
Vol.:(0123456789)

Machine Learning (2023) 112:2723–2760
https://doi.org/10.1007/s10994-023-06325-w

1 3

Robust matrix estimations meet Frank–Wolfe algorithm

Naimin Jing1,3 · Ethan X. Fang2 · Cheng Yong Tang1

Received: 7 May 2021 / Revised: 13 April 2022 / Accepted: 26 February 2023 /
Published online: 5 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
We consider estimating matrix-valued model parameters with a dedicated focus on their
robustness. Our setting concerns large-scale structured data so that a regularization on
the matrix’s rank becomes indispensable. Though robust loss functions are expected to be
effective, their practical implementations are known difficult due to the non-smooth cri-
terion functions encountered in the optimizations. To meet the challenges, we develop a
highly efficient computing scheme taking advantage of the projection-free Frank–Wolfe
algorithms that require only the first-order derivative of the criterion function. Our meth-
odological framework is broad, extensively accommodating robust loss functions in con-
junction with penalty functions in the context of matrix estimation problems. We establish
the non-asymptotic error bounds of the matrix estimations with the Huber loss and nuclear
norm penalty in two concrete cases: matrix completion with partial and noisy observations
and reduced-rank regressions. Our theory demonstrates the merits from using robust loss
functions, so that matrix-valued estimators with good properties are achieved even when
heavy-tailed distributions are involved. We illustrate the promising performance of our
methods with extensive numerical examples and data analysis.

Keywords Frank–Wolfe algorithms · Huber loss · Matrix-valued parameters · Robust
statistical methods · Non-asymptotic properties · Non-smooth criterion function

Editor: Pradeep Ravikumar.

 * Cheng Yong Tang
 yongtang@temple.edu

 Naimin Jing
 naimin.jing@merck.com

 Ethan X. Fang
 xingyuan.fang@duke.edu

1 Department of Statistics, Operations, and Data Science, Fox School of Business, Temple
University, Philadelphia, PA, USA

2 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
3 Present Address: Biostatistics and Research Decision Sciences, Merck & Co., Inc, Kenilworth, NJ,

USA

2724 Machine Learning (2023) 112:2723–2760

1 3

1 Introduction

Massive data with informative structures from the data collection processes are becoming
increasingly available in many data-enabled areas. Examples include those from FMRI,
electroencephalogram (EEG), and tick-by-tick financial trading records of many assets.
Methodologically for multivariate data analysis, matrices as the model parameters are com-
monly analyzed in the core step(s) of many popular approaches including the principal
component analysis, canonical correlation analysis (Anderson, 2003), Gaussian graphical
model analysis (Lauritzen, 1996), reduced-rank regression (Reinsel & Velu, 1998), suffi-
cient dimension reduction (Cook, 2009), and many others.

Structural information—our foremost consideration in this study—is indispensable in
solving many matrix estimation problems with large-scale data. For matrix-valued model
parameters, a class of methods imposes restrictions on the rank of the targeted matrix. In
matrix completion with partial and noisy observations, for example, without such struc-
tural information, successfully recovering the signal is not possible. For multi-response
regression problems, structural information is vital for both methodological development
and practical implementation for drawing informative conclusions. Constraining the rank
of the parameter matrix in multi-response regression leads to the conventional reduced-
rank regression (Reinsel & Velu, 1998).

Our primary goal in this study is to investigate robustness when estimating matrices
with large-scale data and structural information. Robustness is a foundational concern in
current data-enabled investigations. During massive data collection processes, observations
of heterogeneous quality are inevitable, and even erroneous records are common. On one
hand, due to the huge size of the data in modern large-scale investigations, validations and
error corrections become too daunting to be practical. Robust statistical methods in these
scenarios are thus highly desirable. On the other hand, however, in many existing methods,
though being convenient, commonly applied criterion functions including the squared loss
and the negative log-likelihood are unfortunately not robust to the violations of the model
assumptions in the aforementioned practical reality.

We are thus motivated to consider robustness in the context with structural information,
which is incorporated by constraining the rank of the matrix-valued model parameters. The
foremost challenge in this scenario is the fundamental computational difficulty. One source
contributing to the difficulty roots in the fact that constraining a matrix’s rank results in a
non-convex problem. As a rare example in reduced-rank multivariate regression, an ana-
lytic solution is available despite the non-convexity; see (Reinsel & Velu, 1998). Unfortu-
nately when considerations are broader, such a convenience generally no longer exists; and
how to solve optimization problems with rank constraints is generally difficult. To meet the
challenge, a convex relaxation of the problem leads to regularizing the nuclear norm of the
matrix-valued model parameter. From the statistical perspective, numerous works (Can-
dès & Tao, 2010; Negahban & Wainwright, 2011; Agarwal et al., 2012) have studied the
theoretical properties of this type of estimators constructed with the nuclear norm relaxa-
tion, and have proved that the resulting estimator achieves optimal or near-optimal statisti-
cal properties under different settings. Additional to the non-convexity, consideration of
robustness is further contributing to the computational difficulty. Resorting to robust loss
functions is a traditional class of influential methods for establishing more robust statisti-
cal methods; see Huber (2004) and Hampel et al. (2011). Though demonstrated effective
in conventional statistical analysis, substantial difficulties arise when handling large-scale
modern complex data-enabled problems. Computationally, in particular, their applications

2725Machine Learning (2023) 112:2723–2760

1 3

encounter major challenges because robust loss functions are not smooth whose second-
order derivatives do not exist. Analytically, establishing the statistical properties of the
matrix estimations is challenging in this scenario too, because the impacts from possibly
heavy-tailed errors are involved in studying large-scale problems. Existing methods using
the squared loss or the negative log-likelihood as the loss functions require the noises to be
sub-Gaussian in order to handle high-dimensional data. Robust methods can accommodate
noises with heavier tails than sub-Gaussian; meanwhile, the capacity for handling high-
dimensional data remains desirable.

There has been an active recent development in robust statistical methods with high-
dimensional data; see, for example, Loh (2017), Zhou et al. (2018), Sun et al. (2020),
and reference therein. Recently, there has been increasing interest in investigating robust
methods for matrix-valued model parameters. She and Chen (2017) studied the robust
reduced-rank regression in a scenario concerning outliers. They define the estimator as the
minimizer of a non-convex optimization problem, establish theoretical error bounds, and
propose to apply an iterative algorithm that alternatively solves for two parts of the model
parameters in their setting. Due to the nonconvexity, their algorithm does not guarantee the
convergence to the minimum. Wong and Lee (2017) studied matrix completion with Huber
loss. Their algorithm is developed by iteratively projecting non-robust matrix estimators,
which is computationally demanding with many projection operations required. Elsener
and van de Geer (2018) investigated robust matrix completion with the Huber loss function
and nuclear norm penalization. The computation algorithms in Elsener and van de Geer
(2018) involved a soft-thresholding step for singular values. This works well when the
solution is of exact low rank. However, when the solution is of approximately low rank, or
of modestly higher rank, such a step becomes computationally demanding. As pointed out
in She and Chen (2017), efficient algorithms are desirable for solving optimization prob-
lems with rank constraints and robust loss functions.

We attempt our study with a foremost consideration on an efficient computing scheme
for solving large-scale statistical problems with robustness. In particular, we aim to develop
efficient first-order algorithms by building a scheme with Frank–Wolfe-type algorithms
for robust matrix estimation problems. The Frank–Wolfe algorithm is a first-order method
and is drawing considerable attention recently (Jaggi, 2013; Lacoste-Julien & Jaggi, 2015;
Freund & Grigas, 2016; Freund et al., 2017; Kerdreux et al., 2018; Swoboda & Kolmogo-
rov, 2019). The key advantage of the Frank–Wolfe algorithms is their freedom from the
required projections in most proximal-type algorithms. In addition, as we shall see in our
algorithms in Sect. 2, for matrix estimation problems, in each iteration, the Frank–Wolfe
algorithm only requires computing the top one leading singular vectors, which can be
conducted efficiently even for huge-size problems. These merits make Frank–Wolfe-type
algorithms particularly appealing for solving large-scale robust low-rank matrix estimation
problems.

Our study makes two main contributions. Foremost, we develop a new computation
scheme for robust matrix estimation and demonstrate that the first-order optimization
technique makes solving large-scale robust estimation problems practically convenient.
We show extensively that our framework is broadly applicable, covering general robust
loss functions including those used in median and quantile regression; see Sect. 2. Sec-
ond, our theoretical analysis reveals the benefit from using robust loss functions and rank
constraints. Our non-asymptotic results demonstrate that our framework can accommodate
high-dimensional data. For matrix completion and reduced-rank regression, the resulting
matrix-valued estimator works satisfactorily even when the model error distributions are
heavy-tailed.

2726 Machine Learning (2023) 112:2723–2760

1 3

The rest of this article is organized as follows. Section 2 elaborates a concrete frame-
work using the Frank–Wolfe algorithm to solve robust matrix estimation problems. We
present matrix completion and reduced-rank regression with various robust loss functions.
Section 3 justifies the validity of our method with theory on the algorithm convergence and
error bounds of the resulting estimators. Section 4 presents extensive numerical examples
demonstrating the promising performance of our methods.

For a generic matrix A, we denote by A⊤ its transpose, 𝜎1(A) its largest singular
value, ‖A‖∗ its nuclear norm, and ‖A‖F its Frobenius norm. Let ⟨A, B⟩ =trace(A⊤B) for
A,B ∈ ℝp×q . We denote by 𝛩 ∈ ℝp×q a generic matrix-valued model parameter. In this
study, we focus on two concrete cases. In one case, 𝛩 =M where M is the signal to be
recovered in the matrix completion problem with a single copy of partial and noisy obser-
vations; the other one is 𝛩 =C where C is the matrix-valued coefficients in the multi-
response regression problem. Furthermore, we show that our framework broadly applies in
solving a general class of problems.

2 Methodology

2.1 Matrix completion

We consider the matrix completion problem first. In this setting, one observes a noisy sub-
set of all entries of a matrix M ∈ ℝp×q , which is the model parameter of interest. Let the set
of observed entries be 𝛺 = {(i t, jt)}n

t=1 , where it ∈ {1,… , p} ;jt ∈ {1,… q} , and denote by
Xit ,jt , (it, jt) ∈ 𝛺 , the corresponding noisy observations such that

We assume that 𝜉t ’s are independent and identically distributed random variables with
mean zero.

To effectively recover M with a single copy of partial and noisy observations over 𝛺 , one popular approach is to assume that the underlying true matrix, denoted by M∗ ,
is of low-rank that rank(M∗) ≤r for some r ≤min(p, q) . Then one can estimate M∗
by solving a constrained optimization problem by minimizing the objective function
(2n)−1 ∑ n

t=1 𝓁(Xit ,jt −Mit ,jt) over M, subject to rank(M) ≤r for some loss function 𝓁(⋅) .
Since the rank constraint is non-convex, solving the optimization is generally not tractable.
To obtain a practical solution, a common strategy is relaxing the rank constraint to the con-
vex nuclear norm constraint.

The Huber loss function leads to robust estimators because its design alleviates the
excessive contribution from a data point that is extremely deviated from the fit. Practically,
the Huber loss performs promisingly when handling a substantial portion of noisy observa-
tions whose distribution can be heavy-tailed; see Huber (2004).

By applying the Huber loss with a constraint on nuclear norm, we consider the follow-
ing robust matrix completion problem:

where 𝓁 𝜂(⋅) is the classical Huber loss function:

Xit ,jt =Mit ,jt + 𝜉t, t = 1,… , n.

(1)min
M∈ℝp×q

L 𝜂(M) =∶ 1
2n

n�

t=1
𝓁 𝜂(Xit ,jt −Mit ,jt), subject to‖M‖∗≤ 𝜆,

2727Machine Learning (2023) 112:2723–2760

1 3

Here 𝜂 is the tuning parameter of the Huber loss, and 𝜆 is the tuning parameter regulariz-
ing the nuclear norm of M. In our numerical studies, we choose the tuning parameters by
applying the cross-validation.

Since 𝓁 𝜂 is not smooth, those methods commonly applied in solving 𝓁 2-loss prob-
lems—requiring second-order derivatives—do not directly apply. Computing optimiza-
tion problem (1) is generally hard; see the discussion in She and Chen (2017). Efficient
algorithms for solving (5) are lacking; the primary difficulty is due to the absence of the
second-order derivative of the Huber loss. It is even more challenging to minimize the
Huber loss on a restricted low-rank region, and to achieve the computational efficiency
with large-scale data. More broadly, non-smooth criterion functions are commonly the
case with general robust loss functions, with prominent examples including the least
absolute deviation loss of the median regression, check loss of the quantile regression,
and Tukey’s biweight loss besides the aforementioned Huber loss.

To address the computational difficulty when handling large-scale problems with
robust loss functions, we propose to apply the Frank-Wolfe algorithm to solve this prob-
lem. The Frank–Wolfe algorithm has been particularly powerful for convex optimiza-
tions. As a first-order approach that requires no second-order derivative of the criterion
function, it is particularly powerful for solving problems with non-smooth loss func-
tions, which is exactly the case for our problem (1). Briefly speaking, the Frank–Wolfe
algorithm pursues some constrained approximation of the gradient—the first-order
derivative of the criterion function evaluated at a given value. The algorithm runs itera-
tively, with the optimization proceeding along the direction as identified by the approxi-
mation of the gradient. Therefore, the Frank–Wolfe algorithm is practically appealing,
as one has the opportunity to best exploit some constrained approximation that can be
computed efficiently. For a detailed account of the Frank–Wolfe algorithms and recent
advances in the area, we refer to Freund and Grigas (2016), Freund et al. (2017), and
references therein.

Concretely in our setting, we develop an algorithm that runs iteratively. Specifically,
at the (k + 1)-th iteration with M(k) from the previous step, the matrix-valued gradient of
(1): ∇L (M(k)) ∈ ℝp×q is analytically calculated by

where Jt is a matrix with Jt,it jt = 1 and all the other entries 0, 1(⋅) is the indicator func-
tion, and sign(x) =1 if x is positive and − 1 otherwise. Hence, evaluating the gradient can
be done efficiently, and it is a scalable process that can be efficiently distributed if multi-
ple computing units are available. Then, the Frank–Wolfe algorithm suggests computing a
descent direction in the (k + 1)-th iteration:

In this step, a key observation is that

(2)𝓁 𝜂(x) ={ 1
2
x2 if |x| ≤ 𝜂,𝜂 ⋅(|x| −1

2
𝜂) otherwise.

(3)
∇L (M(k)) = 1

2n

n∑

t=1
Jt[(M

(k)
it ,jt

−Xit ,jt)1(|M
(k)
it ,jt

−Xit ,jt| ≤ 𝜂)
+ 𝜂sign(M(k)

it ,jt
−Xit ,jt)1(|M

(k)
it ,jt

−Xit ,jt| > 𝜂)],

V(k+1) ← argmin
V

⟨∇L (M(k)),V⟩, subject to‖V‖∗≤ 𝜆.

2728 Machine Learning (2023) 112:2723–2760

1 3

where u1 and v1 are the leading left and right singular vectors of ∇L (M(k)) . The required
singular decomposition can be computed efficiently by an existing algorithm that is imple-
mented in the standard “PROLACK" package in Matlab. Then, we conduct a descent step
to update M(k) by

where 𝛼k+1 ∈ [0, 1] is a pre-specified step-size. For example, 𝛼k+1 = 1∕(k + 3) guarantees
convergence to an optimal solution. Meanwhile, line search is viable, and there are various
ways to further accelerate this algorithm.

Intuitively, the updating direction in Equation (4) is viewed as the best rank-one approx-
imation of the gradient matrix (3). Further, if we view the vector u1 as the direction cor-
responding to the first principal component of the columns of M, then formula (4) is essen-
tially a column-wise update along this direction, with the step sizes proportional to the
components in the vector v1 . From this perspective, the update formula (4) can also be
viewed as a computationally efficient matrix-valued coordinate descent along the direction
u1 . Since the objective function (1) is convex, such an update progressing along the gradi-
ent direction ensures that the criterion function converges, approaching the minimum.

We summarize the algorithm in Algorithm 1.

2.2 Reduced‑rank regression

In our second concrete problem with matrix-valued model parameters, we consider a mul-
tivariate linear regression

where 𝜉ij ’s are model errors. We assume that 𝜉ij ’s are independent and identically distrib-
uted random variables with mean zero. Then, we have in a matrix form

where Y = [yij]n×q, X = [xij]n×p = [x1,… , xn]⊤, C = [c1,… , cq] ∈ ℝp×q , and 𝛯 = [𝜉ij]n×q.
In this setting, one may opt to restrict the rank of C—rank(C) ≤r (r ≤min(p, q))—lead-

ing to the conventional reduced-rank regression (Reinsel & Velu, 1998). Also by relaxing
the rank constraint with the nuclear norm, we consider the estimation problem as

(4)V(k+1) = −𝜆 ⋅u1v⊤1 ,

M(k+1) ← M(k) + 𝛼k+1
(
V(k+1) −M(k)) ,

yij = x⊤i cj + 𝜉ij , for i = 1,… , n, j = 1,… , q,

Y =XC+ 𝛯,

2729Machine Learning (2023) 112:2723–2760

1 3

where cj denotes the j-th column of C, and 𝓁 𝜂(⋅) is the Huber loss function with parameter 𝜂
.

Again, to address the computational challenges, analogous to problem (1), we pro-
pose to solve problem (5) also by applying Frank–Wolfe algorithm iteratively with the
steps described as follows. Denote by C(k) the solution after the k-th iteration. At the
(k + 1)-th iteration, let ∇L 𝜂(C(k)) be the gradient of the loss function at C(k):

where Zij is a matrix with the j-th column being xi and the remaining entries 0. Then, we
compute a descent direction from

with the solution

where u1 and v1 are the leading left and right singular vectors of ∇L 𝜂(C(k)).
The algorithm follows Algorithm 1, with different input data and the gradient

matrix specified by (6).

2.3 Other robust loss functions

Our framework for developing efficient computation algorithms can easily accommo-
date a broad class of robust loss functions that are not smooth. Examples of the loss
functions are the 𝓁 1-loss (the least absolute deviation loss), the check-loss, Tukey’s
biweight loss, and more; see Hampel et al. (2011).

A scheme is developed as follows. The only necessary adjustment as in Algorithm 1
is calculating the gradient of loss function ∇L (⋅) . Then, the general updating step is

where 𝛼k+1 is some pre-specified step-size, V(k+1) = −𝜆 ⋅u1v⊤1 , with u1 and v1 being the first
left and right singular vectors of ∇L (𝛩(k)).

Table 1 presents gradients for several common loss functions in the context of matrix comple-
tion and reduced-rank regression.

(5)min
C∈ℝp×q

L 𝜂(C) =∶
n�

i=1

q�

j=1
𝓁 𝜂(yij −x⊤i cj), subject to‖C‖∗≤ 𝜆,

(6)
∇L 𝜂(C(k)) =

n∑

i=1

q∑

j=1
Zij [(x⊤i c(k)j −yij)1(|x⊤i c(k)j −yij| ≤ 𝜂)

+ 𝜂 sign(x⊤i c(k)j
−yij)1(|x⊤i c(k)j

−yij| > 𝜂)],

V(k+1) ← argmin
V∈ℝp×q

⟨∇L (C(k)),V⟩ subject to‖V‖∗≤ 𝜆,
V(k+1) = −𝜆 ⋅u1v⊤1 ,

𝛩(k+1) = 𝛩(k) + 𝛼k+1
(
V(k+1) − 𝛩(k)) ,

2730 Machine Learning (2023) 112:2723–2760

1 3

3 Theory

3.1 Convergence of the algorithms

For self-completeness, we present the theoretical guarantees for the Frank–Wolfe algo-
rithm in the context of robust matrix estimations, together with a simple way to choose
the step-sizes.

We prove that by choosing the stepsize properly, the objective functions by using the
Huber loss in both matrix completion and reduced-rank regression problems converge
to the optimums at the rate of O(1∕ k) , where k is the iteration counter. The next proposi-
tion is for reduced-rank regression problems, and the result for the matrix completion
problem can be proved similarly.

Proposition 1 Consider the loss function L 𝜂(⋅) ∶ ℝn×p → ℝ constructed from the Huber
loss function (2) with parameter 𝜂 . For the reduced-rank regression problem (5), by the
Frank–Wolfe Algorithm with stepsize set as

where Lz
 is some positive number. Suppose the diameter of the feasible set is

D ∶= maxV1,V2∈𝕊 ‖V1 −V2‖F , where 𝕊 = {V ∶ ‖V‖∗≤ 𝜆} . Then, we have that L (C(k)) is
monotonely decreasing in k, and we have

Proof Since the Huber loss function is differentiable everywhere, and we have that ∇L 𝜂(C)
is Lipschitz-continuous. Thus, with Lz defined above its Lipschitz constant, by Theorem 1
of Freund et al. (2017), we have that the result holds as desired. ◻

We point out that for the matrix completion problem (1), the result holds by the same
argument by letting Lz = 1.

Meanwhile, our broad interests include some non-convex losses such as the Tukey’s
biweight loss. A strategy for handling them is the approximation by a Lipschitz continuous

𝛼k+1 =min

�
∇L 𝜂(C(k))⊤(C(k) −V(k+1))

Lz‖C(k) −V(k+1)‖2
, 1

�

, for all k ≥ 1,

L 𝜂(C(k)) −L 𝜂(C∗) ≤
2LzD

2

k
.

Table 1 Gradients under different loss functions for matrix completion (∇L (M)) and reduced-rank regres-
sion (∇L (C)), dij =Xij −Mij or yij −x⊤i cj depending on the context

Loss ∇L (⋅)

𝓁 1-loss ∇L (M) = −1
2n

∑ n
t=1 Jt sign(dit ,jt)𝓁(x) = |x| ∇L (C) = −

∑ n
i=1

∑ q
j=1 Zij sign(dij)

Check loss ∇L (M) = 1
2n

∑ n
t=1 Jt(1{dit ,jt <0} −c)𝓁 c(x) =x(c−1{x<0}) ∇L (C) =

∑ n
i=1

∑ q
j=1 Zij (1{dij<0} −c)

Tukey’s biweight loss ∇L (M) = −1
2n

∑ n
t=1 Jtdit ,jt [1− (

dit ,jt

t
)2]21{�dit ,jt�<t}

𝓁 t(x) =

{
t2

6
if |x| ≥t

t2

6
(1− [1− (x∕ t)2]3) o.w.

∇L (C) = −
∑ n

i=1
∑ q

j=1 Zij dij [1− (dij

t
)2]21{�dij�<t}

2731Machine Learning (2023) 112:2723–2760

1 3

function with arbitrary precision where simple smoothing techniques are applicable. Upon
applying the same stepsizes as discussed above, we can show that the algorithm converges
to a stationary point at the same rate; see the analysis of a recent work of Reddi et al.
(2016).

Recently, Charisopoulos et al. (2021) studied the low-rank matrix recovery algorithms
with the non-convex rank constraint and non-smooth loss functions. They established opti-
mization convergence rates for a prox-linear method and a subgradient method for matrix
completion. They proved that with a sufficient number of observations and an appropri-
ate initialization, both methods are guaranteed to converge to the truth. The prox-linear
method possesses a much faster convergence rate of O(1∕(2k)) but with a higher computa-
tional cost at each iteration in solving a convex subproblem. While the subgradient method
has a lower cost at each iteration with a subgradient evaluation step and a project step onto
the desired region, it has a slower rate. Compared with their algorithms, our method has a
lower computational burden in each iteration with no projection required and a relatively
slower convergence rate. It is worth studying minimizing a robust loss function directly
with the non-convex constraint in the future.

3.2 Statistical properties

We investigate the non-asymptotic error bounds in this section. We first introduce two con-
ditions for both matrix completion and reduced-rank regression models.

Assumption 1 The truth M∗ and C∗ has rank at most r, 0 < r < min(p,q).

Assumption 2 The noises 𝜉 ’s are i.i.d. with zero mean and a distribution function F𝜉
satisfying

for any |m| ≤ 𝜂 and 𝜂 >0 , where c1 = c1(𝜂) is a constant depending only on 𝜂.
Assumption 2 is key on the distribution of the noises.
It is very mild by only requiring non-vanishing probability mass of 𝜉 between m− 𝜂 and

m+ 𝜂 for a positive 𝜂 and |m| ≤ 𝜂 , avoiding assuming instead explicit conditions on its tail
probability and/or existence of its moments up to some order.

Since the condition holds for 𝜂 >0 as long as the probability mass of 𝜉 near 0 is not too
small, it is easily satisfied by a wide range of distributions including heavy-tailed ones; see
more discussion about this assumption and examples in Appendix 1.

3.2.1 Matrix completion

For any matrix A and some linear subspace M of ℝp×q , we define AM as the projection of A
onto M . We consider without loss of generality that p > q > 1 . Recall that Jt (t = 1,… , n)
is a p×q random matrix, independent of Xit ,jt and 𝜉t , with one randomly chosen entry Jt,it jt
being 1 and the others 0. Mit,jt can be written as

F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) ≥1
c2

1

,

2732 Machine Learning (2023) 112:2723–2760

1 3

for all (it, jt) ∈ 𝛺 . As a working model, we treat Jt as uniformly distributed over its sup-
port. That is, the probability of Mit ,jt being the t-th observation is (pq)−1 . This assumes that
the observed entries in the target matrix are uniformly sampled at random (Koltchinskii
et al., 2011; Rohde & Tsybakov, 2011; Elsener & van de Geer, 2018), and we refer to
Klopp (2014) for more discussions. Recht (2011) analyzed the matrix completion model
under this assumption. As pointed out in Recht (2011), this is a sampling with replacement
scheme and therefore may appear less realistic as it may result in duplicated entries; how-
ever, it has the benefit of simplifying the technical proof and assumptions. Overall, it is a
reasonable and informative showcase without requiring any prior information on the sam-
pling scheme. If additional information is available in the sampling process, other models
such as the weighted sampling model (Negahban & Wainwright, 2012) can be applied.

We first show that the estimator belongs to a restricted set. We consider the singular
value decomposition

where U is a p×q matrix, 𝛬 is a q×q diagonal matrix with diagonal entries the ordered
singular values 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎q , and V is a q×q matrix. For k = 1, 2,… , q , let uk be
the k-th column of U, and vk the k-th column of V. For any positive integer r ≤min{p,q} ,
let Ur be the subspace of ℝp×q spanned by u1,… , ur , and Vr be the subspace spanned by
v1,… , vr . Define a pair of subspace of ℝp×q as

where row(M) and col(M) denote the row and column space of M. For simplicity notation,
we use M r =M r (U, V) and M

⟂

r =M
⟂

r (U, V) . Lemma 1 indicates that the estimator M̂
belongs to the set

To establish the error bounds, we need the following technical assumption.

Assumption 3 For any M ∈ M 0 , there exists a real number L > 1 , such that

Assumptions of this type—referred to as the ‘spikiness condition’—are assumed in exist-
ing literature on analogous problems, e.g., in Negahban and Wainwright (2012) for matrix
completion problems; see also a recent work Fan et al. (2021). Intuitively, this assumption
requires that for M ∈ M 0 , the entries of M −M∗ are not overly ‘spiky’, or in other words, rel-
atively evenly distributed; so that the maximum discrepancy is not extremely far away from
the averaged discrepancy. We remark that here the term 1

√
pq

 relates to the aforementioned uni-
form sampling scheme setting, under which each entry is observed with the probability 1

pq
 .

Mit ,jt = tr(J⊤t M) =
p∑

i=1

q∑

j=1
Jt,ijMij ,

M∗=U𝛬V⊤,

M r (U, V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

M
⟂

r (U, V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } ,

M 0 = {M ∈ ℝp×q ∶ ||𝛥
M

⟂
r

||∗≤ 3||𝛥M r
||∗+ 4

q∑

k=r+1
𝜎k, 𝛥 =M −M∗} .

‖M −M∗‖max ≤
L

√
pq

‖M −M∗‖F.

2733Machine Learning (2023) 112:2723–2760

1 3

Hence, it reflects an increasingly more difficult high-dimensional problem due to sparse
entries in a single copy of large matrix. Instead, if the probability of each entry being observed
is a constant independent of p, q, this assumption is not required.

We consider the Lagrangian form of the problem (1):

where 𝛾 >0 is the corresponding regularization tuning parameter. Let 𝛥̂ =M̂ −M∗ and 𝛥 =M −M∗ . Theorem 1 establishes a non-asymptotic upper bound for the error for esti-
mating a M∗ of low rank.

Theorem 1 For problem (7), suppose that Assumption 1, 2, and 3 hold and the noises 𝜉t ’s
are distributed symmetrically about zero. Let M̂ be the solution to problem (7) with

with a constant c0 > 0 . When n > C(L) ⋅c2
1pr log(p+ q) log(q+ 1),

with probability at least 1−3(p+ q)−1 , for some constants C1 , c2 and c3 independent of n,
p, and q, and C(L) a constant only depending on L.

Theorem 1 is non-asymptotic; 𝛾 is chosen based on Lemma 7 in Appendix 2 as twice the
upper bound of 𝜎1(∇L 𝜂(M∗)) . In Theorem 1, we only require the error terms satisfy Assump-

tion 2, which is F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) >1
c2

1
 , for 𝜂 >0 being the parameter in the Huber loss

(2) and |m| < 𝜂 . Since this assumption is easily satisfied by many heavy-tailed distributions,
this result demonstrates the robustness of our method.

We note that in general 𝛾 can be

for any constant K1 ≥ 1 . Under the conditions in Theorem 1, we can also derive the upper
bounds of the estimation error in nuclear norm based on (23) in the Appendix:

We may discuss the asymptotic properties of M̂ when n → ∞ . Matrix completion is a hard
problem attempting to recover a matrix-valued model parameter with a single incomplete
copy from the data generating process. The average estimation error converges to zero in
probability as n → ∞ . That is, when rp log(p+ q) log(q+ 1) =o(n) , (pq)−1‖𝛥̂‖2

F → 0 .

(7)M̂ = argmin
M∈ℝp×q

{L 𝜂(M) + 𝛾‖M‖∗} ,

𝛾 =2𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2 log(p+ q)

npq
+

8 log(p+ q)
3n

⎫
⎪
⎬
⎪
⎭

,

1
√

pq
‖𝛥̂‖F ≤C1c2

1𝜂� p log(p+ q) log(q+ 1)
n

�√
2rc2 + c3

�
,

K1 ⋅2𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2 log(p+ q)

npq
+

8 log(p+ q)
3n

⎫
⎪
⎬
⎪
⎭

,

1
√

pq
‖𝛥̂‖∗≤ 4C1c2

1𝜂√ 2r

�
p log(p+ q) log(q+ 1)

n

�√
2rc2 + c3

�
.

2734 Machine Learning (2023) 112:2723–2760

1 3

Intuitively, if the rank of M∗ is r, then the number of free parameters is at the order of rp.
Hence it’s reasonable to require a sample size at least of some larger order of rp, so as to
recover the model parameters consistently.

Without requiring the Gaussian assumption, our error rate is still comparable to the
statistical optimum established by Koltchinskii et al. (2011) for matrix completion prob-
lems under a low-rank constraint with Gaussian noises. Compared with the rate in the
lower bound given in Theorem 6 of Koltchinskii et al. (2011), our upper bound in Theo-
rem 1 differs only in an additional logarithm term

√
log(p+ q) log(q+ 1) and the 𝜂 in the

Huber loss.
The assumption in Theorem 1 that the model error is symmetrically distributed around

0 is needed in obtaining the upper bound of 𝜎1(∇L (M∗)) ; see the proof of Lemma 7. It
assures that 𝜎1(𝔼[∇L (M∗)]) =0 . Similar assumptions are also found in Loh (2017).
Thanks to the symmetrization assumption, the convergence can be established with no
strong extra requirement on 𝜂 . Without the symmetrization, as shown in Lemma 7 in the
Supplement Material, other conditions are required to control

so that

is stochastically small enough. With this extra term, the upper bound in Theorem 1
becomes

The extra term in (8) may then be viewed as a price paid to achieve robustness against
noises with heavy-tailed distributions. This is an impact from applying the robust Huber
loss. It is a remarkable different feature from the study on matrix completion with 𝓁 2-loss.
Nevertheless, it is worth noting that for 𝓁 2-loss related studies, conditions are commonly
assumed to control the tail probability behavior of the model errors, for example, by the
sub-Gaussian distributions. In contrast, our development does not require such assumptions
on the tail probability properties, which is the gain in return by applying the Huber loss.

3.2.2 Reduced‑rank regression

The problem (5) is also expressed in the Lagrangian form:

𝔼[𝜕 l𝜂(Xij −M∗
ij)

𝜕 M∗
ij

] =∫

M∗
ij+𝜂

M∗
ij−𝜂 F(Xij)dXij − 𝜂,

𝜎1(𝔼[∇L (M∗)]) = 𝜎1(1
2n

n∑

t=1

p∑

i=1

q∑

j=1
𝔼[JtJt,ij]𝔼[𝜕 l𝜂(Xij −M∗

ij
)

𝜕 M∗
ij

]

)

= 1
2pq

𝜎1(

[𝔼[𝜕 l𝜂(Xij −M∗
ij)

𝜕 M∗
ij

]

]

p×q

)

(8)

1
√

pq
‖𝛥̂‖F ≤

Constant⋅c2
1

√
2r

√
pq

𝜎1

⎛
⎜
⎜
⎝

�𝔼[𝜕 l𝜂(Xij −M∗
ij)

𝜕 M∗
ij

]

�

p×q

⎞
⎟
⎟
⎠

+ C1c2
1𝜂� p log(p+ q) log(q+ 1)

n

�√
2rc2 + c3

�
.

2735Machine Learning (2023) 112:2723–2760

1 3

where 𝛾 >0 is a regularization parameter, and L 𝜂(C) is defined in Equation (5).
Again, we point out that the estimator belongs to a restricted set. By applying the

singular value decomposition to C∗ , we have

where 𝛬 =diag(𝜎1,… ,𝜎q) is the diagonal matrix containing all singular values of C∗ . For
r ≤min{p,q} , we define a pair of subspace of ℝp×q as

where Ur is a subspace spanned by the first r columns of U, and Vr is the subspace spanned
by the first r columns of V. For simplicity in notations, we denote by Cr =Cr (U, V) and
C
⟂

r =C
⟂

r (U, V) . Note that Cr and Cr are not equal. Lemma 4 indicates that the estimator Ĉ
belongs to the set

We assume the following conditions on the random design matrix X.

Assumption 4 x1, x2,… , xn are i.i.d. random vectors sampling from a multivariate normal
distribution N(0,𝛴) and without loss of generality, are standardized such that ‖xi‖F ≤ 1 . 𝜎1(Σ) ≥ 𝜎n(Σ) > 0 , where 𝜎1(Σ) and 𝜎n(Σ) denote the largest and smallest eigenvalues of Σ ,
respectively.

The multivariate normal distribution and its analogies are commonly assumed in the
literature (e.g., Negahban & Wainwright, 2011; Sun et al., 2020; Fan et al., 2021). The
setting with Assumption 4 facilitates achieving

the optimal convergence rate; other types of conditions are possible, at the expense of
a slower convergence rate.

Theorem 2 establishes a non-asymptotic upper bound for ‖𝛥̂‖F.

Theorem 2 For problem (9), suppose that Assumption 1 and 2 hold and the noises 𝜉ij ’s are
distributed symmetrically about zero. Suppose X satisfies Assumption 4. Let Ĉ be the solu-
tion to the optimization problem (9) with

Then for n > C2
𝜎1(Σ)𝜎n(Σ)

c2
1r(p+ q) with probability at least 1−3e−(p+q),

where C2 and C3 are constants.

(9)Ĉ = argmin
C∈ℝp×q

{L 𝜂(C) + 𝛾‖C‖∗} ,

C∗=U𝛬V⊤,

Cr (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

C
⟂

r (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } ,

C0 =

�

C ∈ ℝp×q ∶ ‖𝛥
C
⟂
r

‖∗≤ 3‖𝛥Cr
‖∗+ 4

q�

k=r+1
𝜎k,𝛥 =C−C∗

�

.

(10)𝛾 =8𝜂𝜎1(Σ)
�√

6n(p+ q) +3(p+ q)
�

.

‖𝛥̂‖F ≤C3c2
1

√
2r𝜂𝜎1(Σ)𝜎n(Σ)

��
6(p+ q)

n
+

3(p+ q)
n

�

,

2736 Machine Learning (2023) 112:2723–2760

1 3

The value for 𝛾 is selected based on Lemma 8 in Appendix 3 as twice the upper bound
for 𝜎1(∇L 𝜂(C∗)) according to condition (10). Generally, for any K2 ≥ 1 and

our result remains valid and only differs in constant terms.
Under the same condition, we can establish the error bound in terms of the nuclear norm

When r(p+ q) =o(n) , the Frobenius norm of the error ‖𝛥̂‖2
F → 0 in probability. Similarly,

the robustness of the method is seen as only a mild distributional Assumption 2 is required:
F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) >1

c2
1
 for |m| < 𝜂 and 𝜂 >0 . Our estimator achieves a comparable

convergence rate as that in Negahban and Wainwright (2011) and Rohde and Tsybakov
(2011), with the notable difference due to the 𝜂 in the Huber loss. Meanwhile, our method
does not require the errors to follow normal distributions, which is the case in those studies
with the 𝓁 2 loss. Here assuming symmetricity plays the same role as that in Theorem 1.
Based on the same discussions after Theorem 1, if the noises are not symmetrically distrib-
uted, then there will be an extra term in the upper bound.

4 Numerical examples

In this section, we conduct an extensive numerical investigation of the proposed method
using both simulated and real data sets. In all cases, we choose the tuning parameters by
ten-fold cross-validation. Specifically, for matrix completion problems, we first randomly
select 90% of the observed entries as training samples and test the results using the remain-
ing 10% samples. We repeat the procedure 10 times and choose the best tuning parameter.
With extensive studies on simulated and real data sets, our results provide strong empirical
evidence that the proposed method provides robustness under different settings.

4.1 Jester joke data

We first test our method using the Jester joke data set. This data set contains more than 4.1
million ratings for 100 jokes from 73,421 users. This data set is publicly available through
http:// www. ieor. berke ley. edu/ ~goldb erg/ jester- data/. The whole data set contains three
sub-datasets, which are: (1) jester-1: 24,983 users who rate 36 or more jokes; (2) jester-2:
23,500 users who rate 36 or more jokes; (3) jester-3: 24,938 users who rate between 15 and
35 jokes. More detailed descriptions can be found in Toh and Yun (2010) and Chen et al.
(2012), where the authors consider the nuclear-norm based approach to conduct matrix
completion.

Due to the large number of users, we randomly select nu users’ ratings from the datasets.
Since many entries are unknown, we cannot compute the relative error using every entry.
Instead, we take the metric of the normalized mean absolute error (NMAE) to measure the
accuracy of the estimator M̂:

𝛾 =K2 ⋅8𝜂𝜎1

�
Σ)(

√
6n(p+ q) +3(p+ q)

�
,

‖𝛥‖∗≤ 8C3c2
1r𝜂𝜎1(Σ)𝜎n(Σ)

��
6(p+ q)

n
+

3(p+ q)
n

�

.

2737Machine Learning (2023) 112:2723–2760

1 3

where rmin and rmax denote the lower and upper bounds for the ratings, respectively. In the
Jester joke data set, the range is [−10, 10] . Thus, we have rmax− rmin = 20.

In each iteration, we first randomly select nu users, and then randomly permute the
ratings from the users to generate M0 ∈ ℝnu×100 . Next, we uniformly sample SR for
SR∈ {15%, 20%, 0.25%} entries to generate a set of observed indices 𝛺 . Note that we can
only observe the entry (j, k) if (j,k) ∈ 𝛺 , and M0

j,k is available. Thus, the actual sampling
ratio is less than the input SR. We consider different settings of nu and SR, and we report
the averaged NMAE and running times in Table 2 after running each setting 100 times. We
compare robust methods with 𝓁 1 loss, Huber loss, and Tukey loss with the non-robust 𝓁 2
loss. From Table 2, we see that robust matrix completion methods work promisingly.

4.2 Cameraman image denoising

We test our method using the popular Cameraman image, which is widely used in image
processing literature. We consider the “Cameraman" image with 512×512 pixels as shown
in Fig. 1a. We then generate random noise by first adding independent Gaussian noise to
each pixel with a standard deviation set as 3. Then, we add some heavy-tailed noises by
randomly choosing 10% pixels and replace the coefficient as 1000 or −1000 . Furthermore,
we randomly select 40% or 60% pixels as missing entries. We provide two typical simu-
lated noisy images in the above of Fig. 1b, c, and provide the recovered images using
the Tukey approach below them. The recovered images provide visual evidence that our
method is robust to heavy-tailed noises in practice. In addition, in Table 3, we provide
the averaged NMAE with standard deviations of different approaches after repeating the
data generating schemes 100 times. For the effective picture recovery and the NMAE, we

NMAE =

∑
(j,k)∈𝛺 �̂Mjk −M0

jk�

�𝛺�(rmax− rmin)
,

Fig. 1 a We test our method on the 512×512 Cameraman image. b A sample noisy image with heavy-
tailed noises and 40% missing entries. c A sample noisy image with heavy-tailed noises and 60% missing
entries

2738 Machine Learning (2023) 112:2723–2760

1 3

conclude that robust matrix completion has promising performance with partial and noisy
observations.

Table 2 Averaged normalized mean absolute error with standard deviations in the parentheses for different
methods using Jester joke data set under different data generating schemes after 100 runs

Example (nu, SR) Huber Tukey 𝓁 2 𝓁 1

jester-1 (1000, 0.15) 0.155(0.006) 0.154(0.007) 0.173(0.009) 0.168(0.006)
(1000, 0.20) 0.152(0.005) 0.150(0.006) 0.171(0.009) 0.165(0.006)
(1000, 0.25) 0.145(0.005) 0.143(0.006) 0.168(0.008) 0.153(0.004)
(1500, 0.15) 0.159(0.006) 0.155(0.006) 0.177(0.007) 0.169(0.009)
(1500, 0.20) 0.154(0.006) 0.152(0.006) 0.174(0.007) 0.166(0.008)
(1500, 0.25) 0.151(0.006) 0.150(0.007) 0.173(0.006) 0.162(0.008)
(2000, 0.15) 0.160(0.006) 0.159(0.006) 0.180(0.006) 0.169(0.006)
(2000, 0.20) 0.158(0.007) 0.156(0.006) 0.178(0.006) 0.164(0.007)
(2000, 0.25) 0.155(0.005) 0.154(0.006) 0.175(0.006) 0.161(0.006)

jester-2 (1000, 0.15) 0.163(0.007) 0.161(0.008) 0.176(0.007) 0.169(0.008)
(1000, 0.20) 0.160(0.007) 0.159(0.008) 0.172(0.007) 0.167(0.008)
(1000, 0.25) 0.158(0.006) 0.155(0.007) 0.170(0.008) 0.166(0.007)
(1500, 0.15) 0.166(0.007) 0.164(0.008) 0.178(0.008) 0.171(0.007)
(1500, 0.20) 0.164(0.006) 0.161(0.007) 0.176(0.007) 0.168(0.007)
(1500, 0.25) 0.161(0.007) 0.160(0.007) 0.173(0.007) 0.164(0.008)
(2000, 0.15) 0.170(0.006) 0.168(0.008) 0.180(0.007) 0.173(0.007)
(2000, 0.20) 0.166(0.007) 0.165(0.008) 0.177(0.007) 0.171(0.008)
(2000, 0.25) 0.163(0.006) 0.163(0.008) 0.175(0.008) 0.169(0.007)

jester-3 (1000, 0.15) 0.175(0.008) 0.173(0.008) 0.184(0.008) 0.179(0.008)
(1000, 0.20) 0.173(0.008) 0.171(0.008) 0.181(0.007) 0.177(0.008)
(1000, 0.25) 0.170(0.008) 0.168(0.009) 0.179(0.008) 0.176(0.008)
(1500, 0.15) 0.177(0.008) 0.176(0.008) 0.187(0.008) 0.181(0.008)
(1500, 0.20) 0.174(0.007) 0.174(0.008) 0.185(0.009) 0.178(0.009)
(1500, 0.25) 0.173(0.008) 0.172(0.008) 0.184(0.008) 0.176(0.008)
(2000, 0.15) 0.179(0.008) 0.178(0.008) 0.188(0.008) 0.182(0.008)
(2000, 0.20) 0.177(0.009) 0.175(0.008) 0.187(0.009) 0.180(0.008)
(2000, 0.25) 0.174(0.008) 0.172(0.008) 0.185(0.008) 0.177(0.007)

Table 3 Averaged normalized mean absolute error with standard deviations in the parentheses for different
methods using Lena image after 100 runs

Missing rate Huber Tukey 𝓁 2 𝓁 1

40% 0.067(0.004) 0.062(0.005) 0.083(0.008) 0.079(0.006)
50% 0.071(0.005) 0.065(0.006) 0.089(0.011) 0.084(0.007)
60% 0.074(0.005) 0.069(0.007) 0.092(0.015) 0.088(0.007)

2739Machine Learning (2023) 112:2723–2760

1 3

4.3 Simulations

We first consider several similar simulation settings as described in She and Chen (2017)
to compare our method with their robust reduced-rank regression (R4) method. In all cases,
we focus on testing the robustness by artificially introducing data corruption and outliers.

Setting 1: We first consider a low-dimensional case where we set n = 100 , p = 12 ,
q = 8 and r = 3 or 5. We construct the design matrix X by generating its n rows by inde-
pendently sampling from N(0,Σ0) , where we consider highly correlated covariates by let-
ting the diagonal elements of Σ0 be 1’s and setting its off-diagonal elements as 0.5. For the
noise matrix 𝛯 , we sample each row of 𝛯 independently from N(0,𝜎2Σ1) , where Σ1 is the
q-dimensional identity matrix, and 𝜎 is set as 1. Next, we construct the coefficient matrix
C∗ . We generate C∗=B1B⊤

2 , where B1 ∈ ℝp×r , B2 ∈ ℝq×r , and all entries of B1 and B2 are
independently sampled from N(0, 1). We then add outliers with a matrix U∗ by setting the
first o% ⋅n rows of U∗ as nonzero, where o ∈ {30, 35,… , 50} is the proportion of outliers,
and the j-th entry of any outlier row of U∗ is the product of a Randemacher random variable
and a scalar 𝛼 ∈ {0.75, 1} times the sample standard deviation of the j-th column of XC∗ .
Finally, we set the response matrix Y =XC∗+ U∗+ 𝛯 . We report the mean and standard
deviation of the mean squared error (MSE) from 200 runs, where

In addition, we also report the mean and standard deviation of the mean squared estimation
error, where

Setting 2: We then test our method on heavy-tailed noise. Same as Setting 1, we let
n = 100 , p = 12 , q = 8 , and r = 2, 3 , or 4, and consider the same generating scheme to
construct the design matrix X, and then generate the noise matrix by the heavy-tailed t-dis-
tribution with a degree of freedom 3 or 5. Furthermore, we add outliers by the same gener-
ating scheme as in Setting 1 to generate U∗ and letting 𝛼 =0.5, 0.75 or 1.

Setting 3: We consider a high-dimensional setting where n = 100 , p = 50 and q = 50 ,
and r = 3 or 5, where there are 2, 500> 100 parameters in the matrix C to be estimated.
We consider the same data generating scheme as in Setting 1.

Setting 4: Finally, we consider an ultrahigh-dimensional setting where n = 300 ,
p = 100 and q = 400 , and r = 3 or 5, where there are 40, 000≫300 parameters to be esti-
mated. We consider the same data generating scheme as in Setting 1.

The results are shown in Tables 4, 5, 6, and 7. We compare our method incorporating
Huber and Tukey loss functions with the R4 method when it is applicable. We note that
for high-dimensional Settings 3 and 4, the R4 method of She and Chen (2017) cannot be
applied here because one of the iterations in their algorithm is not defined. We compare
our method with another robust method where we use the 𝓁 1 loss in place of the Huber loss
in the objective with the nuclear norm constraint (Denoted as 𝓁 1). In all four settings, both
Huber loss and Tukey loss achieve very promising performance, and Tukey loss slightly
outperforms Huber loss in settings with outliers.

MSE(XĈ) = ‖XC∗−XĈ‖2
F ∕(qn).

MSE(Ĉ) = ‖̂C−C∗‖2
F ∕(qp).

2740 Machine Learning (2023) 112:2723–2760

1 3

5 Intermediate theoretical results

Our estimators (1) and (5) are penalized M-estimators. We exploit the framework of
Negahban et al. (2012) in studying their statistical properties. Negahban et al. (2012) elab-
orates the notion of decomposability associated with some penalty function, which is a
key property for establishing the restricted strong convexity (RSC) property and the error
bounds of the penalized estimators.

For self-completeness, we outline the decomposability of penalizing with the nuclear
norm, and then derive the restricted strong convexity property for both models under the
Huber loss function.

5.1 Decomposability of nuclear norm

A norm ‖ ⋅ ‖ is decomposable with respect to a pair of subspace if for all A ∈ M and
B ∈ M

⟂
 with (M,M

⟂
) a pair of subspace of ℝp×q satisfy

To illustrate the decomposability of nuclear norm, recall

‖A+ B‖ = ‖A‖ + ‖B‖.

Table 4 Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 1 under different settings with sample stand-
ard deviation in parentheses after 200 runs

r 𝛼 o% MSE(XĈ) MSE(Ĉ)

Huber Tukey R4 Huber Tukey R4

3 0.75 30% 0.71(0.28) 0.56(0.31) 0.95(0.75) 0.12(0.05) 0.09(0.06) 0.23(0.12)
35% 0.82(0.44) 0.63(0.38) 1.23(1.09) 0.13(0.07) 0.09(0.06) 0.25(0.17)
40% 0.96(0.49) 0.83(0.58) 1.46(1.26) 0.16(0.08) 0.13(0.08) 0.28(0.20)
45% 1.11(0.97) 0.97(0.89) 1.57(1.24) 0.18(0.09) 0.15(0.09) 0.30(0.21)
50% 1.23(1.01) 1.03(0.95) 1.69(1.31) 0.19(0.11) 0.16(0.10) 0.33(0.23)

1.00 30% 1.02(0.42) 0.89(0.48) 1.93(1.88) 0.12(0.07) 0.10(0.11) 0.25(0.37)
35% 1.12(0.46) 0.96(0.51) 2.06(2.01) 0.18(0.08) 0.14(0.12) 0.34(0.34)
40% 1.34(0.64) 1.20(0.52) 2.59(2.12) 0.22(0.10) 0.20(0.14) 0.42(0.35)
45% 1.65(0.77) 1.39(0.85) 2.88(2.35) 0.27(0.12) 0.24(0.15) 0.48(0.40)
50% 1.83(0.84) 1.60(1.05) 3.28(2.76) 0.29(0.13) 0.25(0.18) 0.53(0.45)

5 0.75 30% 0.78(0.34) 0.64(0.44) 1.35(1.03) 0.13(0.05) 0.10(0.07) 0.26(0.15)
35% 0.87(0.42) 0.72(0.48) 1.78(1.15) 0.14(0.08) 0.11(0.08) 0.29(0.21)
40% 0.94(0.67) 0.88(0.58) 1.63(1.32) 0.17(0.08) 0.14(0.09) 0.31(0.23)
45% 1.15(0.82) 0.92(0.95) 1.85(1.49) 0.19(0.10) 0.16(0.10) 0.34(0.26)
50% 1.32(1.13) 1.20(1.06) 2.04(1.63) 0.21(0.13) 0.19(0.11) 0.39(0.31)

1.00 30% 0.71(0.62) 0.65(0.44) 2.02(1.95) 0.13(0.08) 0.10(0.12) 0.31(0.34)
35% 1.19(0.54) 0.99(0.63) 2.13(2.15) 0.19(0.09) 0.17(0.13) 0.39(0.39)
40% 1.45(0.71) 1.15(0.75) 2.64(2.27) 0.23(0.11) 0.23(0.15) 0.45(0.48)
45% 1.77(0.84) 1.44(0.93) 3.06(2.48) 0.28(0.14) 0.26(0.16) 0.53(0.55)
50% 1.90(0.95) 1.61(1.03) 3.31(2.78) 0.31(0.15) 0.28(0.19) 0.61(0.68)

2741Machine Learning (2023) 112:2723–2760

1 3

Note that M r ≠M r . Since U and V both have orthogonal columns, nuclear norm is
decomposable with respect to the pair (M r , M

⟂

r) . Note that if the rank of M∗ is equal or
smaller than r, then Ur and Vr equal to or contain the column and row space of M∗ respec-
tively, and M∗∈ M r (U, V).

We present key intermediate results as lemmas below. The proofs of the lemmas are
given in the Appendix.

5.2 Results for matrix completion

The decomposability leads to the first lemma, which is a special case of Lemma 1 in
Negahban et al. (2012). It provides an upper bound for ‖𝛥̂

M
⟂
r

‖∗.

Lemma 1 For any 𝛾 satisfying

the error 𝛥̂ satisfies

M r (U,V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

M
⟂

r (U,V) = {∶ M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } .

𝛾 ≥2𝜎1(∇L 𝜂(M∗)),

Table 5 Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 2 under different settings with sample stand-
ard deviation in parentheses after 200 runs

d.o.f. 𝛼 r MSE(XĈ) MSE(Ĉ)

Huber Tukey R4 Huber Tukey R4

3 0.50 2 0.90(0.45) 0.70(0.42) 1.02(1.11) 0.14(0.08) 0.11(0.07) 0.20(0.14)
3 0.72(0.30) 0.52(0.28) 0.88(0.36) 0.12(0.05) 0.09(0.04) 0.15(0.17)
4 0.98(0.88) 0.65(0.81) 1.24(1.03) 0.17(0.14) 0.12(0.13) 0.39(0.28)

0.75 2 0.59(0.27) 0.40(0.23) 0.64(0.33) 0.10(0.05) 0.06(0.04) 0.30(0.21)
3 0.46(0.24) 0.23(0.14) 0.45(0.17) 0.08(0.04) 0.04(0.02) 0.12(0.09)
4 1.01(1.15) 0.66(1.06) 1.32(1.03) 0.18(0.19) 0.12(0.18) 0.19(0.12)

1.00 2 0.36(0.20) 0.20(0.12) 0.46(0.26) 0.06(0.03) 0.03(0.02) 0.08(0.03)
3 0.36(0.17) 0.15(0.09) 0.49(0.31) 0.07(0.03) 0.03(0.02) 0.09(0.04)
4 0.84(0.60) 0.50(0.58) 0.93(0.73) 0.15(0.11) 0.10(0.11) 0.20(0.05)

5 0.50 2 0.91(0.48) 0.74(0.45) 1.02(1.11) 0.14(0.08) 0.11(0.07) 0.15(0.06)
3 0.69(0.36) 0.51(0.36) 1.32(0.48) 0.12(0.06) 0.08(0.06) 0.16(0.04)
4 0.95(0.85) 0.76(0.91) 1.42(0.58) 0.17(0.15) 0.14(0.16) 0.19(0.09)

0.75 2 0.51(0.26) 0.36(0.20) 0.49(0.30) 0.08(0.05) 0.06(0.03) 0.08(0.06)
3 0.44(0.19) 0.21(0.12) 0.66(0.22) 0.08(0.04) 0.04(0.02) 0.13(0.06)
4 0.68(0.62) 0.63(0.67) 0.71(1.03) 0.18(0.29) 0.12(0.28) 0.23(0.14)

1.00 2 0.37(0.21) 0.21(0.16) 0.29(0.22) 0.06(0.04) 0.03(0.03) 0.06(0.03)
3 0.39(0.16) 0.13(0.08) 0.45(0.31) 0.07(0.03) 0.02(0.01) 0.09(0.04)
4 0.42(0.39) 0.38(0.34) 0.92(0.73) 0.17(0.15) 0.12(0.16) 0.20(0.05)

2742 Machine Learning (2023) 112:2723–2760

1 3

Lemma 1 indicates that the estimator M̂ belongs to the set

Note that if the rank of M∗ is no greater than r, then
∑ q

k=r+1 𝜎k = 0 and the projection of

the error on M
⟂

r is solely controlled by the projection of error on M r , so as the error itself,
since

Now, consider the quantity

For simplicity, we sometimes refer to 𝛿L 𝜂(M, M∗) as 𝛿L 𝜂 . The next Lemma gives a lower
bound of 𝛿L 𝜂(M, M∗) , which is used to establish restricted strong convexity (RSC) and the

‖𝛥̂
M

⟂
r

‖∗≤ 3‖𝛥̂M r
‖∗+ 4

q�

k=r+1
𝜎k.

M 0 = {M ∈ ℝp×q ∶ ||𝛥
M

⟂
r

||∗≤ 3||𝛥M r
||∗+ 4

q∑

k=r+1
𝜎k, 𝛥 =M −M∗} .

‖𝛥̂‖∗≤ ‖𝛥̂
M

⟂
r

‖∗+ ‖𝛥̂M r
‖∗≤ 4‖𝛥̂M r

‖∗.

𝛿L 𝜂(M, M∗) =L 𝜂(M) −L 𝜂(M∗) − ⟨∇L 𝜂(M∗),𝛥⟩.

Table 6 Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 3 under different settings with sample stand-
ard deviation in parentheses after 200 runs

r 𝛼 o% MSE(XĈ) MSE(Ĉ)

Huber Tukey 𝓁 1 Huber Tukey 𝓁 1

3 0.75 30% 1.23(1.19) 1.07(1.08) 1.43(1.02) 0.02(0.02) 0.02(0.02) 0.04(0.02)
35% 1.44(1.64) 1.28(1.19) 1.65(1.10) 0.03(0.03) 0.02(0.03) 0.05(0.03)
40% 1.65(1.25) 1.38(1.98) 1.99(1.19) 0.03(0.04) 0.03(0.03) 0.06(0.03)
45% 1.72(1.33) 1.54(1.41) 2.44(1.34) 0.03(0.04) 0.03(0.03) 0.08(0.04)
50% 1.83(1.46) 1.61(1.52) 2.07(1.51) 0.04(0.05) 0.03(0.04) 0.08(0.05)

1.00 30% 1.34(1.89) 1.15(1.63) 1.51(0.88) 0.03(0.02) 0.02(0.02) 0.03(0.04)
35% 1.45(1.84) 1.27(1.53) 1.64(0.94) 0.03(0.03) 0.02(0.03) 0.04(0.02)
40% 1.52(1.80) 1.38(1.44) 1.82(1.05) 0.03(0.04) 0.03(0.03) 0.04(0.03)
45% 1.63(1.95) 1.46(1.67) 2.03(1.12) 0.04(0.04) 0.03(0.04) 0.05(0.03)
50% 1.75(2.03) 1.53(1.71) 2.19(1.40) 0.04(0.04) 0.03(0.04) 0.08(0.07)

5 0.75 30% 1.31(1.22) 1.12(1.05) 1.46(1.10) 0.02(0.03) 0.02(0.03) 0.04(0.03)
35% 1.50(1.72) 1.31(1.25) 1.73(1.16) 0.03(0.04) 0.02(0.03) 0.05(0.05)
40% 1.73(1.36) 1.44(2.05) 2.03(1.31) 0.03(0.05) 0.03(0.04) 0.07(0.06)
45% 1.81(1.41) 1.63(1.49) 2.58(1.42) 0.04(0.05) 0.03(0.05) 0.09(0.05)
50% 1.90(1.55) 1.72(1.63) 2.19(1.59) 0.04(0.06) 0.04(0.04) 0.11(0.06)

1.00 30% 1.39(1.74) 1.23(1.85) 1.67(0.95) 0.03(0.04) 0.03(0.03) 0.05(0.06)
35% 1.55(1.92) 1.35(1.53) 1.79(1.09) 0.03(0.05) 0.03(0.03) 0.06(0.05)
40% 1.67(1.79) 1.40(1.61) 1.96(1.21) 0.04(0.04) 0.04(0.04) 0.06(0.04)
45% 1.74(1.85) 1.58(1.52) 2.14(1.37) 0.05(0.05) 0.04(0.05) 0.07(0.05)
50% 1.89(1.93) 1.63(1.66) 2.25(1.19) 0.06(0.05) 0.05(0.05) 0.10(0.06)

2743Machine Learning (2023) 112:2723–2760

1 3

upper bound for the error. The key to proving this lemma includes Lemma 1 and the appli-
cation of empirical process techniques.

Lemma 2 (Lower bound of 𝛿L 𝜂(M,M∗)) Suppose Assumption 1 and 2 hold, and that the
regularization parameter in optimization problem (7) satisfies

Then for any x > 0 and M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0,

with probability at least 1−e−x.

By controlling the negative term, we have the restricted strong convexity property.

𝛾 ≥2𝜎1(∇L 𝜂(M∗)).

𝛿L 𝜂(M, M∗) ≥ 1
4c2

1pq
‖𝛥‖2

F

− {32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p + q)

nq
+
√

log(q+ 1)
log(p + q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

}‖𝛥‖F,

Table 7 Sample average of MSE(XĈ) and MSE(Ĉ) for Setting 4 under different settings with sample stand-
ard deviation in parentheses after 200 runs

r 𝛼 o% MSE(XĈ) MSE(Ĉ)

Huber Tukey 𝓁 1 Huber Tukey 𝓁 1

3 0.75 30% 1.32(1.22) 1.23(1.13) 1.52(1.23) 0.04(0.03) 0.04(0.03) 0.06(0.03)
35% 1.57(1.52) 1.35(1.25) 1.81(1.34) 0.05(0.04) 0.04(0.03) 0.07(0.04)
40% 1.65(1.46) 1.53(1.39) 2.03(1.51) 0.05(0.05) 0.04(0.04) 0.08(0.05)
45% 1.79(1.49) 1.64(1.57) 2.21(1.53) 0.06(0.05) 0.05(0.04) 0.10(0.06)
50% 1.90(1.53) 1.75(1.63) 2.28(1.65) 0.07(0.06) 0.05(0.05) 0.12(0.08)

1.00 30% 1.41(2.01) 1.34(1.45) 1.63(1.09) 0.04(0.03) 0.04(0.03) 0.06(0.04)
35% 1.60(2.15) 1.49(1.61) 1.85(1.30) 0.06(0.05) 0.05(0.04) 0.08(0.05)
40% 1.69(2.09) 1.60(1.77) 2.09(1.49) 0.06(0.06) 0.05(0.04) 0.10(0.06)
45% 1.81(2.13) 1.68(1.59) 2.20(1.53) 0.08(0.06) 0.06(0.04) 0.11(0.08)
50% 1.95(2.33) 1.79(2.12) 2.29(1.47) 0.09(0.06) 0.06(0.05) 0.12(0.10)

5 0.75 30% 1.45(1.39) 1.31(1.33) 1.65(1.19) 0.05(0.03) 0.04(0.03) 0.07(0.03)
35% 1.61(1.48) 1.45(1.39) 1.89(1.25) 0.06(0.04) 0.05(0.03) 0.09(0.05)
40% 1.82(1.52) 1.62(1.51) 2.19(1.35) 0.07(0.06) 0.05(0.06) 0.10(0.06)
45% 1.95(1.36) 1.78(1.59) 2.25(1.39) 0.08(0.06) 0.06(0.06) 0.12(0.07)
50% 2.04(1.58) 1.85(1.57) 2.37(1.44) 0.08(0.07) 0.07(0.06) 0.13(0.08)

1.00 30% 1.53(1.65) 1.38(1.42) 1.70(1.08) 0.05(0.03) 0.04(0.04) 0.08(0.04)
35% 1.66(1.74) 1.49(1.49) 1.83(1.29) 0.06(0.05) 0.05(0.04) 0.10(0.06)
40% 1.79(1.79) 1.66(1.53) 2.07(1.27) 0.07(0.06) 0.06(0.06) 0.11(0.07)
45% 1.92(1.70) 1.81(1.62) 2.15(1.43) 0.08(0.07) 0.06(0.06) 0.12(0.08)
50% 2.08(1.85) 1.93(1.59) 2.34(1.52) 0.09(0.08) 0.07(0.07) 0.14(0.08)

2744 Machine Learning (2023) 112:2723–2760

1 3

Lemma 3 (Restricted Strong Convexity) Suppose that all the conditions in Lemma 2 and
Assumption 3 hold. For M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0 , with probability at least
1−e−(p+q),

for n > C(L) ⋅c2
1pr log(p+ q) log(q+ 1) , where C(L) is a a constant only depending on L.

5.3 Results of reduced‑rank regression

Recall

Lemma 1 can be easily extended to Ĉ.

Lemma 4 For any 𝛾 satisfying

𝛥̂ =Ĉ−C∗ satisfies

Lemma 4 indicates that the estimator Ĉ belongs to the set

The next result is to establish the RSC condition. Consider the quantity

Lemma 5 (Lower bound of 𝛿L 𝜂(C, C∗)) Consider the reduced-rank regression problem (9).
Suppose that Assumption 1, 2 and 4 hold, and the noises 𝜉t ’s are distributed symmetrically
about zero. Suppose the regularization parameter in optimization problem (9) satisfies

Then for any x > 0 and C ∈ {C ∶ ‖C−C∗‖F ≤ 𝜂} ∩C0,

with probability at least 1−e−x.

𝛿L 𝜂(M, M∗) ≥ 1
8c2

1pq
‖𝛥‖2

F,

Cr (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆Vr , col(M) ⊆Ur} ,

C
⟂

r (U, V) = {M ∈ ℝp×q ∣ row(M) ⊆V⟂
r , col(M) ⊆U⟂

r } .

𝛾 ≥2𝜎1(∇L 𝜂(C∗)),

‖𝛥̂
C
⟂
r

‖∗≤ 3‖𝛥̂Cr
‖∗+ 4

q�

k=r+1
𝜎k.

C0 = {C ∈ ℝp×q ∶ ‖𝛥
C
⟂
r

‖∗≤ 3‖𝛥Cr
‖∗+ 4

q�

k=r+1
𝜎k,𝛥 =C−C∗} .

𝛿L 𝜂(C,C∗) =L 𝜂(C) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗),𝛥⟩.

𝛾 ≥2𝜎1(∇L 𝜂(C∗)).

𝛿L 𝜂(C, C∗) ≥
n𝜎n(𝛴)

2c2
1

‖𝛥‖2
F −48

√
2r𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x)‖𝛥‖F,

2745Machine Learning (2023) 112:2723–2760

1 3

By controlling the negative term and setting the right side to be greater than 0, we have
the restricted strong convexity property.

Lemma 6 (Restricted Strong Convexity) Suppose that all the conditions in Lemma 5 hold,
then for C ∈ {C ∶ ‖C−C∗‖F ≤ 𝜂} ∩C0 and n > C2

𝜎1(𝛴)𝜎n(𝛴) c2
1r(p+ q) , where C2 is a

constant,

with probability at least 1− (p+ q)−1.

Appendices

Appendix 1: More on the assumption on the model errors

A key assumption in Theorem 1 and Theorem 2 is that the noises 𝜉 ’s are i.i.d. with zero
mean and a distribution function F𝜉 satisfying

for any |m| ≤ 𝜂 and some 𝜂 >0 , where c1 is a positive constant depending only on 𝜂 . This
is the same as requiring Pr(𝜉 ∈ [m− 𝜂, m+ 𝜂]) to be always positive for any |m| ≤ 𝜂 and
 𝜂 >0 . Since 𝔼(𝜉) =0 and 0 ∈ [m− 𝜂, m+ 𝜂] , this condition holds as long as the probabil-

ity mass near 0 is not too small, which is easily satisfied by a large class of distributions
including heavy-tailed ones. As an example, Fig. 2 gives the distribution of a t-distribution
with degree of freedom being 3. The area of the grey part represents F𝜉(m+ 𝜂) −F𝜉(m− 𝜂)
when m= 1 and 𝜂 =2 . Since the density function near 0 is strictly bounded from below,
the required condition (11) holds for 𝜂 >0.

The Huber contamination model also satisfies Assumption 2. Specifi-
cally, suppose the errors 𝜉 ’s follow a Huber contamination model (1−c)F + cG
with F being the distribution function of a normal random variable. Then
Pr(𝜉 ∈ [m− 𝜂, m+ 𝜂]) = (1−c){F(m+ 𝜂) −F(m− 𝜂)} +c{G(m+ 𝜂) −G(m− 𝜂)} .
Then the first term creates no issue. Assumption 2 is easily met if G in the second term
is a continuous distribution with zero mean. When G is from a discrete distribution, it is a
step function. Then the second term is either 0 or a value bounded above from 1. Overall,
Assumption 2 is satisfied.

𝛿L 𝜂(C, C∗) ≥
n𝜎n(𝛴)

4c2
1

‖𝛥‖2
F,

(11)F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) > 1
c1(𝜂)2 ,

2746 Machine Learning (2023) 112:2723–2760

1 3

Appendix 2: Proof for matrix completion

This section presents the proof related to the matrix completion.

Proof of Lemma 1 Note that

Using triangle inequalities and the decomposability of nuclear norm on M r and M ⟂
r ,

Thus,

By the convexity of the loss function L 𝜂 , together with the assumption on 𝛾 and the defini-
tion of the dual norm,

M∗
M r

+ M∗

M
⟂
r

=
r∑

k=1
uk𝜎kv

⊤
k +

q∑

k=r+1
uk𝜎kv

⊤
k =M∗.

||M̂||∗= ||M∗+ 𝛥̂||∗= ||M∗
M r

+ M∗

M
⟂
r

+ 𝛥̂M r
+ 𝛥̂

M
⟂
r

||∗

≥ ||M∗
M r

+ 𝛥̂
M

⟂
r

||∗− ||M∗

M
⟂
r

+ 𝛥̂M ||∗

≥ ||M∗
M r

||∗+ ||𝛥̂M
⟂
r

||∗− ||M∗

M
⟂
r

||∗− ||̂𝛥M ||∗.

||M∗||∗− ||̂M||∗≤ ||M∗||∗− ||M∗
M r

||∗− ||̂𝛥
M

⟂
r

||∗+ ||M
∗

M
⟂
r

||∗+ ||𝛥̂M ||∗

= 2||M∗

M
⟂
r

||∗+ ||𝛥̂M r
||∗− ||̂𝛥

M
⟂
r

||∗

Fig. 2 The distribution of a t-distribution with degree of freedom being 3. The area of the grey part repre-
sents F𝜉(m+ 𝜂) −F𝜉(m− 𝜂) when m= 1 and 𝜂 =2

2747Machine Learning (2023) 112:2723–2760

1 3

Since M̂ is the optimizer of problem (7),

Notice that ‖M∗

M
⟂
r

‖∗=
∑ q

k=r+1 𝜎k , therefore the lemma holds. ◻

For simplicity, let

Before we look in the RSC condition, we first bound the term 𝜎1(∇L 𝜂(M∗)).

Lemma 7 (Upper bound for 𝜎1(∇L 𝜂(M∗)) Suppose the noises are i.i.d with zero-mean and
are symmetrically distributed around zero, then for any x > 0 , and a positive constant c0,

with probability at least 1−e−x.

Proof of Lemma 7 Since 𝜎1(⋅) is a norm, the triangle inequality holds

It can be derived from Equation (1) that

Since the noises are symmetrically distributed around zero and
𝜕 l𝜂(Xij−M∗

ij)

𝜕 M∗
ij

 is an odd function

of the noise 𝜉ij , we have 𝔼[𝜕 l𝜂(Xij−M∗
ij)

𝜕 M∗
ij

] =0 , and thus

To bound 𝜎1(∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]) , first notice that

L 𝜂(M̂) −L 𝜂(M∗) ≥ ⟨∇L 𝜂(M∗), 𝛥̂⟩ ≥ − ⟨� ∇L 𝜂(M∗), 𝛥̂⟩�
≥ −𝜎1(∇L 𝜂(M∗))‖𝛥̂‖∗≥ −

𝛾
2
(‖𝛥̂M r

‖∗+ ‖𝛥̂M
⟂
r

‖∗).

0 ≥ [L 𝜂(M̂) + 𝛾‖̂M‖∗] − [L 𝜂(M∗) + 𝛾‖M∗‖∗]

≥ [L 𝜂(M̂) −L 𝜂(M∗)] − 𝛾[‖M∗‖∗− ‖̂M‖∗]

≥ −
𝛾
2

�
‖𝛥̂

M
⟂
r

‖∗−3‖𝛥̂M r
‖∗−4‖M∗

M
⟂
r

‖∗

�
.

(12)
𝜕 l𝜂(Xij −M∗

ij
)

𝜕 M∗
ij

=
𝜕 l𝜂(Xij −Mij)

𝜕 Mij

|||||Mij=M∗
ij

.

𝜎1(∇L 𝜂(M∗)) ≤ 𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+
�

2x
npq

+ 8x
3n

⎫
⎪
⎬
⎪
⎭

,

(13)𝜎1(∇L 𝜂(M∗)) ≤ 𝜎1(𝔼[∇L 𝜂(M∗)]) + 𝜎1(∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]).

∇L 𝜂(M∗) = 1
2n

n∑

t=1
Jt

p∑

i=1

q∑

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

.

(14)𝜎1(𝔼[∇L 𝜂(M∗)]) =0.

2748 Machine Learning (2023) 112:2723–2760

1 3

Since the errors Xij −M∗
ij
 are i.i.d.,

by Theorem 2.3 in Bousquet (2002), we have for any x > 0

with probability at least 1−e−x.
Moreover, since

we have with probability at least 1−e−x

By symmetrization inequality in Boucheron et al. (2013),

𝜎1(∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]) = sup
��W��∗≤ 1
W ∈ ℝp×q

⟨W,∇L 𝜂(M∗) − 𝔼[∇L 𝜂(M∗)]⟩

= sup
��W��∗≤ 1
W ∈ ℝp×q

1
2n

n�

t=1
⟨W, Jt

p�

i=1

q�

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij)

𝜕 M∗
ij

− 𝔼[Jt

p�

i=1

q�

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

]⟩

∶= sup
��W��∗≤ 1
W ∈ ℝp×q

1
2n

n�

t=1
ft(M

∗)

∶= Z.

sup
||W||∗≤ 1
W ∈ ℝp×q

ft(M
∗) ≤2𝜂 and sup

||W||∗≤ 1
W ∈ ℝp×q

𝔼[f 2
t (M

∗)] ≤
𝜂2

pq
,

Z ≤ 𝔼[Z] +√ 2x𝜂2

npq
+

8x𝜂
n
𝔼[Z] + 2x𝜂

3n
,

√
2x𝜂2

npq
+

8x𝜂
n
𝔼[Z] ≤ √

2x𝜂2

npq
+

√
8x𝜂
n
𝔼[Z] ≤ √

2x𝜂2

npq
+

4x𝜂
n

+ 2𝔼[Z]
2

,

(15)Z ≤ 2𝔼[Z] +√ 2x𝜂2

npq
+

8x𝜂
3n

.

2749Machine Learning (2023) 112:2723–2760

1 3

where 𝜖1,… , 𝜖n are i.i.d. Rademacher variables with distribution
ℙ(𝜖t = 1) = ℙ(𝜖t = −1) =1

2
 , and are independent of {Xit ,jt}

n
t=1 and {Jt}n

t=1.
Now, let 𝔼∗ denote the conditional expectation given {Xit ,jt ,Jt}n

t=1 . Notice that
Wit ,jt

𝜕 l𝜂(Xit ,jt−M∗
it ,jt

)

𝜕 M∗
it ,jt

 is a 𝜂−Lipschitz function of Wit ,jt . By Theorem 4.12 in Ledoux and Tala-

grand (2013), we have

Then take expectation over Jt , and we have for a positive constant c0,

where the second inequality follows from the definition of dual norm, and the last inequal-
ity follows from Proposition 2 in Koltchinskii et al. (2011): it is simple to show that

besides, since 𝜎1(𝜖tJt) = |𝜖t|𝜎1(Jt) ≤ |𝜖t| , we have

𝔼[Z] ≤ 𝔼[sup
||W||∗≤ 1

W ∈ ℝp×q

1
n

||||||
⟨W,

n∑

t=1
𝜖tJt

p∑

i=1

q∑

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

⟩
||||||
]

= 1
n
𝔼[sup

||W||∗≤ 1

W ∈ ℝp×q

||||||

n∑

t=1
𝜖t⟨W, Jt

p∑

i=1

q∑

j=1
Jt,ij

𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

⟩
||||||
]

= 1
n
𝔼[sup

||W||∗≤ 1

W ∈ ℝp×q

|||||

n∑

t=1
𝜖tWit ,jt

𝜕 l𝜂(Xit ,jt −M∗
it ,jt

)

𝜕 M∗
it ,jt

|||||
]

𝔼∗[Z] ≤
2𝜂
n
𝔼∗[sup

||W||∗≤ 1
W ∈ ℝp×q

|||||

n∑

t=1
𝜖tWit ,jt

|||||
].

(16)

𝔼[Z] ≤2𝜂
n
𝔼[sup
��W��∗≤ 1
W ∈ ℝp×q

�����

n�

t=1
𝜖t⟨Jt, W⟩

�����
]

≤
2𝜂
n
𝔼[sup
��W��∗≤ 1
W ∈ ℝp×q

𝜎1(
n�

t=1
𝜖tJt)��W��∗]

≤ 2𝜂𝔼[𝜎1(
1
n

n�

t=1
𝜖tJt)]

≤ 2𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
,

max{𝜎1(
1
n

n∑

t=1
𝔼[JtJ

⊤
t]),𝜎1(

1
n

n∑

t=1
𝔼[J⊤t Jt])} =

1
q

,

2750 Machine Learning (2023) 112:2723–2760

1 3

where U(𝛼)
Z

 is defined as U(𝛼)
Z = inf{u > 0 ∶ 𝔼exp(𝜎1(Z)𝛼

u𝛼) ≤2} , then by concavity of loga-
rithm, we have

finally, using Proposition 2 in Koltchinskii et al. (2011), we have ∀x̃ > 0 and a constant c̃0

Then

since 1√
x̃+ log(p+q)

≤
√

2
�

1√
x̃
+ 1√

log(p+q)

�
 , after simplification, we have

where c0 is a constant independent of n, p and q.
By Equation (13), together with Equation (14), (15), (16) and (17), we have with prob-

ability at least 1−e−x

 ◻

Proof of Lemma 2 𝛿L 𝜂(M, M∗) can be written as

U(2)𝜖tJt
≤U(2)𝜖t

=
√

1
log 2

,

�
log q

log 2
=
�

1
2

logq+ 1
2

log(1
log 2

)

≤
�

log(
q
2
+ 1

2 log 2
) ≤

√
log(q+ 1),

ℙ

⎧
⎪
⎨
⎪
⎩

𝜎1(
1
n

n�

t=1
𝜖tJt) ≥ ̃c0

⎡
⎢
⎢
⎣

�
x̃+ log(p+ q)

nq
+
√

log(q+ 1)
x̃+ log(p+ q)

n

⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

≤ e−x̃.

𝔼[𝜎1(
1
n

n�

t=1
𝜖tJt)] =�

∞

0
ℙ(𝜎1(

1
n

n�

t=1
𝜖tJt) ≥s)ds

≤ ̃c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦

+ ̃c0�

∞

0
e−x̃

�
1

2
√

nq(x̃+ log(p+ q))
+

√
log(q+ 1)

n

�

dx̃,

(17)𝔼[𝜎1(
1
n

n�

t=1
𝜖tJt)] ≤c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
,

𝜎1(∇L 𝜂(M∗)) ≤ 𝜂⎧⎪⎨
⎪
⎩

4c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+
�

2x
npq

+ 8x
3n

⎫
⎪
⎬
⎪
⎭

.

2751Machine Learning (2023) 112:2723–2760

1 3

In the following, we establish the lower bound for 𝔼[𝛿L 𝜂(M,M∗)] and the upper bound for
|𝔼[𝛿L 𝜂(M,M∗)] − 𝛿L 𝜂(M, M∗)| , respectively, for M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0.

Given any M ∈ {M ∶ ‖M −M∗‖max ≤ 𝜂} ∩M 0 and 𝛥 =M −M∗,

where
𝜕 l𝜂(Xij−M∗

ij)

𝜕 M∗
ij

 is defined in Equation (12).

Since l𝜂(Xij −Mij) and 𝜕 l𝜂(Xij−Mij)

𝜕 M∗
ij

 are continuous function of Mij,

where F(⋅) is the cdf of Xij , and

Apply Taylor’s theorem to 𝔼[l𝜂(Xij −Mij)] , and we have for some tij ∈ (0, 1)

where the inequality follows from the Assumption 2.
Next, we consider the upper bound for |||𝔼[𝛿L 𝜂] − 𝛿L 𝜂||| . The techniques used here are

similar to those in the proof Lemma 7.
Let 𝛿l𝜂,ij = l𝜂(Xij −Mij) −l𝜂(Xij −M∗

ij) −
𝜕 l𝜂(Xij−M∗

ij)

𝜕 M∗
ij

𝛥ij , since l𝜂 is 𝜂− Lipschitz,

𝛿L 𝜂 = 𝛿L 𝜂 + 𝔼[𝛿L 𝜂] − 𝔼[𝛿L 𝜂]
≥ 𝔼[𝛿L 𝜂] − |𝔼[𝛿L 𝜂] − 𝛿L 𝜂|.

𝔼[𝛿L 𝜂(M, M∗)] = 1
2n

n∑

t=1
𝔼{ p∑

i=1

q∑

j=1
Jt,ij [l𝜂(Xij −Mij) −l𝜂(Xij −M∗

ij) −
𝜕 l𝜂(Xij −M∗

ij
)

𝜕 M∗
ij

𝛥ij]}

= 1
2pq

p∑

i=1

q∑

j=1
𝔼[l𝜂(Xij −Mij)] − 𝔼[l𝜂(Xij −M∗

ij)] − 𝔼[𝜕 l𝜂(Xij −M∗
ij
)

𝜕 M∗
ij

]𝛥ij ,

(18)

𝔼[𝜕 l𝜂(Xij −Mij)

𝜕 Mij
] =

𝜕𝔼[l𝜂(Xij −Mij)]

𝜕 Mij

=
�|Mij−Xij |≤𝜂(Mij −Xij)dF(Xij) + 𝜂�Mij−Xij>𝜂 dF(Xij) − 𝜂

�Mij−Xij<−𝜂 dF(Xij)

= (Mij −Xij)F(Xij)
|||
Mij+𝜂
Mij−𝜂−�

Mij+𝜂
Mij−𝜂 F(Xij)d(−Xij)

+ 𝜂F(Mij − 𝜂) − 𝜂[1−F(Mij + 𝜂)]
=
�

Mij+𝜂
Mij−𝜂 F(Xij)dXij − 𝜂,

𝜕 2𝔼[l𝜂(Xij −Mij)]

𝜕 M2
ij

=F(Mij + 𝜂) −F(Mij − 𝜂)

(19)

𝔼[𝛿L 𝜂(M, M∗)] = 1
2pq

p�

i=1

q�

j=1

1
2
[F(M∗

ij + tij𝛥ij + 𝜂) −F(M∗
ij + tij𝛥ij − 𝜂)]𝛥2ij

= 1
4pq

p�

i=1

q�

j=1
[F𝜉(tij𝛥ij + 𝜂) −F𝜉(tij𝛥ij − 𝜂)]𝛥2ij

≥ 1
4c2

1pq
‖𝛥‖2

F,

2752 Machine Learning (2023) 112:2723–2760

1 3

For any M ∈ M 0 , let 𝛥 =M −M∗ , we have

Let Z1 = 1
n

supM∈ℝp×q
���
∑ n

t=1
f1t(M)
��𝛥��F

��� . By Equation (20), f1t(M)
||𝛥||F ≤ 4𝜂 and 𝔼[f 2

1t(M)

||𝛥||2F] ≤ 𝜂2

pq
 for any

M ∈ ℝp×q . Since the errors Xij −M∗
ij
 are i.i.d., by Theorem 2.3 in Bousquet (2002), for any

x ≥ 0

with probability at least 1−e−x.
Let 𝜖t ’s be i.i.d. Rademacher variables. Then, by symmetrization inequality in

Boucheron et al. (2013),

Let 𝔼∗ denote the conditional expectation given {Xit ,jt , Jt}n
t=1.

By contraction principle in Theorem 4.4 of Ledoux and Talagrand (2013), since
|
𝛿l𝜂,it jt𝛥it ,jt

| ≤2𝜂,

Then

(20)
���𝛿l𝜂,ij

���≤ 2𝜂�𝛥ij� ≤2𝜂‖𝛥‖F.

(21)

|||𝔼[𝛿L 𝜂(M, M∗)] − 𝛿L 𝜂(M̂, M∗)||| =
1
2n

|||||

n∑

t=1
(𝛿l𝜂,it jt − 𝔼[𝛿l𝜂,it jt])|||||

∶= 1
2n

|||||

n∑

t=1
f1t(M)

|||||
=

||𝛥||F
2n

|||||

n∑

t=1

f1t(M)
||𝛥||F |||||

≤
||𝛥||F

2n
sup

M∈M 0

|||||

n∑

t=1

f1t(M)
||𝛥||F |||||.

(22)Z1 ≤ 2𝔼(Z1) +2

√
2x𝜂2

npq
+

16x𝜂
3n

,

𝔼[Z1] =
1
n
𝔼�sup

M∈M 0

�����

n�

t=1

f1t(M)
��𝛥��F

�����

�

≤ 2
n
𝔼�sup

M∈M 0

�����

n�

t=1
𝜖t

𝛿l𝜂,it jt
‖𝛥‖F

�����

�

𝔼∗

[

sup
M∈M 0

|||||

n∑

t=1
𝜖t

𝛿l𝜂,it jt𝛥it ,jt

𝛥it ,jt

||𝛥||F |||||
]

≤ 4𝜂𝔼∗

[

sup
M∈M 0

|||||

n∑

t=1
𝜖t

𝛥it ,jt

||𝛥||F |||||
]

.

𝔼[Z1] ≤
8𝜂
n
𝔼�sup

M∈M 0

�����

n�

t=1
𝜖t

⟨Jt,𝛥⟩
��𝛥��F

�����

�

≤ 8𝜂𝔼�sup
M∈M 0

������

𝜎1(
∑ n

t=1
1
n
𝜖tJt)��𝛥��∗

��𝛥��F

������

�

≤ 8𝜂𝔼�𝜎1(
n�

t=1

1
n
𝜖tJt)

�

sup
M∈M 0

��𝛥��∗

��𝛥��F
.

2753Machine Learning (2023) 112:2723–2760

1 3

The second inequality follows form the definition of the dual norm.
By Lemma 1, we have for M ∈ M 0 and r > 0,

Note that

Then we have for all M ∈ ℝp×q and 𝛥 =M −M∗

If M∗ is exactly low-rank with rank(M∗) ≤r , then
∑ q

k=r+1 𝜎k = 0 , in this case

where the last inequality follows from Equation (17).
Then, by Equation (22)

with probability at least 1−e−x.
Therefore, by Equation (21), with probability at least 1−e−x.

Together with Equation (19), we have with probability at least 1−e−x,

||𝛥
M

⟂
r

||∗≤ 3||𝛥M r
||∗+ 4

q∑

k=r+1
𝜎k.

rank(𝛥M r
) =rank(𝛥 − 𝛥

M
⟂
r

)

= rank(UrU
⊤
r 𝛥(I −VrV

⊤
r) + 𝛥VrV

⊤
r) ≤2r.

(23)

��𝛥��∗≤ ��𝛥
M

⟂
r

��∗+ ��𝛥M r
��∗≤ 4��𝛥M r

��∗+ 4
q�

k=r+1
𝜎k

≤ 4
√

2r��𝛥��F + 4
q�

k=r+1
𝜎k.

𝔼[Z1] ≤32
√

2r𝜂𝔼�𝜎1(
n�

t=1

1
n
𝜖tJt)

�

≤ 32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
,

Z1 ≤ 64
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+ 2

√
log(q+ 1)

log(p+ q)
n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

16x𝜂
3n

,

���𝛿L 𝜂 − 𝔼[𝛿L 𝜂]���≤Z1‖𝛥‖F ∕ 2

≤ {32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

}‖𝛥̂‖F.

2754 Machine Learning (2023) 112:2723–2760

1 3

 ◻

Proof of Theorem 1 Construct Mt =M∗+ t(M̂ −M∗) in the following way. If
‖M̂ −M∗‖max < 𝜂 , then t = 1 , otherwise, choose t such that ‖Mt −M∗‖max = 𝜂 . Let 𝛥t =Mt −M∗= t(M̂ −M∗) =t𝛥̂ . Notice

Since M̂ is the optimizer of problem (7),

Therefore,

Then by Lemma 2, for any x > 0 , with probability at least 1−e−x

Divided both sides of the inequality by ||𝛥t||F , we have

(24)

𝛿L 𝜂 ≥ 1
4c2

1pq
‖𝛥‖2

F

− {32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

}‖𝛥‖F

𝛿L 𝜂(Mt) =L 𝜂(Mt) −L (M∗) − ⟨∇L (M∗),𝛥t⟩

≤ tL (M̂) + (1− t)L (M∗) −L (M∗) − ⟨∇L (M∗),𝛥t⟩

= t𝛿L 𝜂(M̂).

L 𝜂(M̂) + 𝛾||̂M||∗−
[
L 𝜂(M∗) − 𝛾||M∗||∗

]
≤ 0

𝛿L 𝜂 = L 𝜂(M̂) −L 𝜂(M∗) − ⟨∇L 𝜂(M∗),𝛥⟩
≤ 𝛾(��M∗��∗− ��M̂��∗) +

���⟨∇L 𝜂(M∗),𝛥⟩���
≤ 𝛾��𝛥̂��∗+ 𝜎1(∇L 𝜂(M∗)��̂𝛥��∗
≤ 3

2
𝛾 ��𝛥̂��∗.

1
4c2

1pq
��𝛥t��

2
F ≤ 3

2
𝛾��𝛥t��∗

+ {32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

}��𝛥t��F

2755Machine Learning (2023) 112:2723–2760

1 3

with probability at least 1−e−x . The second inequality follows from Equation (23) when
M∗ has rank smaller than r and the fact that 𝛾 ≥2𝜎1(∇L (M∗)) with probability at least
1−e−x by Lemma 7.

Take x = log(p+ q) and n > C(L) ⋅c2
1

√
2rp log(p+ q) log(q+ 1) with C(L) with being

some constant depending on L, we have ‖𝛥t‖max ≤
L√
pq
‖𝛥t‖F < 𝜂 . Then by the construction

of Mt , t = 1 . Finally, we have with probability at least 1−2e−x −e−2x = 1−3(p+ q)−1,

where C1 , c2 , c3 are absolute constants. ◻

Appendix 3: Proof for reduced‑rank regression

Lemma 8 (Upper Bound for 𝜎1(∇L 𝜂(C∗))) Suppose that 𝜉ij ’s are i.i.d. with zero mean and

symmetrically distributed around zero, then for any x > 0 , we have with probability at least

1−e−x,

Proof of Lemma 8 Note 𝜕

𝜕 ckj
L (C) =

∑ n
i=1 −𝓁�𝜂(yij −x⊤i cj)xik . Let gij = 𝓁�𝜂(yij −x⊤i cj) ,

G = [gij]n×q and G∗ the value of G when C =C∗ , then ∇L 𝜂(C∗) = −X⊤G∗.

Following the proof of Lemma 3 Negahban and Wainwright (2011) (the proof is given in
its supplementary material), we have

1
4c2

1pq
��𝛥t��F ≤ 3

2
𝛾��𝛥t��∗
��𝛥t��F

+

⎧
⎪
⎨
⎪
⎩

32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

⎫
⎪
⎬
⎪
⎭

≤ 6𝛾√ 2r

+

⎧
⎪
⎨
⎪
⎩

32
√

2r𝜂c0

⎡
⎢
⎢
⎣

�
log(p+ q)

nq
+
√

log(q+ 1)
log(p+ q)

n

⎤
⎥
⎥
⎦
+

�
2x𝜂2

npq
+

8x𝜂
3n

⎫
⎪
⎬
⎪
⎭

,

1
√

pq
‖𝛥̂‖F ≤C1 ⋅c2

1𝜂� p log(p+ q) log(q+ 1)
n

(
√

2rc2 + c3),

𝜎1(∇L 𝜂(C∗)) ≤4𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x)

𝜎1(∇L 𝜂(C∗)) = sup
‖u‖2 = 1
u ∈ ℝq

sup
‖v‖2 = 1
v ∈ ℝp

⟨Xv, G∗u⟩.

(25)
ℙ(�𝜎1(X⊤G∗)� ≥4𝛿n) ≤8p+q max

‖u‖2 = 1
u ∈ ℝq

max
‖v‖2 = 1
v ∈ ℝp

ℙ
�

⟨Xv, G∗u⟩
n

≥ 𝛿�.

2756 Machine Learning (2023) 112:2723–2760

1 3

It remains to bound 1
n
⟨Xv, G∗u⟩ . Let

where g∗i is the i-th row of G∗ . Since 𝜉ij ’s are symmetrically distributed around zero and
l�𝜂(x) is an odd function, 𝔼[G∗] =0. Hence, 𝔼{⟨ v, xi⟩⟨u, g∗i ⟩} =0 . Further, for k being any
positive integer,

By Berstein’s inequality, for any t > 0 and u, v satisfying ‖u‖2 = 1,‖v‖2 = 1,

Combining with Equation (25), we have

Take t = 2(p+ q) +x for any x > 0 , and then we have

 ◻

Proof of Lemma 5
In the following, we establish the lower bound for 𝔼[𝛿L 𝜂] and the upper bound for
|||𝛿L 𝜂 − 𝔼[𝛿L 𝜂]||| , respectively, for C ∈ C0 ∩ {C ∶ ‖C−C∗‖F ≤ 𝜂}

Given any C ∈ C0 ∩ {C ∶ ‖C−C∗‖F ≤ 𝜂} and 𝛥 =C−C∗ , for some tij ∈ (0, 1)

Z ∶= 1
n
⟨Xv, G∗u⟩ =1

n

n�

i=1
⟨v, xi⟩⟨u, g∗i ⟩,

n�

i=1
𝔼{⟨ v, xi⟩

2k⟨u, g∗i ⟩
2k} ≤ 𝜂2k𝔼 n�

i=1
⟨v,xi⟩

2k

= 𝜂2k𝔼 n�

i=1
(x⊤i u)2k

= 𝜂2kn(u⊤𝛴 u)2k(2k−1)!!

≤ 𝜂2kn(2k−1)!!𝜎1(𝛴) 2k.

ℙ{Z ≥ 𝜂𝜎1(𝛴)(√ 2t∕ n+ t∕ n)} ≤e−t.

ℙ(�𝜎1(X⊤G∗)� ≥4n𝜂𝜎1(𝛴)(√ 2t∕ n+ t∕ n)) ≤8p+qe−t.

ℙ(�𝜎1(X⊤G∗)� ≥4𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x)) ≤e−x.

𝛿L 𝜂 = 𝛿L 𝜂 + 𝔼[𝛿L 𝜂] − 𝔼[𝛿L 𝜂]
≥ 𝔼[𝛿L 𝜂] −|||𝛿L 𝜂 − 𝔼[𝛿L 𝜂]|||.

𝔼[𝛿L 𝜂] =
n�

i=1

q�

j=1
{𝔼[l𝜂(yij −x⊤i cj)] − 𝔼[l𝜂(yij −x⊤i c∗j)] − 𝔼[l�𝜂(yij −x⊤i c∗j)(−x⊤i 𝛥j)]}

= 1
2

n�

i=1

q�

j=1
𝔼X[{F𝜉(tijx⊤i 𝛥j + 𝜂) −F𝜉(tijx⊤i 𝛥j − 𝜂)}(x⊤i 𝛥j)

2]

≥ 1
2c2

1

n�

i=1

q�

j=1
𝔼(x⊤i 𝛥j)

2

≥ n
2c2

1

𝜎n(𝛴) n�

j=1
‖𝛥j‖

2
F =

n𝜎n(𝛴)
2c2

1

‖𝛥‖2
F,

2757Machine Learning (2023) 112:2723–2760

1 3

where the equality follows from Taylor’s theorem, and the first inequality follows from
Assumption 2 and Assumption 4. For the calculation of 𝜕 2𝔼[l𝜂(yij−⟨Zij ,C⟩)]

𝜕(⟨ Zij ,C⟩)2 , please refer to the

calculation of 𝜕
2𝔼[l𝜂(Xij−Mij]

𝜕 M2
ij

 in the case of matrix completion problems.

For any i = 1,… , n, j = 1,… , q , there exist 𝜏ij ∈ (0, 1) , such that 𝓁 𝜂(yij −x⊤i cj) − 𝓁𝜂(yij −x⊤i c∗j) = 𝓁�𝜂(yij −x⊤i c̃j)x
⊤
i
(c∗j −cj), where c̃j = c∗j + 𝜏ij (cj −c∗j) .

Therefore,

Then

Following the proof in Lemma 8, we have for any x > 0

with probability at least 1−e−x.
Similar to Equation (23), it can be shown that if C∗ has rank smaller than r, then

supC∈C0

‖𝛥‖∗
‖𝛥‖F

≤ 4
√

2r. Hence, for C ∈ C0 , ‖𝛥‖∗≤ 4
√

2r‖𝛥‖F . Now we have with probabil-
ity at least 1−e−x,

 ◻

Proof of Theorem 2 Construct Ct =C∗+ t(Ĉ−C∗) in the following way. If
‖Ĉ−C∗‖F < 𝜂 , then t = 1 , otherwise, choose t such that ‖Ct −C∗‖F = 𝜂 . Let 𝛥t =Ct −C∗= t(Ĉ−C∗) =t𝛥̂ . Notice

Since ̂C is the optimizer of problem (9), we have

Therefore,

𝛿L 𝜂(C) = ⟨∇L 𝜂(C̃) − ∇L 𝜂(C∗), C−C∗⟩.

���𝛿L 𝜂 − 𝔼[𝛿L 𝜂]���= ⟨∇L 𝜂(C̃) − ∇L 𝜂(C∗),C−C∗⟩ − 𝔼{⟨∇L 𝜂(C̃) − ∇L 𝜂(C∗), C−C∗⟩}

= ⟨X⊤G̃−X⊤G∗,C−C∗⟩ − 𝔼{⟨X⊤G̃−X⊤G∗, C−C∗⟩}

≤ ‖𝛥‖∗𝜎1(X
⊤(G̃−G∗) − 𝔼{X⊤(G̃−G∗)}) .

𝜎1(X
⊤(G̃− 𝔼(̃G) −G∗)) ≤12𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x),

𝛿L 𝜂 ≥ n𝜎n(𝛴)
2c2

1

‖𝛥‖2
F −48

√
2r𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x)‖𝛥‖F

𝛿L 𝜂(Ct) =L 𝜂(Ct) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗),𝛥t⟩

≤ tL 𝜂(Ĉ) + (1− t)L 𝜂(C∗) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗),𝛥t⟩

= t𝛿L 𝜂(Ĉ).

L 𝜂(Ĉ) + 𝛾‖̂C‖∗≤ L 𝜂(C∗) + 𝛾‖C∗‖∗.

2758 Machine Learning (2023) 112:2723–2760

1 3

By Lemma 5, for any x > 0 , with probability at least 1−e−x,

The second inequality follows from Equation (23) when M∗ has rank smaller than r and the
fact that the selection of 𝛾 ≥2𝜎1(∇L (M∗)) with probability at least 1−e−x by Lemma 7.

Further, by Equation (23) and the fact that 𝛾 ≥2𝜎1(∇L (C∗)) with probability at least
1−e−x by Lemma 8, we have

with probability at least (1−e−x)2 , Take x = p+ q and n > C2 ⋅
𝜎1(𝛴)𝜎n(𝛴) c2

1(p+ q)r with C2
being some constant, we have ‖𝛥t‖F < 𝜂 . Then by the construction of Ct , t = 1 . Finally, we
have with probability at least 1−2e−x −e−2x = 1−3e−(p+q),

 ◻

Author contributions All authors contributed to the conception and design in methods, theory, and algo-
rithms. Theoretical development were performed by NJ, and the experimental evaluation was performed by
EXF. All authors participated in preparing, reading, and revising the manuscript; all authors approved the
manuscript.

Funding Tang was supported in part by a Subaward of an NIH Grant R01GM140476, and an NSF Grant
DMS-2210687. Fang was partially supported by NSF Grants DMS-1820702, DMS-1953196, DMS-
2015539, and a Grant from Whitehead foundation.

Data availibility The real data sets to evaluate the performance of the methods in this paper are publicly
available. ‘Jester Joke’ data set is available through http:// www. ieor. berke ley. edu/ ~goldb erg/ jester- data/, and
‘Cameraman image’ data is available through http:// ltfat. org/ doc/ signa ls/ camer aman. html.

Code availability The MATLAB code is available upon request to the corresponding author.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

𝛿L 𝜂(Ĉ) =L 𝜂(Ĉ) −L 𝜂(C∗) − ⟨∇L 𝜂(C∗), 𝛥̂⟩
≤ 𝛾(‖C∗‖∗− ‖̂C‖∗) +

���⟨∇L 𝜂(C∗), 𝛥̂⟩���
≤ 𝛾‖𝛥̂‖∗+ 𝜎1(∇L 𝜂(C∗))‖𝛥̂‖∗
≤ 3

2
𝛾‖𝛥̂‖∗.

3t
2
𝛾‖𝛥̂‖∗+ 48

√
2r𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x)‖𝛥t‖F ≥

n𝜎n(𝛴)
2c2

1

‖𝛥t‖
2
F.

n𝜎n(𝛴)
2c2

1

‖𝛥t‖F ≤ 3
2
𝛾4

√
2r + 48

√
2r𝜂𝜎1(𝛴)(√ 4n(p+ q) +2nx+ 2(p+ q) +x)

1
2c2

1

‖𝛥‖F ≤ 48
√

2r𝜂𝜎1(𝛴)𝜎n(𝛴)
��

6(p+ q)
n

+
3(p+ q)

n

�

.

2759Machine Learning (2023) 112:2723–2760

1 3

References

Agarwal, A., Negahban, S., & Wainwright, M. J. (2012). Noisy matrix decomposition via convex relaxation:
Optimal rates in high dimensions. The Annals of Statistics, 1171–1197.

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. New York: Wiley, 3rd edition.
Boucheron, S., Lugosi, G., & Massart, P. (2013). Concentration inequalities: A nonasymptotic theory of

independence. Oxford University Press.
Bousquet, O. (2002). A Bennett concentration inequality and its application to suprema of empirical pro-

cesses. Comptes Rendus Mathematique, 334(6), 495–500.
Candès, E. J., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE

Transactions on Information Theory, 56(5), 2053–2080.
Charisopoulos, V., Chen, Y., Davis, D., Díaz, M., Ding, L., & Drusvyatskiy, D. (2021). Low-rank matrix

recovery with composite optimization: Good conditioning and rapid convergence. Foundations of
Computational Mathematics, 1–89.

Chen, C., He, B., & Yuan, X. (2012). Matrix completion via an alternating direction method. IMA Journal
of Numerical Analysis, 32(1), 227–245.

Cook, R. D. (2009). Regression graphics: Ideas for studying regressions through graphics, (Vol. 482).
Hoboken: John Wiley & Sons.

Elsener, A., & van de Geer, S. (2018). Robust low-rank matrix estimation. Annals of Statistics, 46(6B),
3481–3509.

Fan, J., Wang, W., & Zhu, Z. (2021). A shrinkage principle for heavy-tailed data: High-dimensional robust
low-rank matrix recovery. Annals of Statistics, 49(3), 1239.

Freund, R. M., & Grigas, P. (2016). New analysis and results for the Frank–Wolfe method. Mathematical
Programming, 155(1–2), 199–230.

Freund, R. M., Grigas, P., & Mazumder, R. (2017). An extended Frank–Wolfe method with “in-face’’
directions, and its application to low-rank matrix completion. SIAM Journal on Optimization, 27(1),
319–346.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robust statistics: The approach
based on influence functions (Vol. 196). Hoboken: John Wiley & Sons.

Huber, P. J. (2004). Robust statistics (Vol. 523). Hoboken: John Wiley & Sons.
Jaggi, M. (2013). Revisiting frank-wolfe: Projection-free sparse convex optimization. In International con-

ference on machine learning (pp. 427–435). PMLR.
Kerdreux, T., d’Aspremont, A., & Pokutta, S. (2018). Restarting frank-wolfe. arXiv preprint arXiv: 1810.

02429.
Klopp, O. (2014). Noisy low-rank matrix completion with general sampling distribution. Bernoulli, 20(1),

282–303.
Koltchinskii, V., Lounici, K., & Tsybakov, A. B. (2011). Nuclear-norm penalization and optimal rates for

noisy low-rank matrix completion. The Annals of Statistics, 39(5), 2302–2329.
Lacoste-Julien, S. & Jaggi, M. (2015). On the global linear convergence of Frank–Wolfe optimization vari-

ants. arXiv preprint arXiv: 1511. 05932.
Lauritzen, S. L. (1996). Graphical models (Vol. 17). Oxford: Clarendon Press.
Ledoux, M., & Talagrand, M. (2013). Probability in Banach spaces: Isoperimetry and processes. Springer,

Berlin.
Loh, P.-L. (2017). Statistical consistency and asymptotic normality for high-dimensional robust m-estima-

tors. The Annals of Statistics, 45(2), 866–896.
Negahban, S., & Wainwright, M. J. (2011). Estimation of (near) low-rank matrices with noise and high-

dimensional scaling. The Annals of Statistics, 1069–1097.
Negahban, S., & Wainwright, M. J. (2012). Restricted strong convexity and weighted matrix completion:

Optimal bounds with noise. The Journal of Machine Learning Research, 13(1), 1665–1697.
Negahban, S. N., Ravikumar, P., Wainwright, M. J., & Yu, B. (2012). A unified framework for high-dimen-

sional analysis of m-estimators with decomposable regularizers. Statistical Science, 27(4), 538–557.
Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine Learning Research, 12(12).
Reddi, S. J., Hefny, A., Sra, S., Poczos, B., & Smola, A. (2016). Stochastic variance reduction for noncon-

vex optimization. In International conference on machine learning (pp. 314–323).
Reinsel, G. C., & Velu, R. (1998). Multivariate reduced rank regression. Berlin: Springer.
Rohde, A., & Tsybakov, A. B. (2011). Estimation of high-dimensional low-rank matrices. The Annals of

Statistics, 39(2), 887–930.
She, Y., & Chen, K. (2017). Robust reduced-rank regression. Biometrika, 104(3), 633–647.
Sun, Q., Zhou, W.-X., & Fan, J. (2020). Adaptive Huber regression. Journal of the American Statistical

Association, 115(529), 254–265.

2760 Machine Learning (2023) 112:2723–2760

1 3

Swoboda, P., & Kolmogorov, V. (2019). Map inference via block-coordinate Frank–Wolfe algorithm. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 11146–11155).

Toh, K.-C., & Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear norm regularized
linear least squares problems. Pacific Journal of Optimization, 6(615–640), 15.

Wong, R. K., & Lee, T. C. (2017). Matrix completion with noisy entries and outliers. The Journal of
Machine Learning Research, 18(1), 5404–5428.

Zhou, W.-X., Bose, K., Fan, J., & Liu, H. (2018). A new perspective on robust m-estimation: Finite sam-
ple theory and applications to dependence-adjusted multiple testing. The Annals of Statistics, 46(5),
1904–1931.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

