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Abstract

Weakly supervised semantic segmentation (WSSS) aims to bypass the need for la-
borious pixel-level annotation by using only image-level annotation. Most existing
methods rely on Class Activation Maps (CAM) to derive pixel-level pseudo-labels
and use them to train a fully supervised semantic segmentation model. Although
these pseudo-labels are class-aware, indicating the coarse regions for particular
classes, they are not object-aware and fail to delineate accurate object boundaries.
To address this, we introduce a simple yet effective method harnessing the Segment
Anything Model (SAM), a class-agnostic foundation model capable of produc-
ing fine-grained instance masks of objects, parts, and subparts. We use CAM
pseudo-labels as cues to select and combine SAM masks, resulting in high-quality
pseudo-labels that are both class-aware and object-aware. Our approach is highly
versatile and can be easily integrated into existing WSSS methods without any
modification. Despite its simplicity, our approach shows consistent gain over the
state-of-the-art WSSS methods on both PASCAL VOC and MS-COCO datasets.

1 Introduction

Semantic segmentation, a task aiming to assign a semantic label to each image pixel [38]], has found
wide applications in various fields, such as medical imaging [5]], remote sensing [53]] and autonomous
driving [17]. The success of deep learning techniques and the availability of large-scale pixel-level
annotations have greatly boosted the performance of semantic segmentation in recent years [27].
However, acquiring pixel-level annotations is daunting due to its laborious and costly nature. As
an alternative, weakly supervised semantic segmentation (WSSS) seeks to train a segmentation
model with cheaper yet weaker annotations such as bounding boxes [39, |29} 44, |45]], scribbles [34]],
points [24} 6], and image-level class labels 28} 55/ 19, 148]. Among existing approaches, image-level
WSSS has gained widespread popularity due to the abundance of image-level annotations online or
in various vision datasets [4 1} [36]] and the availability of strong pre-trained classifiers [[18} 42].

As image-level labels do not provide location information for each object class, most of the existing
WSSS methods leverage Class Activation Maps (CAM) [56]] to derive location cues. These approaches
typically follow a four-stage learning process. First, they train a classification model with image-level
labels. Then, based on the intermediate feature maps and their weights to a class, CAMs are generated
as the coarse estimate of the class location. Subsequently, the initial CAMs are refined with post-
processing techniques, such as pixel affinity-based methods [2} 33]] or saliency guidance [30} (7, |52],
to create pixel-level pseudo-labels. Finally, a semantic segmentation model [[10} |8]] is trained using
the pseudo-labels as pixel-level supervision. The efficacy of WSSS greatly relies on the accuracy of
pseudo-labels. However, it is widely recognized that the CAM-derived pseudo-labels often suffer
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Figure 1: Illustration of how SAM addresses partial and false activation on PASCAL VOC 2012 train
set: (A) original images; (B) pseudo-labels generated by a SOTA image-level WSSS method, CLIMS [50]; (C)
masks from SAM; (D) SAM enhanced pseudo-labels; (E) ground-truth labels.
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from partial activation (3| |47], activating the most discriminative region instead of the entire object
area, and false activation [50, 21]], wrongly activating the background around the object.
shows partial and false activation examples.) In other words, CAM-derived pseudo-labels lack the
awareness of objects, resulting in poor contours that drastically deviate from object boundaries.

In this paper, we investigate a novel approach to addressing this issue, directly incorporating object
boundary information into pseudo-label generation. Concretely, we leverage the advent of segmenta-
tion foundation models [46} 25} |59], in particular, the Segment Anything Model (SAM) [25]], which is
capable of producing fine-grained, class-agnostic masks of objects, parts, or subparts. We hypothesize
that the quality of the resulting pseudo-labels can be greatly enhanced by appropriately integrating
the coarse class location from CAM and the object boundary information from SAM.

To this end, we propose SAM Enhanced pseudo-labels (SEPL). SEPL uses CAM-derived pseudo-
labels for a particular class as the seed signals to select the most relevant masks from SAM. The union
of these masks, which encompass both class and object information, is then treated as the enhanced
pseudo-labels for training semantic segmentation models. More specifically, SEPL consists of two
stages: mask assignment and mask selection (see[Figure 2)). During mask assignment, each SAM
mask is assigned to the class (of the image-level annotation) whose CAM-derived pseudo-labels have
the largest intersection with the mask. During mask selection, SAM masks with substantial overlap
with the CAM-derived pseudo-labels are chosen to address false activation, given that background
masks typically manifest minimal overlap. Meanwhile, we also select SAM masks that substantially
encompass the CAM-derived pseudo-labels, targeting the challenge of partial activation. Given
the precise alignment of SAM masks to object boundaries, we find substantial enhancements in
mitigating partial and false activations in the existing pseudo-labels, as depicted in[Figure 1]

SEPL is remarkably versatile as it can be seamlessly integrated into existing WSSS methods without
modifying the original methods. Despite its simplicity, SEPL achieves a notable improvement in the
mean Intersection over Union (mloU) of pseudo-labels and ground-truth labels compared to eleven
state-of-the-art WSSS methods, with an average gain of 5.33% and 3.12% on the train set of PASCAL
VOC 2012 dataset [[15]] and MS COCO 2014 [36], respectively. As far as we know, this is the first
study to investigate the potential of SAM in the context of WSSS. We hope this work will pave the
way for applying segmentation foundation models in diverse computer vision applications.

Related work. Due to the page limit, we leave it in

2 SAM Enhanced Pseudo Labels

2.1 Preliminary

Following the standard setup, each training image X € R7*W*C is associated with only an image-
level label vector y = [y1, 92, - - - ,yK]T € {0,1}X for K classes, where y;, = 1 indicates the
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Figure 2: Illustration of the SEPL pipeline. SEPL comprises two stages, mask assignment and mask selection.
Based on the intersection between each SAM mask and pseudo-labels, a mask is assigned to the class with
the largest intersection. For each mask, two metrics are computed: o, the fraction of the mask overlapped by
pseudo-labels, and o, the fraction of pseudo-labels overlapped by the mask. A mask is retained as an enhanced
pseudo-label if either metric surpasses the designated threshold.

presence of class k£ in X and O otherwise. Upon training a classifier f with this dataset, WSSS
methods feed an image to f and obtain the Class Activation Maps (CAM) M = [My,--- Mg],
where M}, € R"*W highlights the discriminative image regions utilized by f to identify class k.
Post-processing techniques, such as AffinityNet [3] and IRNet [1]], further refine M}, to produce
pseudo-labels P € {0,1,--- , K}7*W where pixel is mapped to either a class label in {1, - - - , K}
or 0 for background regions. Py € {0, k}*W represents the pseudo-labels for class k. Subsequently,
a fully supervised semantic segmentation network (e.g., [9} [8]]) is trained with P. SAM takes an
image X € RYXWxC a5 input and returns a list of masks capturing either a subpart, a part or an
entire object: S = [Sy, S1,- -+ ,SL] where S; € {0,1}7>W and L is the number of masks. It is
noteworthy that different images may receive various mask quantities from SAM.

2.2 Approach

While CAM-derived pseudo-labels are class-aware and identify discriminative regions for individual
classes, they often fail to delineate accurate object boundaries. In contrast, SAM is able to precisely
segment most parts or objects in a class-agnostic manner. Bridging their capabilities, we propose SAM
Enhanced Pseudo Labels (SEPL) to harness the potential of SAM for pseudo-label enhancement.

Our approach takes pseudo-labels [Py, - - - , Px] and SAM masks [So, - - - , S1] as input and returns a

list of enhanced pseudo-labels [131, ey .P}(] Specifically, it consists of two stages, mask assignment
and mask selection as elucidated in During the mask assignment phase, we compute the
intersection between each SAM mask S; and pseudo-labels Pj for every class k € {1,--- , K}.
Each S is assigned to the class with the largest intersection area and masks without any overlap
with existing pseudo-labels are disregarded. After processing all SAM masks, we obtain a mask
assignment list A = [A;, -+ , Ax| where Ay, contains the masks assigned to class k.

It is widely known that the CAM-derived pseudo-labels often suffer from false activation [50} 21]]
and partial activation [3||47]. Our mask selection strategy aims to address them by selecting the most
relevant masks based on the overlaps between SAM masks and pseudo-labels. False activation arises
when pseudo-labels encapsulate the target object along with a marginal section of the surrounding
background. Thus, the masks for the entire target object (or its parts) should predominantly align
with the pseudo-labels, whereas masks for the background should exhibit minimal overlap with
the pseudo-labels. To mitigate false activation, we select masks demonstrating extensive coverage
by the pseudo-labels. Conversely, partial activation arises when pseudo-labels only cover the most
discriminative part instead of the entire object. Therefore, if a mask covers the majority of the
pseudo-labels, it is indicative that this mask likely represents the complete object and should be
retained for enhanced pseudo-labels to address partial activation.



Based on the intuitions mentioned above, we iterate through every mask assigned to class k. For each
mask S, we compute o, the fraction of mask S overlapped by pseudo-labels Py, and oy, the fraction
of pseudo-labels Py, overlapped by mask S. A mask S is preserved as an enhanced pseudo-label if:

1. os > t; where t; = 0.5 indicates at least 50% of the mask is covered by the pseudo-labels
2. oy, > ta where to = 0.85 indicates at least 85% of the pseudo-labels is covered by the mask

If the initial pseudo-labels are not covered by any SAM masks, we will keep them unchanged in the
enhanced pseudo-labels. The overall algorithm is summarized in Algorithm 1]

Algorithm 1 SAM Enhanced Pseudo-Labels (SEPL) for One Image

Input: Pseudo labels [Py, - - - , Px|, Masks [So, -+, St],
threshold 1 = 0.5, threshold ¢2 = 0.85
Output Enhanced pseudo-labels [Py, - - - , Px]|

procedure SEPL([P:, - , Px], [So, - ,SL])
A=Ay, ,Ak] where A, = {} > Ay stores the masks assigned to class k
for [ from O to L do > Mask assignment
k* = arg max Intersect(S;, Pk)

k
Apx — A+ U {Sl}

for k from 1 to K do > Mask selection
if P, == {0}*W then
continue
tmp = {} > tmp stores enhanced pseudo-labels for class k

for each mask S in A;, do
Intersect(.S, Py, )

0s = omero () > fraction of mask S covered by pseudo-labels P
op = Intersect(S, Py)_ > fraction of pseudo-labels Py covered by mask S

nonzero_area( Py, )
if o > t1 or o, > t then
tmp <+ tmp U {S}
if tmp == {} then
tmp <+ tmp U {Px}
P« Merge masks in tmp with element-wise OR and assign k to nonzero elements

3 Experiment

3.1 Experimental setup

Datasets and Evaluation Metric We evaluate our proposed framework on the PASCAL VOC
2012 [[15]] and MS COCO 2014 dataset [|35]]. The dataset details can be found in Appendix We
only used image-level ground-truth labels during pseudo-labels generation. The mean Intersection
over Union (mloU) is adopted as the evaluation metric for all experiments. To demonstrate the quality
of the pseudo-labels, we evaluate them on the VOC and COCO training set.

Pseudo Labels In our experiments, we generate pseudo-labels using several SOTA WSSS methods,
including: Recurseed [21], L2G [20], CLIPES [37], RCA [58]], EPS [31]], CLIMS [50]], Tran-
sCAM [33|], PPC [14]], SIPE [11]], and PuzzleCAM [22]. The detailed introductions of them can be

found in Appendix [B.2]

Implementation Details SAM masks are generated with the official code [25]. ¢; and ¢5 by default
are set to 0.5 and 0.85 respectively. We use Deeplab V2 (ResNet-101) [9] as the fully supervised
semantic segmentation model. More implementation details can be found in Appendix [B.3]including
SAM inference hyperparameters and training details for Deeplab. The ablation study of ¢; and ¢, can
be found in Appendix [C]

3.2 Quantitative Evaluation and Comparison

Figures [Figure 3| and [Figure 4]illustrate the enhanced pseudo-label quality achieved on the PASCAL
VOC and MS COCO with our SEPL algorithm. SEPL consistently and significantly elevates the
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Figure 3: Pseudo labels quality on PASCAL VOC 2012. Original: pseudo-labels from original SOTA WSSS
methods. SEPL: pseudo-labels enhanced by SEPL. The improvement after enhancement is indicated in green.
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Table 1: Performance of Deeplab V2 (ResNet-101) trained on pseudo-labels without post-processing: Original
method vs. SAM-enhanced SEPL. Evaluated on the VOC val set. FS: full supervision

quality of pseudo-labels across various original WSSS methods. Moreover, the impact of this
enhancement extends beyond the pseudo-label quality. Utilizing the enhanced pseudo-labels for
training supervised semantic segmentation models(DeepLab V2) yields notable improvements in
performance. The models, when trained on the enhanced pseudo-labels, consistently outperform those
trained on original pseudo-labels. [Table 1|and [Figure 2| provide a detailed quantitative comparison of
these performances across both PASCAL VOC and MS COCO datasets. More detailed results can be
found in Appendix[C]
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Figure 4: Pseudo-label quality on COCO train set: ' Table 2: Reult of Deeplab V2 (ResNet101) without
Original from WSSS methods vs. SEPL-enhanced. CRF on COCO val set: Original vs. SEPL-enhanced
Green indicates enhancements. pseudo-labels. FSS: full supervision

4 When does SAM not help?

Upon analyzing instances where SEPL was ineffective, we attributed the shortcomings primarily to
three sources: the initial pseudo-labels, the SAM masks, and our enhancement algorithm.

Initial pseudo-labels Since we leverage the initial pseudo-labels as the anchors to find relevant
masks, if they activate on incorrect objects or fail to activate on the target objects, the SAM masks
won’t offer any enhancement. In fact, they may detrimentally affect the quality of the pseudo-labels, as
shown in To address this, we turn to better WSSS methods for more precise pseudo-labels.
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Figure 5: Examples of pseudo-labels activate on in-  Figure 6: Example of SAM’s failures. The first row
correct objects or fail to activate on the target objects. ~ shows that SAM overlooks certain parts in an image
Adding SAM mask may detrimentally affect the qual-  and the second row shows SAM erroneously groups
ity of the pseudo-labels several objects as a single mask
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Figure 7: Certain SAM masks within an image envelop smaller masks. The SAM mask in column (g) entirely
covers the masks in columns (e) and (f), which poses a challenge as we cannot ascertain if a mask represents
multiple objects or just one.

SAM masks While SAM effectively processes most images in VOC and COCO, it occasionally
falters. As depicted in[Figure 6] SAM might sometimes overlook certain parts of images or erroneously
group several objects as a single segment. Fine-tuning SAM’s inference hyperparameters could be a
potential remedy to enhance segmentation outcomes.

Enhancement Algorithm While our current algorithm is proficient in many scenarios, it falters
in specific situations. As depicted in certain SAM masks within an image overshadow
and envelop smaller masks. An example is column (g) entirely covers the masks in columns (e) and
(f). Since pseudo-labels often suffer from partial activation, our existing algorithm inclines towards
selecting larger masks to produce a more complete pseudo-label. Yet, this approach poses a dilemma:
the absence of clarity on whether these masks encapsulate multiple objects or just a singular entity.
As illustrated in the first row of the mask in (g) spans both the boat and the sea. Blindly
opting for the larger mask risks deteriorating the quality of pseudo-labels. A promising resolution
could lie in treating the SAM masks as nodes in a tree, leveraging their inherent hierarchical structure.
This tree-based approach might facilitate a more discerning selection of the appropriate masks.

5 Conclusion

This paper presents a pioneer investigation into the application of SAM as a foundation model in
WSSS. By leveraging SAM’s class-agnostic capability of producing fine-grained instance masks,
we use CAM pseudo-labels as cues to select and combine SAM masks, resulting in high-quality
pseudo-labels that are both class-aware and object-aware. Our approach is highly versatile and can
be easily integrated into existing WSSS methods without any modification. Despite its simplicity,
our approach shows consistent improvement over the SOTA WSSS methods on both PASCAL VOC
and MS-COCO datasets. We anticipate that this study will catalyze the adoption of segmentation
foundational models across a broad spectrum of computer vision tasks.
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Appendix
A Related Work

A.1 Weakly Supervised Semantic Segmentation (WSSS)

Recent approaches in weakly supervised semantic segmentation (WSSS) often rely on Class Acti-
vation Maps (CAM) [57] to generate pixel-level pseudo-labels. These pseudo-labels are then used
to train the segmentation model in a fully supervised manner. However, CAM often exhibits a
bias towards the most discriminative regions of the target object which limits the quality of the
pseudo-labels. To overcome this challenge, recent works mainly focus on generating high-quality
CAMs with integral activation on the entire object regions.

Early-stage works [43] |49} 32]] encourage the network to discover less activated object parts via
adversarial erasing. In addition to the classification loss typically used in the WSSS framework,
specific loss functions such as SEC loss [26]), equivariance regularization [47]], and contrastive loss [23]
14]] have been exploited in narrowing the gap between the pixel-level and image-level supervisions.
Some works also introduce network modules to address the partial activation problem of CAM:
SEAM [47] leverages pixel-level semantic affinities with a pixel correlation module; CIAN [16]
exploits the additional information from related images with a cross-image affinity module. Recent
methods based on Vision Transformer [13]] including [|33}|51]] aim to uncover more comprehensive
object regions by exploring the global information from the attention of the transformer network.
Most of these works follow the multi-stage framework, where a post-processing step is necessary for
refining and improving the initial pseudo-labels generated from CAM.

A.2 Post-Processing in WSSS

Although there are end-to-end WSSS solutions [40, 4, |54] available, most of the recent works still
rely on some post-processing techniques to enhance the initial pseudo-labels to achieve superior
performance. Among these techniques, two widely utilized methods for refining pseudo-labels are
AffinityNet [3[] and IRNet [1]. AffinityNet trains a network from CAM to predict the semantic
affinities and uses it for propagating local activations, whereas IRNet [1]] learns and predicts semantic
affinities more effectively by leveraging class boundary maps. Despite the substantial improvement in
the pseudo-labels, these methods require training a separate network. The computational cost involved
can be a significant barrier, especially when working with large-scale datasets. Additionally, the
careful tuning of hyperparameters to obtain accurate foreground and background pixels for training
these networks can slow down the entire training pipeline. This requirement for meticulous parameter
tuning not only adds complexity to the process but also limits the applicability and scalability of these
post-processing techniques.

B Experiment Details

B.1 Dataset Details

Experiments are conducted on two publicly available datasets, PASCAL VOC 2012 [15]land MS
COCO 2014 [36]. The PASCAL VOC 2012 dataset contains 20 semantic categories and the back-
ground. It is split into three sets, the training, validation, and test sets, each containing 1464, 1449,
and 1456 images, respectively. Following the standard setting, we also use the augmented training set,
yielding a total of 10582 training images. The MS COCO 2014 dataset has 80 semantic categories.
Following [[12]], the images without target categories are excluded from the dataset, remaining 82081
training images and 40137 validation images. We report the mean Intersection-over-Union (mloU),
precision, and recall for evaluation. To demonstrate the quality 116 of the pseudo-labels, we evaluate
them on the VOC and COCO training set.

B.2 Baselines
e CLIMS: [50] A Cross-Language Image Matching framework leveraging natural language

supervision to activate complete object regions and suppress related open background
regions for improved CAM quality in WSSS.
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» SIPE: [11] Self-supervised Image-specific Prototqualitativeype Exploration, which tailors
prototypes for each image to capture complete regions, optimizing feature representation
and enabling self-correction for improved WSSS performance.

* PPC: [14]] A weakly-supervised pixel-to-prototype contrast method providing pixel-level
supervisory signals, executed across and within different views of an image to enhance the
quality of pseudo masks for WSSS.

* TransCAM: [33]] A Conformer-based solution that refines CAM by leveraging attention
weights from the transformer branch of the Conformer, capturing both local features and
global representations for WSSS.

* RecurSeed: [21] An approach that alternately reduces non-detections and false-detections
through recursive iterations, implicitly finding an optimal junction and leveraging a novel
data augmentation method, EdgePredictMix, for improved WSSS performance.

» L2G [20] A simple online local-to-global knowledge transfer framework for high quality
object attention mining. It first leverages a local classification network to extract attentions
from multiple local patches randomly cropped from the input image. Then, it utilizes a
global network to learn complementary attention knowledge across multiple local attention
maps online.

e CLIPES [37] An approach that leverages CLIP to improve pseudo-label generation, refine-
ment and final segmentation model training.

* RCA [58] RCA is equipped with a regional memory bank to store massive, diverse object
patterns appearing in training data, which acts as strong support for exploration of dataset-
level semantic structure.

* EPS [31] EPS learns from pixel-level feedback by combining two weak supervisions; the
image-level label provides the object identity via the localization map and the saliency map
from the off-the-shelf saliency detection model offers rich boundaries

* PuzzleCAM [22]] PuzzleCAM minimizes differences between the features from separate
patches and the whole image. It consists of a puzzle module and two regularization terms to
discover the most integrated region in an object.

B.3 Implementation Details
B.3.1 SAM Inference Hyperparameters

For our experiments, we adopted the standard settings of the SAM model as provided in their official
repository. However, we made modifications to two specific hyperparameters to tailor the model’s
behavior to our needs:

* pred-iou-thresh was set from None to 0.86.
* stability-score-thresh was set from None to 0.92.

By adjusting these thresholds, our objective was to enable SAM to produce a wider and more diverse
range of masks for selection via our algorithm. Importantly, these modifications did not have a
detrimental effect on the inference speed, ensuring efficiency was maintained throughout the process.
For inference, we employed the default pretrained ViT-H SAM model.

B.3.2 DeepLab Model Training

PASCAL VOC 2012 Dataset For the PASCAL VOC 2012 dataset, our training process of
DeepLabV2 adheres to the guidelines provided in the GitHub repository https://github. com/
kazuto1011/deeplab-pytorch. We utilize the training hyperparameters as configured in the
voc12.yaml file from this repository. Key hyperparameters are specified as follows:
* Batch Size:
— TRAIN: S
* Iterations:
— ITER_MAX: 20000
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— ITER_SIZE: 2
* Learning Rate (LR): 2.5 x 10~
* Momentum: 0.9
¢ Number of Blocks (N_BLOCKYS): [3, 4, 23, 3]
e Atrous Rates: [6, 12, 18, 24]

In our experiments, we did not further refine the results of the DeepLab model with Conditional
Random Fields (CRF) or any other post-processing techniques.

COCO2014 Dataset For the COCO2014 dataset, we followed a similar training process to that
of the PASCAL VOC 2012 dataset. However, the configuration settings were adopted from a
different GitHub repository, available at https://github. com/PengtaoJiang/L2G. The specific
hyperparameters used in our training are as follows:

¢ Batch Size:
— TRAIN: 20
* Iterations:
— ITER_MAX: 50000
— ITER_SIZE: 1
* Learning Rate (LR): 2.5 x 10~*
¢ Momentum: 0.9
¢ Number of Blocks (N_BLOCKYS): [3, 4, 23, 3]
e Atrous Rates: [6, 12, 18, 24]

Similar to our approach with the PASCAL VOC 2012 dataset, we did not apply CRF or other
post-processing techniques to the results obtained from the DeepLab model.

C Extra Experiment Results

C.1 More Results for SEPL

illustrates the qualitative improvements of the pseudo-labels enhanced by SEPL in recall,
precision, and mIoU, respectively, which are calculated based on the average of all samples.
shows the quantitative improvement of the pseudo-labels enhanced by SEPL for recall and precision.

C.2 Ablation Study of ¢; and ¢,

As mentioned in[subsection 3.1] ¢; and ¢, by default are set to 0.5 and 0.85 respectively. To better
understand the impact of these hyperparameters, we conducted an ablation study on them.
shows the pseudo labels quality (mIoU) on PASCAL VOC 2012 for SEPL using Recurseed [21] as
the base method with different values of ¢; and ¢5. SEPL’s performance is robust to ¢; and ¢o.

C.3 Apply SAM on CAM without post-processing

As mentioned in Section most recent works still rely on some post-processing
techniques to enhance the initial CAM, aiming to procure more precise pseudo-labels. However, these
enhancement procedures often demand substantial computational overhead and extended training
durations. Such constraints can potentially hinder the broad-scale deployment of WSSS on extensive
datasets. Since the initial CAM also provides an estimation of object localization, our proposed
SEPL can be directly applied to the initial CAM. This approach circumvents the need for additional
post-processing steps, leading to appreciable reductions in both training duration and computational
demands in the WSSS pipeline.

As shown in[Figure 9] the initial CAM consistently benefits from SAM masks. More interestingly,
CAM+SAM can reach and even surpass the quality of pseudo-labels obtained after conventional
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Table 3: Ablation study of ¢; and ¢2. Pseudo labels quality (mIoU) on PASCAL VOC 2012 for SEPL
using Recurseed [21]] as the base method with different values of ¢; and 5. SEPL’s performance is
robust to ¢1 and 5.

i1 2 0.2 0.3 04 0.5 0.6 0.7 0.8

0.6 79.87 80.88 8120 81.46 81.39 8140 79.50
0.65 | 79.84 80.85 81.10 8137 81.26 81.25 79.15
0.7 79.84 80.88 81.10 81.28 81.16 81.06 78.64
0.75 | 79.84 80.84 81.04 81.23 §81.10 81.00 78.33
0.8 79.85 80.83 81.04 81.22 81.03 80.87 77.78
0.85 | 79.83 80.79 81.00 81.12 80.87 80.69 77.13
0.9 79.86 80.82 80.99 &1.01 80.67 80.42 76.03

3 = o Z z

: 8 5 5 2 85 5 92 g & 3
Method a4 — O o~ m Q = [aW [aW 175 [aW
Pseudo Label Precision | 85.10 78.86 83.81 81.53 78.10 80.97 80.46 82.73 7893 76.75 83.29
SEPL Precision 85.73 84.57 85.96 82.13 84.85 83.29 81.89 84.32 81.76 79.86 83.93
Precision Delta 0.63 5.71 2.15 0.60 6.75 2.32 1.43 1.59 2.83 3.11 6.39
Pseudo Label Recall 85.85 87.35 8536 71.04 8493 83.19 84.83 8691 8345 87.68 76.77
SEPL Recall 91.75 92.05 91.58 79.37 90.94 89.12 90.07 92.02 90.36 91.12 86.22
Recall Delta 5.90 4.70 6.22 8.33 6.01 5.93 5.24 5.11 6.91 3.44 9.45

Table 4: Pseudo label precision and recall improvements by incorporating SEPL

post-processing. This finding suggests that SAM has the potential to replace time-consuming post-
processing steps, offering a more efficient solution to WSSS tasks. [Figure T10]illustrates the qualitative
improvements of the initial CAM by SEPL in recall, precision, and mloU, respectively.

eeeeee

—— ey ghset

(a) Recall (b) Precision

Figure 10: Improvements for CAM without post-processing: (a) Recall, (b) Precision, (c) mIoU.
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(a) Recall (b) Precision (c) mloU

Figure 8: Improvements for pseudo-labels: (a) Recall, (b) Precision, (c) mloU.
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Figure 9: By directly utilizing iinitial CAM with SAM, we achieved comparable performance to that
of post-processed pseudo-labels enhanced by SAM. This finding suggests that SAM can be used

as a substitute for post-processing modules, resulting in a marked acceleration of the entire WSSS
training pipeline
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