
STREAMER: Streaming Representation Learning and
Event Segmentation in a Hierarchical Manner

Ramy Mounir Sujal Vijayaraghavan Sudeep Sarkar
Department of Computer Science and Engineering, University of South Florida, Tampa

{ramy, sujal, sarkar}@usf.edu

Abstract

We present a novel self-supervised approach for hierarchical representation learn-
ing and segmentation of perceptual inputs in a streaming fashion. Our research
addresses how to semantically group streaming inputs into chunks at various levels
of a hierarchy while simultaneously learning, for each chunk, robust global rep-
resentations throughout the domain. To achieve this, we propose STREAMER,
an architecture that is trained layer-by-layer, adapting to the complexity of the
input domain. In our approach, each layer is trained with two primary objectives:
making accurate predictions into the future and providing necessary information to
other levels for achieving the same objective. The event hierarchy is constructed
by detecting prediction error peaks at different levels, where a detected bound-
ary triggers a bottom-up information flow. At an event boundary, the encoded
representation of inputs at one layer becomes the input to a higher-level layer.
Additionally, we design a communication module that facilitates top-down and
bottom-up exchange of information during the prediction process. Notably, our
model is fully self-supervised and trained in a streaming manner, enabling a single
pass on the training data. This means that the model encounters each input only
once and does not store the data. We evaluate the performance of our model
on the egocentric EPIC-KITCHENS dataset, specifically focusing on temporal
event segmentation. Furthermore, we conduct event retrieval experiments using
the learned representations to demonstrate the high quality of our video event
representations. Illustration videos and code are available on our project page:
https://ramymounir.com/publications/streamer.

1 Computational theory

In temporal event analysis, an event is defined as “a segment in time that is perceived by an observer 
to have a beginning and an end” [59]. Events could be described by a sequence of constituent events 
of relatively finer detail, thus forming a hierarchical structure. The end of an event and the beginning 
of the next is a segmentation boundary, marking an event transition. Segmentation boundaries in 
the lower levels of the hierarchy represent event transitions at relatively granular scales, whereas 
boundaries in higher levels denote higher-level event transitions.

We propose a structurally self-evolving model to learn the hierarchical representation of such events 
in a self-supervised streaming fashion through predictive learning. Structural evolution refers to the 
model’s capability to create learnable layers ad hoc during training. One may argue that existing 
deep learning architectures are compositional in nature, where high-level features are composed of 
lower-level features, forming a hierarchy of features. However, it is important to distinguish between 
a feature hierarchy and an event hierarchy: an event hierarchy is similar to a part/whole hierarchy in 
the sense that each event has clear boundaries that reflect the beginning and the end of a coherent 
chunk of information. One may also view the hierarchy as a redundancy pooling mechanism, where

https://ramymounir.com/publications/streamer


Low level

High level

STREAMER’s 
output

Ground truth

Pour oil

Add chicken

Add chicken

Wash board

Rinse board

Move chicken

Move chicken

Figure 1: Comparison of STREAMER’s hierarchical output to single-level ground truth annotations
from EPIC-KITCHENS. The ground truth contains redundant narrations for successive annotations
(e.g., add chicken ■, ■); STREAMER identifies such instances as a single high level event (■).
(Narrations from ground truth)

information grouped as one event is considered redundant for a higher level and can be summarized
into a single representation for higher-level processing.

Our model is capable of generating a hierarchy of event segments (Figure 1) by learning unique
semantic representations for each event type directly from video frames. This is achieved through
predictive learning, which models the causal structure of events. These learned representations
are expressive enough to enable video snippet retrieval across videos. Each level in the hierarchy
selectively groups inputs from the level below to form coherent event representations, which are then
sent to the level above. As a result, the hierarchy exhibits temporally aligned boundaries, with each
level containing a subset of the boundaries detected in the lower level.

As often prescribed [28, 24], we impose the following biologically-plausible constraints on our
learning algorithm:

1. The learning algorithm should be continuous and online. Most existing learning algo-
rithms offer batch-based offline learning. However, the learning in the neocortex occurs
continuously in a streaming fashion while seeing each datapoint only once

2. The learning should involve the ability to make high-order predictions by “incorporating
contextual information from the past. The network needs to dynamically determine how
much temporal context is needed to make the best predictions” [24] (Section 1.1)

3. Learning algorithms should be self-supervised and should not assume labels for training
[37]; instead, they should be able to figure out the learning objective from patterns and
causal structures within the data

4. The learning should stem from a universal general-purpose algorithm. This is supported
by observations of the brain circuitry showing that all neocortical regions are doing the same
task in a repeated structure of cells [24]. Therefore, there should be no need for a global
loss function (i.e., end-to-end training with high-level labels); local learning rules should
suffice (Section 2)

1.1 Predictive learning

Predictive learning refers to the brain’s ability to generate predictions about future events based on
past experiences. It is a fundamental process in human cognition that guides perception, action,
and thought [58, 31]. The discrepancy between the brain’s predictions and the observed perceptual

2



inputs forms a useful training signal for optimizing cortical functions: if a model can predict into the
future, it implies that it has learned the underlying causal structure of the surrounding environment.
Theories of cognition hypothesize that the brain only extracts and selects features from the previous
context that help in minimizing future prediction errors, thus making the sensory cortex optimized for
prediction of future input [51]. A measure of intelligence can be formulated as the ability of a model
to generate accurate, long-range future prediction [53].To this end, we design an architecture with the
main goal of minimizing the prediction error, also referred to as maximizing the model evidence in
Bayesian inference according to the free energy principle [19, 18].

Event segmentation theory (EST) suggests that desirable properties such as event segmentation
emerge as a byproduct of minimizing the prediction loss [59]. Humans are capable of chunking
streaming perceptual inputs into events (and chunking spatial regions into objects [14]) to allow for
memory consolidation and event retrieval for better future predictions. EST breaks down streaming
sensory input into chunks by detecting event boundaries as transient peaks in the prediction error. The
detected boundaries trigger a process of transitioning (i.e., shifting) to a new event model whereby
the current event model is saved in the event schemata, and a different event model is retrieved,
or a new one initialized to better explain the new observations. One challenge in implementing a
computational model of EST is encoding long-range dependencies from the previous context to
allow for contextualized representations and accurate predictions. To address this challenge, we
construct a hierarchy of event models operating at different time-scales, predicting future events
with varying granularity. This hierarchical structure enables the prediction function at any layer to
extract context information dynamically from any other layer, enhancing prediction during inference
(learning constraint 2). Recent approaches [42, 40, 41, 55] inspired by EST have focused on event
boundary detection using predictive learning. However, these methods typically train a single level
and do not support higher-order predictions.

1.2 Hierarchical event models

A single-level predictive model considers events that occur only at a single level of granularity
rendering them unable to encode long-range, higher-order causal relationships in complex events.
Conversely, a high-level representation does not contain the level of detail needed for accurately
predicting low-level actions; it only encodes a high-level conceptual understanding of the action.
Therefore, a hierarchy of event models is necessary to make predictions accurately at different levels
of granularity [37, 26]. It is necessary to continuously predict future events at different levels of
granularity, where low-level event models encode highly detailed information to perform short-term
prediction and high-level event models encode conceptual low-detail features to perform long-term
prediction.

EST identifies event boundaries based on transient peaks in the prediction error. To learn a hierarchical
structure, we extend EST: we use event models at the boundaries in a layer as inputs to the layer
above. The prediction error of each layer determines event demarcation, regulating the number of
inputs pooled and sent to the layer above. This enables dynamic access to long-range context for
short-term prediction, as required. This setup results in stacked predictive layers that perform the
same prediction process with varying timescales subjective to their internal representations.

1.3 Cross-layer communication

As noted in Section 1.2, coarsely detailed long-range contexts come from higher layers (the top-left
block of Figure 2), and highly detailed short-range contexts come from lower layers (the bottom-left
block of Figure 2), both of which are crucial to predict future events accurately. Therefore, the
prediction at each layer should be conditioned upon its own representation and those of the other
layers (Equation (2)). These two types of contexts can be derived by minimizing the prediction error
at different layers. Hence, making perfect predictions is not the primary goal of this model but rather
continuously improving its overall predictive capability.

1.3.1 Contextualized inference

A major challenge in current architectures is modeling long-range temporal dependencies between
inputs. Most research has focused on modifying recurrent networks [27, 10] or extending the
sequence length of transformers [11, 57] to mitigate the problem of vanishing and exploding gradients

3



Cross-layer
communication

CNN
encoder

CNN
encoder

CNN
decoder

Layer

Layer

Layer

Bottom-up optimization

Top-down optimization

Top-down inference

Bottom-up inference

Figure 2: Given a stream of inputs at any layer, our model combines them and generates a bottleneck
representation, which becomes the input to the level above it. The cross-layer communication could
be broken down into top-down and bottom-up contextualized inference (left) and optimization (right).

in long-range backpropagation through time [44]. Instead, we solve this problem by allowing the
multi-level context representations to be shared across layers during inference. It is worth noting
that this type of inference is rarely used in typical deep learning paradigms, where the top-down
influence only comes from backpropagating a supervised loss signal (i.e., top-down optimization).
Biologically-inspired architectures such as PredNet [39] utilize top-down inference connections to
improve low-level predictions (i.e., frames); however, these predictive coding architectures send
the prediction error signal from each low-level observation (i.e., each frame) to higher levels which
prevents the network from explicitly building hierarchical levels with varying degrees of context
granularity.

1.3.2 Contextualized optimization

Contextualized inference improves prediction, which is crucial for event boundary detection. However,
we also aim to learn rich, meaningful representations. In Section 1, we noted that a ‘parent’ event
could consist of multiple interchangeable low-level events. For instance, making a sandwich can
involve spreading butter or adding cheese. From a high-level, using either ingredient amounts to the
same parent event: “making a sandwich”. Despite their visual differences, the prediction network
must embed meaning and learn semantic similarities between these low-level events (i.e., spreading
butter and adding cheese).

We implement this through "contextualized optimization" of events (Section 2.2), where each layer
aligns the input representations from the lower level to minimize its own prediction loss using its
context. It must be noted that the contextualization from higher layers (Figure 2, bottom-right) is bal-
anced by the predictive inference at the lower levels (Figure 2, top-right), which visually distinguishes
the interchangeable events. This balance of optimization embeds meaningful representations into
the distinct low-level representations without collapsing the model. These representations can also
be utilized for event retrieval at different hierarchical levels (Figure 5). Unlike other representation
learning frameworks that employ techniques like exponential moving average (EMA) or asymmetric
branches to prevent model collapse [7, 21, 9], we ensure that higher layers remain grounded in
predicting lower-level inputs through bottom-up optimization. 1

2 Algorithm

Our goal is to incrementally build a stack of identical layers over the course of the learning, where
each layer communicates with the layers above and below it. The layers are created as needed and
are trained to function at different timescales; the output events from layer l become the inputs to the
layer (l+ 1), as illustrated in Figure 3. We describe the model and its connections for a single layer l,

1A more detailed literature survey is in the Appendix

4



YesNo

Layer    

Figure 3: A diagram illustrating information flow across stacked identical layers. Each layer compares
its prediction x̂t with the input xt received from the layer below. If the prediction error Lpred is
over a threshold µt−1, the current representation zt−1 becomes the input to the layer above, and the
working set is reset with xt; otherwise, xt is appended to the working set Xt

but the same structure applies to all the layers in the model (learning constraint 4). In what follows,
we describe the design of a mathematical model for a single predictive layer that is capable of (1)
encoding temporal input into unique semantic representations (the event model) contextualized by
previous events, (2) predicting the location of event boundaries (event demarcation), and (3) allowing
for communication with other existing layers in the prediction stack to minimize its own prediction
loss.

2.1 Temporal encoding

Let X (l) = {x(l)
(t−m), . . . ,x

(l)
t } be a set of m inputs to a layer l at discrete time steps in the range

(t −m, t] where each input xi ∈ Rd. First, we aim to generate an “event model”2 z(l) which is a
single bottleneck representation of the given inputs X (l). To accomplish this, we define a function
f (l) : Rm×d 7→ Rd with temporally shared learnable weights Φ(l) to evaluate the importance of each
input in X (l) for solving the prediction task at hand, as expressed in Equation (1).

z(l) = f (l)(X (l);Φ(l)) (1)

This event model will be trained to extract information from X (l) that is helpful for hierarchical
prediction. Ideally, the bottleneck representation should encode top-down semantics, which allow
for event retrieval and a bottom-up interpretation of the input to minimize the prediction loss of
the following input. The following subsection describes the learning objective to accomplish this
encoding task.

2.2 Temporal prediction

At the core of our architecture is the prediction block, which serves two purposes: event demarcation
and cross-layer communication. As previously mentioned, our architecture is built on the premise
that minimizing the prediction loss is the only needed objective function for hierarchical event
segmentation and representation learning.

Cross-layer communication allows the representation z(l) to utilize information from higher
{z(l+1), . . . , z(L)} and lower layers {z(1), . . . , z(l−1)} when predicting the next input at layer l,

2We use ‘event model’ and ‘representation’ interchangeably; terminologies defined in the appendix.

5



where L is the total number of layers. Let Zt = {z(1)
t , . . . , z

(L)
t } be a set of event models where each

element is the output of the temporal encoding function f at its corresponding layer as expressed in
Equation (1). Note that the same time variable t is used for representation across layers for simplicity;
however, each layer operates in its own subjective timescale. Let p(l) : RL×d 7→ Rd be a function of
Z to predict the next input at layer l as expressed in Equation (2)

x̂
(l)
t+1 = p(l)(Zt;Ψ

(l)) (2)

where Ψ(l) denotes the learnable parameters of the predictor at layer l. The difference between the
layer’s prediction x̂

(l)
t+1 and the actual input x(l)

t+1 is minimized, allowing the gradients to flow back
into the f (·) functions to modify each layer’s representation as expressed in Equation (3).

Lpred(x̂
(l)
t+1,x

(l)
t+1) = x̂

(l)
t+1 ∼ x

(l)
t+1

Φ∗(i),Ψ∗(l) ← argmin
Φ(i),Ψ(l)

Lpred(x̂
(l)
t+1,x

(l)
t+1) ∀ i ∈ {1 . . . L} (3)

The symbol ∼ represents an appropriate distance measure between two vectors.

Event demarcation is the process of detecting event boundaries by using the prediction loss, Lpred,
from Equation (3). As noted earlier, according to EST, when a boundary is detected, an event model
transition occurs, and a new event model is used to explain the previously unpredictable observations.
Instead of saving the event model to the event schemata at boundary locations as described in EST,
we use it as a detached input (denoted by sg[·]) to train the predictive model of the layer above it
(i.e., x(l+1) ≡ sg[z(l)]). We compute the running average of the prediction loss with a window of
size w, expressed by Equation (5), and assume that a boundary is detected when the new prediction
loss is higher than the smoothed prediction loss, as expressed by the decision function in Equation (4).

δ(x
(l)
t ;µ

(l)
t−1) =

{
1 if Lpred(x̂

(l)
t ,x

(l)
t ) > µ

(l)
t−1

0 otherwise
(4)

where the running average is given by

µ
(l)
t =

1

w

t∑
i=t−w

Lpred(x̂
(l)
i ,x

(l)
i ) (5)

2.3 Hierarchical gradient normalization

It is necessary to scale the gradients differently from conventional gradient updates because of the
hierarchical nature of the model and its learning based on dynamic temporal contexts. There are three
variables influencing the amount of accumulation of gradients:

1. The relative timescale between each layer is determined by the number of inputs. For
instance, let the event encoder in layer (l − 2) have seen a = |X (l−2)| inputs, that at layer
(l − 1) have seen b = |X (l−1)| inputs, and that at l have seen c = |X (l)| inputs. Then the
input to layer l is a result of seeing a total of (a · b · c). This term can then be used to scale
up the learning at any level l, expressed as

∏l
i=1|X (i)|.

2. The reach of influence of each level’s representation on a given level’s encoder is influenced
by its distance from another. For instance, if the input to f (l) comes from the levels
{l + 2, l + 1, l, l − 1, l − 2}, then the weight of learning should be centered at l and
diminish as the distance increases. Such a weight at any level l is given by α−|l−r| ∀ r ∈
{−2,−1, 0, 1, 2}. To ensure that the learning values sum up to 1 when this scaling is applied,
the weights are normalized to add up to 1 as α−|l−r|∑L

i=1 α−|l−i| .

3. The encoder receives accumulated feedback from predictors of all the layers; therefore the
change in prediction loss with respect to encoder parameters in any given layer should be
normalized by the total number of layers, given by 1

L .

6



The temporal encoding model can be learned by scaling its gradients as expressed by the scaled
Jacobian J ′

L(Φ) in Equation (6).

J ′
L(Φ) = C ◦ JL(Φ) =


c1,1

∂L(1)

∂Φ(1) . . . c1,L
∂L(1)

∂Φ(L)

...
. . .

...
cL,1

∂L(L)

∂Φ(1) . . . cL,L
∂L(L)

∂Φ(L)

 (6)

where

cl,r =
1

L︸︷︷︸
feedback

· α−|l−r|∑L
i=1 α

−|l−i|︸ ︷︷ ︸
reach of influence

·
l∏

i=1

|X (i)

︸ ︷︷ ︸
timescale

| (7)

Similarly, the temporal prediction model’s gradients are controlled with scaling factors as expressed
in Equation (8).

J ′
L(Ψ) = S ◦ JL(Ψ) =

[
s1

∂L(1)

∂Ψ(1) · · · sL
∂L(L)

∂Ψ(L)

]
(8)

where

sl =
1∑L

i=1 α
−|l−i|︸ ︷︷ ︸

reach of influence

·
l∏

i=1

|X (i)|︸ ︷︷ ︸
timescale

(9)

3 Implementation

3.1 Training details

We resize video frames to 128× 128× 3 and use a 4-layer CNN autoencoder (only for the first level)
to project every frame to a single feature vector of dimension 1024 for temporal processing. For
predictive-based models (STREAMER and LSTM+AL), we sample frames at 2 fps, whereas for
clustering-based models, we use a higher sampling rate (5 fps) to reduce noise during clustering. We
use cosine similarity as the distance measure (∼) and use the Adam optimizer with a constant learning
rate of 1e− 4 for training. We do not use batch normalization, regularization (i.e., dropout, weight
decay), learning rate schedule, or data augmentation during training. We use transformer encoder
architecture for functions f and p; however, ablations show different architectural choices. A window
size w of 50 inputs (timescale respective) is used to compute the running average in Equation 5, and
a new layer (l + 1) is added to the stack after layer (l) has processed 50K inputs.

3.2 Delayed gradient stepping and distributed learning

Unlike our proposed approach, conventional deep learning networks do not utilize high-level outputs
in the intermediate-level predictions. Since our model includes a top-down inference component, such
that a lower level (e.g., (l)) backpropagates its loss gradients into the temporal encoding functions of
a higher level (e.g., f (>l)), we cannot apply the gradients immediately after loss calculation at layer
(l). Therefore, we allow for scaled (i.e., Section 2.3 and Equation (8)) gradients to accumulate at all
layers, then perform a single gradient step when the highest layer L backpropagates its loss.

In our streaming hierarchical learning approach, event demarcation is based on the data (i.e., some
events are longer than others), posing a challenge for traditional parallelization schemes. We
cannot directly batch events as inputs because each layer operates on a different subjective timeline.
Therefore, each model is trained separately on a single stream of video data, and the models’
parameters are averaged periodically during training. We train eight parallel streams on different sets
of videos and average the models’ parameters every 1K frames.

3.3 Datasets and comparisons

In our training and evaluation, we use two large-scale egocentric datasets: Ego4D [12] and EPIC-
KITCHENS 100 [20]. Ego4D is a collection of videos with a total of 3670 hours of daily-life activity

7



Table 1: Event segmentation comparison of MoF and average IoU, evaluated on EPIC-KITCHENS.
None of the methods listed below requires labels.3 The column ‘Layers’ refers to the number of
layers evaluated against the ground truth: 1 reports the performance of the best layer in the prediction
hierarchy, whereas 3 uses the proposed Hierarchical Level Reduction algorithm for evaluation.

Method Backbone Pretrained Layers Protocol 1 Protocol 2
MoF ↑ IoU ↑ MoF ↑ IoU ↑

LSTM+AL [1] VGG16 [50] ImageNet [46] 1 0.694 0.417 0.659 0.442

TW-FINCH [47]
MTRN [60] EPIC 50 [12]

1 0.707 0.443 0.692 0.442
Offline ABD [16] 1 0.704 0.438 0.699 0.432
Online ABD [16] 1 0.610 0.496 0.605 0.487

STREAMER 4-layer CNN - 1 0.759 0.508 0.754 0.489
3 0.736 0.511 0.729 0.494

collected from 74 worldwide locations. EPIC-KITCHENS 100 contains 100 hours of egocentric
video, 90K action segments, and 20K unique narrations. We train our model in a self-supervised
layer-by-layer manner (using only RGB frames and inputting them exactly once) on a random 20%
subset of Ego4D and 80% of EPIC-KITCHENS, then evaluate on the rest 20% of EPIC-KITCHENS.
We define two evaluation protocols: Protocol 1 divides EPIC-KITCHENS such that the 20% test split
comes from kitchens that have not been seen in the training set, whereas Protocol 2 ensures that the
kitchens in the test set are also in the training set.

We compare our method with TW-FINCH [48], Offline ABD [16], Online ABD [16], and
LSTM+AL [1]. ABD, to the best of our knowledge, is the state of the art in unsupervised event
segmentation. Clustering-based event segmentation models do not evaluate on egocentric datasets
due to the challenges of camera motion and noise. Most clustering based-approaches use pre-trained
or optical-flow-based features, which are not effective when clustered in an egocentric setting. We
re-implement ABD due to the unavailability of official code and use available official implementations
for the other methods.

3.4 Evaluation metrics and protocols

Event segmentation The 20K unique narrations in EPIC-KITCHENS include different labels
referring to the same actions (e.g., turn tap on, turn on tap); therefore we cannot evaluate the labeling
performance of the model. We follow the protocol of LSTM+AL [1] to calculate the Jaccard index
(IoU) and mean over frames (MoF) of the one-to-one mapping between the ground truth and predicted
segments. Unlike LSTM+AL [1], which uses Hungarian matching to find the one-to-one mapping,
we design a generalized recursive algorithm called Hierarchical Level Reduction (HLR) which finds
a one-to-one mapping between the ground truth events and (a single-layer or multi-layer hierarchical)
predicted events. A detailed explanation of the algorithm can be found in Supplementary Material.

Representation quality To assess the quality of the learned representations, we use the large
language model (LLM) GPT 3.5 to first create a dataset of events labels ranked by semantic similarity
according to the LLM. In particular, we generate 1K data points sampled from EPIC-KITCHENS,
where each data point comprises a ‘query’ narration and a set of 10 ‘key’ narrations, and each key is
ranked by its similarity to the query. We then retrieve the features for each event in the comparison
and compute the appropriate vector similarity measure, and accordingly rank each key event. This
rank list is then compared with the LLM ranking to report the MSE and the Levenshtein edit distance
between them. Examples of LLM similarity rankings are available in Supplementary Material.

3.5 Experiments

We evaluate STREAMER’s performance of event segmentation and compare it with streaming and
clustering-based SOTA methods as shown in Table 1. Our findings show that the performance of a
single layer in STREAMER’s hierarchy (the best-performing layer out of three per video) and the

3Numbers in bold typeface indicate the highest performance; underline indicates the second highest

8



Ground

truth

STREAMER

TW-

FINCH

ABD

(online)

ABD

(offline)

Figure 4: Qualitative comparisons of event segmentation. The Gantt chart shows a more accurate
alignment of STREAMER’s predictions with the ground truth compared to other methods.

full 3-layer hierarchy outperform all other state of the art using IoU and MoF metrics on both testing
protocols. It is worth noting that all the other methods use a large CNN backbone with supervised
pre-trained weights (some on the same test dataset: EPIC-KITCHENS), whereas our model is trained
from scratch using random initialization with a simple 4-layer CNN. We show comparative qualitative
results in Figure 4. More qualitative results are provided in Supplementary Material.

Additionally, we evaluate the quality of event representation in Table 2. We show that self-supervising
STREAMER from randomly initialized weights outperforms most clustering-based approaches with
pre-trained weights; we perform on par with TW-FINCH when using supervised EPIC-KITCHENS
pre-trained weights. Qualitative results of retrieval for the first three nearest neighbors on all the
events in the test split are shown in Figure 5. More qualitative results are reported in Supplementary
Material.

Method Weights MSE ↓ LD ↓
Supervised

TW-FINCH EPIC 1.00 0.67
IN 1.018 0.710

Offline ABD EPIC 1.02 0.71

IN 1.005 0.708

Online ABD EPIC 1.00 0.70

IN 1.039 0.704

No supervison
STREAMER - 0.967 0.695

Table 2: Retrieval evaluation based on MSE
and the Levenshtein edit distance (LD) of
the features. All experiments are on EPIC-
KITCHENS.3

Query

Offline ABD Online ABD STREAMER

Query

Offline ABD Online ABD STREAMER

Ra
nk

 1
Ra

nk
 2

Ra
nk

 3

Ra
nk

 1
Ra

nk
 2

Ra
nk

 3

Figure 5: Qualitative examples of STREAMER’s re-
trieval of relevant events compared to other methods.

Ablations We investigate three main aspects of STREAMER (Table 3): (1) varying the architecture
of the temporal encoding model f , (2) varying the predictor function p, and (3) experimenting
with the ‘reach of influence’ parameter α in Equation 7. Our findings suggest that STREAMER is
robust to different architectural choices of f . Our experiments also illustrate the importance of the
cross-layer communication of p: simply taking the average of Z as the prediction performs worse
than applying a layer-specific MLP to the average; using a transformer to retrieve context from other
layers dynamically performs the best. Finally, adjusting the reach of influence by gradient scaling
improves the segmentation performance.

To determine the quality of the backbone features learned by STREAMER, we run ablations of
using our 4-layer pretrained CNN features on SoTA clustering methods. The results, plotted in
Figure 6, show significant improvement in the average mean over frames (MoF) performance of

9



event segmentation on the EPIC-KITCHENS dataset. This improvement could be attributed to the
robust representations learned by the encoder through hierarchical predictive learning. In particular,
since these features are learned through top-down optimization, the CNN backbone is able to predict
longer events at higher levels, thus improving the features and contextualization quality.

MoF ↑ IoU ↑ MoF ↑ IoU ↑ MoF ↑ IoU ↑
f GRU LSTM Transformer

Best 0.759 0.503 0.761 0.506 0.759 0.508
HLR 0.740 0.503 0.737 0.502 0.736 0.511

p Average Average + MLP Transformer
Best 0.742 0.479 0.749 0.493 0.759 0.508
HLR 0.725 0.486 0.728 0.494 0.736 0.511

α 1 2 3
Best 0.756 0.493 0.797 0.498 0.759 0.508
HLR 0.737 0.498 0.732 0.497 0.736 0.511

Table 3: Ablations studies showing the model’s MoF
and IoU for different values of α (Equation (7)); differ-
ent variants of the predictor p and the temporal encoder
f . ‘Best’ refers to the layer with the highest perfor-
mance.

FINCH ABD ABD online

60

70

80

70.7 70.4

61

72.8
74.5 74.03

M
oF

MTRN/EPIC50 Our CNN/Ego4D

Figure 6: Performance increase of SoTA
clustering-based methods when using
STREAMER’s pretrained 4-layer CNN
features.

4 Conclusion

In conclusion, we present STREAMER, a self-supervised and structurally evolving hierarchical
temporal segmentation model that is shown to perform well on egocentric videos and is robust
to hyperparameter variations. The learned representations are hierarchical in nature, representing
events at different levels of granularity and semantics. As part of this, we design a gradient scaling
mechanism necessary for such hierarchical frameworks with varying time-scales.

STREAMER adheres to several biologically-inspired constraints and exhibits the ability to process
long previous contexts in a streaming manner, seeing each input exactly once. Our method is designed
to be trained in a streaming manner which allows models to perform inference simultaneously during
training, appealing to applications that require real-time adaptability [32]. We demonstrate its
ability to perform event segmentation on large egocentric videos of varying perceptual conditions
and demonstrate the quality of the representations through event retrieval and similarity ranking
experiments.

Broader impact and limitations STREAMER requires large amounts of data to model complex
high-level causal structures, and the training time increases as a layer is added. However, as self-
supervised learning is becoming of increasing essence, new models must be able to continually learn
from large, unlabeled data from constantly evolving domains. STREAMER caters to such online
learning paradigms by fully exploiting large unlabelled video data. A much broader impact of this
method extends to multi-modal data and domains beyond egocentric videos.

10



Acknowledgements

This research was supported by the US National Science Foundation Grants CNS 1513126 and IIS 1956050.
The authors would like to thank Margrate Selwaness for her help with results visualizations.

References
[1] Sathyanarayanan N Aakur and Sudeep Sarkar. A perceptual prediction framework for self supervised event

segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1197–1206, 2019. 8, 19

[2] Hyemin Ahn and Dongheui Lee. Refining action segmentation with hierarchical video representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16302–16310, 2021.
18

[3] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, and Simon Lacoste-
Julien. Unsupervised learning from narrated instruction videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4575–4583, 2016. 18

[4] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid, and Josef Sivic.
Weakly supervised action labeling in videos under ordering constraints. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages
628–643. Springer, 2014. 18

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020. 20

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsu-
pervised learning of visual features by contrasting cluster assignments. Advances in neural information
processing systems, 33:9912–9924, 2020. 20

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9650–9660, 2021. 4, 20

[8] Charlotte Caucheteux, Alexandre Gramfort, and Jean-Rémi King. Evidence of a predictive coding hierarchy
in the human brain listening to speech. Nature Human Behaviour, pages 1–12, 2023. 20

[9] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 15750–15758, 2021. 4, 20

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014. 3

[11] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019. 3

[12] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric vision:
The epic-kitchens dataset. In Proceedings of the European Conference on Computer Vision (ECCV), pages
720–736, 2018. 7, 8

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 20

[14] James J DiCarlo and David D Cox. Untangling invariant object recognition. Trends in cognitive sciences,
11(8):333–341, 2007. 3

[15] Li Ding and Chenliang Xu. Weakly-supervised action segmentation with iterative soft boundary assignment.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6508–6516,
2018. 18

[16] Zexing Du, Xue Wang, Guoqing Zhou, and Qing Wang. Fast and unsupervised action boundary detection
for action segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3323–3332, 2022. 8, 18

11



[17] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage temporal convolutional network for action
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 3575–3584, 2019. 18

[18] Karl Friston. The free-energy principle: a unified brain theory? Nature reviews neuroscience, 11(2):127–
138, 2010. 3

[19] Karl Friston and Stefan Kiebel. Predictive coding under the free-energy principle. Philosophical transac-
tions of the Royal Society B: Biological sciences, 364(1521):1211–1221, 2009. 3

[20] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in 3,000 hours
of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18995–19012, 2022. 7

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. Advances in neural information processing systems,
33:21271–21284, 2020. 4, 20

[22] Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense predictive coding.
In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pages 0–0,
2019. 20

[23] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-augmented dense predictive coding for video
representation learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part III 16, pages 312–329. Springer, 2020. 20

[24] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence memory
in neocortex. Frontiers in neural circuits, page 23, 2016. 2

[25] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16000–16009, 2022. 20

[26] Geoffrey Hinton. How to represent part-whole hierarchies in a neural network. Neural Computation, pages
1–40, 2022. 3, 20

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997. 3

[28] Kjell Jørgen Hole and Subutai Ahmad. A thousand brains: toward biologically constrained ai. SN Applied
Sciences, 3(8):743, 2021. 2

[29] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal modeling for weakly supervised
action labeling. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pages 137–153. Springer, 2016. 18

[30] Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, and Hirokatsu Kataoka. Alleviating over-segmentation
errors by detecting action boundaries. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 2322–2331, 2021. 18

[31] Moritz Köster, Ezgi Kayhan, Miriam Langeloh, and Stefanie Hoehl. Making sense of the world: infant
learning from a predictive processing perspective. Perspectives on psychological science, 15(3):562–571,
2020. 2

[32] Sonu Shreshtha Kshitiz, Ramy Mounir, Mayank Vatsa, Richa Singh, Saket Anand, Sudeep Sarkar, and
Sevaram Mali Parihar. Long-term monitoring of bird flocks in the wild. 10

[33] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen Gall. Unsupervised learning of action classes
with continuous temporal embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12066–12074, 2019. 19

[34] Sateesh Kumar, Sanjay Haresh, Awais Ahmed, Andrey Konin, M Zeeshan Zia, and Quoc-Huy Tran.
Unsupervised action segmentation by joint representation learning and online clustering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20174–20185, 2022. 19

[35] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional
networks for action segmentation and detection. In proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 156–165, 2017. 18

12



[36] Colin Lea, Austin Reiter, René Vidal, and Gregory D Hager. Segmental spatiotemporal cnns for fine-
grained action segmentation. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pages 36–52. Springer, 2016. 18

[37] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review,
62, 2022. 2, 3, 20

[38] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video prediction
and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016. 20

[39] William Lotter, Gabriel Kreiman, and David D. Cox. Deep predictive coding networks for video prediction
and unsupervised learning. In ICLR (Poster). OpenReview.net, 2017. 4

[40] Ramy Mounir, Sathyanarayanan Aakur, and Sudeep Sarkar. Self-supervised temporal event segmentation
inspired by cognitive theories. In Advanced Methods and Deep Learning in Computer Vision, pages
405–448. Elsevier, 2022. 3

[41] Ramy Mounir, Roman Gula, Jörn Theuerkauf, and Sudeep Sarkar. Spatio-temporal event segmentation for
wildlife extended videos. In International Conference on Computer Vision and Image Processing, pages
48–59. Springer, 2021. 3

[42] Ramy Mounir, Ahmed Shahabaz, Roman Gula, Jörn Theuerkauf, and Sudeep Sarkar. Towards auto-
mated ethogramming: Cognitively-inspired event segmentation for streaming wildlife video monitoring.
International Journal of Computer Vision, pages 1–31, 2023. 3

[43] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023. 20

[44] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. Pmlr, 2013. 4

[45] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learning with rnn based fine-
to-coarse modeling. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 754–763, 2017. 18

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252, 2015. 8

[47] Saquib Sarfraz, Naila Murray, Vivek Sharma, Ali Diba, Luc Van Gool, and Rainer Stiefelhagen. Temporally-
weighted hierarchical clustering for unsupervised action segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11225–11234, 2021. 8

[48] Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Efficient parameter-free clustering using first
neighbor relations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 8934–8943, 2019. 8, 18

[49] Mike Zheng Shou, Stan Weixian Lei, Weiyao Wang, Deepti Ghadiyaram, and Matt Feiszli. Generic event
boundary detection: A benchmark for event segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8075–8084, 2021. 19

[50] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. 8

[51] Yosef Singer, Yayoi Teramoto, Ben DB Willmore, Jan WH Schnupp, Andrew J King, and Nicol S Harper.
Sensory cortex is optimized for prediction of future input. elife, 7:e31557, 2018. 3

[52] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv
preprint arXiv:2201.08239, 2022. 20

[53] Trond A Tjøstheim and Andreas Stephens. Intelligence as accurate prediction. Review of Philosophy and
Psychology, pages 1–25, 2021. 3

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023. 20

13



[55] Xiao Wang, Jingen Liu, Tao Mei, and Jiebo Luo. Coseg: Cognitively inspired unsupervised generic event
segmentation. IEEE Transactions on Neural Networks and Learning Systems, 2023. 3, 19

[56] Shuchen Wu, Noémi Élteto, Ishita Dasgupta, and Eric Schulz. Learning structure from the ground up—
hierarchical representation learning by chunking. Advances in Neural Information Processing Systems,
35:36706–36721, 2022. 19

[57] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet:
Generalized autoregressive pretraining for language understanding. Advances in neural information
processing systems, 32, 2019. 3

[58] Daniel Yon, Cecilia Heyes, and Clare Press. Beliefs and desires in the predictive brain. Nature Communi-
cations, 11(1):4404, 2020. 2

[59] Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. Event
perception: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007. 1, 3, 19, 21

[60] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reasoning in videos.
In Proceedings of the European conference on computer vision (ECCV), pages 803–818, 2018. 8

14



Supplementary Material

A Hierarchical level reduction

Since the ground truth annotations are provided as a single level of event annotations, it is not possible
to compare them with rich hierarchical event segmentation predicted by STREAMER. For a given
video and its ground truth annotations and the predicted annotations, several one-to-one mappings
between them exist; we desire to find the one with the highest average IoU. In addition, it is necessary
to ensure that the resulting one-to-one mapping does not contain temporally overlapping predicted
annotations.

To solve this optimization problem, we design a hierarchical level reduction (HLR) algorithm that
reduces multiple layers of hierarchical events down to a single layer by selecting prediction events
that maximize IoU with the ground truth while ensuring no overlap of events during reduction. We
design HLR as a recursive greedy optimization strategy. At each recursive level of Algorithm 1,
multiple ground truth events are competing to be assigned to a single predicted event, so HLR returns
the best of the two options (line 18): (1) assigning the event to the ground truth with the highest IoU,
and (2) averaging the outputs of same recursive function over all children of the predicted event.

Algorithm 1 : Hierarchy Level Reduction. Given a list of the highest level annotations AL from
the predicted hierarchy and the ground truth annotations G, this algorithm finds the optimal match
of the predicted annotations across the hierarchy with the ground truth while avoiding any temporal
overlap between events.
Input:
AL: a list of predicted events at the highest level L
G: a list of ground truth event annotations

Output:
The overall IoU of the resulting hierarchy reduction

1: procedure FINDMATCHES(Al,G)
2: for all g ∈ G do
3: max_ious← {IoU(g,a) | ∀ a ∈ Al}
4: a∗ ← argmax (max_ious)
5: a∗.matches.push(g)
6: a∗.ious.push(ious[a∗])
7: end for
8: for all a ∈ Al do
9: FINDMATCHES(a.children, a.matches)

10: end for
11: end procedure

12: procedure REDUCELEVELS(a)
13: if |a.matches| = 1 then return a.ious[0]
14: end if
15: h← max(a.ious)
16: if |a.children| = 0 then return h
17: else
18: return max(h,mean({REDUCELEVELS(c)) | ∀ c ∈ a.children})
19: end if
20: end procedure

21: FINDMATCHES(AL,G)
22: return mean({REDUCELEVELS(a) | ∀ a ∈ AL})

15



For models generating a hierarchical structure of events, the proposed Hierarchical Level Reduction
(HLR) algorithm could be applied for comparison and evaluation. On the other hand, methods that
generate a single layer of event segments can directly compare to our 1-layer evaluation reported in
Table 1.

B Qualitative results

This section contains more qualitative results of STEAMER. A main argument of our paper is
that the ground truth annotations (narrations) of events in EPIC-KITCHENS are not consistent
and are sometimes redundant. Figure 7 illustrates one such case. Figure 8 shows an example of
STREAMER’s hierarchical annotations. We refer the reader to the supplementary video for more
examples.

Ground truth

Low level

High level

Still opening 
bagStill opening bagOpen bag

STREAMER’s 
output

Figure 7: This figure illustrates the effect of inconsistent ground truth on the model’s evaluation
performance. In this segment of a video from EPIC-KITCHENS, the ground truth consists of the
same narration annotated thrice in succession (open bag ■, still opening bag ■, still opening bag ■).
Although our model could correctly detect this narration to its entirety (the middle row ■), its IoU is
low, thus affecting its overall evaluation score. Such inconsistencies and redundancies are prevalent
throughout the dataset.

Given a video snippet of an event (which we will refer to as a ‘query’), can the model retrieve
semantically similar video snippets from across the dataset? To determine this, we perform event
retrieval by representation: we first generate a representation for a random query which is then
compared with the representations of events from all the videos in the dataset. Based on an appropriate
similarity measure as required by the model, we select the top-few nearest matches and qualitatively
examine the result.

Figure 9 shows an example of the top-three similar matches compared with ABD. Figure 10 shows
more examples of STREAMER’s event retrieval, displaying the best of the top three matches.
Distance in feature space is calculated by the cosine similarity for our method and the Euclidean
distance for ABD.

C Retrieval: quantitative analysis

In addition to the qualitative results, we perform more quantitative experiments on retrieval. As
described in the main text of this work, we use the large language model (LLM) GPT 3.5 to create
a dataset of event labels from EPIC-KITCHENS ranked by the semantic similarity. The dataset
contains 1K comparisons where each comparison comprises a ‘query’ narration and a set of 10 ‘key’
narrations, and each key is ranked by its similarity to the query according to the LLM. The keys are
ranked according to the distance of their representations in the feature space. The two rank lists are
compared based on 1) Mean Squared Error (MSE) and 2) the Levenshtein edit distance. Listing 1

16



Low level

High level

STREAMER’s 
output

Figure 8: Given a sequence of temporal perceptual inputs (e.g., video), our model learns to represent
them at varying levels of detail. This figure illustrates the predictions made by our model on a video
from EPIC-KITCHENS at three levels: the highest level (the top row in the bar chart) captures a
high-level, low-detail concept (seasoning vegetables ■); the middle row captures events at relatively
finer detail (mixing vegetables ■ and adding salt ■); and the last row captures the events in much
more granular detail. Video available as supplementary.

shows the prompt used to generate the dataset and Table 5 shows some examples of LLM similarity
rankings in the created dataset.

1 prompt = f"""
2 Given a list of phrase pairs , compute the semantic similarity

↪→ between the phrases in each pair and rank in the continuous
↪→ range of 0 to 10 where 10 is most similar.

3

4 The list is: {queries}
5

6 Just return a list of decimal numbers. No explanation .\n"""

Listing 1: The LLM prompt used to generate the dataset for retrieval quality evaluation (ranks divided
by 10 to be in (0, 1))

D Implementation details

Let k be the total number of narrations in the ground truth for a given video plus one (for the
background).

TW-FINCH, LSTM-AL The official implementations of TW-FINCH and LSTM-AL are available
on GitHub (TW-FINCH, LSTM-AL). We use the provided code to run our comparisons.

For LSTM-AL, the required number of clusters for each video being clustered was set to k. For
LSTM-AL, the order of peak detection was set to 2 frames (sampled at 2 fps) to optimize the best
results.

ABD ABD, both offline and online clustering versions, had to be re-implemented based on the
implementation details of the paper. For offline clustering, the window size was set to 5, the order of
non-max suppression to 10, and the average number of actions to k. For the online clustering variant,
the window size was set to 15, the order of non-max suppression to 40, and the lower quantile to 0.25
as prescribed by the paper.

17

https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH
https://github.com/saakur/EventSegmentation


Query

Offline ABD Online ABD STREAMER

Query

Offline ABD Online ABD STREAMER

Ra
nk

 1
Ra

nk
 2

Ra
nk

 3

Ra
nk

 1
Ra

nk
 2

Ra
nk

 3

Figure 9: A comparison of top-three nearest neighbors retrievals with ABD.

E Literature survey

In this section we provide a more detailed review of related works. We start by discussing single-
layered event segmentation and boundary detection works, followed by a summary of existing ideas,
inspirations and implementations of hierarchical models. We end our survey by relating to successful
prediction-based models for representation learning.

E.1 Event segmentation

Supervised event segmentation One effective approach to event segmentation is to label every
frame with a class then fully supervise parameterized learning models (e.g., neural networks) to
classify each frame. This eventually groups frames into events; however, a major drawback of these
methods is the cost of fine-grained frame annotations. Additionally, fully supervised methods fail to
generalize well due to the labels being in a closed set. Different model variations and approaches
have been tested, such as using an encoder-decoder temporal convolutional network (ED-TCN) [35],
multi-stage temporal convolution network (MS-TCN) [17], or a spatiotemporal CNN model [36].
HASR [2] refines the output predictions of existing segmentation models by utilizing segment-level
representations, whereas ASRF [30] improves the segmentation performances by regressing the
action boundary probability using representations with a wide temporal receptive field.

Weakly-supervised event segmentation In order to avoid the costly process of direct frame
labeling, researchers have developed weakly-supervised methods that utilize metadata (e.g., captions
or narrations) to guide the training process instead of relying on explicit training labels. These
approaches have been explored in various studies [45, 4, 15, 29, 3], aiming to reduce the dependency
on labeled data. However, one limitation is that the required metadata may not always present in the
dataset, which restricts their applicability to many real-world scenarios.

Unsupervised event segmentation To fully eliminate the need for labeling, some approaches [48,
16] attempt to cluster high-level features of frames, which also eliminates training. The segmentation

18



Query QueryBest match Best match

Figure 10: Random queries and the corresponding best matches, chosen from a set of top-three
candidates for each query on EPIC-KITCHENS.

performance is directly proportional to the quality of features used in clustering. Therefore when
using optical flow-based features, performance will suffer if applied to moving camera videos
(e.g., egocentric). Note that in our comparisons we provide these approaches with EPIC-KITCHENS
supervised features to enhance their performance. Other methods, such as CTE [33] and TOT [34]
utilize the order of actions and decode consistent labels using the Viterbi algorithm.

Event boundary detection Other works (more similar to ours) have formulated the segmentation
problem as a boundary detection problem. Generic Event Boundary Detection (GEBD [49]) proposed
to use the difference in context embedding before and after each frame to detect boundaries as peaks.
Other works [1, 55] use inspiration from [59] to detect boundaries as peaks in the prediction error
signal. These approaches use only low-order prediction (based on pretrained supervised high-level
features) to form a single layer of event representation and fail to perform higher-order predictions.

E.2 Hierarchical structure modeling

Chunking Recent work [56] provide a way to chunk data to learn a hierarchical structure by
explicitly forming a dictionary of patterns at each level. These methods can be challenging to scale
up to real data due to the enormous number of event possibilities to be stored, thus demonstrated only
on toy dataset examples of text and vision. Additionally, quantized inputs are required to form these

19



patterns. In contrast, STREAMER does not save patterns but uses learnable networks to encode and
predict future inputs. We demonstrate our results on challenging egocentric data.

GLOM and H-JEPA Hinton [26] proposed an idea paper for “GLOM”, which attempts to build a
part-whole hierarchy by assuming a cortical column for each patch in an image, where each layer in
every column receives contributions from nearby columns at higher and lower levels. The hierarchy,
or parse tree, is formed by forcing consensus laterally between each level, of each column, using a
similarity function. Although we share the same motivation with GLOM, we significantly differ in
execution. Instead of using a similarity function to force forming “islands of agreement”, STREAMER
relies on prediction error to discover events and explicitly send their representation to higher level in
a dynamically evolving structure (i.e., layer-by-layer). Perhaps we share more algorithmic similarity
with LeCun’s [37] idea paper, “H-JEPA”. The paper proposes to use a hierarchical joint embedding
predictive architecture which uses self-supervised predictive learning to predict at different timescales
at various levels in the hierarchy. This is also supported by evidence from neuroscience [8] suggesting
the importance of long-range forecast representations in improving brain-mapping functionality.
H-JEPA suggests that higher levels predict further into the future than lower levels; however, it does
not provide a working algorithm for segmentation or cross-layer communication. It is to be noted
that both works by Hinton and LeCun only provide ideas and not algorithms/results.

E.3 Predictive modeling

Natural language processing Self-supervised prediction of inputs has shown tremendous success
in the field of NLP, specifically masked language models. Recent large language models [13, 5, 52, 54]
are based on the core idea of using context to predict missing inputs. The guiding principle of training
these models is that successfully predicting missing inputs implies encoding good representation of
the context.

Computer vision A similar principle is used to train image representation learning models. Masked
Auto Encoder (MAE [25]) is trained to predict missing image patches using a transformer architec-
ture, thus performing better on downstream tasks using the enhanced representations. A family of
representation learning methods [21, 6, 9, 7, 43] learn useful representations by predicting augmented
views of the input. These augmented views attempt to simulate real-world augmentations (e.g., crop-
ping simulates a moving camera), therefore these methods may also be viewed as predicting future
frames in a video sequence. Similar ideas can also be seen applied to video representations learning.
PredNet [38] attempts to implement cognitively-inspired predictive coding theories for future frame
prediction. Other methods [22, 23] use dense predictive coding to learn video representations for
retrieval and fine-tuning on downstream tasks. Unlike STREAMER, these methods do not generalize
to learning hierarchical representations using predictive learning.

E.4 Relevant datasets

STREAMER is a self-supervised architecture that relies on predictive learning for hierarchical
segmentation. In our model, higher-order predictive layers receive sparser learning signals than
lower-order layers, because the first layer directly predicts frames, whereas higher layers only receive
events that cannot be predicted at lower levels. Short videos do not allow for higher order predictions
and learning long-term temporal dependencies. Therefore, training higher levels in the hierarchy
requires a large dataset (i.e., total number of hours) and longer videos (i.e., average video duration) in
order to model high-level events. These requirements constraint the choice of datasets on which we
can run and evaluate STREAMER.

Based on our review of available datasets for both egocentric and exocentric settings, as shown in
the Table 4, many of the available datasets, typically used in event segmentation, do not provide
long enough videos. MovieNet and NewsNet are two large datasets with long videos but have not
yet been released to the public. In addition, MovieNet does not contain action segments; it contains
coarse scene segments. The only available options to train and evaluate STREAMER is large-scale
egocentric datasets, where the available datasets provide large enough scale (i.e., total number of
hours) with a long average duration per video for streaming and high-order temporal prediction.

20



Table 4: Various egocentric and exocentric datasets with total hours of recording and average duration
statistics. ∗ Not released as of this writing.

Dataset Total Hours Avg. Duration (min) Large Datasets Long Videos
E

go
ce

nt
ri

c Ego4D 3670 23 ✓ ✓
EPIC 55 55 10.5 ✓ ✓
EPIC 100 100 8.5 ✓ ✓
GTEA 0.58 1.23 ✗ ✗

E
xo

ce
nt

ri
c

Breakfast Action 77 2.3 ✓ ✗
YouTube Instructional 5 2 ✗ ✗
Hollywood Extended 3.7 0.23 ✗ ✗
50 Salads 4.5 4.8 ✗ ✗
FineGym 708 0.91 ✓ ✗
ActivityNet Captions 849 2.5 ✓ ✗
MovieNet∗ 2174 117 ✓ ✓
NewsNet∗ 946 57 ✓ ✓

F Glossaries

• Contextualized inference In this work, contextualized inference refers to the ability of the
model to predict a future event by using contextual representations at various levels of the
event hierarchy.

• Contextualized optimization Contextualized optimization refers to the ability of a layer to
optimize the representations of other layers through its own prediction loss.

• Event An event is defined as “a segment in time that is perceived by an observer to have a
beginning and an end” [59]

• Event model In cognitive psychology literature, an event model is defined as “a representa-
tion of what is happening now, which is robust to transient variability in the sensory input”
[59]; in this work, we use ‘event model’ and ‘representation’ interchangeably.

• Event demarcation, event segmentation Event demarcation is the process of detecting
event boundaries by using the prediction loss, whereas event segmentation is the task
of segmenting videos (or sensory inputs) into meaningful events. In other words, event
segmentation is the goal, and event demarcation is one way to achieve it: event segmentation
could be performed in other ways, such as labeling each frame in a supervised framework.

• Predictive learning Predictive learning refers to the brain’s ability to generate predictions
about future events based on past experiences.

• Segmentation boundary The end of an event and the beginning of the next is a segmentation
boundary, marking an event transition.

21



Table 5: This table shows some examples of the similarity of narrations of ‘key events’ to a ‘query event’ as determined by GPT 3.5 (text-davinci-003). A 1
scoring means most similar, and a 0 least.

Query Keys
open
bottle

stop pro-
cessor

open
freezer

enter
kitchen

open door pick up
bowl

open
fridge

clean
kitchen
counter

move
cheese

put down
sausage

put down
pan

0.25 0.8 0.5 0.7 0.4 0.85 0.45 0.3 0.45 0.4

open
drawer

pick up
stone

check
chicken

still clean-
ing chop-
ping board

shake off
courgette

rinse pot pick up close dish-
washer

take out
pasta

still scoop
the kiwi

pick up
something

0.75 0.55 0.65 0.65 0.7 0.8 0.7 0.85 0.65 0.8

wash two
leaves

wash knife put down
pepper

rinse pan put away
spoon

wash lid grab bag get kettle pour olive
oil in pan

stir cour-
gette

pick up
forks

0.75 0.45 0.85 0.65 0.95 0.35 0.45 0.75 0.65 0.55

wash pot wash pan open jar open cup-
board

pick up
mug

pick up
aubergine

pour milk
into cereal
bowl

rinse cloth lay
aubergine

close
fridge

open cup-
boards

0.85 0.65 0.75 0.8 0.85 0.9 0.85 0.8 0.75 0.75

pick up
bowl

turn off
tap

put down
salt

cut tomato stir onion pick up
bowl

stir
chicken

place pan grab salt
container

open cup-
board

pour milk
into glass

0.75 0.55 0.45 0.65 1.0 0.7 0.6 0.65 0.5 0.65

get
chopping
board

move
chair

open
washing
machine
door

rinse
hands

check oil pour deter-
gent

rinse
hands

check tem-
perature

put bread
onto tray

wash
chopping
board with
sponge

select
schedule

0.25 0.5 0.8 0.3 0.5 0.8 0.6 0.7 0.9 0.4

put pot turn on tap clean
cooker

still rins-
ing spatula

put colan-
der on pot

put fork in
bowl

put lid on
pot

put lid on
sun-dried
tomatoes

rinse
hands

wipe down
counter

move
mouse

0.75 0.45 0.55 0.85 0.65 0.95 0.45 0.55 0.65 0.45

open
drawer

take box pick up jar close
drawer

rinse mug close hob
cover

scrape
tomato

lift plate wash knife get plastic
trash bag

check
timer

0.75 0.85 0.95 0.65 0.75 0.65 0.75 0.85 0.65 0.85

close jug shake cof-
fee maker

pick up
plate

take nap-
kin

get weigh-
ing

still taking
skin off
meat with
knife

pick up lid close tap get chop-
ping board

put down
spoon

put down
bowl

0.25 0.5 0.5 0.25 0.05 0.75 0.9 0.5 0.75 0.75

wash bowl wash cof-
fee pot

put down
knife

put down
detergent

throw
away
onion skin

turn on tap rinse chop-
ping block

mix nuts
with oats

dry hands place
sponge
away

open tap

0.95 0.65 0.85 0.45 0.95 0.85 0.65 0.95 0.85 0.95

22


	Computational theory
	Predictive learning
	Hierarchical event models
	Cross-layer communication
	Contextualized inference
	Contextualized optimization


	Algorithm
	Temporal encoding
	Temporal prediction
	Hierarchical gradient normalization

	Implementation
	Training details
	Delayed gradient stepping and distributed learning
	Datasets and comparisons
	Evaluation metrics and protocols
	Experiments

	Conclusion
	Hierarchical level reduction
	Qualitative results
	Retrieval: quantitative analysis
	Implementation details
	Literature survey
	Event segmentation
	Hierarchical structure modeling
	Predictive modeling
	Relevant datasets

	Glossaries

