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Abstract

Recent advances in machine learning have shown that Reinforcement Learning
from Human Feedback (RLHF) can improve machine learning models and align
them with human preferences. Although very successful for Large Language Mod-
els (LLMs), these advancements have not had a comparable impact in research for
autonomous vehiclesÐwhere alignment with human expectations can be impera-
tive. In this paper, we propose to adapt similar RL-based methods to unsupervised
object discovery, i.e. learning to detect objects from LiDAR points without any
training labels. Instead of labels, we use simple heuristics to mimic human feedback.
More explicitly, we combine multiple heuristics into a simple reward function that
positively correlates its score with bounding box accuracy, i.e., boxes containing
objects are scored higher than those without. We start from the detector’s own pre-
dictions to explore the space and reinforce boxes with high rewards through gradient
updates. Empirically, we demonstrate that our approach is not only more accurate,
but also orders of magnitudes faster to train compared to prior works on object
discovery. Code is available at https://github.com/katieluo88/DRIFT.

1 Introduction

Self-driving cars need to accurately detect the moving objects around them in order to move safely.
Most modern 3D object detectors rely on supervised training from 3D bounding box labels. However,
these 3D bounding box labels are hard to acquire from human annotation. Furthermore, this supervised
approach relies on a pre-decided vocabulary of classes, which can cause problems when the car
encounters novel objects that were never annotated.

Our prior work, MODEST [55], introduced the first method to train 3D detectors without labeled data.
In that work, we point out that instead of specifying millions of labels, one can succinctly describe
heuristics for what a good detector output should look like. For example, one can specify that detector
boxes should mostly enclose transient foreground points rather than background ones; they should
roughly be of an appropriate size; their sides should be aligned with the LiDAR points; their bottom
should touch the ground, etc. Although such heuristics are great for scoring a set of boxes proposed
by a detector, training a detector on them is hard for two reasons: First, these heuristics are often
non-linear, non-differentiable functions of the detector parameters (for example, a slight shift of
the box can cause all foreground points to fall off.) Second, existing object detection pipelines use
carefully designed training objectives that heavily rely on labeled boxes, that are difficult to modify
(for example, PointRCNN [40] infers point labels from box labels and uses these for training). For
these reasons, MODEST had to utilize an admittedly slow self-training pipeline to incrementally
incorporate common-sense heuristics.
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Figure 1: Detection performance on Lyft test data as a function of training epochs. DRIFT
demonstrates significantly stronger performance and faster learning. With only 9 hours of training, it
outperforms both baselines that have been trained for days.

In this paper, we propose a new reward ranking based framework that utilizes these common-sense
heuristics directly as a reward signal. Our method relies on finetuning with reward ranking [31, 27,
13, 33], where given an initialized object detector, we finetune it for a predefined set of desirable
detection properties. This bypasses the need to encode heuristics as differentiable loss functions and
avoids the need to hand-engineer training paradigms for each kind of object detector. Recent success
with reinforcement learning from human feedback (RLHF) has proven effective in improving machine
learning models Ðin particular, large language models (LLMs)Ð and aligning them with human
preferences [31, 27]. However, these advancements have not been applicable to detection-based vision
models that are trained with per-instance regression and are difficult to view under a probabilistic
framework. To address this challenge, we utilize insights from reward ranked finetuning [13], a
non-probabilistic paradigm designed for finetuning of LLMs, which inspired us to develop a similar
framework for object discovery.

We refer to our method as Discovery from Reward-Incentivized Finetuning (DRIFT). DRIFT does
not require labels, and instead uses the Persistency Prior (PP) score [55, 3] as a heuristic to identify
dynamic foreground points based on historical traversals. These foreground points give rise to rough
(and noisy) label estimates [55], which we use to pre-train our detector. The resulting detector
performs poorly but suffices to propose many boxes of roughly the right sizes that we can use for
exploration. To facilitate reward ranked finetuning, we first propose a reward function to score boxes.
Ideally, only boxes that tightly contain objects (e.g. a car) should yield high rewards. We achieve
this by combining several simple heuristics (e.g. high ratio of foreground points) and assuming some
rough knowledge about the object dimensions. During each iteration of training, DRIFT performs
the following steps: 1. the object detector proposes many boxes in a given point cloud scene; 2. the
boxes are ªjitteredº through random perturbations (as a means of exploration); 3. the boxes are scored
according to the reward function; 4. the top-k% non-overlapping boxes are kept as pseudo-labels for
gradient updates.

We evaluate DRIFT on two large, real-world datasets [12, 24] and show that we significantly out-
perform prior self-training methods both in efficiency and generalizability. Experimental results
demonstrate that using reward ranked finetuning for object discovery under our framework can
quickly converge to a solution that is on par with out-of-domain supervised object detectors within a
few training epochs, suggesting that DRIFT may point towards a more general unsupervised learning
formulation for object detectors in an in-the-wild setting.

2 Related Works

3D Object Detection. 3D object detection models usually take in LiDAR point clouds or multi-view
images as input and aim to produce tight bounding boxes that describe nearby objects [9, 52, 26, 39,
40, 53, 54, 34]. Existing methods generally assume the supervised setting, in which the detector is
trained with human-annotated bounding boxes. However, annotated data are often expensive to obtain
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and limited in quantity. Furthermore, in tasks such as self-driving, environments can have highly
varied conditions, and detectors with supervised training often require adaptation with additional
labels from the new environment [47].

Unsupervised Object Discovery. The unsupervised object discovery task aims to identify and
localize salient objects without learning from labels. Most existing works perform discovery from 2D
images [8, 14, 45, 36, 2, 43, 48] or depth camera frames [21, 23, 17, 25, 20, 1]. Discovery from 3D
LiDAR point clouds is underexplored. [49] performs joint unsupervised 2D detection and 3D instance
segmentation from sequential point clouds and images based on temporal, motion and correspondence
cues. MODEST [55] pioneers in performing label-free 3D object detection. It exploits high-level
common sense properties from unlabeled data and bootstraps a dynamic object detector via repeated
self-training. Despite promising performance, it requires excessive training time, which makes it
difficult for practical use and development.

Reward Fine-Tuning for Model Alignment. Recently, foundation models [6, 29, 11, 44, 35, 37]
have been shown to achieve strong performance in diverse tasks [5, 50], but sometimes produce
outputs that do not align with human values [18, 30, 10]. A line of research aims to improve model
alignment under the paradigm of Reinforcement Learning with Human Feedback (RLHF). Some
pioneering works [41, 31, 33] learn a reward model and train foundation models with Proximal Policy
Optimization (PPO) [38], but PPO is often expensive and unstable to train, and more importantly,
requires a probabilistic output on the action space. This makes it hard to use for the object detection
setting, which primarily uses regression-based losses. Reward ranked finetuning [27, 13] is a
simplified alternative paradigm. It samples from a foundation model itself, filters generations using
the reward model, and conducts supervised finetuning with the filtered generations.

3 Discovery from Reward-Incentivized Finetuning

Our framework, DRIFT, is inspired by the recent success of reward ranked finetuning methods for
improving model alignment in the NLP community [13, 27]. We show that a similar approach can be
adapted for 3D object discovery.

Problem Setup. We wish to obtain a dynamic object detection model on LiDAR data, i.e., a model to
detect mobile objects in the LiDAR point clouds, without human annotations. Let P ∈ RN×3 denote
a N -point 3D point cloud captured by LiDAR from which we wish to discover objects. We assume
inputs of unlabeled point clouds collected by a car equipped with synchronized sensors including
LiDAR (for point clouds) and GPS/INS (for accurate position and orientation). Since no annotation
is involved, such a dataset is easy to acquire from daily driving routines; we additionally assume it to
cover some locations with multiple scans at different times for computation of PP-score.

Dynamic Point Proposals. DRIFT leverages prior works that use unsupervised point clouds to
extract foreground-background segmentation proposals. While many works [22, 3] have promising
dynamic foreground segmentation results, in this work we rely on point Persistency Prior score
(PP-score) [55] for its accuracy and leave the extension of other proposal methods to future work.
For the purpose of this research, dynamic foreground points constitute LiDAR points reflecting off
traffic participants (e.g. cars, bicyclists, pedestrians).

Using historical LiDAR sweeps collected at nearby locations of our point cloud P , the PP-score [3, 55]

τ(P ) ∈ [0, 1]
N

can provide an informative estimate on the per-point persistence, i.e., whether a point
belongs to persistent background or not. The PP-score is defined as the normalized entropy over past
point densities, based on the assumption that background space such as ground, trees, and buildings
tend to exhibit consistent point densities across different LiDAR scans (high entropy), whereas points
associated with mobile objects exhibit high density only if an object is present (low entropy).

3.1 Rewarding ªGoodº Dynamic Boxes

We first establish a reward function that evaluates the quality of a set of bounding boxes for dynamic
objects in a scene. We denote a set of M dynamic objects bounding boxes as B = {b1, . . . , bM},
where each bounding box bi is represented as an upright box with parameters (xi, yi, zi, wi, li, hi, θi),
defining the box’s center, width, length, height, and z-rotation, respectively. The scoring function R
scores the validity of the bounding boxes, given the observed point cloud P . In practice, a reward
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Figure 2: Illustration of the reward components. The reward encourages boxes that have proper
shape and alignment, and capture more dynamic points and few background points.

function that is positively correlated with IoU should suffice. We present our proposed reward
function which aims to capture only dynamic points, filter nonsensical boxes, enforce correct size,
and encourage proper box alignment to the captured dynamic points.

Shape Prior Reward. We enforce a box to not deviate significantly from a set of prototype sizes

S = {(w1, l1, h1), . . . , (wC , lC , hC)} (Fig. 2 left). We assume the shape prior distribution is a
mixture of C isotropic Gaussians with mixture weights πi, diagonal variances Σi, and corresponding

means as (wi, li, hi). These low-level statistics may be acquired directly from the dataset, or from
vehicle specs and sales data available online [47]. In practice, we scale the mixtures such that the
probabilities at the Gaussian means are equal for stability reasons. With this, the shape prior reward
for box b is computed as:

Rshape(b) = PS(b). (1)

Alignment Reward. Due to the nature of LiDAR sensing, the points will mostly fall on the lateral

surfaces of an object. Therefore, a well-formed box should have dynamic points approximately close
to the boundary of a box (Fig. 2 middle). As [55] shows, PP-score allows for easy separation of
dynamic and persistent background points. Let Pdyn denote the set of dynamic points, and let Pbg

be that of background points. In practice, since the PP-score is an approximation of ground-truth
persistence, we define Pdyn = {p|τ(p) < 0.6} and Pbg = {p|τ(p) ≥ 0.9}.
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Figure 3: Distribution of dynamic points
near ground truth bounding boxes. We
observe that dynamic points near bounding
boxes fall in an approximate Gaussian distri-
bution centered near box edges (sp,b ≈ 0.8).

Given a box b, we denote all points within and close to
the box as O(b). Only points within O(b) contribute to
the reward of b. In practice, we let O(b) consist of all
points within a ×2 scaled up version of b (with identi-
cal center and rotation). To score a box b, we design
a reward function that identifies how ªtypicalº the dy-
namic points within O(b) are. For each dynamic point
p ∈ O(b) ∩ Pdyn, we compute the scaling factor sp,b
required so that the rescaled box touches p with one of
its sides; i.e., if a point is inside the box, the box would
have to be scaled down (sp,b < 1) to touch the point, if
the point is outside it must be scaled up (sp,b > 1). We
assume that sp,b roughly follows a Gaussian distribution
centered near the box boundary, and visualize the actual
distribution in Fig. 3.

We define our reward as the likelihood under this Gaussian
distribution over scaling parameters. We approximate it as a Gaussian with hyper-parameters mean
µscale and a variance σscale. Our reward is the product of the probability of each point in O(b):

Ralign(b) =
∏

p∈o(b)∩Pdyn

N (sp,b|µscale, σscale). (2)

Common Sense Heuristics and Filtering. Lastly, a proper bounding box must capture the dynamic

points, and avoid capturing the background points (Fig. 2, right). This heuristic can be encoded by a
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simple weighted point count for each bounding box b:

Rcount(b) = λdyn · |Pdyn ∩ O(b)| − λbg · |Pbg ∩ O(b)|.

Intuitively, it assigns a reward in proportion to the number of dynamic points captured by the box,
and a penalty in proportion to the number of background points captured.

Furthermore, boxes violating common sense should be assigned a low reward. We filter boxes that
are too high up or too low from the ground, including those with too few dynamic points, or are too
small or too large by directly assigning a reward of 0. In practice, we filter boxes that contain fewer
than 4 dynamic points, or that have more than 80% persistent points, similar to [55].

In summary, the reward function is designed to be

R(b) =

{

λshape ·Rshape(b) + λalign ·Ralign(b) +Rcount(b) if obeys common sense,

0 otherwise.
(3)

3.2 Exploration Strategy for Improved Discovery

We assume a simple exploration strategy for identifying good box proposals. Given a set of current
object proposals given by the detector, we locally perturb the boxes in the output space:

Bexplore ∼ P (B0, σ) , (4)

where Bexplore is the set of explored boxes, perturbed from the model proposals B0. For each box
b ∈ B0, a set of explored boxes are sampled according to a standard Gaussian noise along the position
and size dimensions and uniform noise for orientation:

bcenter
explore ∼ N (bcenter

0 , σ2I), bsize
explore ∼ N (bsize

0 , σ2I), bθexplore ∼ U(b
θ
0 − σ, bθ0 + σ). (5)

Algorithm 1 Reward-Incentivized Finetuning

Input: Base object detector fθ, unlabeled LiDAR
dataset D, exploration noise σ, sample size n, filter
budget k, reward function R, PP-scores τ .
repeat

P ∼ D ▷ Sample point cloud.
B0 ← fθ (P ) ▷ Run detector for proposals.
Bexplore ∼ P (B0, σ) ▷ Sample n boxes.
r ← {R(b)}b∈Bexplore∪B0

▷ Score boxes in set.

B ← NMS (Bexplore ∪ B0, r)
Btop ← Filter(B, r, k) ▷ Keep top k% boxes
Update θ with Btop for 1 step

until converged

Furthermore, to encourage proposals of
boxes in foreground regions, we take in-
spiration from [56, 40] and re-use PP-score
as point-level semantic segmentation (fore-
ground vs background) labels, with which
the detector is encouraged to propose boxes
at points that have low PP-scores (i.e.are
likely to be foreground points). Following
[56], for each point pi ∈ P with prediction
ŷi, we assign its target classification label
yi as:

yi =

{

1 if τ(pi) < τL or ŷi = 1,

0 otherwise.
(6)

In effect, this encourages all non-persistent
points (i.e., low τ(pi)) to propose boxes near dynamic regions for better exploration.

3.3 Reward-Incentivized Finetuning

The reward function R allows us to quickly evaluate proposed bounding boxes B and the task of 3D
object discovery could be reduced to an optimization problem on the total reward in box set space:

B∗ = argmax
B

∑

b∈B

R(b), (7)

where the sum is taken over the boxes in the set B. Although a direct optimization for B∗ is not
plausible due to the non-polynomial search space and discontinuity in R, R can serve as effective
guidance to facilitate model finetuning. The underlying intuition is similar to curriculum learning [4,
28, 46]: the object detection model takes small steps to improve from its current predictions towards
B∗ by following the direction provided by the maximum R direction in a local space.

As illustrated in Alg. 1, in each training iteration, we first let the object detector perform inference
on a point cloud P and propose a set of dynamic objects B0 in the scene. To explore directions
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of improvement with the non-differentiable reward function R, we sample n boxes from B0 (with
replacement) and add an i.i.d. Gaussian noise on their location and size, and an uniform noise on
orientation following Eq. 4. These sampled boxes are then ranked by the reward function R, in which
the top k non-overlapping boxes are selected by Non-Maximum Suppression (NMS) as training
targets to finetune the object detector. Note that since DRIFT treats the model training/inference
procedures as black boxes, it can be applied to any 3D object detection model.

In practice, it is observed that neural networks can acquire task knowledge from imperfect demonstra-
tions [16, 51, 32]. MODEST [55] pre-trained the 3D object detector on noisy seed labels produced
by DBSCAN [15] clustering on spatial and PP-score. We follow [55] and initialize our 3D object
detector a model trained with discovered seed labels.

4 Experiments

Datasets. We experimented with two different datasets: Lyft Level 5 Perception dataset [24] and
Ithaca-365 dataset [12]. To the best of our knowledge, these are the two publicly available datasets that
contain multiple traversals of multiple locations with accurate 6-DoF localization and 3D bounding
box labels for traffic participants.

In the Lyft dataset, we experiment with the same split provided by [55], where the train set and test
set are geographically separated. It consists of 11,873 train scenes and 4,901 test scenes. For the
Ithaca365 dataset, we experimented with the full dataset which consists of 57,107 scenes for training
and 1,644 for testing. For both datasets, we do not use any human-annotated labels in training. To
show the generalizability of our method, we conduct the development on the Lyft dataset, i.e., all the
hyperparameters of our approach are finalized through experiments on Lyft, and we use the exact
same set of hyperparameters for all experiments in Ithaca365.

Evaluation. Following [55], we combine all traffic participants to a single mobile object class and
evaluate the detector’s performance on this class. Note that the labels are not used during training but
solely for evaluation. For Lyft, we report the mean average precision (mAP) of the detector with the
intersection over union (IoU) thresholds at 0.5 and 0.7 in bird-eye-view perspective. Note that mAP
at 0.7 IoU threshold is a stricter and harder metric and was not evaluated in [55], and we include it to
emphasize the effectiveness of our method. For Ithaca365, we adopt metrics similar to those in [7]:
we evaluate mean average precision (mAP) for dynamic objects under {0.5, 1, 2, 4}m thresholds that
determine the match between detection and ground truth; we also compute 3 types of true positive
metrics (TP metrics), including ATE, ASE and AOE for measuring translation, scale and orientation
errors. These TP metrics are computed under a match distance threshold of 2m; additionally, we also
compute a distance-based breakdown (0-30m, 30-50m, 50-80m) for these metrics.

Implementation. We use PointRCNN [40] as our default architecture and we use the implementation
provided by OpenPCDet [42]. We train DRIFT with 120 epochs in Lyft and 30 epochs in Ithaca365
as the default setting, and observe that the performance generally improves with more training epochs
(Fig. 1). We use λshape = 1, λalign = 1, λdyn = 0.001 and λbg = 0.001. We use µscale = 0.8 and
σscale = 0.2 for the alignment reward. We define the shape priors based on four typical types of
traffic participants: Car, Pedestrian, Cyclist, and Truck. Specifically, we use the mean and standard
deviation of box sizes of each class in the Lyft dataset, but we show that they generalize well to
other domains like Ithaca365 and are not sensitive (Tab. 2) The exact prototype sizes S and other
implementation details can be found in the supplementary materials.

Baselines. To the best of our knowledge, MODEST [55] is the only prior work on this problem and
we compare our method DRIFT against it with various variants of MODEST: (1) No Finetuning:
the model trained with seed labels from PP-score without repeated self-training (MODEST (R0)) in
[55]; (2) Self-Training (i ep): the model initialized with (1) and self-trained with i epochs without
PP-score filtering; (3) MODEST (i ep): the model initialized with (1) and self-trained with i epochs
with PP-score filtering (full MODEST model). For self-training in (2) and (3), we adopt 60 epochs
for each self-training round in the Lyft dataset (same as that in [55]) and 30 epochs for the Ithaca365
dataset. To ensure a fair comparison, DRIFT is also initialized from (1) and use the same detector
configurations as the baselines. Following [55], we also compare with the supervised counterparts
trained with human-annotated labels from the same dataset (Lyft or Ithaca365) and from another
out-of-domain dataset (KITTI).
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Table 1: Detection performance on Lyft. DRIFT outperforms both baselines with 10% training
time, and approaches the performance of the out-of-domain supervised detector trained on KITTI.
Please refer to the setup of Sec. 4 for the metrics.

mAP IoU @ 0.5 (↑) mAP IoU @ 0.7 (↑)
Method

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

No Finetuning 44.1 21.1 1.2 23.9 24.4 6.0 0.1 10.5

Self-Train. (60 ep) 50.0 29.0 3.4 28.6 32.5 10.0 0.3 14.0
Self-Train. (600 ep) 56.7 41.1 9.1 37.2 35.1 20.7 1.6 19.9
MODEST (60 ep) 49.6 29.7 3.4 28.8 31.3 10.2 0.3 14.4
MODEST (600 ep) 56.4 45.4 11.3 39.6 33.6 18.6 1.4 18.8
DRIFT (30 ep) 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1
DRIFT (60 ep) 60.3 43.8 14.6 41.8 42.0 29.2 5.8 26.7
DRIFT (120 ep) 61.4 45.1 21.7 45.3 42.7 31.7 9.9 29.6

Sup. on KITTI 71.9 49.8 22.2 49.9 47.0 26.2 6.4 27.9
Sup. on Lyft 76.9 60.2 37.5 60.4 62.7 50.9 28.2 48.5

Table 2: Detection performance on Ithaca365. We observe DRIFT outperforms both baselines with
significantly less training time. Please refer to the setup of Sec. 4 for the metrics.

mAP (↑) Errors 0-80m (↓)
Method

0-30 30-50 50-80 0-80 ATE ASE AOE

No Finetuning 18.7 4.8 0.0 7.7 1.17 0.60 1.64

Self-Train. (30 ep) 25.9 9.2 1.2 12.4 1.08 0.62 1.57
Self-Train. (300 ep) 16.3 3.6 1.8 6.8 1.19 0.74 1.57
MODEST (30 ep) 14.6 0.7 0.0 3.7 0.83 0.52 1.53
MODEST (300 ep) 27.5 26.3 21.0 27.1 1.06 0.67 1.09
DRIFT (15 ep) 39.1 24.3 17.7 28.0 0.73 0.33 1.23
DRIFT (30 ep) 47.1 31.2 22.9 35.1 0.49 0.35 1.20

Sup. on KITTI 59.8 28.3 4.0 32.0 0.26 0.22 0.46
Sup. on Ithaca365 75.7 48.3 22.6 51.5 0.18 0.13 0.33

Table 3: Analysis on rewards of
boxes produced by different detec-
tors. We report mean and std of box
reward on the Lyft dataset.

Models Mean StD.

Rand. Boxes 0.02 0.15
Self-Train. 0.44 0.57
MODEST 0.57 0.58
DRIFT 0.61 0.64

Ground Truth 1.00 0.42

Dynamic Object Detection Results. We report the perfor-
mance of DRIFT and baseline detectors on Lyft in Tab. 1, and
show the performance over the training epochs in Fig. 1. We re-
port the performance on Ithaca365 in Tab. 2. Notably, DRIFT
demonstrates significantly faster learning and strong perfor-
mance. It provides more than 10× speedup as compared to the
baselines. On Lyft, DRIFT’s performance at 60 epochs already
surpasses the performance of both baselines at 600 epochs (10
self-training rounds) and approaches the performance of the
out-of-domain supervised detector trained on KITTI [19]. On
Ithaca365, its performance at 30 epochs significantly surpasses
both baselines trained at 300 epochs. It even outperforms the
out-of-domain supervised detector trained on KITTI in mAP.
Observe that the self-training performance starts collapsing with more rounds of self-training, and
does not continue to improve.

Fig. 4 visualizes the detection on two scenes. Ground truth boxes are colored in green, predictions
from the detector without fine-tuning are in yellow, and predictions from DRIFT are in red. We
observe that the detector without fine-tuning occasionally produces false positive predictions, produces
boxes with incorrect sizes, or misses moving objects, while DRIFT produces accurate detection.

Rewards ablations. We report the average reward per box for ground truth boxes, random boxes, and
predicted boxes from different detectors in Tab. 3. The ground truth boxes have the highest rewards
on average, while the random boxes have the lowest. This indicates that the reward reasonably reflects
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Figure 4: Visualization of detections. Qualitative results on two scenes from Lyft [24] and
Ithaca365 [12] datasets. Ground truth boxes are labeled with green in the LiDAR figures and
predictions without fine-tuning and DRIFT are in yellow and red, respectively. We observe DRIFT
learns to produce accurate detection with correct shape and localization.

Table 4: Ablation on the reward components.
We report the mAP (0-80m) on Lyft. Re-
moving components significantly degrades
performance.

Filter Shape Align.
mAP (0 - 80m)

IoU 0.5 IoU 0.7

✓ 0.6 0.0
✓ ✓ 0.0 0.0

✓ ✓ 0.0 0.0
✓ ✓ 22.4 3.2
✓ ✓ ✓ 38.3 23.1

Table 5: Ablation on the
alignment reward’s µscale.
We report the mAP (0-80m)
on the Lyft dataset. We
show the detection perfor-
mance is not sensitive to the
choice of µscale.

µscale
mAP (0 - 80m)

IoU 0.5 IoU 0.7

0.8 38.3 23.1
0.9 38.1 23.4

Table 6: Ablation on the
alignment reward’s σscale.
We report the mAP (0-80m)
on the Lyft dataset. The de-
tection performance is not
sensitive to the variance.

σscale
mAP (0 - 80m)

IoU 0.5 IoU 0.7

0.1 34.2 20.9
0.2 38.3 23.1
0.3 38.1 20.0

the quality of the bounding box. And we observe the boxes predicted by DRIFT have higher rewards
than those predicted by the baseline detectors.

Ablation study on the components of our reward is presented in Tab. 4, and visualization is shown in
Fig. 5. Detection performance significantly drops when we remove one or more of the components.
For example, when only common sense filtering is used, the detector just predicts boxes around
foreground points. Without the shape prior reward, the detector predicts boxes with incorrect sizes.

Ablations Tab. 5 and Tab. 6 present the sensitivity analysis of the choices of µscale and σscale. DRIFT
achieves stable performance across reasonable choices of µscale and σscale, showing the robustness of
our method.

Exploration. We study the necessity of the exploration component and the effect of incorporating
other sources for box sampling. In Tab. 7, we compare no exploration to: (1) sampling 200 boxes from
box predictions, (2) sampling 100 from proposals near dynamic points and 100 from predictions, and
(3) sampling 100 from seed labels and 100 from predictions. Observe that the exploration component
is crucial for our method; by performing local exploration instead of simply updating from its own
predictions, DRIFT avoids confirmation bias and ensures that labels improve over what it predicts.
Furthermore, results show that sampling from the box predictions is sufficient for obtaining good
performance; other sources do not provide obvious benefits.

We also explore the effects of modifying the exploration strategy. Tab. 8 compares the detector
performance of using sample size of 50, 100 and 200, and noise scale σ (i.e.variation) of 0.3 vs. 0.6.
Each detector is trained for 30 epochs. At noise scale 0.3, increasing the sample size from 50 to 200
significantly improves the detection performance. Using noise scale 0.6 significantly reduces the
detection performance, indicating that smaller noise may be preferable.

Filtering Budget of the Ranked Boxes. We study the effect of the choice of top k% for filtering
boxes by reward ranking. Tab. 9 presents the detection performance with top 55%, 65%, 75% and
85%. DRIFT is robust to the choice of k, with slightly decreased performance when k is too high.
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Table 7: Detection performance with ad-
ditional sampling sources in exploration.
Sampling near the predictions is suffi-
cient; additional sources do not provide
obvious benefits. Trained for 60 ep.

mAP (0 - 80m)

IoU 0.5 IoU 0.7

No Exploration 0.0 0.0
Sample near pred. 41.8 26.7
+ near dynamic 39.3 22.6
+ init. seed labels 39.5 22.8

Table 8: Ablation on exploration pa-
rameters. Large sampling size and
moderate noise scale are preferable.

Noise Samples
mAP (0 - 80m)

IoU 0.5 IoU 0.7

0.3
50 32.9 14.3

100 36.4 18.9
200 38.3 23.1

0.6
50 5.6 0.0

100 17.2 1.3
200 0.6 0.0

Table 9: Ablation on the
choice of top k% for box
filtering by reward ranking.
DRIFT is robust to different
values of k.

Top K
mAP (0 - 80m)

IoU 0.5 IoU 0.7

55% 37.0 21.0
65% 38.9 23.0
75% 38.3 23.1
85% 35.8 20.2

Figure 5: Visualization of reward ablation.
Removing components leads to predictions
with incorrect shape or position.
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Figure 6: Per-class BEV mAP at IoU 0.7. We assign each
predicted box to the class with the most similar prototype size.
DRIFT outperforms the baselines for all classes.

Extension to Detection with Classes. Our prototype sizes are defined by different classes of
traffic participants. Thus, given a predicted box from a class agnostic detector, we can compute
the likelihood of its size under the Gaussian prior of each prototype size, and assign it to the class
with the highest likelihood. Fig. 6 presents the per-class performance of DRIFT and baselines under
such assignment. All detectors are trained for 60 epochs. DRIFT outperforms both baselines, with
especially significant improvement for the Car and Cyclist classes. More details can be found in the
supplementary materials.

5 Discussion and Conclusion

In this work, we propose a framework, DRIFT, to tackle object discovery without labels. Instead
of requiring expensive 3D bounding box labels, our method utilizes succinctly described heuristics
as a reward signal to initialize and subsequently fine-tune an object detector. To optimize this non-
differentiable reward signal, we propose a simple but very effective reward finetuning framework,
inspired by recent successes of reinforcement learning in the NLP community. Compared to prior
self-training based methods [55], such a framework is an order of magnitude faster to train, while
achieving higher accuracy. Traditional self-training iteratively generates pseudo-labels and retrains
the model, requiring convergence before generating the next set of pseudo-labels. In general, training
a detector to mimic pseudo-labels can lead to undesirable artifacts, further amplified by repeated
training (confirmation bias). DRIFT addresses this issue by leveraging reinforcement learning
principles, where the exploration component is crucial. Our method avoids confirmation bias by
performing local exploration and ensures that labels improve over what it predicts. Thus, DRIFT is
able to perform updates per-training iteration as opposed to per self-training round, which allows it to
converge significantly faster and achieve higher performance.

Limitations and Future Works. One limitation is that the current framework is geared explicitly
towards dynamic objects. Static objects would require different heuristics, not based on PP-scores.
Similarly, currently we restricted our framework entirely to LiDAR signals. However, the reward
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based framework is extremely flexible, and could easily be extended to other data modalities. For
example, one could use image features to help identify objects inside of box proposals. Although in
supervised settings image features have typically not added much in to the higher resolution LiDAR
point clouds, in our unsupervised setting it is certainly possible that pixel information can help
disambiguate objects from background. Further, we plan to explore the use of reward fine-tuning for
other vision applications beyond object discovery.
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Supplementary Material:

Reward Finetuning for Faster and More Accurate

Unsupervised Object Discovery

S1 Additional Implementation Details

We train DRIFT on four NVIDIA RTX A6000 GPUs, with batch size 10 per GPU. The values
we use for the shape priors are reported in Tab. S10. In practice, we scale the mixtures such that
the probabilities at the Gaussian means are equal for stability reasons. The values in Tab. S10 are
computed from the box shapes in the Lyft dataset, but the method generalize well to other domains
like Ithaca365. Bear in mind, all models trained on Ithaca365 directly uses the hyperparameters
found in Lyft, suggesting the generalizability of our method. DRIFT achieves stable performance
when alternative values are used (Tab. S16).

Table S10: Shape prior values used in our implementation.

Mixture Component
Width w Length l Height h

Mean StD. Mean StD. Mean StD.

1 (Car) 1.911 0.162 4.745 0.559 1.711 0.248
2 (Pedestrian) 0.780 0.153 0.797 0.182 1.745 0.177

3 (Truck) 2.832 0.278 9.403 3.145 3.299 0.430
4 (Cyclist) 0.613 0.256 1.752 0.326 1.364 0.343

S2 Extended Quantitative Results

S2.1 Full Tables from Main Paper

We provide results on all ranges for all ablation tables shown in the the main paper. In Tab. S11, we
report the results of the alignment reward ablation on µscale. In Tab. S12, we report ablation results
on reward components. In Tab. S13 and Tab. S14 we report ablation on exploration method and
sample counts, respectively. In Tab. S15, we report ablation results for varying the filter budget.

Table S11: Ablation on the alignment reward’s µscale. We report the mAP (0-80m) on the Lyft
dataset. This corresponds with Table 5 of the main paper.

Alignment Reward
mAP IoU 0.5 mAP IoU 0.7

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

µ = 0.8 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1
µ = 0.9 58.3 39.2 10.1 38.1 37.1 26.0 4.4 23.4

S2.2 Ablation on Shape Prior Reward

We additionally include an ablation study on the shape-prior reward in Tab. S16. We show that it is
not sensitive to the choice in variance used for each class. We assume that the means of the shape
priors are user defined.

S2.3 Lower IoU and Recall Evaluation

We report mAP results at IoU 0.25 match in Tab. S17. In particular, IoU 0.25 metric evaluates
ªlocalization", i.e. if there is a bounding box with a very small overlap with the ground truth. However,
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Table S12: Ablation on the reward components. We report the mAP (0-80m) on the Lyft dataset. This
table corresponds to Table 4 in the main paper.

mAP IoU 0.5 mAP IoU 0.7

Filtering Size Prior Align. 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

✓ 1.3 0.8 0.0 0.6 0.0 0.0 0.0 0.0
✓ ✓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

✓ ✓ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
✓ ✓ 41.2 18.2 1.7 22.4 5.3 5.0 0.3 3.2
✓ ✓ ✓ 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1

Table S13: Detection performance with additional sampling sources in exploration. Sampling near
the predictions is sufficient; additional sources do not provide obvious benefits.

mAP IoU 0.5 mAP IoU 0.7

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

Sample near pred. 60.3 43.8 14.6 41.8 42.0 29.2 5.8 26.7
+ near dynamic 59.8 40.9 10.6 39.3 39.1 22.8 3.2 22.6
+ init. seed labels 60.3 40.7 10.4 39.5 38.4 23.9 3.3 22.8

our method excels at predicting the size and proper orientation, which is better captured at higher
IoUs metrics. To summarize, as compared to the prior work, MODEST can localize boxes well, but
it’s not able to figure out the size; in contrast, our method does both well. As stated in the main paper,
we use 0.5 and 0.7 to (1) following the KITTI and Lyft standards of reporting, and (2) emphasize the
strength of our method.

In addition, we report recall metrics in Tab. S18. We see that the recall improves over additional
training, which suggests that part of the improvement comes from being able to better detect bounding
boxes by locating them in the scene.

S2.4 Ablation on class mixtures
Table S18: Recall by epoch.
We report class recall num-
bers at different training
epochs. Observe that DRIFT
training improves the recall.

Epoch
Recall (0 - 80m)

IoU 0.5 IoU 0.7

30 0.47 0.30
60 0.51 0.34
90 0.53 0.36

120 0.56 0.38

We include additional experiments on the class type mixtures that we
use in the reward function of DRIFT to evaluate the robustness of our
method. We report the results of using 4 (the ground truth number),
5, and 6 factors in the Gaussian mixture in Tab. S19.

S3 Extended Qualitative Visualizations

We showcase additional qualitative results in Fig. S8. Observe that
DRIFT improves significantly over the model without fine-tuning,
and close to supervised performance, without any labels.
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Table S14: Ablation on sampling hyperparameters for exploration. Large sampling size and moderate
noise scale are preferable.

mAP IoU 0.5 mAP IoU 0.7

Noise Samples 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

0.3
50 57.3 31.3 4.8 32.9 26.0 14.4 1.4 14.3
100 59.8 36.2 7.0 36.4 33.0 18.9 1.8 18.9
200 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1

0.6
50 17.8 1.2 0.0 5.6 0.1 0.0 0.0 0.0
100 39.5 10.4 0.2 17.2 4.0 0.3 0.0 1.3
200 0.1 0.9 1.1 0.6 0.0 0.0 0.0 0.0

Table S15: Ablation on the choice of top k% for box filtering by reward ranking. DRIFT is robust to
different values of k.

Top k%
mAP IoU 0.5 mAP IoU 0.7

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

55% 60.0 36.5 7.5 37.0 36.5 20.1 2.3 21.0
65% 60.1 39.9 9.7 38.9 39.1 23.4 3.5 23.0
75% 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1
85% 58.1 36.6 6.6 35.8 35.8 20.6 2.3 20.2
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Figure S7: Per-class BEV mAP at IoU 0.5. We assign each predicted box to the class with the most
similar prototype size. This corresponds to Figure 6 of the main paper.

Table S16: Ablation on variance of the class shape priors.

Class Shape Var.
mAP IoU 0.5 mAP IoU 0.7

0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

σi = 0.5 StD. 57.6 34.5 5.1 34.5 36.8 22.5 1.7 21.3
σi = 0.2 StD. 55.3 40.2 11.1 37.1 39.8 27.9 5.2 25.5
True Variance 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1
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Table S17: Detection performance on the Lyft dataset. We report the evaluation results at IoU 0.25.
This metric is evaluating ªlocalization", i.e. if there is a bounding box with a tiny overlap with the
GT. Our method matches the baselines on this match threshold, and surpasses on the more strict IoU
thresholds of 0.5 and 0.7.

mAP IoU 0.25 (↑)

0-30 30-50 50-80 0-80

No Finetuning 63.5 34.9 6.0 37.5
Self-Train. (60 ep) 67.7 43.2 8.7 43.1
Self-Train. (600 ep) 67.7 48.0 13.3 45.5
MODEST (60 ep) 68.5 46.2 10.5 45.1
MODEST (600 ep) 73.6 56.8 21.0 53.6
DRIFT (60ep) 72.3 51.5 19.2 50.7
DRIFT (120 ep) 72.5 51.7 25.8 52.9

Supervised on KITTI 78.6 53.9 26.1 55.3
Supervised on Lyft 81.8 63.6 40.0 64.2

Table S19: Ablation on the number of factors in the class mixture. We test out additional class
sizes other than the ground truth number of classes in the label set (car, pedestrian, cyclist, truck).
Observe that the number of factors does not significantly affect the performance of DRIFT.

mAP IoU 0.5 mAP IoU 0.7

Num. Factors 0-30 30-50 50-80 0-80 0-30 30-50 50-80 0-80

4 (GT) 60.1 40.2 9.1 38.3 39.0 24.2 3.6 23.1
5 59.8 37.9 7.4 37.0 38.6 24.7 2.9 23.0
6 58.5 38.3 6.1 36.0 39.1 23.9 2.6 22.7

Figure S8: Qualitative visualizations. Additional visualizations of the DRIFT method, as compared
to no fine-tuning.
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