, 0.20) 0.154(0.006) 0.152(0.006) 0.174(0.007) 0.166(0.008)
(1500, 0.25) 0.151(0.006) 0.150(0.007) 0.173(0.006) 0.162(0.008)
(2000, 0.15) 0.160(0.006) 0.159(0.006) 0.180(0.006) 0.169(0.006)
(2000, 0.20) 0.158(0.007) 0.156(0.006) 0.178(0.006) 0.164(0.007)
(2000, 0.25) 0.155(0.005) 0.154(0.006) 0.175(0.006) 0.161(0.006)

jester-2 (1000, 0.15) 0.163(0.007) 0.161(0.008) 0.176(0.007) 0.169(0.008)
(1000, 0.20) 0.160(0.007) 0.159(0.008) 0.172(0.007) 0.167(0.008)
(1000, 0.25) 0.158(0.006) 0.155(0.007) 0.170(0.008) 0.166(0.007)
(1500, 0.15) 0.166(0.007) 0.164(0.008) 0.178(0.008) 0.171(0.007)
(1500, 0.20) 0.164(0.006) 0.161(0.007) 0.176(0.007) 0.168(0.007)
(1500, 0.25) 0.161(0.007) 0.160(0.007) 0.173(0.007) 0.164(0.008)
(2000, 0.15) 0.170(0.006) 0.168(0.008) 0.180(0.007) 0.173(0.007)
(2000, 0.20) 0.166(0.007) 0.165(0.008) 0.177(0.007) 0.171(0.008)
(2000, 0.25) 0.163(0.006) 0.163(0.008) 0.175(0.008) 0.169(0.007)

jester-3 (1000, 0.15) 0.175(0.008) 0.173(0.008) 0.184(0.008) 0.179(0.008)
(1000, 0.20) 0.173(0.008) 0.171(0.008) 0.181(0.007) 0.177(0.008)
(1000, 0.25) 0.170(0.008) 0.168(0.009) 0.179(0.008) 0.176(0.008)
(1500, 0.15) 0.177(0.008) 0.176(0.008) 0.187(0.008) 0.181(0.008)
(1500, 0.20) 0.174(0.007) 0.174(0.008) 0.185(0.009) 0.178(0.009)
(1500, 0.25) 0.173(0.008) 0.172(0.008) 0.184(0.008) 0.176(0.008)
(2000, 0.15) 0.179(0.008) 0.178(0.008) 0.188(0.008) 0.182(0.008)
(2000, 0.20) 0.177(0.009) 0.175(0.008) 0.187(0.009) 0.180(0.008)
(2000, 0.25) 0.174(0.008) 0.172(0.008) 0.185(0.008) 0.177(0.007)

Table 3  Averaged normalized mean absolute error with standard deviations in the parentheses for different 
methods using Lena image after 100 runs

Missing rate Huber Tukey 𝓁 2 𝓁 1

40% 0.067(0.004) 0.062(0.005) 0.083(0.008) 0.079(0.006)
50% 0.071(0.005) 0.065(0.006) 0.089(0.011) 0.084(0.007)
60% 0.074(0.005) 0.069(0.007) 0.092(0.015) 0.088(0.007)
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4.3  Simulations

We first consider several similar simulation settings as described in She and Chen (2017) 
to compare our method with their robust reduced-rank regression ( R4 ) method. In all cases, 
we focus on testing the robustness by artificially introducing data corruption and outliers.

Setting  1:  We  first  consider  a  low-dimensional  case  where  we  set n = 100 , p = 12 , 
q = 8 and r = 3 or 5. We construct the design matrix X by generating its n rows by inde-
pendently sampling from N(0,Σ0) , where we consider highly correlated covariates by let-
ting the diagonal elements of Σ0 be 1’s and setting its off-diagonal elements as 0.5. For the 
noise matrix 𝛯  , we sample each row of 𝛯  independently from N(0,𝜎2Σ1) , where Σ1 is the 
q-dimensional identity matrix, and 𝜎 is set as 1. Next, we construct the coefficient matrix 
C∗ . We generate C∗=B1B⊤

2 , where B1 ∈ ℝp×r , B2 ∈ ℝq×r , and all entries of B1 and B2 are 
independently sampled from N(0, 1). We then add outliers with a matrix U∗ by setting the 
first o% ⋅n rows of U∗ as nonzero, where o ∈ {30, 35,… , 50} is the proportion of outliers, 
and the j-th entry of any outlier row of U∗ is the product of a Randemacher random variable 
and a scalar 𝛼 ∈ {0.75, 1} times the sample standard deviation of the j-th column of XC∗ . 
Finally, we set the response matrix Y =XC∗+ U∗+ 𝛯 . We report the mean and standard 
deviation of the mean squared error (MSE) from 200 runs, where

In addition, we also report the mean and standard deviation of the mean squared estimation 
error, where

Setting  2:  We  then  test  our  method  on  heavy-tailed  noise.  Same  as  Setting  1,  we  let 
n = 100 , p = 12 , q = 8 ,  and r = 2, 3 ,  or  4,  and  consider  the  same  generating  scheme  to 
construct the design matrix X, and then generate the noise matrix by the heavy-tailed t-dis-
tribution with a degree of freedom 3 or 5. Furthermore, we add outliers by the same gener-
ating scheme as in Setting 1 to generate U∗ and letting 𝛼 =0.5, 0.75 or 1.

Setting 3: We consider a high-dimensional setting where n = 100 , p = 50 and q = 50 , 
and r = 3 or 5, where there are 2, 500> 100 parameters in the matrix C to be estimated. 
We consider the same data generating scheme as in Setting 1.

Setting 4: Finally, we consider an ultrahigh-dimensional setting where n = 300 , 
p = 100 and q = 400 , and r = 3 or 5, where there are 40, 000≫300 parameters to be esti-
mated. We consider the same data generating scheme as in Setting 1.

The results are shown in Tables 4, 5, 6, and 7. We compare our method incorporating 
Huber and Tukey loss functions with the R4 method when it is applicable. We note that 
for high-dimensional Settings 3 and 4, the R4 method of She and Chen (2017) cannot be 
applied here because one of the iterations in their algorithm is not defined. We compare 
our method with another robust method where we use the 𝓁 1 loss in place of the Huber loss 
in the objective with the nuclear norm constraint (Denoted as 𝓁 1 ). In all four settings, both 
Huber loss and Tukey loss achieve very promising performance, and Tukey loss slightly 
outperforms Huber loss in settings with outliers.

MSE(XĈ) = ‖XC∗−XĈ‖2
F ∕( qn).

MSE(Ĉ) = ‖̂C−C∗‖2
F ∕( qp).



2740 Machine Learning (2023) 112:2723–2760

1 3

5  Intermediate theoretical results

Our  estimators  (1)  and  (5)  are  penalized  M-estimators.  We  exploit  the  framework  of 
Negahban et al. (2012) in studying their statistical properties. Negahban et al. (2012) elab-
orates  the  notion  of  decomposability  associated  with  some  penalty  function,  which  is  a 
key property for establishing the restricted strong convexity (RSC) property and the error 
bounds of the penalized estimators.

For self-completeness, we outline the decomposability of penalizing with the nuclear 
norm, and then derive the restricted strong convexity property for both models under the 
Huber loss function.

5.1  Decomposability of nuclear norm

A  norm ‖ ⋅ ‖  is  decomposable  with  respect  to  a  pair  of  subspace  if  for  all A ∈ M   and 
B ∈ M

⟂
 with (M,M

⟂
) a pair of subspace of ℝp×q satisfy

To illustrate the decomposability of nuclear norm, recall

‖A+ B‖ = ‖A‖ + ‖B‖.

Table 4  Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 1 under different settings with sample stand-
ard deviation in parentheses after 200 runs

r 𝛼 o% MSE(XĈ) MSE(Ĉ)

Huber Tukey R4 Huber Tukey R4

3 0.75 30% 0.71(0.28) 0.56(0.31) 0.95(0.75) 0.12(0.05) 0.09(0.06) 0.23(0.12)
35% 0.82(0.44) 0.63(0.38) 1.23(1.09) 0.13(0.07) 0.09(0.06) 0.25(0.17)
40% 0.96(0.49) 0.83(0.58) 1.46(1.26) 0.16(0.08) 0.13(0.08) 0.28(0.20)
45% 1.11(0.97) 0.97(0.89) 1.57(1.24) 0.18(0.09) 0.15(0.09) 0.30(0.21)
50% 1.23(1.01) 1.03(0.95) 1.69(1.31) 0.19(0.11) 0.16(0.10) 0.33(0.23)

1.00 30% 1.02(0.42) 0.89(0.48) 1.93(1.88) 0.12(0.07) 0.10(0.11) 0.25(0.37)
35% 1.12(0.46) 0.96(0.51) 2.06(2.01) 0.18(0.08) 0.14(0.12) 0.34(0.34)
40% 1.34(0.64) 1.20(0.52) 2.59(2.12) 0.22(0.10) 0.20(0.14) 0.42(0.35)
45% 1.65(0.77) 1.39(0.85) 2.88(2.35) 0.27(0.12) 0.24(0.15) 0.48(0.40)
50% 1.83(0.84) 1.60(1.05) 3.28(2.76) 0.29(0.13) 0.25(0.18) 0.53(0.45)

5 0.75 30% 0.78(0.34) 0.64(0.44) 1.35(1.03) 0.13(0.05) 0.10(0.07) 0.26(0.15)
35% 0.87(0.42) 0.72(0.48) 1.78(1.15) 0.14(0.08) 0.11(0.08) 0.29(0.21)
40% 0.94(0.67) 0.88(0.58) 1.63(1.32) 0.17(0.08) 0.14(0.09) 0.31(0.23)
45% 1.15(0.82) 0.92(0.95) 1.85(1.49) 0.19(0.10) 0.16(0.10) 0.34(0.26)
50% 1.32(1.13) 1.20(1.06) 2.04(1.63) 0.21(0.13) 0.19(0.11) 0.39(0.31)

1.00 30% 0.71(0.62) 0.65(0.44) 2.02(1.95) 0.13(0.08) 0.10(0.12) 0.31(0.34)
35% 1.19(0.54) 0.99(0.63) 2.13(2.15) 0.19(0.09) 0.17(0.13) 0.39(0.39)
40% 1.45(0.71) 1.15(0.75) 2.64(2.27) 0.23(0.11) 0.23(0.15) 0.45(0.48)
45% 1.77(0.84) 1.44(0.93) 3.06(2.48) 0.28(0.14) 0.26(0.16) 0.53(0.55)
50% 1.90(0.95) 1.61(1.03) 3.31(2.78) 0.31(0.15) 0.28(0.19) 0.61(0.68)
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Note  that M r ≠M r .  Since  U  and  V  both  have  orthogonal  columns,  nuclear  norm  is 
decomposable with respect to the pair (M r , M

⟂

r ) . Note that if the rank of M∗ is equal or 
smaller than r, then Ur and Vr equal to or contain the column and row space of M∗ respec-
tively, and M∗∈ M r (U, V).

We present key intermediate results as lemmas below. The proofs of the lemmas are 
given in the Appendix.

5.2  Results for matrix completion

The decomposability leads to the first lemma, which is a special case of Lemma 1 in 
Negahban et al. (2012). It provides an upper bound for ‖𝛥̂

M
⟂
r

‖∗.

Lemma 1   For any 𝛾 satisfying

the error 𝛥̂ satisfies

M r (U,V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

M
⟂

r (U,V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } .

𝛾 ≥2𝜎1(∇L 𝜂(M∗)),

Table 5  Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 2 under different settings with sample stand-
ard deviation in parentheses after 200 runs

d.o.f. 𝛼 r MSE(XĈ) MSE(Ĉ)

Huber Tukey R4 Huber Tukey R4

3 0.50 2 0.90(0.45) 0.70(0.42) 1.02(1.11) 0.14(0.08) 0.11(0.07) 0.20(0.14)
3 0.72(0.30) 0.52(0.28) 0.88(0.36) 0.12(0.05) 0.09(0.04) 0.15(0.17)
4 0.98(0.88) 0.65(0.81) 1.24(1.03) 0.17(0.14) 0.12(0.13) 0.39(0.28)

0.75 2 0.59(0.27) 0.40(0.23) 0.64(0.33) 0.10(0.05) 0.06(0.04) 0.30(0.21)
3 0.46(0.24) 0.23(0.14) 0.45(0.17) 0.08(0.04) 0.04(0.02) 0.12(0.09)
4 1.01(1.15) 0.66(1.06) 1.32(1.03) 0.18(0.19) 0.12(0.18) 0.19(0.12)

1.00 2 0.36(0.20) 0.20(0.12) 0.46(0.26) 0.06(0.03) 0.03(0.02) 0.08(0.03)
3 0.36(0.17) 0.15(0.09) 0.49(0.31) 0.07(0.03) 0.03(0.02) 0.09(0.04)
4 0.84(0.60) 0.50(0.58) 0.93(0.73) 0.15(0.11) 0.10(0.11) 0.20(0.05)

5 0.50 2 0.91(0.48) 0.74(0.45) 1.02(1.11) 0.14(0.08) 0.11(0.07) 0.15(0.06)
3 0.69(0.36) 0.51(0.36) 1.32(0.48) 0.12(0.06) 0.08(0.06) 0.16(0.04)
4 0.95(0.85) 0.76(0.91) 1.42(0.58) 0.17(0.15) 0.14(0.16) 0.19(0.09)

0.75 2 0.51(0.26) 0.36(0.20) 0.49(0.30) 0.08(0.05) 0.06(0.03) 0.08(0.06)
3 0.44(0.19) 0.21(0.12) 0.66(0.22) 0.08(0.04) 0.04(0.02) 0.13(0.06)
4 0.68(0.62) 0.63(0.67) 0.71(1.03) 0.18(0.29) 0.12(0.28) 0.23(0.14)

1.00 2 0.37(0.21) 0.21(0.16) 0.29(0.22) 0.06(0.04) 0.03(0.03) 0.06(0.03)
3 0.39(0.16) 0.13(0.08) 0.45(0.31) 0.07(0.03) 0.02(0.01) 0.09(0.04)
4 0.42(0.39) 0.38(0.34) 0.92(0.73) 0.17(0.15) 0.12(0.16) 0.20(0.05)
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Lemma 1 indicates that the estimator M̂ belongs to the set

Note that if the rank of M∗ is no greater than r, then 
∑ q

k=r+1 𝜎k = 0 and the projection of 

the error on M
⟂

r  is solely controlled by the projection of error on M r , so as the error itself, 
since

Now, consider the quantity

For simplicity, we sometimes refer to 𝛿L 𝜂(M, M∗) as 𝛿L 𝜂 . The next Lemma gives a lower 
bound of 𝛿L 𝜂(M, M∗) , which is used to establish restricted strong convexity (RSC) and the 

‖𝛥̂
M

⟂
r

‖∗≤ 3‖𝛥̂M r
‖∗+ 4

q�

k=r+1
𝜎k.

M 0 = {M ∈ ℝp×q ∶ ||𝛥
M

⟂
r

||∗≤ 3||𝛥M r
||∗+ 4

q∑

k=r+1
𝜎k, 𝛥 =M −M∗} .

‖𝛥̂‖∗≤ ‖𝛥̂
M

⟂
r

‖∗+ ‖𝛥̂M r
‖∗≤ 4‖𝛥̂M r

‖∗.

𝛿L 𝜂(M, M∗) =L 𝜂(M) −L 𝜂(M∗) − ⟨∇L 𝜂(M∗),𝛥⟩.

Table 6  Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 3 under different settings with sample stand-
ard deviation in parentheses after 200 runs

r 𝛼 o% MSE(XĈ) MSE(Ĉ)

Huber Tukey 𝓁 1 Huber Tukey 𝓁 1

3 0.75 30% 1.23(1.19) 1.07(1.08) 1.43(1.02) 0.02(0.02) 0.02(0.02) 0.04(0.02)
35% 1.44(1.64) 1.28(1.19) 1.65(1.10) 0.03(0.03) 0.02(0.03) 0.05(0.03)
40% 1.65(1.25) 1.38(1.98) 1.99(1.19) 0.03(0.04) 0.03(0.03) 0.06(0.03)
45% 1.72(1.33) 1.54(1.41) 2.44(1.34) 0.03(0.04) 0.03(0.03) 0.08(0.04)
50% 1.83(1.46) 1.61(1.52) 2.07(1.51) 0.04(0.05) 0.03(0.04) 0.08(0.05)

1.00 30% 1.34(1.89) 1.15(1.63) 1.51(0.88) 0.03(0.02) 0.02(0.02) 0.03(0.04)
35% 1.45(1.84) 1.27(1.53) 1.64(0.94) 0.03(0.03) 0.02(0.03) 0.04(0.02)
40% 1.52(1.80) 1.38(1.44) 1.82(1.05) 0.03(0.04) 0.03(0.03) 0.04(0.03)
45% 1.63(1.95) 1.46(1.67) 2.03(1.12) 0.04(0.04) 0.03(0.04) 0.05(0.03)
50% 1.75(2.03) 1.53(1.71) 2.19(1.40) 0.04(0.04) 0.03(0.04) 0.08(0.07)

5 0.75 30% 1.31(1.22) 1.12(1.05) 1.46(1.10) 0.02(0.03) 0.02(0.03) 0.04(0.03)
35% 1.50(1.72) 1.31(1.25) 1.73(1.16) 0.03(0.04) 0.02(0.03) 0.05(0.05)
40% 1.73(1.36) 1.44(2.05) 2.03(1.31) 0.03(0.05) 0.03(0.04) 0.07(0.06)
45% 1.81(1.41) 1.63(1.49) 2.58(1.42) 0.04(0.05) 0.03(0.05) 0.09(0.05)
50% 1.90(1.55) 1.72(1.63) 2.19(1.59) 0.04(0.06) 0.04(0.04) 0.11(0.06)

1.00 30% 1.39(1.74) 1.23(1.85) 1.67(0.95) 0.03(0.04) 0.03(0.03) 0.05(0.06)
35% 1.55(1.92) 1.35(1.53) 1.79(1.09) 0.03(0.05) 0.03(0.03) 0.06(0.05)
40% 1.67(1.79) 1.40(1.61) 1.96(1.21) 0.04(0.04) 0.04(0.04) 0.06(0.04)
45% 1.74(1.85) 1.58(1.52) 2.14(1.37) 0.05(0.05) 0.04(0.05) 0.07(0.05)
50% 1.89(1.93) 1.63(1.66) 2.25(1.19) 0.06(0.05) 0.05(0.05) 0.10(0.06)
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upper bound for the error. The key to proving this lemma includes Lemma 1 and the appli-
cation of empirical process techniques.

Lemma 2   (Lower bound of 𝛿L 𝜂(M,M∗) ) Suppose Assumption 1 and 2 hold, and that the 
regularization parameter in optimization problem (7) satisfies

Then for any x > 0 and M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0,

with probability at least 1−e−x.

By controlling the negative term, we have the restricted strong convexity property.

𝛾 ≥2𝜎1(∇L 𝜂(M∗)).

𝛿L 𝜂(M, M∗) ≥ 1
4c2

1pq
‖𝛥‖2

F

− {32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p + q)

nq
+
√

log(q+ 1)
log(p + q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

}‖𝛥‖F,

Table 7  Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 4 under different settings with sample stand-
ard deviation in parentheses after 200 runs

r 𝛼 o% MSE(XĈ) MSE(Ĉ)

Huber Tukey 𝓁 1 Huber Tukey 𝓁 1

3 0.75 30% 1.32(1.22) 1.23(1.13) 1.52(1.23) 0.04(0.03) 0.04(0.03) 0.06(0.03)
35% 1.57(1.52) 1.35(1.25) 1.81(1.34) 0.05(0.04) 0.04(0.03) 0.07(0.04)
40% 1.65(1.46) 1.53(1.39) 2.03(1.51) 0.05(0.05) 0.04(0.04) 0.08(0.05)
45% 1.79(1.49) 1.64(1.57) 2.21(1.53) 0.06(0.05) 0.05(0.04) 0.10(0.06)
50% 1.90(1.53) 1.75(1.63) 2.28(1.65) 0.07(0.06) 0.05(0.05) 0.12(0.08)

1.00 30% 1.41(2.01) 1.34(1.45) 1.63(1.09) 0.04(0.03) 0.04(0.03) 0.06(0.04)
35% 1.60(2.15) 1.49(1.61) 1.85(1.30) 0.06(0.05) 0.05(0.04) 0.08(0.05)
40% 1.69(2.09) 1.60(1.77) 2.09(1.49) 0.06(0.06) 0.05(0.04) 0.10(0.06)
45% 1.81(2.13) 1.68(1.59) 2.20(1.53) 0.08(0.06) 0.06(0.04) 0.11(0.08)
50% 1.95(2.33) 1.79(2.12) 2.29(1.47) 0.09(0.06) 0.06(0.05) 0.12(0.10)

5 0.75 30% 1.45(1.39) 1.31(1.33) 1.65(1.19) 0.05(0.03) 0.04(0.03) 0.07(0.03)
35% 1.61(1.48) 1.45(1.39) 1.89(1.25) 0.06(0.04) 0.05(0.03) 0.09(0.05)
40% 1.82(1.52) 1.62(1.51) 2.19(1.35) 0.07(0.06) 0.05(0.06) 0.10(0.06)
45% 1.95(1.36) 1.78(1.59) 2.25(1.39) 0.08(0.06) 0.06(0.06) 0.12(0.07)
50% 2.04(1.58) 1.85(1.57) 2.37(1.44) 0.08(0.07) 0.07(0.06) 0.13(0.08)

1.00 30% 1.53(1.65) 1.38(1.42) 1.70(1.08) 0.05(0.03) 0.04(0.04) 0.08(0.04)
35% 1.66(1.74) 1.49(1.49) 1.83(1.29) 0.06(0.05) 0.05(0.04) 0.10(0.06)
40% 1.79(1.79) 1.66(1.53) 2.07(1.27) 0.07(0.06) 0.06(0.06) 0.11(0.07)
45% 1.92(1.70) 1.81(1.62) 2.15(1.43) 0.08(0.07) 0.06(0.06) 0.12(0.08)
50% 2.08(1.85) 1.93(1.59) 2.34(1.52) 0.09(0.08) 0.07(0.07) 0.14(0.08)
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Lemma 3   (Restricted Strong Convexity) Suppose that all the conditions in Lemma 2 and 
Assumption  3  hold.  For M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0 ,  with  probability  at  least 
1−e−(p+q),

for n > C(L) ⋅c2
1pr log(p+ q) log(q+ 1) , where C(L) is a a constant only depending on L.

5.3  Results of reduced‑rank regression

Recall

Lemma 1 can be easily extended to Ĉ.

Lemma 4   For any 𝛾 satisfying

𝛥̂ =Ĉ−C∗ satisfies

Lemma 4 indicates that the estimator Ĉ belongs to the set

The next result is to establish the RSC condition. Consider the quantity

Lemma 5   (Lower bound of 𝛿L 𝜂(C, C∗) ) Consider the reduced-rank regression problem (9). 
Suppose that Assumption 1, 2 and 4 hold, and the noises 𝜉t ’s are distributed symmetrically 
about zero. Suppose the regularization parameter in optimization problem (9) satisfies

Then for any x > 0 and C ∈ {C ∶ ‖C−C∗‖F ≤ 𝜂} ∩C0,

with probability at least 1−e−x.

𝛿L 𝜂(M, M∗) ≥ 1
8c2

1pq
‖𝛥‖2

F,

Cr (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

C
⟂

r (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } .

𝛾 ≥2𝜎1(∇L 𝜂(C∗)),

‖𝛥̂
C
⟂
r

‖∗≤ 3‖𝛥̂Cr
‖∗+ 4

q�

k=r+1
𝜎k.

C0 = {C ∈ ℝp×q ∶ ‖𝛥
C
⟂
r

‖∗≤ 3‖𝛥Cr
‖∗+ 4

q�

k=r+1
𝜎k,𝛥 =C−C∗} .

𝛿L 𝜂(C,C∗) =L 𝜂(C) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗),𝛥⟩.

𝛾 ≥2𝜎1(∇L 𝜂(C∗)).

𝛿L 𝜂(C, C∗) ≥
n𝜎n(𝛴)

2c2
1

‖𝛥‖2
F −48

√
2r𝜂𝜎1(𝛴)( √ 4n(p+ q) +2nx+ 2(p+ q) +x)‖𝛥‖F,
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By controlling the negative term and setting the right side to be greater than 0, we have 
the restricted strong convexity property.

Lemma 6   (Restricted Strong Convexity) Suppose that all the conditions in Lemma 5 hold, 
then for C ∈ {C ∶ ‖C−C∗‖F ≤ 𝜂} ∩C0 and n > C2

𝜎1(𝛴)𝜎n(𝛴) c2
1r(p+ q) , where C2 is a 

constant,

with probability at least 1− (p+ q)−1.

Appendices

Appendix 1: More on the assumption on the model errors

A key assumption in Theorem 1 and Theorem 2 is that the noises 𝜉 ’s are i.i.d. with zero 
mean and a distribution function F𝜉 satisfying

for any |m| ≤ 𝜂 and some  𝜂 >0 , where c1 is a positive constant depending only on 𝜂 . This 
is the same as requiring Pr(𝜉 ∈ [m− 𝜂, m+ 𝜂]) to be always positive for any |m| ≤ 𝜂 and 
 𝜂 >0 . Since 𝔼(𝜉) =0 and 0 ∈ [m− 𝜂, m+ 𝜂] , this condition holds as long as the probabil-

ity mass near 0 is not too small, which is easily satisfied by a large class of distributions 
including heavy-tailed ones. As an example, Fig. 2 gives the distribution of a t-distribution 
with degree of freedom being 3. The area of the grey part represents F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) 
when m= 1 and 𝜂 =2 . Since the density function near 0 is strictly bounded from below, 
the required condition (11) holds for  𝜂 >0.

The Huber contamination model also satisfies Assumption 2. Specifi-
cally, suppose the errors 𝜉 ’s follow a Huber contamination model (1−c)F + cG 
with F being the distribution function of a normal random variable. Then 
Pr(𝜉 ∈ [m− 𝜂, m+ 𝜂]) = (1−c){F(m+ 𝜂) −F(m− 𝜂)} +c{G(m+ 𝜂) −G(m− 𝜂)}  . 
Then the first term creates no issue. Assumption 2 is easily met if G in the second term 
is a continuous distribution with zero mean. When G is from a discrete distribution, it is a 
step function. Then the second term is either 0 or a value bounded above from 1. Overall, 
Assumption 2 is satisfied.

𝛿L 𝜂(C, C∗) ≥
n𝜎n(𝛴)

4c2
1

‖𝛥‖2
F,

(11)F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) > 1
c1(𝜂)2 ,
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Appendix 2: Proof for matrix completion

This section presents the proof related to the matrix completion.

Proof of Lemma 1  Note that

Using triangle inequalities and the decomposability of nuclear norm on M r and M ⟂
r ,

Thus,

By the convexity of the loss function L 𝜂 , together with the assumption on 𝛾 and the defini-
tion of the dual norm,

M∗
M r

+ M∗

M
⟂
r

=
r∑

k=1
uk𝜎kv

⊤
k +

q∑

k=r+1
uk𝜎kv

⊤
k =M∗.

||M̂||∗= ||M∗+ 𝛥̂||∗= ||M∗
M r

+ M∗

M
⟂
r

+ 𝛥̂M r
+ 𝛥̂

M
⟂
r

||∗

≥ ||M∗
M r

+ 𝛥̂
M

⟂
r

||∗− ||M∗

M
⟂
r

+ 𝛥̂M ||∗

≥ ||M∗
M r

||∗+ ||𝛥̂M
⟂
r

||∗− ||M∗

M
⟂
r

||∗− ||̂𝛥M ||∗.

||M∗||∗− ||̂M||∗≤ ||M∗||∗− ||M∗
M r

||∗− ||̂𝛥
M

⟂
r

||∗+ ||M
∗

M
⟂
r

||∗+ ||𝛥̂M ||∗

= 2||M∗

M
⟂
r

||∗+ ||𝛥̂M r
||∗− ||̂𝛥

M
⟂
r

||∗

Fig. 2  The distribution of a t-distribution with degree of freedom being 3. The area of the grey part repre-
sents F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) when m= 1 and 𝜂 =2
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Since M̂ is the optimizer of problem (7),

Notice that ‖M∗

M
⟂
r

‖∗=
∑ q

k=r+1 𝜎k , therefore the lemma holds.   ◻

For simplicity, let

Before we look in the RSC condition, we first bound the term 𝜎1(∇L 𝜂(M∗)).

Lemma 7   (Upper bound for 𝜎1(∇L 𝜂(M∗) ) Suppose the noises are i.i.d with zero-mean and 
are symmetrically distributed around zero, then for any x > 0 , and a positive constant c0,

with probability at least 1−e−x.

Proof of Lemma 7  Since 𝜎1(⋅) is a norm, the triangle inequality holds

It can be derived from Equation (1) that

Since the noises are symmetrically distributed around zero and 
𝜕 l𝜂(Xij−M∗

ij )

𝜕 M∗
ij

 is an odd function 

of the noise 𝜉ij , we have 𝔼[ 𝜕 l𝜂(Xij−M∗
ij )

𝜕 M∗
ij

] =0 , and thus

To bound 𝜎1(∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]) , first notice that

L 𝜂(M̂) −L 𝜂(M∗) ≥ ⟨∇L 𝜂(M∗), 𝛥̂⟩ ≥ − ⟨� ∇L 𝜂(M∗), 𝛥̂⟩�
≥ −𝜎1(∇L 𝜂(M∗))‖𝛥̂‖∗≥ −

𝛾
2
( ‖𝛥̂M r

‖∗+ ‖𝛥̂M
⟂
r

‖∗).

0 ≥ [L 𝜂(M̂) + 𝛾‖̂M‖∗] − [L 𝜂(M∗) + 𝛾‖M∗‖∗]

≥ [L 𝜂(M̂) −L 𝜂(M∗)] − 𝛾[ ‖M∗‖∗− ‖̂M‖∗]

≥ −
𝛾
2

�
‖𝛥̂

M
⟂
r

‖∗−3‖𝛥̂M r
‖∗−4‖M∗

M
⟂
r

‖∗

�
.

(12)
𝜕 l𝜂(Xij −M∗

ij
)

𝜕 M∗
ij

=
𝜕 l𝜂(Xij −Mij )

𝜕 Mij

|||||Mij=M∗
ij

.

𝜎1(∇L 𝜂(M∗)) ≤ 𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+
�

2x
npq

+ 8x
3n

⎫
⎪
⎬
⎪
⎭

,

(13)𝜎1(∇L 𝜂(M∗)) ≤ 𝜎1(𝔼[∇L 𝜂(M∗)]) + 𝜎1(∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]).

∇L 𝜂(M∗) = 1
2n

n∑

t=1
Jt

p∑

i=1

q∑

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

.

(14)𝜎1(𝔼[∇L 𝜂(M∗)]) =0.
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Since the errors Xij −M∗
ij
 are i.i.d.,

by Theorem 2.3 in Bousquet (2002), we have for any x > 0

with probability at least 1−e−x.
Moreover, since

we have with probability at least 1−e−x

By symmetrization inequality in Boucheron et al. (2013),

𝜎1(∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]) = sup
��W��∗≤ 1
W ∈ ℝp×q

⟨W,∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]⟩

= sup
��W��∗≤ 1
W ∈ ℝp×q

1
2n

n�

t=1
⟨W, Jt

p�

i=1

q�

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij )

𝜕 M∗
ij

− 𝔼[Jt

p�

i=1

q�

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

]⟩

∶= sup
��W��∗≤ 1
W ∈ ℝp×q

1
2n

n�

t=1
ft(M

∗)

∶= Z.

sup
||W||∗≤ 1
W ∈ ℝp×q

ft(M
∗) ≤2𝜂 and sup

||W||∗≤ 1
W ∈ ℝp×q

𝔼[f 2
t (M

∗)] ≤
𝜂2

pq
,

Z ≤ 𝔼[Z] +√ 2x𝜂2

npq
+

8x𝜂
n
𝔼[Z] + 2x𝜂

3n
,

√
2x𝜂2

npq
+

8x𝜂
n
𝔼[Z] ≤ √

2x𝜂2

npq
+

√
8x𝜂
n
𝔼[Z] ≤ √

2x𝜂2

npq
+

4x𝜂
n

+ 2𝔼[Z]
2

,

(15)Z ≤ 2𝔼[Z] +√ 2x𝜂2

npq
+

8x𝜂
3n

.
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where 𝜖1,… , 𝜖n are i.i.d. Rademacher variables with distribution 
ℙ(𝜖t = 1) = ℙ(𝜖t = −1) =1

2
 , and are independent of {Xit ,jt}

n
t=1 and {Jt}n

t=1.
Now, let 𝔼∗ denote the conditional expectation given {Xit ,jt ,Jt}n

t=1 . Notice that 
Wit ,jt

𝜕 l𝜂(Xit ,jt−M∗
it ,jt

)

𝜕 M∗
it ,jt

 is a 𝜂−Lipschitz function of Wit ,jt . By Theorem 4.12 in Ledoux and Tala-

grand (2013), we have

Then take expectation over Jt , and we have for a positive constant c0,

where the second inequality follows from the definition of dual norm, and the last inequal-
ity follows from Proposition 2 in Koltchinskii et al. (2011): it is simple to show that

besides, since 𝜎1(𝜖tJt) = |𝜖t|𝜎1(Jt) ≤ |𝜖t| , we have

𝔼[Z] ≤ 𝔼[ sup
||W||∗≤ 1

W ∈ ℝp×q

1
n

||||||
⟨W,

n∑

t=1
𝜖tJt

p∑

i=1

q∑

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

⟩
||||||
]

= 1
n
𝔼[ sup

||W||∗≤ 1

W ∈ ℝp×q

||||||

n∑

t=1
𝜖t⟨W, Jt

p∑

i=1

q∑

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

⟩
||||||
]

= 1
n
𝔼[ sup

||W||∗≤ 1

W ∈ ℝp×q

|||||

n∑

t=1
𝜖tWit ,jt

𝜕 l𝜂(Xit ,jt −M∗
it ,jt

)

𝜕 M∗
it ,jt

|||||
]

𝔼∗[Z] ≤
2𝜂
n
𝔼∗[ sup

||W||∗≤ 1
W ∈ ℝp×q

|||||

n∑

t=1
𝜖tWit ,jt

|||||
].

(16)

𝔼[Z] ≤2𝜂
n
𝔼[ sup
��W��∗≤ 1
W ∈ ℝp×q

�����

n�

t=1
𝜖t⟨Jt, W⟩

�����
]

≤
2𝜂
n
𝔼[ sup
��W��∗≤ 1
W ∈ ℝp×q

𝜎1(
n�

t=1
𝜖tJt)��W��∗]

≤ 2𝜂𝔼[𝜎1(
1
n

n�

t=1
𝜖tJt)]

≤ 2𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
,

max{𝜎1(
1
n

n∑

t=1
𝔼[JtJ

⊤
t ]),𝜎1(

1
n

n∑

t=1
𝔼[J⊤t Jt])} =

1
q

,
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where U(𝛼)
Z

 is defined as U(𝛼)
Z = inf{u > 0 ∶ 𝔼exp( 𝜎1(Z)𝛼

u𝛼 ) ≤2} , then by concavity of loga-
rithm, we have

finally, using Proposition 2 in Koltchinskii et al. (2011), we have ∀x̃ > 0 and a constant c̃0

Then

since 1√
x̃+ log(p+q)

≤
√

2
�

1√
x̃
+ 1√

log(p+q)

�
 , after simplification, we have

where c0 is a constant independent of n, p and q.
By Equation (13), together with Equation (14), (15), (16) and (17), we have with prob-

ability at least 1−e−x

  ◻

Proof of Lemma 2 𝛿L 𝜂(M, M∗) can be written as

U(2)𝜖tJt
≤U(2)𝜖t

=
√

1
log 2

,

�
log q

log 2
=
�

1
2

logq+ 1
2

log( 1
log 2

)

≤
�

log(
q
2
+ 1

2 log 2
) ≤

√
log(q+ 1),

ℙ

⎧
⎪
⎨
⎪
⎩

𝜎1(
1
n

n�

t=1
𝜖tJt) ≥ ̃c0

⎡
⎢
⎢
⎣

�
x̃+ log(p+ q)

nq
+
√

log(q+ 1)
x̃+ log(p+ q)

n

⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

≤ e−x̃.

𝔼[𝜎1(
1
n

n�

t=1
𝜖tJt)] =�

∞

0
ℙ(𝜎1(

1
n

n�

t=1
𝜖tJt) ≥s)ds

≤ ̃c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦

+ ̃c0�

∞

0
e−x̃

�
1

2
√

nq(x̃+ log(p+ q))
+

√
log(q+ 1)

n

�

dx̃,

(17)𝔼[𝜎1(
1
n

n�

t=1
𝜖tJt)] ≤c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
,

𝜎1(∇L 𝜂(M∗)) ≤ 𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+
�

2x
npq

+ 8x
3n

⎫
⎪
⎬
⎪
⎭

.
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In the following, we establish the lower bound for 𝔼[𝛿L 𝜂(M,M∗)] and the upper bound for 
|𝔼[𝛿L 𝜂(M,M∗)] − 𝛿L 𝜂(M, M∗)| , respectively, for M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0.

Given any M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0 and 𝛥 =M −M∗,

where 
𝜕 l𝜂(Xij−M∗

ij )

𝜕 M∗
ij

 is defined in Equation (12).

Since l𝜂(Xij −Mij ) and 𝜕 l𝜂(Xij−Mij )

𝜕 M∗
ij

 are continuous function of Mij,

where F(⋅) is the cdf of Xij , and

Apply Taylor’s theorem to 𝔼[ l𝜂(Xij −Mij )] , and we have for some tij ∈ (0, 1)

where the inequality follows from the Assumption 2.
Next,  we  consider  the  upper  bound  for |||𝔼[𝛿L 𝜂] − 𝛿L 𝜂||| .  The  techniques  used  here  are 

similar to those in the proof Lemma 7.
Let 𝛿l𝜂,ij = l𝜂(Xij −Mij ) −l𝜂(Xij −M∗

ij ) −
𝜕 l𝜂(Xij−M∗

ij )

𝜕 M∗
ij

𝛥ij , since l𝜂 is 𝜂− Lipschitz,

𝛿L 𝜂 = 𝛿L 𝜂 + 𝔼[𝛿L 𝜂] − 𝔼[𝛿L 𝜂]
≥ 𝔼[𝛿L 𝜂] − |𝔼[𝛿L 𝜂] − 𝛿L 𝜂|.

𝔼[𝛿L 𝜂(M, M∗)] = 1
2n

n∑

t=1
𝔼{ p∑

i=1

q∑

j=1
Jt,ij [l𝜂(Xij −Mij ) −l𝜂(Xij −M∗

ij ) −
𝜕 l𝜂(Xij −M∗

ij
)

𝜕 M∗
ij

𝛥ij ]}

= 1
2pq

p∑

i=1

q∑

j=1
𝔼[ l𝜂(Xij −Mij )] − 𝔼[l𝜂(Xij −M∗

ij )] − 𝔼[𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

]𝛥ij ,

(18)

𝔼[ 𝜕 l𝜂(Xij −Mij )

𝜕 Mij
] =

𝜕𝔼[ l𝜂(Xij −Mij )]

𝜕 Mij

=
�|Mij−Xij |≤𝜂(Mij −Xij )dF(Xij ) + 𝜂�Mij−Xij>𝜂 dF(Xij ) − 𝜂

�Mij−Xij<−𝜂 dF(Xij )

= (Mij −Xij )F(Xij )
|||
Mij+𝜂
Mij−𝜂−�

Mij+𝜂
Mij−𝜂 F(Xij )d(−Xij )

+ 𝜂F(Mij − 𝜂) − 𝜂[1−F(Mij + 𝜂)]
=
�

Mij+𝜂
Mij−𝜂 F(Xij )dXij − 𝜂,

𝜕 2𝔼[ l𝜂(Xij −Mij )]

𝜕 M2
ij

=F(Mij + 𝜂) −F(Mij − 𝜂)

(19)

𝔼[𝛿L 𝜂(M, M∗)] = 1
2pq

p�

i=1

q�

j=1

1
2
[F(M∗

ij + tij𝛥ij + 𝜂) −F(M∗
ij + tij𝛥ij − 𝜂)]𝛥2ij

= 1
4pq

p�

i=1

q�

j=1
[F𝜉(tij𝛥ij + 𝜂) −F𝜉(tij𝛥ij − 𝜂)]𝛥2ij

≥ 1
4c2

1pq
‖𝛥‖2

F,
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For any M ∈ M 0 , let 𝛥 =M −M∗ , we have

Let Z1 = 1
n

supM∈ℝp×q
���
∑ n

t=1
f1t(M)
��𝛥��F

��� . By Equation (20), f1t(M)
||𝛥||F ≤ 4𝜂 and 𝔼[ f 2

1t(M)

||𝛥||2F ] ≤ 𝜂2

pq
 for any 

M ∈ ℝp×q . Since the errors Xij −M∗
ij
 are i.i.d., by Theorem 2.3 in Bousquet (2002), for any 

x ≥ 0

with probability at least 1−e−x.
Let 𝜖t ’s be i.i.d. Rademacher variables. Then, by symmetrization inequality in 

Boucheron et al. (2013),

Let 𝔼∗ denote the conditional expectation given {Xit ,jt , Jt}n
t=1.

By  contraction  principle  in  Theorem  4.4  of  Ledoux  and  Talagrand  (2013),  since 
|
𝛿l𝜂,it jt𝛥it ,jt

| ≤2𝜂,

Then

(20)
���𝛿l𝜂,ij

���≤ 2𝜂�𝛥ij� ≤2𝜂‖𝛥‖F.

(21)

|||𝔼[𝛿L 𝜂(M, M∗)] − 𝛿L 𝜂(M̂, M∗)||| =
1
2n

|||||

n∑

t=1
(𝛿l𝜂,it jt − 𝔼[𝛿l𝜂,it jt ])|||||

∶= 1
2n

|||||

n∑

t=1
f1t(M)

|||||
=

||𝛥||F
2n

|||||

n∑

t=1

f1t(M)
||𝛥||F |||||

≤
||𝛥||F

2n
sup

M∈M 0

|||||

n∑

t=1

f1t(M)
||𝛥||F |||||.

(22)Z1 ≤ 2𝔼(Z1) +2

√
2x𝜂2

npq
+

16x𝜂
3n

,

𝔼[Z1] =
1
n
𝔼�sup

M∈M 0

�����

n�

t=1

f1t(M)
��𝛥��F

�����

�

≤ 2
n
𝔼�sup

M∈M 0

�����

n�

t=1
𝜖t

𝛿l𝜂,it jt
‖𝛥‖F

�����

�

𝔼∗

[

sup
M∈M 0

|||||

n∑

t=1
𝜖t

𝛿l𝜂,it jt𝛥it ,jt

𝛥it ,jt

||𝛥||F |||||
]

≤ 4𝜂𝔼∗

[

sup
M∈M 0

|||||

n∑

t=1
𝜖t

𝛥it ,jt

||𝛥||F |||||
]

.

𝔼[Z1] ≤
8𝜂
n
𝔼�sup

M∈M 0

�����

n�

t=1
𝜖t

⟨Jt,𝛥⟩
��𝛥��F

�����

�

≤ 8𝜂𝔼�sup
M∈M 0

������

𝜎1(
∑ n

t=1
1
n
𝜖tJt)��𝛥��∗

��𝛥��F

������

�

≤ 8𝜂𝔼�𝜎1(
n�

t=1

1
n
𝜖tJt)

�

sup
M∈M 0

��𝛥��∗

��𝛥��F
.
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The second inequality follows form the definition of the dual norm.
By Lemma 1, we have for M ∈ M 0 and r > 0,

Note that

Then we have for all M ∈ ℝp×q and 𝛥 =M −M∗

If M∗ is exactly low-rank with rank(M∗) ≤r , then 
∑ q

k=r+1 𝜎k = 0 , in this case

where the last inequality follows from Equation (17).
Then, by Equation (22)

with probability at least 1−e−x.
Therefore, by Equation (21), with probability at least 1−e−x.

Together with Equation (19), we have with probability at least 1−e−x,

||𝛥
M
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||∗≤ 3||𝛥M r
||∗+ 4
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= rank(UrU
⊤
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⊤
r ) + 𝛥VrV

⊤
r ) ≤2r.
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√
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t=1

1
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≤ {32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

}‖𝛥̂‖F.



2754 Machine Learning (2023) 112:2723–2760

1 3

  ◻

Proof of Theorem 1  Construct Mt =M∗+ t(M̂ −M∗) in the following way. If 
‖M̂ −M∗‖max < 𝜂 , then t = 1 , otherwise, choose t such that ‖Mt −M∗‖max = 𝜂 . Let 𝛥t =Mt −M∗= t(M̂ −M∗) =t𝛥̂ . Notice

Since M̂ is the optimizer of problem (7),

Therefore,

Then by Lemma 2, for any x > 0 , with probability at least 1−e−x

Divided both sides of the inequality by ||𝛥t||F , we have

(24)

𝛿L 𝜂 ≥ 1
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1pq
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�
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npq
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8x𝜂
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𝛿L 𝜂(Mt) =L 𝜂(Mt) −L (M∗) − ⟨∇L (M∗),𝛥t⟩

≤ tL (M̂) + (1− t)L (M∗) −L (M∗) − ⟨∇L (M∗),𝛥t⟩

= t𝛿L 𝜂(M̂).
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≤ 0
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with probability at least 1−e−x . The second inequality follows from Equation (23) when 
M∗  has  rank  smaller  than  r  and  the  fact  that 𝛾 ≥2𝜎1(∇L (M∗))  with  probability  at  least 
1−e−x by Lemma 7.

Take x = log(p+ q) and n > C(L) ⋅c2
1

√
2rp log(p+ q) log(q+ 1) with C(L) with being 

some constant depending on L, we have ‖𝛥t‖max ≤
L√
pq
‖𝛥t‖F < 𝜂 . Then by the construction 

of Mt , t = 1 . Finally, we have with probability at least 1−2e−x −e−2x = 1−3(p+ q)−1,

where C1 , c2 , c3 are absolute constants.   ◻

Appendix 3: Proof for reduced‑rank regression

Lemma 8   (Upper Bound for 𝜎1(∇L 𝜂(C∗)) ) Suppose that 𝜉ij ’s are i.i.d. with zero mean and 

symmetrically distributed around zero, then for any x > 0 , we have with probability at least 

1−e−x,

Proof of Lemma 8  Note 𝜕

𝜕 ckj
L (C) =

∑ n
i=1 −𝓁�𝜂(yij −x⊤i cj)xik . Let gij = 𝓁�𝜂(yij −x⊤i cj) , 

G = [gij ]n×q and G∗ the value of G when C =C∗ , then ∇L 𝜂(C∗) = −X⊤G∗.

Following the proof of Lemma 3 Negahban and Wainwright (2011) (the proof is given in 
its supplementary material), we have

1
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pq
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(
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2rc2 + c3),

𝜎1(∇L 𝜂(C∗)) ≤4𝜂𝜎1(𝛴)( √ 4n(p+ q) +2nx+ 2(p+ q) +x)

𝜎1(∇L 𝜂(C∗)) = sup
‖u‖2 = 1
u ∈ ℝq

sup
‖v‖2 = 1
v ∈ ℝp

⟨Xv, G∗u⟩.

(25)
ℙ(�𝜎1(X⊤G∗)� ≥4𝛿n) ≤8p+q max
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It remains to bound 1
n
⟨Xv, G∗u⟩ . Let

where g∗i  is the i-th row of G∗ . Since 𝜉ij ’s are symmetrically distributed around zero and 
l�𝜂(x) is an odd function, 𝔼[G∗] =0. Hence, 𝔼{⟨ v, xi⟩⟨u, g∗i ⟩} =0 . Further, for k being any 
positive integer,

By Berstein’s inequality, for any t > 0 and u, v satisfying ‖u‖2 = 1,‖v‖2 = 1,

Combining with Equation (25), we have

Take t = 2(p+ q) +x for any x > 0 , and then we have

  ◻

Proof of Lemma 5 
In  the  following,  we  establish  the  lower  bound  for 𝔼[𝛿L 𝜂]  and  the  upper  bound  for 
|||𝛿L 𝜂 − 𝔼[𝛿L 𝜂]||| , respectively, for C ∈ C0 ∩ {C ∶ ‖C−C∗‖F ≤ 𝜂}

Given any C ∈ C0 ∩ {C ∶ ‖C−C∗‖F ≤ 𝜂} and 𝛥 =C−C∗ , for some tij ∈ (0, 1)

Z ∶= 1
n
⟨Xv, G∗u⟩ =1

n

n�

i=1
⟨v, xi⟩⟨u, g∗i ⟩,

n�

i=1
𝔼{⟨ v, xi⟩

2k⟨u, g∗i ⟩
2k} ≤ 𝜂2k𝔼 n�

i=1
⟨v,xi⟩

2k

= 𝜂2k𝔼 n�

i=1
(x⊤i u)2k

= 𝜂2kn(u⊤𝛴 u)2k(2k−1)!!

≤ 𝜂2kn(2k−1)!!𝜎1(𝛴) 2k.

ℙ{Z ≥ 𝜂𝜎1(𝛴)( √ 2t∕ n+ t∕ n)} ≤e−t.

ℙ(�𝜎1(X⊤G∗)� ≥4n𝜂𝜎1(𝛴)( √ 2t∕ n+ t∕ n)) ≤8p+qe−t.
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𝛿L 𝜂 = 𝛿L 𝜂 + 𝔼[𝛿L 𝜂] − 𝔼[𝛿L 𝜂]
≥ 𝔼[𝛿L 𝜂] −|||𝛿L 𝜂 − 𝔼[𝛿L 𝜂]|||.

𝔼[𝛿L 𝜂] =
n�

i=1

q�

j=1
{𝔼[ l𝜂(yij −x⊤i cj)] − 𝔼[l𝜂(yij −x⊤i c∗j )] − 𝔼[l�𝜂(yij −x⊤i c∗j )(−x⊤i 𝛥j)]}

= 1
2

n�

i=1

q�

j=1
𝔼X[{F𝜉(tijx⊤i 𝛥j + 𝜂) −F𝜉(tijx⊤i 𝛥j − 𝜂)}(x⊤i 𝛥j)

2]

≥ 1
2c2

1

n�

i=1

q�

j=1
𝔼(x⊤i 𝛥j)

2

≥ n
2c2

1

𝜎n(𝛴) n�

j=1
‖𝛥j‖

2
F =

n𝜎n(𝛴)
2c2

1

‖𝛥‖2
F,



2757Machine Learning (2023) 112:2723–2760 

1 3

where  the  equality  follows  from  Taylor’s  theorem,  and  the  first  inequality  follows  from 
Assumption 2 and Assumption 4. For the calculation of 𝜕 2𝔼[l𝜂(yij−⟨Zij ,C⟩)]

𝜕(⟨ Zij ,C⟩)2  , please refer to the 

calculation of 𝜕
2𝔼[l𝜂(Xij−Mij ]

𝜕 M2
ij

 in the case of matrix completion problems.

For any i = 1,… , n, j = 1,… , q , there exist 𝜏ij ∈ (0, 1) , such that 𝓁 𝜂(yij −x⊤i cj) − 𝓁𝜂(yij −x⊤i c∗j ) = 𝓁�𝜂(yij −x⊤i c̃j)x
⊤
i
(c∗j −cj), where c̃j = c∗j + 𝜏ij (cj −c∗j ) . 

Therefore,

Then

Following the proof in Lemma 8, we have for any x > 0

with probability at least 1−e−x.
Similar  to  Equation  (23),  it  can  be  shown  that  if C∗  has  rank  smaller  than  r,  then 

supC∈C0

‖𝛥‖∗
‖𝛥‖F

≤ 4
√

2r. Hence, for C ∈ C0 , ‖𝛥‖∗≤ 4
√

2r‖𝛥‖F . Now we have with probabil-
ity at least 1−e−x,

  ◻

Proof of Theorem 2  Construct Ct =C∗+ t(Ĉ−C∗) in the following way. If 
‖Ĉ−C∗‖F < 𝜂 , then t = 1 , otherwise, choose t such that ‖Ct −C∗‖F = 𝜂 . Let 𝛥t =Ct −C∗= t(Ĉ−C∗) =t𝛥̂ . Notice

Since ̂C is the optimizer of problem (9), we have

Therefore,

𝛿L 𝜂(C) = ⟨∇L 𝜂(C̃) − ∇L 𝜂(C∗), C−C∗⟩.

���𝛿L 𝜂 − 𝔼[𝛿L 𝜂]���= ⟨∇L 𝜂(C̃) − ∇L 𝜂(C∗),C−C∗⟩ − 𝔼{⟨∇L 𝜂(C̃) − ∇L 𝜂(C∗), C−C∗⟩}

= ⟨X⊤G̃−X⊤G∗,C−C∗⟩ − 𝔼{⟨X⊤G̃−X⊤G∗, C−C∗⟩}

≤ ‖𝛥‖∗𝜎1(X
⊤(G̃−G∗) − 𝔼{X⊤(G̃−G∗)}) .

𝜎1(X
⊤(G̃− 𝔼(̃G) −G∗)) ≤12𝜂𝜎1(𝛴)( √ 4n(p+ q) +2nx+ 2(p+ q) +x),

𝛿L 𝜂 ≥ n𝜎n(𝛴)
2c2

1

‖𝛥‖2
F −48

√
2r𝜂𝜎1(𝛴)( √ 4n(p+ q) +2nx+ 2(p+ q) +x)‖𝛥‖F

𝛿L 𝜂(Ct) =L 𝜂(Ct) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗),𝛥t⟩

≤ tL 𝜂(Ĉ) + (1− t)L 𝜂(C∗) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗),𝛥t⟩

= t𝛿L 𝜂(Ĉ).

L 𝜂(Ĉ) + 𝛾‖̂C‖∗≤ L 𝜂(C∗) + 𝛾‖C∗‖∗.
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By Lemma 5, for any x > 0 , with probability at least 1−e−x,

The second inequality follows from Equation (23) when M∗ has rank smaller than r and the 
fact that the selection of 𝛾 ≥2𝜎1(∇L (M∗)) with probability at least 1−e−x by Lemma 7.

Further, by Equation (23) and the fact that 𝛾 ≥2𝜎1(∇L (C∗)) with probability at least 
1−e−x by Lemma 8, we have

with  probability  at  least (1−e−x)2 ,  Take x = p+ q  and n > C2 ⋅
𝜎1(𝛴)𝜎n(𝛴) c2

1(p+ q)r  with C2 
being some constant, we have ‖𝛥t‖F < 𝜂 . Then by the construction of Ct , t = 1 . Finally, we 
have with probability at least 1−2e−x −e−2x = 1−3e−(p+q),

  ◻
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