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Abstract
Contextual dueling bandits, where a learner com-
pares two options based on context and receives
feedback indicating which was preferred, extends
classic dueling bandits by incorporating contex-
tual information for decision-making and prefer-
ence learning. Several algorithms based on the
upper confidence bound (UCB) have been pro-
posed for linear contextual dueling bandits. How-
ever, no algorithm based on posterior sampling
has been developed in this setting, despite the em-
pirical success observed in traditional contextual
bandits. In this paper, we propose a Thompson
sampling algorithm, named FGTS.CDB, for lin-
ear contextual dueling bandits. At the core of our
algorithm is a new Feel-Good exploration term
specifically tailored for dueling bandits. This term
leverages the independence of the two selected
arms, thereby avoiding a cross term in the analy-
sis. We show that our algorithm achieves nearly
minimax-optimal regret, i.e., Õ(d

√
T ), where d

is the model dimension and T is the time horizon.
Finally, we evaluate our algorithm on synthetic
data and observe that FGTS.CDB outperforms
existing algorithms by a large margin.

1 Introduction
Reinforcement learning from human feedback (RLHF) has
become a popular methodology in the alignment of large
language models (LLMs, Ouyang et al. 2022; Diao et al.
2023). In RLHF, it is often easier for the human user to com-
pare two responses than providing a numerical reward/score
based on a common standard. Therefore, existing works on
RLHF (Zhu et al., 2023; Ji et al., 2023) focus on a model
where the learning agent has a dataset of users’ preferences
among several choices. The preferences are often assumed
to follow the Plackett-Luce (PL) model (Soufiani et al.,
2014; Khetan & Oh, 2016; Ren et al., 2018), where the
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probability of the user favoring a certain choice is propor-
tional to the exponential of the reward function, and the
special case where two choices are presented to the user is
called the Bradley-Terry-Luce (BTL) model (Hunter, 2004;
Luce, 2005). The online version of the preference-based
model, called the dueling bandits, has been studied exten-
sively (Yue et al., 2012; Zoghi et al., 2014; Komiyama et al.,
2015) when the set of the action space is fixed and finite
(i.e., the multi-armed dueling bandits). Recently, a more
general model, the (linear) contextual dueling bandit (Saha,
2021; Bengs et al., 2022), has been proposed. This model
has important features including time-varying and possi-
bly infinite action spaces, along with a context-dependent
reward function with a linear structure, which capture impor-
tant practical situations. A number of algorithms have been
proposed for (linear) contextual dueling bandits, including
MaxInP (Saha, 2021), CoLSTIM (Bengs et al., 2022) and
VACDB (Di et al., 2023), all of which are based on the upper
confidence bound (UCB) technique for exploration.
Under the setting of traditional contextual bandits, Thomp-
son sampling (Thompson, 1933) is another technique for
exploration apart from UCB-based methods, and superior
empirical performance has been observed when applying
Thompson sampling to various tasks (Chapelle & Li, 2011;
Osband & Van Roy, 2017). Instead of deterministically
learning a model, in Thomson sampling, models are sam-
pled from a posterior distribution constructed on historic
observations. It has been widely studied in both the multi-
armed setting (Agrawal & Goyal, 2012; Kaufmann et al.,
2012; Agrawal & Goyal, 2017; Jin et al., 2021) and the lin-
ear setting (Agrawal & Goyal, 2013). Later, Zhang (2022)
showed that the frequentist regret of linear Thompson sam-
pling is suboptimal in the worst case and proposed a new
variant of Thompson sampling called Feel-Good Thomson
sampling (FGTS) to overcome this issue. The effectiveness
of FGTS is theoretically justified: when applied to linear
contextual bandits, FGTS can achieve the minimax-optimal
regret bound as UCB-based algorithms like LinUCB (Li
et al., 2010) or OFUL (Abbasi-Yadkori et al., 2011).
Despite the success of Thompson sampling algorithms in
traditional contextual bandits, there have been few works
that apply this technique to contextual dueling bandits. The
notable exception is a double Thompson sampling approach
proposed by Wu & Liu (2016). However, this approach is
limited to multi-armed dueling bandits and cannot be modi-
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fied for (linear) contextual dueling bandits. In addition, it is
also unknown whether algorithms based on Thompson sam-
pling can achieve the same minimax-optimal regret bounds
as UCB-based algorithms for contextual dueling bandits.
Therefore, we raise the following question:

Is it possible to design an efficient algorithm for contextual
dueling bandits based on Feel-Good Thompson sampling?

In this paper, we affirmatively answer this question by solv-
ing the problem of linear contextual dueling bandits under
the framework of Feel-Good Thompson sampling. We sum-
marize our contributions as follows:

• We propose a new algorithm named FGTS.CDB for the
problem of linear contextual dueling bandits, which is
based on Feel-Good Thompson sampling. Compared with
existing FGTS algorithms for standard contextual dueling
bandits (Zhang, 2022), we introduce a new Feel-Good
exploration term designed specially for the comparison of
two actions. Compared with UCB-based approaches, our
algorithm can handle the case of large action spaces more
efficiently.

• We prove that our algorithm enjoys a minimax-optimal
regret bound of Õ(d

√
T ) in expectation, where d is the

feature dimensionality and T is the number of rounds.
The new Feel-Good exploration term plays a crucial role
in the proof by eliminating cross terms that arise from the
comparison of actions.

• We extend our analysis to the setting of general reward
functions, and manage to recover the regret bound for sev-
eral cases of interest, including the cases of finite action
sets and finite model sets.

• We conduct experiments to compare our algorithms
with several strong baselines, including MaxInP, Max-
PairUCB (Saha, 2021), CoLSTIM (Bengs et al., 2022)
and VACDB (Di et al., 2023). We observe that the per-
formance of FGTS.CDB is significantly better than all
baselines.

Notation. We use plain case letters to denote scalars and
lowercase boldface letters to denote vectors. We use ⟨·, ·⟩
to denote the inner product of vectors. For a vector x, ∥x∥2
denotes its ℓ2-norm. We use [N ] as a shorthand for the
set {1, 2, . . . , N}. We use standard asymptotic notations
including O(·), Ω(·) and Θ(·), while Õ(·) Ω̃(·) and Θ̃(·)
hide logarithmic factors.

2 Related Work
Dueling bandits. First proposed by Yue et al. (2012), the
dueling bandit problem involves a learner sequentially se-
lecting a pair of arms among multiple choices based on the
noisy binary observations revealing the relative preference
of the chosen arms. Under their multi-armed dueling bandit

setting, Zoghi et al. (2014) proposed RUCB, a UCB-based
algorithm which achieves an O(K log T/∆) regret upper
bound where K is the number of arms, T is the number
of rounds, and ∆ stands for the gap between the best arm
and the second-best arm. Later, Komiyama et al. (2015)
proposed RMED with a more sophisticated arm selection
phase whose regret matches the lower bound with optimal
constant. Relaxing the typical Condorcet winner setting
where it is assumed that there is one arm that beats all the
other arms, researchers also investigated other variants of
multi-armed dueling bandits which assumed the existence
of Copeland Winner (Zoghi et al., 2015; Wu & Liu, 2016;
Komiyama et al., 2016), Borda winner (Jamieson et al.,
2015; Falahatgar et al., 2017; Heckel et al., 2016; Saha
et al., 2021; Brandt et al., 2022; Wu et al., 2023), or von
Neumann winner (Dudı́k et al., 2015; Balsubramani et al.,
2016; Ramamohan et al., 2016).
Contextual dueling bandits. There is also a large body
of literature on contextual dueling bandits, where dueling
bandits with contextual information is considered (Kuma-
gai, 2017; Saha, 2021; Saha & Krishnamurthy, 2022; Bengs
et al., 2022; Di et al., 2023). Kumagai (2017) studied du-
eling bandits with a cost function over a continuous space
and achieved a dimension-free regret under the strong con-
vexity and smoothness assumption. Saha (2021) considered
contextual dueling bandits with generalized linear classes
and proposed an algorithm MaxInP with an Õ(d

√
T ) re-

gret and Sta’D with an Õ(
√
dT logK) regret. Bengs et al.

(2022) proposed CoLSTIM and further extended it to the
contextual linear stochastic transitivity model. Recently, Di
et al. (2023) proposed an action-elimination based algorithm
VACDB, with a tighter variance-dependent regret bound. It
is worth mentioning that all the existing algorithms for con-
textual dueling bandits need to either maintain a subset of
eligible arms or maximize the randomly perturbed rewards
over all the possible arms, which are only applicable to finite
action space.
Feel-Good Thompson sampling (FGTS). FGTS was pro-
posed by Zhang (2022) to fill the gap between the prac-
tical effectiveness of Thompson sampling and a lack of
frequentist-type regret guarantee. When applied to lin-
ear contextual bandits, FGTS achieves a regret bound of
Õ(d
√
T ) that matches the lower bound of Ω(d

√
T ). The

analysis of this algorithm is based on the decoupling of
arm selection with model parameters. Fan & Gu (2023)
proposed a unified framework for the analysis of FGTS ap-
plied to a number of variants of linear contextual bandits.
Another line of works extends the idea of FGTS to reinforce-
ment learning, including Model-based Optimistic Posterior
Sampling (MOPS) for Markov decision processes (Agarwal
& Zhang, 2022) and conditional Posterior Sampling with
Booster for two-player Markov games (Xiong et al., 2022).
Our work is the first attempt to apply FGTS to contextual
dueling bandits.
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Table 1. Comparison of our algorithm, FGTS.CDB, against existing algorithms for linear contextual dueling bandits. FGTS.CDB is the
first algorithm for linear contextual dueling bandits using the technique of Thompson sampling. Our algorithm is also the first that can
be easily applied to the case of infinite action spaces (modification for MaxInP is more complex). The regret bounds hold for linear
contextual dueling bandits of T rounds, with d-dimensional feature vectors and the action space of size K.

Algorithm Main technique Infinite action space? Regret

MaxInP
(Saha, 2021) UCB + Adaptive Selection ✓ Õ(d

√
T )

CoLSTIM
(Bengs et al., 2022) Perturbed UCB ✗ Õ(d

√
T )

Sta’D
(Saha, 2021) SupLinUCB + Adaptive Selection ✗ Õ(

√
dT logK)

SupCoLSTIM
(Bengs et al., 2022) Perturbed SupLinUCB ✗ Õ(

√
dT logK)

FGTS.CDB
(This work) Feel-Good Thompson Sampling ✓ Õ(d

√
T )

Sampling-based algorithms for dueling bandits. Wu &
Liu (2016) proposed a double Thompson sampling algo-
rithm for multi-arm dueling bandits which achieves a regret
bound of O(K2 log T ) where K is the number of arms. Sui
et al. (2017) also proposed an algorithm based on Thompson
sampling that converted multi-dueling bandits to standard
bandits. However, these two algorithms cannot be modified
for the setting of (linear) contextual dueling bandits because
they depend on the count of comparison outcomes between
the arms and T is the number of rounds. In contextual du-
eling bandits, this is infeasible because the set of arms are
different across different rounds. Other algorithms are based
on the sampling of policies rather than model parameters.
For example, Xiong et al. (2023) proposed a KL-constrained
framework which uses Gibbs sampling. Nonetheless, this
work focuses on fine-tuning LLMs, and the regret studied
in this work has an additional term that measures the dif-
ference between the learned policy and the original policy.
Novoseller et al. (2020) studied the application of poste-
rior sampling in preference-based reinforcement learning.
However, the regret bound of the algorithm relies on the
assumption of finite state and action sets and cannot be
trivially extended to linear contextual dueling bandits.

3 Problem Setting
In this work, we study the setting where the agent repeat-
edly interact with the agent to receive prompts and query
preferences between the two chosen responses.
Linear contextual dueling bandits. We focus on the setting
of contextual dueling bandits with contextual information
embodied in both the prompt and the action space, similar
to Zhang (2022). Let X be the set of prompts and A be
the set of all possible responses. During round t in a total
of T rounds, the agent receives a prompt xt ∈ X , along
with a corresponding action space At ⊂ A which can both
vary across different rounds. The agent then selects two
responses (more commonly referred to as arms in the bandit
context) a1t , a

2
t ∈ At and receives a randomized preference

yt whose distribution depends on an underlying reward func-
tion r∗ : X ×A → R. yt = 1 represents the case where a1t
is preferred over a2t , and yt = −1 otherwise. We assume
that the reward function class adopts a linear structure:

Assumption 3.1 (Linear reward). We assume that the re-
ward function is parameterized by rθ = ⟨θ,ϕ(s, a)⟩ for
some known feature mapping ϕ : X × A → Rd. Specif-
ically, the real value function is r∗(x, a) = ⟨θ∗,ϕ(x, a)⟩
for some vector θ∗ ∈ Rd hidden from the learning agent.
We assume that ∥ϕ(s, a)∥2 ≤ 1 for all (x, a) ∈ X × A,
and ∥θ∥2 ≤ B. Thus, the reward function is bounded by
|rθ(·, ·)| ≤ B.

The setting we study is equivalent to those of previous
works on contextual dueling bandits. Saha (2021) and
Bengs et al. (2022) considered a time-varying action space
St = {x1, . . . ,xK} where each action is represented by a
d-dimensional vector called the contextual vector, and the re-
ward function is defined as r∗(a) = ⟨θ∗,a⟩. The contextual
vector depends on both the prompt xt and the response at,
and can be viewed as a counterpart of the feature mapping
ϕ(·, ·) in Assumption 3.1. Compared with the contextual
vector, our formulation is more general when considering
other types of function approximations (see Section 6).
Stochastic preference model. In this work, we assume that
the preference yt follows a Bernoulli distribution accord-
ing to the Bradley-Terry-Luce (BTL) model (Hunter, 2004;
Luce, 2005): Given context xt and responses a1t , a

2
t , the

probability of a1t is preferred over a2t is

P(yt = 1|xt, a
1
t , a

2
t ) =

exp(r∗(xt, a
1
t ))

exp(r∗(xt, a1t )) + exp(r∗(xt, a2t ))

= exp(−σ(r∗(xt, a
1
t )− r∗(xt, a

2
t ))),

where σ(z) = log(1 + exp(−z)).
Some other works study a more general setting called the
Plackett-Luce (PL) model (Soufiani et al., 2014; Khetan &
Oh, 2016; Ren et al., 2018), where the learning agent selects
q ≥ 2 arms a1t , . . . , a

q
t ∈ At in round t and receives the
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preference ot ∈ [q]. The probability of ajt being preferred is

P(ot = j) =
exp(r∗(xt, a

j
t ))∑q

j′=1 exp(r∗(xt, a
j′

t ))
.

The BTL model can be seen as a special case of the PL
model by fixing q = 2. Saha (2021) showed that under
the PL model, the worst-case regret of any algorithm for
dueling bandits is Ω(d

√
T ), regardless of the choice of q.

Therefore, provided that the learner is permitted to select
any number of arms, it suffices to design a minimax-optimal
algorithm where two arms are selected in each round, which
is shown to be true for our algorithm in Section 5.
Learning Objective. Our goal is to minimize the cumula-
tive average regret defined as

Regret(T ) :=
T∑

t=1

[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
,

where a∗t = argmaxa∈A r∗(xt, a) is the optimal response
at time t. The regret we study is exactly the same as the
regret studied in Saha (2021) and Bengs et al. (2022). The
regret is also equivalent to the dueling bandit regret studied
in Yue et al. (2012), defined as

T∑
t=1

1

2

[(
exp(−σ(r∗(xt, a

∗
t )− r∗(xt, a

1
t )))−

1

2

)
+
(
exp(−σ(r∗(xt, a

∗
t )− r∗(xt, a

2
t )))−

1

2

)]
,

because exp(−σ(z))− 1/2 = Θ(z) for z ∈ [−2B, 2B].

4 Algorithm Description
We now present our algorithm, named FGTS.CDB, for lin-
ear contextual dueling bandits. The pseudocode is shown in
Algorithm 1.
Algorithm 1 FGTS.CDB

1: Given hyperparameters η, µ. Initialize S0 = ∅.
2: for t = 1, . . . , T do
3: Receive prompt xt and action space At.
4: for j = 1, 2 do
5: Sample model parameter θj

t from the posterior
distribution pj(·|St−1), defined in (4.1).

6: Select response ajt = argmaxa∈At
⟨θj

t ,ϕ(xt, a)⟩.
7: end for
8: Receive preference yt.
9: Update dataset St ← St−1 ∪ {(xt, a

1
t , a

2
t , yt)}.

10: end for
In our algorithm, the agent first samples model parameters
θ1
t and θ2

t independently, following posterior distributions
p1(·|St−1) and p2(·|St−1), respectively. The posterior dis-
tributions are defined as

pj(θ|St−1) ∝ exp

(
−

t−1∑
i=1

Lj(θ, xi, a
1
i , a

2
i , yi)

)
p0(θ),

(4.1)

where Lj is the likelihood function, and p0(·) is the prior
distribution. Sampling from such a posterior distribution can
be implemented via Langevin Monte Carlo (LMC), which
has been studied extensively in the literature (Roberts &
Tweedie, 1996; Bakry et al., 2014). Afterwards, actions ajt
are selected to maximize the inner product of the parameter
θj
t and the feature mapping ϕ(xt, a

j
t ) for j = 1, 2. Finally,

the agent receives the binary preference yt ∈ {±1} and
augments the dataset with (xt, a

1
t , a

2
t , yt).

Feel-Good Thompson sampling. In our algorithm, the
likelihood function is defined as

Lj(θ, x, a1, a2, y) = ησ(y⟨θ,ϕ(x, a1)− ϕ(x, a2)⟩)
− µmax

a′∈A
⟨θ,ϕ(x, a′)− ϕ(x, a3−j)⟩,

where η and µ are hyperparameters. In the definition above,
the first term can be treated as the log-likelihood function
on the observation (x, a1, a2, y); the second term encour-
ages exploration of θ with large reward in previous rounds,
which is referred to as Feel-Good exploration in the liter-
ature (Zhang, 2022). Without the Feel-Good exploration
term, i.e., when µ = 0, Lj reduces to the likelihood function
used in standard Thompson sampling algorithms.
Comparison with FGTS for traditional contextual ban-
dits. The differences between FGTS.CDB and existing
FGTS algorithms for traditional contextual bandits (Zhang,
2022) are twofold. Firstly, due to the preferential feedback,
the least-squares term in previous algorithms is naturally
replaced with a term in the form of logistic regression. The
more important difference lies in the Feel-Good exploration
terms. In our Feel-Good exploration term, there is an addi-
tional inner product of the current model parameter θ and
the feature vector of the adversarial arm ϕ(x, a3−j). This
additional term is a better design for the setting of contextual
dueling bandits because the affecting factor of the observa-
tion yt is the difference between the rewards of two arms
rather than the reward of a single arm. Additionally, this
term plays a crucial role in the proof, as we will show in
Section 7.
Comparison with UCB-based algorithms. We high-
light that besides the model learning technique, there is
also a stark difference in the arm selection scheme be-
tween UCB-based algorithms (including MaxInP (Saha,
2021), CoLSTIM (Bengs et al., 2022), VACDB (Di et al.,
2023)) and FGTS.CDB. In UCB-based algorithms, arms
are often selected based on a bonus term in the form of
∥ϕ(xt, a

1
t )−ϕ(xt, a

2
t )∥Σ−1 , for some positive definite ma-

trix Σ, which encourages the selection of more separated
arms. Thus, the bonus term is essential for exploration in
UCB-based algorithms, and results in the dependence of the
selected arms. In FGTS.UCB, however, the arms a1t and
a2t are just maximizers of the learned reward function, and
are independent conditioned on the history St−1. This is
possible because exploration is accomplished by Thompson
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sampling in our algorithm, and the bonus term becomes
unnecessary. In addition, the independence of arms a1t and
a2t (conditioned on St−1) is a crucial property in our proof
as we will show in Section 7.
From the viewpoint of computational complexity, the arm
selection scheme of FGTS.CDB is also superior to those of
existing algorithms. When the action space At is infinite
and continuous, the arm selection phase of FGTS.CDB can
still be implemented by solving an optimization problem. In
contrast, MaxInP calculates a set of promising arms in each
round, which causes additional computational overhead in
the case of infinite action spaces. CoLSTIM needs to take
the maximum of randomly perturbed rewards correspond-
ing to each contextual vector, which is infeasible when the
number of arms is infinite. Therefore, FGTS.CDB is the
first algorithm that can be easily applied to the setting of
infinite action spaces.

5 Main Results
In this section, we present the regret bounds of Algorithm 1,
which is minimax-optimal. We first introduce the following
assumption about the prior distribution p0:

Assumption 5.1. The logarithm of the prior distribution is
L-Lipschitz, i.e., for all θ1,θ2 ∈ {θ : ∥θ∥2 ≤ B}, we have

| log p0(θ1)− log p0(θ2)| ≤ L∥θ1 − θ2∥2.

Assumption 5.1 is satisfied for most commonly-used prior
distributions, including the uniform distribution (L = 0)
and the Gaussian distribution N (0, σ2

0Id) restricted to the
ball {θ : ∥θ∥2 ≤ B} (L = B/σ2

0).
We now present the main theorem:

Theorem 5.2. Under Assumptions 3.1 and 5.1, assume
that the hyperparameters are selected as η = 0.25 and
µ = 1/(10eB

√
T ), then the expectation of the regret of

Algorithm 1 satisfies

E[Regret(T )] = Õ(d
√
T ).

The following theorem provides a regret lower bound for
contextual dueling bandits:

Theorem 5.3. Under Assumption 3.1, assume that for all
t ∈ [T ], we have {ϕ(xt, a) : a ∈ At} = {u : ∥u∥2 ≤ 1}.
We also assume that T ≥ max{72B−2d2, d}. Then for any
algorithm for linear contextual dueling bandits, there exists
θ∗ such that the expectation of the regret satisfies

E[Regret(T )] = Ω(d
√
T ).

Remark 5.4. Theorem 5.3 shows that the regret lower bound
of any algorithm for linear contextual dueling bandits is
Ω(d
√
T ). Note that Theorem 3.1 in Bengs et al. (2022) also

provides a regret lower bound of algorithms for linear con-
textual dueling bandits, but their lower bound is looser than
ours by a factor of

√
d. They applied the analysis for the case

of bounded ℓ∞-norm to the case of bounded ℓ2-norm, which
yields loose inequalities (Lattimore & Szepesvári, 2020).
Combining Theorem 5.2 and Theorem 5.3, we conclude
that the regret bound of FGTS.CDB matches the worst-
case regret. Our regret bound also matches that of UCB-
based algorithms including MaxInP (Saha, 2021) and CoL-
STIM (Bengs et al., 2022). More recently, Di et al. (2023)
proposed an algorithm that has a variance-dependent regret
bound, and it is an interesting future direction to design a
variance-aware sampling-based algorithms for contextual
dueling bandits.
Remark 5.5. Some other works assume that the size of the
action space K is finite and derive algorithms with the re-
gret bound Õ(

√
dT logK), including Sta’D (Saha, 2021)

and SupCoLSTIM (Bengs et al., 2022). We first note that
the regret bound of Õ(

√
dT logK) is not a contradiction

against Theorem 5.2 due to the assumption of a total of K
arms. More specifically, the proof of Theorem 5.3 involves
contructing {ϕ(xt, a) : a ∈ At} = {u : ∥u∥2 ≤ 1}, so
K = 2d, and Õ(

√
dT logK) = Õ(d

√
T ). When K is

exponential in the model dimensionality d, which is more
often the case in the setting of contextual dueling bandits,
the regret bound of FGTS.CDB is at least as good as these
algorithms. In addition, our algorithm is more computa-
tionally efficient because it does not need to perform arm
elimination or to apply random pertubations to each arm.

6 Extension to Nonlinear Reward
In this section, we relax the assumption of linear reward
functions. Instead, we make the following assumption about
the reward function class:
Assumption 6.1. The parameter space Θ is a measurable
space with measure µ̄ and metric d. The model is well-
specified, i.e., θ∗ ∈ Θ. The reward function is uniformly
bounded by B and is L0-Lipschitz in θ.
We define a shorthand notation

∆rθ(x, a
1, a2) := rθ(x, a

1)− rθ(x, a
2).

In order to characterize the complexity of the reward func-
tion class, similar to Zhang (2022), we define the decoupling
coefficient dc to be such that for any λ > 0 and any joint
distribution P over Θ×A×A, we have

E(θ,a1,a2)∼P [∆rθ(x, a
1, a2)−∆rθ∗(x, a

1, a2)]

≤ λdc +
1

4λ
Eθ̃∼P |θE(a1,a2)∼P |(a1,a2)

[∆rθ̃(x, a
1, a2)−∆rθ∗(x, a

1, a2)]2,

where P |θ and P |(a1,a2) are the marginal distributions of P .
We have shown in Lemma D.1 that in the setting of linear re-
ward functions, the decoupling coefficient is d. Furthermore,
if the size of the action space is K, then the decoupling co-
efficient is bounded by K(K − 1)/2 = O(K2), shown by
Lemma 2 in Zhang (2022).
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We now introduce modifications to FGTS.CDB for the non-
linear reward. In accordance with the change of the reward
function’s structure, the arm selection scheme and the likeli-
hood function are changed to

atj = max
a∈At

rθj
t
(xt, a),

Lj(θ, x, a1, a2, y) = ησ(y∆rθ(x, a
1, a2))

− µmax
a′∈A

∆rθ(x, a
′, a3−j).

The following theorem characterizes the regret bound of
FGTS.CDB with the aforementioned modifications:

Theorem 6.2. Suppose that Assumptions 5.1 and 6.1 hold,
and the hyperparameters are chosen as η = 0.25 and

µ =
e−B

5

√
− log(p0(θ∗)µ̄({θ : d(θ, θ∗) ≤ 2/(L0T )})

Tdc
.

Then the regret of FGTS.CDB satisfies

E[Regret(T )]

= O(
√
− log(p0(θ∗)µ̄({θ : d(θ, θ∗) ≤ 2/(L0T )}) · Tdc).

Remark 6.3. Theorem 6.2 can be reduced to Theorem 5.2 by
noting that − log(p0(θ∗)µ̄({θ : d(θ, θ∗) ≤ 2/(L0T )})) =
Õ(d), and dc = O(d). Furthermore, if we assume that
the size of the action space is bounded by K, then the
regret bound is Õ(K

√
dT ). This regret bound is minimax-

optimal if K is treated as a constant, although the regret
bounds of existing algorithms, e.g., Sta’D (Saha, 2021) and
SupCoLSTIM (Bengs et al., 2022), scale with

√
logK.

Remark 6.4. Another case of interest is that the reward
function has a linear structure, but Θ is a finite set of size
N . In this case, if we choose the prior p0 to be the uni-
form distribution on Θ, then − log p0(θ∗) = logN , and
− log(µ̄({θ : d(θ, θ∗) ≤ 2/L0T})) = 0 when T is large
enough. Therefore, the regret bound is O(

√
dT logN).

7 Overview of Proof
In this section, we present the key techniques in the proof
of Theorem 5.2, and details are given in Appendix A.1. The
proof of Theorem 6.2 is similar and is given in Appendix
A.3. In Subsection 7.1, we first introduce a special regret
decomposition scheme corresponding to our algorithm and
discuss the advantage of our Feel-Good exploration term.
Then, in Subsection 7.2, we get into details of the analysis
based on the difference of potentials between steps.

7.1 Regret Decomposition

The proof for standard Thompson sampling (Zhang, 2022)
performs the following regret decomposition:

r∗(xt, a
∗
t )− r∗(xt, at)

= [rθ(xt, at)− r∗(xt, at)]︸ ︷︷ ︸
Bellman Error

− [max
a

rθ(xt, a)− r∗(xt, a
∗
t )]︸ ︷︷ ︸

Feel-Good Exploration

,

where the Bellman Error term refers to the estimation error
of θ evaluated on historic data, and the Feel-Good explo-
ration term refers to the difference between the maximum re-
ward corresponding to θ and θ∗. The Bellman Error term can
be bounded using the decoupling technique which converts
the joint expectation of the model sampling and trajectory
into independent expectations. The Feel-Good Exploration
term adopts a crucial structure that does not explicitly con-
tain at, so the decoupling trivially applies to the Feel-Good
Exploration term. However, the following two challenges
arise when studying contextual dueling bandits due to the
different definition of the regret: 1. How we can perform
the regret decomposition, and 2. whether the Feel-Good
Exploration term can also be decoupled.
Challenge 1: Regret decomposition. The starting point of
deriving a new regret decomposition is the Bellman Error
term, which should correspond to the estimation error on
historic data. As the likelihood in the posterior distribution
in (4.1) is the inner product between θ and the difference
between the arms, the Bellman Error term is

BEj
t = ⟨θ

j
t − θ∗,ϕ(xt, a

j
t )− ϕ(xt, a

3−j
t )⟩.

The remaining part of the regret is the Feel-Good Explo-
ration term, which is

BE1
t +BE2

t

2
−

[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
=

1

2

[
max
a∈At

⟨θ1
t ,ϕ(xt, a)− ϕ(xt, a

2
t )⟩

− ⟨θ∗,ϕ(xt, a
∗
t )− ϕ(xt, a

2
t )⟩

]
+

1

2

[
max
a∈At

⟨θ2
t ,ϕ(xt, a)− ϕ(xt, a

1
t )⟩

− ⟨θ∗,ϕ(xt, a
∗
t )− ϕ(xt, a

1
t )⟩

]
.

Therefore, we set the Feel-Good Exploration term to be

FGj
t (θ) = max

a∈At

⟨θ,ϕ(xt, a)− ϕ(xt, a
3−j
t )⟩

− ⟨θ∗,ϕ(xt, a
∗
t )− ϕ(xt, a

3−j
t )⟩,

and the regret decomposition is

r∗(xt, a
∗
t )− [r∗(xt, a

1
t ) + r∗(xt, a

2
t )]/2

= [BE1
t +BE2

t − FG1
t (θ

1
t )− FG2

t (θ
2
t )]/2,

The regret decomposition inspires the design of the Feel-
Good exploration term in the posterior distribution. With-
out the additional term ⟨θj

t ,ϕ(xt, a
3−j
t )⟩ in the likelihood

function, the decomposition would contain additional cross
terms ⟨θj

t − θ∗,ϕ(xt, a
3−j
t )⟩ that are hard to analyze.

Challenge 2: Decoupling for both the Bellman Error and
the Feel-Good Exploration term. We bound BEj

t using a

6
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decoupling argument that is standard in the literature (Zhang,
2022; Fan & Gu, 2023):

E[BEj
t ] ≤ dλ+

1

4λ
ESt−1,xt,a1

t ,a
2
t

[
Eθ̃∼pj(·|St−1)

LSt(θ̃)
]
,

(7.1)

where the inequality holds for any constant λ > 0, and the
least square term is defined as

LSt(θ) = ⟨θ − θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩2.

Details of this inequality are given in Lemma D.1.
However, additional challenges arise in the analysis of the
Feel-Good exploration term FGj

t (θ
j
t ) because it is different

from its counterpart in standard contextual bandits, and
the property that the Feel-Good Exploration term does not
explicitly contain the trajectory no longer holds.
To counter this challange, we make the following two crucial
observations:

1. The Feel-Good exploration term FGj
t (θ

j
t ) only contains

parameter θj
t and the adversarial arm a3−j

t , while ajt does
not appear in its definition.

2. Conditioned on the history St−1, θj
t and a3−j

t are inde-
pendent because a3−j

t is determined by θ3−j
t , which is

independent with θj
t according to Algorithm 1.

Therefore, θj
t can also be decoupled with ajt :

E[FGj
t (θ

j
t )] = ESt−1,xt,a1

t ,a
2
t
[Eθ̃∼pj(·|St−1)

FGj
t (θ̃)].

(7.2)

Combining (7.1) and (7.2), we have

E[BEj
t − FGj

t (θ)] ≤ dλ+ ESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)[

LSt(θ̃)/(4λ)− FGj
t (θ̃)

]
. (7.3)

To further bound (7.3), we use a technique based on the
analysis of the potential which is shown in Subsection 7.2.

7.2 Potential-Based Analysis

Following Zhang (2022), we consider a potential Zj
t for

each round, defined as

Zj
t := ESt

logEθ̃∼p0
W j

t (θ̃|St), (7.4)

where

W j
t (θ|St) := exp

(
−

t∑
i=1

∆Lj(θ, xi, a
1
i , a

2
i , yi)

)
,

(7.5)

∆Lj(θ, x, a1, a2, y)

:= Lj(θ, x, a1, a2, y)− Lj(θ∗, x, a
1, a2, y). (7.6)

Then the posterior distribution satisfies

pj(θ̃|St−1) =
p0(θ̃)W

j
t−1(θ̃|St−1)

Eθ̃∼p0
W j

t−1(θ̃|St−1)
. (7.7)

Using this expression, we can then obtain

Zj
t − Zj

t−1

= ESt
logEθ̃∼pj(·|St−1)

exp(−∆Lj(θ̃, xt, a
1
t , a

2
t , yt)).

Based on the above property and the design of Lj , we can
establish the connection between (7.3) and the potential
difference as follows:

Lemma 7.1. Let Zt be defined in (7.4), and suppose η ≤
1/2. Then we have

ESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)

[e−2Bη

18µ
LSt(θ̃)− FGj

t (θ̃)
]

≤ µ−1(Zj
t−1 − Zj

t ) + 32µB2,

The proof of Lemma 7.1 is detailed in Appendix C. Inspired
by Lemma 7.1, we can choose λ = (9µe2B)/(2η) in (7.3).
Taking the sum over t, noting that Zj

0 = 0, through telescope
sum we obtain that

T∑
t=1

E[BEj
t −FGj

t (θ
j
t )] ≤

−Zj
T

µ
+µT

(
9de2B

2η
+32B2

)
.

It then suffices to derive an upper bound for −Zj
T , which is

characterized by the following lemma:

Lemma 7.2. Let Zj
T be defined by (7.4), then we have

−Zj
T = Õ(d), j = 1, 2.

Lemma 7.2 shows that the upper bound of −Zj
t only con-

tains logarithmic factors of T despite the sum of T terms
in its definition. The proof of Lemma 7.2 is shown in Ap-
pendix B.2 and uses a technique similar to that of Section
5.2 in Zhang (2022). Finally, by selecting η = Θ(1) and
µ = Θ(1/

√
T ), we can obtain the regret bound of Õ(d

√
T ).

8 Experiments
In this section, we investigate the performance of
FGTS.CDB through simulation, comparing it with other
efficient algorithms proposed for contextual dueling bandits.
For each experiment, we run T = 2500 rounds. The un-
derlying unknown parameter θ∗ is randomly generated and
normalized to a unit vector. The dimension of feature vec-
tors is set to d = 5, 10, 15. We generate a total of |At| = 32
distinct arms with feature vectors randomly chosen from
{−1, 1}d following the uniform distribution. In every round,
given the arm pair selected by the algorithm, a response is
generated following the random process described in Sec-
tion 3. Each experiment comprises 10 independent runs.

7
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We report and plot the average cumulative regret in Figure
1, along with the standard deviation shown in the shaded
region. For simplicity, we choose the logistic function σ(·)
as the link function.

8.1 Implementation Details of Different Algorithms

MaxInP. The maximum informative pair method introduced
by Saha (2021) maintains an active set of potential optimal
arms in each round. Pairs are selected based on maximizing
the uncertainty in the difference between the two arms. In-
stead of incorporating a warm-up period τ0 as part of their
definitions, we initialize the covariance matrix Σ0 = λI
for regularization. Empirically, we found that when λ is set
to 0.001, this approach shows no substantial impact on the
performance compared to the warm-up strategy.
MaxPairUCB. In this algorithm, we use the same MLE
estimator as that of MaxInP. However, we use a different
arm selection scheme defined as follows:

(xt,yt) = argmax
(x,y)∈At×At

[
⟨θ̂t,xt + yt⟩+ β∥xt − yt∥Σ̂−1

t

]
,

which is a variant of MaxInP without the need for an arm
elimination phase proposed by Di et al. (2023), where At is
the decision set at round t.
CoLSTIM. This technique is proposed in Bengs et al.
(2022). Initially, they augment each arm with randomly per-
turbed utilities and select the arm with the best estimation.
They argue that this procedure yields improved empirical
performance. The second arm is then selected by maximiz-
ing the sum of the estimated reward and the uncertainty term
proposed by Saha (2021).
VACDB. This approach, proposed by Di et al. (2023), adopts
a layered arm elimination process. Arms in higher lay-
ers have lower estimation uncertainty, and the elimination
process starts when all arms within a layer have lower un-
certainty. The arm selection scheme is similar to that of
MaxPairUCB, where arms are selected to maximize the
same weighted sum within a certain layer.
FGTS.CDB. The proposed sampling-based algorithm for
contextual dueling bandits in this paper as presented in
Algorithm 1. η and µ is set to 1 and T−1/2 · α, respectively.
Empirically, we generate the model parameter {θj

t }j=1,2 by
repeatedly taking the following stochastic gradient Langevin
dynamics (SGLD) step:

θj
t ← θj

t +
√
2δξi

− δ∇θ

[ t−1∑
τ=1

Lj(θj
t , xτ , a

1
τ , a

2
τ , yτ )− ln p0(θ

j
t )︸ ︷︷ ︸

I(θj
t )

]
,

(8.1)

where ξi ∼ N (0, Id). If we set the step size δ to a suffi-
ciently small number, the dynamic of θj

t can be regarded as

the solution of the following stochastic differential equation:

dθs = −∇I(θs)ds+
√
2dWs,

where Ws is the Brownian motion in Rd with W0 = 0. We
denote by qs(θ)dθ the distribution of θs at time s. Then
it is known that qs satisfies the following Fokker-Planck
equation:

∂qs
∂s

= ∇ · (qs∇I(θs)) + λ∆qs.

The stationary distribution of θj
t after SGLD iterations can

then be derived by setting ∂qs/∂s = 0, from which we have
θj
t converges to a sample from pj(θ) ∝ exp(−I(θ)).

In our experiment, we implement (8.1) with initial step size
δ = 0.005. After each round, we schedule the step size δ
with decaying rate 0.99 to stabilize the optimization process.

8.2 Regret Comparison

We plot the regret with respect to the number of rounds in
Figure 1. The results are averaged over 30 trials. In Figure
1, we run FGTS.CDB with α = 0.1. For the benchmarks,
we select the hyperparameters, including the conficence ra-
dius in MaxInP and MaxPairUCB and the magnitude of
perturbations in CoLSTIM, to be the best-performing hyper-
parameter within {10−2, 10−1, 100, 101}. It is shown that,
FGTS.CDB outperforms the previous algorithms by a large
margin with dimension d set to 5, 10, 15. Additionally, the
standard deviation of FGTS.CDB among different trials is
also the smallest according to our experiments, which indi-
cates that FGTS.CDB is more stable under different random
seeds.

8.3 Ablation Study

One benefit of FGTS.CDB in empirical tasks is that the
hyperparameters µ = T−1/2 ·α and η are independent of the
feature dimension d, simplifying the tuning of parameters.
In contrast, the confidence radius in UCB-based algorithms
usually need to be carefully tuned to achieve the desirable
performance (Lattimore & Szepesvári, 2020). In Figure
2, we study the performance of FGTS.CDB when d =
5, 10, 15 under different values of α. It is observed that
the regret of FGTS.CDB is robust to different values of
α. Surprisingly, it turns out that FGTS.CDB performs well
even without Feel-Good exploration (α = 0). We conjecture
that a Thompson-sampling-based algorithm may also work
for contextual dueling bandit setting due to its stochastic
nature, which also encourages the agent to explore different
pairs of arms. We leave the study of Thompson-sampling
without Feel-Good exploration under contextual dueling
bandit setting for future work.

9 Conclusion
In this work, we apply the technique of Feel-Good Thomp-
son sampling to the setting of contextual dueling bandits.
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Figure 1. Regret comparison with MaxInP, MaxPairUCB and CoLSTIM.
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Figure 2. Performance of FGTS.CDB over different α.

We propose an algorithm, FGTS.CDB, whose pivotal design
is a Feel-Good exploration term that contains an additional
term representing the reward of the adversarial arm, com-
pared with standard Thompson sampling. We show that our
algorithm achieves a nearly minimax-optimal regret bound.
Furthermore, experiments on synthetic data show that the
performance of our algorithm based on FGTS is compara-
ble with UCB-based algorithms. As a future direction, it is
interesting to explore the possibility of variance-aware algo-
rithms based on the FGTS technique. The extension of our
algorithm to the setting of preference-based reinforcement
learning is also an interesting topic to study.
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A Proof of Main Results
A.1 Proof of Theorem 5.2

We first restate Theorem 5.2 more precisely:
Theorem A.1 (Restatement of Theorem 5.2). Assume that the hyperparameters are selected as µ = 0.25 and µ =
1/(10eB

√
T ), and the logarithm of the prior distribution p0 is L-Lipschitz. Then the expected regret is bounded by

T∑
t=1

E
[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
≤ 10eBd

√
T

[
2− log p0(θ∗)

d
+ log

(
L√
d
+

1

5eB

√
T

d
+

T

2
√
d

)]
.

The following Lemma bounds the regret with terms related with Zj
T :

Lemma A.2. Under Assumption 3.1, if η ≤ 1/2, then we have

T∑
t=1

E
[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
≤

(
9de2B

2η
+ 32B2

)
µT − Z1

T + Z2
T

2µ
.

We need the following lemma to characterize Zj
T in Lemma A.2:

Lemma A.3 (Restatement of Lemma 7.2). Assume that the log of the prior distribution p0 is L-Lipschitz. Then for j = 1, 2,
we have

Zj
T ≥ log p0(θ∗)− d− d log

L+ 2(µ+ η)T√
d

.

The proofs of Lemma A.2 and Lemma A.3 are presented in Section B.1 and Section B.2, respectively. We now present the
proof of Theorem 5.2:

Proof of Theorem 5.2. Combining Lemma A.2 and Lemma A.3, we have

T∑
t=1

E
[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
≤ 9de2B

2η

(
1 +

64B2η

de2B

)
µT +

1

µ

[
d− log p0(θ∗) + d log

L+ 2(µ+ η)T√
d

]
≤ 9de2B

2η

(
1 +

32

e2

)
µT +

1

µ

[
d− log p0(θ∗) + d log

L+ 2(µ+ η)T√
d

]
≤ 25e2BdTµ

η
+

1

µ

[
d− log p0(θ∗) + d log

L+ 2(µ+ η)T√
d

]
= 10eBd

√
T

[
2− log p0(θ∗)

d
+ log

(
L√
d
+

1

5eB

√
T

d
+

T

2
√
d

)]
,

where the first inequality holds due to Lemma A.2 and Lemma A.3, the second inequality holds because B/eB ≤ 1/e,
the third inequality holds because 9/2 · (1 + 32/e2) ≤ 25, and the equality holds by substituting η = 0.25 and µ =
1/(10eB

√
T ).

A.2 Proof of Theorem 5.3

In this section, we provide the proof for Theorem 5.3. Instead of applying using the proof that is similar to the case of
bounded ℓ∞ norm, which is the approach used in the proof of Theorem 3.1 of (Bengs et al., 2022), we follow the proof for
the case of bounded ℓ2-norm in the standard contextual bandit setting (Lattimore & Szepesvári, 2020).
Notations. For θ ∈ Θ, let Pθ and Eθ be the distribution and expectation over the trajectory generated by the algorithm,
respectively. Let ϕj

ti be the shorthand notation for (ϕ(xt, a
j
t ))i. For two probability distributions P1 and P2, let DKL(P1||P2)

be their KL-divergence.

Proof of Theorem 5.3. We fix i ∈ [d], and define

τi := T ∧min

{
τ :

τ∑
t=1

[(ϕ1
ti)

2 + (ϕ2
ti)

2] ≥ 2T

d

}

12
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For x ∈ {±1}, we define

Uθ,i(x) = Eθ

[ τi∑
t=1

(
1√
d
− ϕ1

tix

)2

+

τi∑
t=1

(
1√
d
− ϕ2

tix

)2]
,

We fix θ ∈ Θ = {±∆}d for some ∆ to be determined. For the fixed i, define θ′ to be the vector such that θ′i = −θi and
θ′j = θj for all j ̸= i. We then have

Uθ,i(sign(θi)) + Uθ′,i(sign(θ
′
i)) = Uθ,i(sign(θi))− Uθ′,i(sign(θi))︸ ︷︷ ︸

I1

+Uθ′,i(sign(θi)) + Uθ′,i(sign(θ
′
i))︸ ︷︷ ︸

I2

.

For I1, note that
τi∑
t=1

(
1√
d
− ϕ1

ti sign(θi)

)2

+

τi∑
t=1

(
1√
d
− ϕ2

ti sign(θi)

)2

=
2τi
d
− 2 sign(θi)√

d

τi∑
t=1

(ϕ1
ti + ϕ2

ti) +

τi∑
t=1

[(ϕ1
ti)

2 + (ϕ2
ti)

2]

≤ 4τi
d

+ 2

τi∑
t=1

[(ϕ1
ti)

2 + (ϕ2
ti)

2]

≤ 4T

d
+ 2 · 2T

d
+ 2 · (1 + 1) =

8T

d
+ 4,

where first inequality holds due to Cauchy-Schwarz inequality, and the second inequality holds due to the definition of τi
and |ϕj

ti| ≤ 1. We thus bound I1 as follows:

I1 = Eθ

[ τi∑
t=1

(
1√
d
− ϕ1

ti sign(θi)

)2

+

τi∑
t=1

(
1√
d
− ϕ2

ti sign(θi)

)2]

− Eθ′

[ τi∑
t=1

(
1√
d
− ϕ1

ti sign(θi)

)2

+

τi∑
t=1

(
1√
d
− ϕ2

ti sign(θi)

)2]
≥ −4(2T/d+ 1)

√
DKL(Ber(Pθ||Pθ′))/2

≥ −(2T/d+ 1)

√√√√Eθ

[ τi∑
t=1

⟨θ − θ′,ϕ(xt, a1t )− ϕ(xt, a2t )⟩2
]

≥ −2∆(2T/d+ 1)

√√√√2Eθ

[ τi∑
t=1

((ϕ1
ti)

2 + (ϕ2
ti)

2)

]
≥ −4∆(2T/d+ 1)

√
T/d+ 1

≥ −12
√
2∆(T/d)1.5, (A.1)

where the first ineequality holds due to Pinker’s inequality, the second inequality holds due to Lemma D.4, the third
inequality holds due to the definition of θ′ and because |ϕ1

ti − ϕ2
ti|2 ≤ 2(ϕ1

ti)
2 + 2(ϕ2

ti)
2, the fourth inequality holds due to

the definition of τi and |ϕj
ti| ≤ 1, and the last inequality holds because T ≥ d. For I2, we have

I2 = Eθ′

[ τi∑
t=1

(
1√
d
− ϕ1

ti

)2

+

τi∑
t=1

(
1√
d
− ϕ2

ti

)2]
+ Eθ′

[ τi∑
t=1

(
1√
d
+ ϕ1

ti

)2

+

τi∑
t=1

(
1√
d
+ ϕ2

ti

)2]

=
4τi
d

+ 2Eθ′

[ τi∑
t=1

[(ϕ1
ti)

2 + (ϕ2
ti)

2]

]
≥ 4T

d
, (A.2)

where the inequality holds due to the definition of τi. Combining (A.1) and (A.2), we have

Uθ,i(sign(θi)) + Uθ′,i(sign(θ
′
i)) ≥

4T

d
− 12

√
2∆(T/d)1.5.
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Thus, by pairing each θ with the corresponding θ′ for each i, we have

1

|Θ|
∑
θ∈Θ

d∑
i=1

Uθ,i(sign(θi)) ≥ 2T − 6
√
2∆T 1.5d−0.5.

Therefore, there exists θ ∈ Θ such that

d∑
i=1

Uθ,i(sign(θi)) ≥ 2T − 6
√
2∆T 1.5d−0.5. (A.3)

For this θ, the regret is

Regret(T ) =
∆

2
· Eθ

[ T∑
t=1

d∑
i=1

(
1√
d
− ϕ1

ti sign(θi)

)]
+

∆

2
· Eθ

[ T∑
t=1

d∑
i=1

(
1√
d
− ϕ2

ti sign(θi)

)]
. (A.4)

Note that

d∑
i=1

(
1√
d
− ϕj

ti sign(θi)

)
=

d∑
i=1

(
1

2
√
d
− ϕj

ti sign(θi)

)
+

√
d

2

≥
d∑

i=1

(
1

2
√
d
− ϕj

ti sign(θi)

)
+

√
d

2

d∑
i=1

(ϕj
ti)

2

=

√
d

2

d∑
i=1

(
1√
d
− ϕj

ti sign(θi)

)2

, (A.5)

where the inequality holds because
∑d

i=1(ϕ
j
ti)

2 ≤ 1. Plugging (A.5) into (A.4), we have

Regret(T ) ≥ ∆
√
d

4

d∑
i=1

Eθ

[ T∑
t=1

(
1√
d
− ϕ1

ti sign(θi)

)2

+
T∑

t=1

(
1√
d
− ϕ1

ti sign(θi)

)2]

≥ ∆
√
d

4

d∑
i=1

Eθ

[ τi∑
t=1

(
1√
d
− ϕ1

ti sign(θi)

)2

+

τi∑
t=1

(
1√
d
− ϕ1

ti sign(θi)

)2]

=
∆
√
d

4

d∑
i=1

Uθ,i(sign(θi))

≥ ∆
√
d

2
(T − 3

√
2∆T 1.5d−0.5),

where the second inequality holds because τi ≤ T , and the last inequality holds due to (A.3). Let ∆ = 1
6

√
d
2T , then

Regret(T ) ≥ d
√
T

24
√
2
.

A.3 Proof of Theorem 6.2

Similar to the proof of Theorem 5.2, we make the following notations:

BEj
t := ∆rθj

t
(xt, a

j
t , a

3−j
t )−∆rθ∗(xt, a

j
t , a

3−j
t ),

FGj
t (θ) = max

a∈A
∆rθ(xt, a, a

3−j
t )−∆rθ∗(xt, a

∗
t , a

3−j
t ),

LSt(θ) = (∆rθ(xt, a
j
t , a

3−j
t )−∆rθ∗(xt, a

j
t , a

3−j
t ))2.

We first present the following restatement of Theorem 6.2:

14
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Theorem A.4 (Restatement of Theorem 6.2). Assume that the hyperparameters are selected as η = 0.25, and

µ =
e−B

5

√
log 1/[p0(θ∗)µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})]

Tdc
,

We also assume that the log p0 is L-Lipschitz and that rθ is L0-Lipschitz in θ. Then the regret is bound by

E[Regret(T )] ≤ 4 + 5eB
√

Tdc log 1/[p0(θ∗)µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})]

·
[
2 +

1 + 2L/(L0T )

log 1/[p0(θ∗)µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})]

]
.

Note that Lemma B.1 does not require linearity of the reward function and can be directly applied in the proof. We only
require the following lemma as a counterpart of Lemma A.3:

Lemma A.5. Assume that log p0 is L-Lipschitz and that rθ is L0-Lipschitz in θ. Then for j = 1, 2, we have

Zj
T ≥ log p0(θ∗) + log µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})−

2L

L0T
− 4(η + µ).

The proof of Lemma A.5 is given in Appendix B.3. We now present the proof of Theorem A.4:

Proof of Theorem A.4. BEj
t can be bounded as

E[BEj
t − FGj

t (θ
j
t )] ≤

9e2Bµdc

2η
+ ESt−1,xt,a1

t ,a
2
t
Eθ̃∼pj(·|St−1)

[
e−2Bη

18µ
LSt(θ̃)− FGj

t (θ̃)

]
≤ 9e2Bµdc

2η
+

Zj
t−1 − Zj

t

µ
+ 32µB2,

where the first inequality holds due to the definition of dc, and the second inequality holds due to Lemma B.1. Taking the
sum over t and substituting η = 0.25, we have

T∑
t=1

E[BEj
t − FGj

t (θ
j
t )] ≤ (18e2Bdc + 32B2)µT +

e−2Bϵ

72µ
−

Zj
T

µ
≤ (18 + 32/e2)e2BdcµT −

Zj
T

µ

≤ 25e2BdcµT +
1

µ
+

2L

L0Tµ
+ 4− log p0(θ∗)

µ
+

log 1/µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})
µ

,

where the second inequality holds because e−BB ≤ 1/e, the second inequality holds because 18 + 32/e2 ≤ 25, and the
last inequality holds due to Lemma A.5. Taking

µ =
e−B

5

√
log 1/[p0(θ∗)µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})]

Tdc
,

then we have

T∑
t=1

E[BEj
t − FGj

t (θ
j
t )] ≤ 4 + 5eB

√
Tdc log 1/[p0(θ∗)µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})]

·
[
2 +

1 + 2L/(L0T )

log 1/[p0(θ∗)µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})]

]
.

B Proof of Lemmas in Appendix A
B.1 Proof of Lemma A.2

In order to prove Lemma A.2, we first present the following lemma, which connects LSt and FGj
t with the difference of the

potential Zj
t :
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Lemma B.1 (Restatement of Lemma 7.1). Under the same assumptions as Lemma A.2, we have

ESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)

[
e−2Bη

18µ
LSt(θ̃)− FGj

t (θ̃)

]
≤ µ−1(Zj

t−1 − Zj
t ) + 32µB2.

The proof of Lemma B.1 is given in Appendix C. We now present the proof of Lemma A.2:

Proof of Lemma A.2. The regret at step t can be decomposed as

r∗(xt, a
∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2
= E

〈
θ∗,ϕ(xt, a

∗
t )−

ϕ(xt, a
1
t ) + ϕ(xt, a

2
t )

2

〉
=

1

2

[
⟨θ1

t − θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩ − ⟨θ1

t ,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩+ ⟨θ∗,ϕ(xt, a

∗
t )− ϕ(xt, a

2
t )⟩

]︸ ︷︷ ︸
I1

+
1

2

[
⟨θ2

t − θ∗,ϕ(xt, a
2
t )− ϕ(xt, a

1
t )⟩ − ⟨θ2

t ,ϕ(xt, a
2
t )− ϕ(xt, a

1
t )⟩+ ⟨θ∗,ϕ(xt, a

∗
t )− ϕ(xt, a

1
t )⟩

]︸ ︷︷ ︸
I2

. (B.1)

The expectation of I1 can be bounded as

E
[
⟨θ1

t − θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩ − ⟨θ1

t ,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩+ ⟨θ∗,ϕ(xt, a

∗
t )− ϕ(xt, a

2
t )⟩

]
= ESt−1,xtEθ1

t ,a
1
t ,a

2
t |St−1

⟨θ1
t − θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩ − ESt−1,xt

Eθ1
t ,a

2
t |St−1

FG1
t (θ

1
t )

≤ 9e2Bµd

2η
+

e−2Bη

18µ
ESt−1,xt

Ea1
t ,a

2
t |St−1

Eθ̃∼p1(·|St−1)
LSt(θ̃)− ESt−1,xt

Eθ1
t ,a

2
t |St−1

FG1
t (θ

1
t )

=
9e2Bµd

2η
+ ESt−1,xt,a1

t ,a
2
t
Eθ̃∼p1(·|St−1)

[e−2Bη

18µ
LSt(θ̃)− FG1

t (θ̃)
]

≤
(
9de2B

2η
+ 32B2

)
µ+

Z1
t−1 − Z1

t

µ
, (B.2)

where the first equality holds due to the law of total expectation, the first inequality holds due to the decoupling lemma
(Lemma D.1), the second equality holds because θ0

t and a1t are independent conditioned on St−1, xt, and the last inequality
holds due to Lemma B.1. For I2, we can similarly prove that

E
[
⟨θ2

t − θ∗,ϕ(xt, a
2
t )− ϕ(xt, a

1
t )⟩ − ⟨θ2

t ,ϕ(xt, a
2
t )− ϕ(xt, a

1
t )⟩+ ⟨θ∗,ϕ(xt, a

∗
t )− ϕ(xt, a

1
t )⟩

]
≤

(
9de2B

2η
+ 32B2

)
µ+

Z2
t−1 − Z2

t

µ
(B.3)

Plugging (B.2) and (B.3) into (B.1), taking the sum over t, we have

T∑
t=1

E
[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
≤

(
9de2B

2η
+ 32B2

)
µT +

(Z1
0 + Z2

0 )− (Z1
T + Z2

T )

2µ

=

(
9de2B

2η
+ 32B2

)
µT − Z1

T + Z2
T

2µ
,

where the equality holds because Zj
0 = 0.

B.2 Proof of Lemma A.3

Proof of Lemma A.3. We first can decompose ∆Lj into its expectation I1 and a deviation term I2:

∆Lj(θ, xt, a
1
t , a

2
t , yt) = Eyt|xt,a1

t ,a
2
t
∆Lj(θ, xt, a

1
t , a

2
t , yt)︸ ︷︷ ︸

I1

+∆Lj(θ, xt, a
1
t , a

2
t , yt)− Eyt|xt,a1

t ,a
2
t
∆Lj(θ, xt, a

1
t , a

2
t , yt)︸ ︷︷ ︸

I2

. (B.4)
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For I1, note that
1

1 + ez
= −σ′(z),

1

1 + e−z
= 1− 1

1 + ez
= 1 + σ′(z),

so we have

I1 − µFGj
t (θ)

= [1 + σ′(⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)]

· η[σ(⟨θ,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)− σ(⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩)]

− σ′(⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)

· η[σ(−⟨θ,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)− σ(−⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩)]

= η[σ(⟨θ,ϕ(x, a1)− ϕ(x, a2)⟩)− σ(⟨θ∗,ϕ(x, a
1)− ϕ(x, a2)⟩)]

− ησ′(⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩) · ⟨θ − θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩, (B.5)

where the second equality holds because σ(z)− σ(−z) = −z. By Taylor expansion, there exists ξ between ⟨θ,ϕ(xt, a
1
t )−

ϕ(xt, a
2
t )⟩ and ⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩ such that

σ(⟨θ,ϕ(x, a1)− ϕ(x, a2)⟩)− σ(⟨θ∗,ϕ(x, a
1)− ϕ(x, a2)⟩)

− σ′(⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩) · ⟨θ − θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩

=
σ′′(ξ)

2
⟨θ − θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩2

≤ 2σ′′(ξ)∥θ − θ∗∥22

≤ 1

2
∥θ − θ∗∥2, (B.6)

where the first inequality holds because ⟨θ − θ∗,ϕ(xt, a
1
t ) − ϕ(xt, a

2
t )⟩2 ≤ ∥θ − θ∗∥22 · ∥ϕ(xt, a

1
t ) − ϕ(xt, a

2
t )∥22 ≤

4∥θ − θ∗∥2, and the second inequality holds because σ′′(ξ) = 1/(2 + eξ + e−ξ) ≤ 1/4. Furthermore, for FGj
t (θ), let

â = argmaxa∈A⟨θ,ϕ(xt, a)⟩, then

FGj
t (θ) = max

a∈A
⟨θ,ϕ(xt, a)⟩ − ⟨θ∗,ϕ(xt, a

∗
t )⟩+ ⟨θ∗ − θ,ϕ(xt, a

3−j
t )⟩

≤ ⟨θ − θ∗,ϕ(xt, â)− ϕ(xt, a
3−j
t )⟩

≤ 2∥θ − θ∗∥2, (B.7)

where the first inequality holds because ⟨θ∗,ϕ(xt, a
∗
t )⟩ ≥ ⟨θ∗,ϕ(xt, â)⟩, and the second inequality holds because ⟨θ −

θ∗,ϕ(xt, â)−ϕ(xt, a
3−j
t )⟩ ≤ ∥θ− θ∗∥2 · ∥ϕ(xt, â)−ϕ(xt, a

3−j
t )∥2 ≤ 2∥θ− θ∗∥2. Plugging (B.6) and (B.7) into (B.5),

we have

I1 ≤
η

2
∥θ − θ∗∥22 + 2µ∥θ − θ∗∥2. (B.8)

Finally, for I2, note that for y ∈ {±1}, we have

σ(yp)− σ(yq) = σ(p)− σ(q) +
y − 1

2
(p− q),

so we have

I2 = η

[
yt − 1

2
− σ′(⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩)

]
⟨θ − θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩

≤ η

∣∣∣∣yt − 1

2
− σ′(⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩)

∣∣∣∣ · 2∥θ − θ∗∥2, (B.9)

where the inequality holds because ⟨θ−θ∗,ϕ(xt, a
1
t )−ϕ(xt, a

2
t )⟩ ≤ ∥θ−θ∗∥2 · ∥ϕ(xt, a

1
t )−ϕ(xt, a

2
t )∥2 ≤ 2∥θ−θ∗∥2.

Denote

ϵt :=

∣∣∣∣yt − 1

2
− σ′(⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩)

∣∣∣∣,
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then we have

Eyt|xt,a1
t ,a

2
t
ϵt =

2 exp(⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)

[1 + exp(⟨θ∗,ϕ(xt, a1t )− ϕ(xt, a2t )⟩)]2
≤ 1

2
, (B.10)

where the inequality holds due to AM-GM inequality. Denote

θ̂ = min
θ:∥θ−θ∗∥2≤δ

p0(θ),

then we have

log

∫
∥θ̃−θ∗∥2≤δ

p0(θ̃) dθ̃ ≥ log

∫
∥θ̃−θ∗∥∞≤δ/

√
d

p0(θ̃) dθ

≥ log
(
p0(θ̂)(2δ/

√
d)d

)
≥ log p0(θ∗)− Lδ + d log(2δ/

√
d), (B.11)

where the first inequality holds because {θ : ∥θ − θ∗∥∞ ≤ δ/
√
d} ⊂ {θ : ∥θ − θ∗∥2 ≤ δ}, the second inequality holds

due to the definition of θ̂, and the last inequality holds because log p0 is L-Lipschitz. Therefore, we have

Zj
T = EST

logEθ̃∼p0
exp

(
−

T∑
t=1

∆Lj(θ̃, xt, a
1
t , a

2
t , yt)

)

≥ EST
logEθ̃∼p0

exp

(
− ηT

2
∥θ̃ − θ∗∥22 − 2µT∥θ̃ − θ∗∥2 − 2η

T∑
t=1

ϵt · ∥θ̃ − θ∗∥2
)

≥ EST
log

∫
∥θ̃−θ∗∥2≤δ

p0(θ̃) exp

(
− ηTδ2

2
− 2µTδ − 2ηδ

T∑
t=1

ϵt

)
dθ̃

= −ηTδ2

2
− 2µTδ − 2ηδ

T∑
t=1

Eϵt + log

∫
∥θ̃−θ∗∥2≤δ

p0(θ̃) dθ̃

≥ −2(µ+ η)Tδ + log p0(θ∗)− Lδ + d log(2δ/
√
d),

where the first inequality holds by plugging (B.8) and (B.9) into (B.4), the second inequality holds by restricting the
domain to {θ̃ : ∥θ̃ − θ∗∥2 ≤ δ}, and the last inequality holds due to (B.10) and (B.11) and because δ/2 ≤ 1. Take
δ = min{d/(L+ 2(µ+ η)T ), B, 2}, then

Zj
T ≥ log p0(θ∗)− d+ d log

√
d

L+ 2(µ+ η)T
.

B.3 Proof of Lemma A.5

Proof of Lemma A.5. We first can decompose ∆Lj into its expectation I1 and a deviation term I2:

∆Lj(θ, xt, a
1
t , a

2
t , yt) = Eyt|xt,a1

t ,a
2
t
∆Lj(θ, xt, a

1
t , a

2
t , yt)︸ ︷︷ ︸

I1

(B.12)

+∆Lj(θ, xt, a
1
t , a

2
t , yt)− Eyt|xt,a1

t ,a
2
t
∆Lj(θ, xt, a

1
t , a

2
t , yt)︸ ︷︷ ︸

I2

. (B.13)

For I1, similar to the proof of Lemma A.3, we have

I1 − µFGj
t (θ) ≤

η

8
(∆rθ(xt, a

1
t , a

2
t )−∆rθ∗(xt, a

1
t , a

2
t ))

2 ≤ L2
0η

2
d(θ, θ∗)

2, (B.14)
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where the second inequality holds because ∆rθ is 2L0-Lipschitz. For FGt
j(θ), let â = argmaxa∈A rθ(xt, a), then

FGj
t (θ) = ∆rθ(xt, â, a

3−j
t )−∆rθ∗(xt, a

∗
t , a

3−j
t ) ≤ ∆rθ(xt, â, a

3−j
t )−∆rθ∗(xt, â, a

3−j
t ) ≤ 2L0d(θ, θ∗), (B.15)

where the first inequality holds due to optimality of a∗t , and the second inequality holds because ∆rθ is 2L0-Lipschitz. For
I2, similar to the proof of Lemma A.3, we have

|I2| ≤
η

2
|∆rθ(xt, a

1
t , a

2
t )−∆rθ∗(xt, a

1
t , a

2
t )| ≤ L0ηd(θ, θ∗), (B.16)

where the second inequality holds because ∆rθ is 2L0-Lipschitz. Denote

θ̂ = min
θ:d(θ,θ∗)≤δ

p0(θ),

then we have

log

∫
d(θ̃,θ∗)≤δ

p0(θ̃) dθ ≥ log

(
p0(θ̂)

∫
d(θ̃,θ∗)≤δ

dθ̃

)
≥ log p0(θ∗)− Lδ + log µ̄({θ ∈ Θ : d(θ, θ∗) ≤ δ}), (B.17)

where the first inequality holds due to the definition of µ̂, and the second inequality holds because log p0 is L-Lipschitz. We
thus have

Zj
T = EST

logEθ̃∼p0
exp

(
−

T∑
t=1

∆Lj(θ̃, xt, a
1
t , a

2
t , yt)

)
≥ EST

logEθ̃∼p0
exp

(
− L2

0Tη

2
d(θ̃, θ∗)

2 − L0T (η + 2µ)d(θ̃, θ∗)

)
≥ log

∫
θ̃:d(θ̃,θ∗)≤δ

p0(θ̃)−
L2
0Tηδ

2

2
− L0T (η + 2µ)δ

≥ log p0(θ∗)− Lδ + log µ̄({θ ∈ Θ : d(θ, θ∗) ≤ δ})− L2
0Tηδ

2

2
− L0T (η + 2µ)δ,

where the first inequality holds due to (B.14), (B.15) and (B.16), the second inequality holds because {θ ∈ Θ : d(θ, θ∗) ≤
δ} ⊂ Θ, and the last inequality holds due to (B.17). Taking δ = 2/(L0T ), we have

Zj
T ≥ log p0(θ∗) + log µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})−

2L

L0T
− 2η

T
− 2(η + 2µ)

≥ log p0(θ∗) + log µ̄({θ ∈ Θ : d(θ, θ∗) ≤ 2/(L0T )})−
2L

L0T
− 4(η + µ),

where the second inequality holds because T ≥ 1.

C Proof of Lemma B.1
Proof of Lemma B.1. The difference of the potential between steps can be bounded as

Zj
t − Zj

t−1 = ESt log
Eθ̃∼p0

W j
t (θ̃|St)

Eθ̃∼p0
W j

t−1(θ̃|St−1)

= ESt log
Eθ̃∼p0

[W j
t−1(θ|St−1) exp(−∆Lj(θ̃, xt, a

1
t , a

2
t , yt))]

Eθ̃∼p0
W j

t−1(θ̃|St−1)

= ESt logEθ̃∼pj(·|St−1)
exp(−∆Lj(θ̃, xt, a

1
t , a

2
t , yt))

≤ ESt−1,xt,a1
t ,a

2
t
logEθ̃∼pj(·|St−1)

Eyt|xt,a1
t ,a

2
t
exp(−∆Lj(θ̃, xt, a

1
t , a

2
t )), (C.1)

where the first equality holds due to the definition of Zt in (7.4), the second equality holds due to the definition of definition
of Wt in (7.5), the third equality holds due to (7.7), and the inequality holds due to Jensen’s inequality. Note that

Eyt|xt,a1
t ,a

2
t
exp(−∆L(θ̃, xt, a

1
t , a

2
t )) = exp(µFGj

t (θ̃))
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·
[(

1 + exp(−⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)

1 + exp(−⟨θ̃,ϕ(xt, a1t )− ϕ(xt, a2t )⟩)

)η

· 1

1 + exp(−⟨θ∗,ϕ(xt, a1t )− ϕ(xt, a2t )⟩)

+

(
1 + exp(⟨θ∗,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩)

1 + exp(⟨θ̃,ϕ(xt, a1t )− ϕ(xt, a2t )⟩)

)η

· 1

1 + exp(⟨θ∗,ϕ(xt, a1t )− ϕ(xt, a2t )⟩)

]
= exp(µFGj

t (θ̃) + σ(⟨(1− η)θ∗ + ηθ̃,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)

− (1− η)σ(⟨θ∗,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩)− ησ(⟨θ̃,ϕ(xt, a

1
t )− ϕ(xt, a

2
t )⟩))

≤ exp(µFGj
t (θ̃)− e−2B/8 · η(1− η)LSt(θ̃))

≤ exp(µFGj
t (θ̃)− ηe−2B/16 · LSt(θ̃)), (C.2)

where the second equality holds due to the definition of ∆Lj in (7.6), the first inequality holds due to Lemma D.3, and the
second inequality holds because η ≤ 1/2. Plugging (C.2) into (C.1), we have

Zj
t − Zj

t−1 ≤ ESt−1,xt,a1
t ,a

2
t
logEθ̃∼pj(·|St−1)

exp(µFGj
t (θ̃)− ηe−2B/16 · LSt(θ̃))

≤ 1

2
ESt−1,xt,a1

t ,a
2
t
logEθ̃∼pj(·|St−1)

exp(2µFGj
t (θ̃))︸ ︷︷ ︸

I1

+
1

2
ESt−1,xt,a1

t ,a
2
t
logEθ̃∼pj(·|St−1)

exp(−ηe−2B/8 · LSt(θ̃))︸ ︷︷ ︸
I2

, (C.3)

where the second inequality holds due to Cauchy-Schwarz inequality. For I1, note that FGj
t (θ̃) ∈ [−4B, 4B], so by Lemma

D.2, we have

I1 ≤ 2µESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)

FGj
t (θ̃) + 64µ2B2. (C.4)

For I2, we have

I2 ≤ ESt−1,xt,a1
t ,a

2
t
logEθ̃∼pj(·|St−1)

[1− ηe−2B/8 · LSt(θ̃) + η2e−4B/128 · (LSt(θ̃))2]

≤ ESt−1,xt,a1
t ,a

2
t
logEθ̃∼pj(·|St−1)

[1− ηe−2B/8 · LSt(θ̃)(1− ηe−2B/16 · (4B)2)]

≤ ESt−1,xt,a1
t ,a

2
t
logEθ̃∼pj(·|St−1)

[1− ηe−2B/8 · LSt(θ̃)(1− 1/2 · 1/e2)]

≤ ESt−1,xt,a1
t ,a

2
t
logEθ̃∼pj(·|St−1)

[1− ηe−2B/9 · LSt(θ̃)]

≤ −ηe−2B/9 · ESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)

LSt(θ̃), (C.5)

where the first inequality holds because ez ≤ 1+z+z2/2 for all z ≤ 0, the second inequality holds because LSt(θ) ≤ (4B)2,
the second inequality holds because Be−B ≤ 1/e for all B > 0, the fourth inequality holds because 1/8 · (1−1/2 ·1/e2) ≥
1/9, and the last inequality holds because log(1 + z) ≤ z. Plugging (C.4) and (C.5) into (C.3), we have

Zj
t − Zj

t−1 ≤ 32µ2B2 + ESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)

[µFGj
t (θ̃)− ηe−2B/18 · LSt(θ̃)].

Rearranging terms, we obtain

ESt−1,xt,a1
t ,a

2
t
Eθ̃∼pj(·|St−1)

[
e−2Bη

18µ
LSt(θ̃)− FGj

t (θ̃)

]
≤ µ−1(Zj

t−1 − Zj
t ) + 32µB2.

D Auxiliary Lemmas
Lemma D.1 (Decoupling lemma, Lemma D.1 in Fan & Gu (2023)). Let P be a joint distribution over two Rd spaces. For
any constant λ > 0, we have

E(θ,ϕ)∼P ⟨θ,ϕ⟩ ≤ dλ+
1

4λ
E(θ,ϕ)∼PE(θ′,ϕ′)∼P ⟨θ′,ϕ⟩2.
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Lemma D.2 (Hoeffding’s lemma). Let X be a random variable that is bounded by a ≤ X ≤ b. Then for any constant λ,

E exp(λX) ≤ exp(λEX + λ2(b− a)2/8).

Lemma D.3. Let σ(z) = log(1 + exp(−z)). Then for any η ∈ (0, 1) and p, q ∈ [−2B, 2B], we have

σ((1− η)p+ ηq)− (1− η)σ(p)− ησ(q) ≤ −e−2B

8
η(1− η)(q − p)2.

Proof. Without loss of generality, we assume that p ≤ q. Otherwise, we substitute (p, q, η)← (q, p, 1− η). By Lagrange‘s
mean value theorem, there exists ξ(η, p, q) ∈ [p, q] such that

ησ′((1− η)p+ ηq)− ησ′(q) = −η(1− η)(q − p)σ′′(ξ(η, p, q)).

Note that for any ξ ∈ [−2B, 2B], the second derivative σ′′(ξ) is bounded by

σ′′(ξ) =
1

eξ + 2 + e−ξ
≥ e−2B

4
,

so

ησ′((1− η)p+ ηq)− ησ′(q) ≤ −e−2Bη(1− η)

4
(q − p).

Taking integral w.r.t. q on both sides, we have

σ((1− η)p+ ηq)− (1− η)σ(p)− ησ(q) ≤ −e−2B

8
η(1− η)(q − p)2.

Lemma D.4. For any θ,θ′ ∈ Θ, we have

DKL(Pθ||Pθ′) ≤ 1

8
Eθ

[ T∑
t=1

⟨θ − θ′,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩2

]
.

Proof. We define the shorthand notation

pθ,t := Pθ[yt = 1|xt, a
1
t , a

2
t ] =

1

1 + exp(⟨θ,ϕ(xt, a2t )− ϕ(xt, a1t )⟩)
,

then by decomposition properties of the relative entropy, we have

DKL(Pθ||Pθ′) = Eθ

[ T∑
t=1

DKL(Ber(pθ,t)||Ber(pθ′,t))

]
. (D.1)

Denote

u = ⟨θ,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩,

v = ⟨θ′,ϕ(xt, a
1
t )− ϕ(xt, a

2
t )⟩,

then

DKL(Ber(pθ,t)||Ber(pθ′,t)) =
1

1 + e−u
· log 1 + e−v

1 + e−u
+

1

1 + eu
· log 1 + ev

1 + eu

= log(1 + e−v)− log(1 + e−u)− −1
1 + eu

(v − u)

=
eξ

(1 + eξ)2
· (v − u)2

2

≤ (v − u)2

8
, (D.2)

where the first equality holds due to definition of pθ,t, the third equality holds due to Taylor expansion with Langragian
remainder, and the inequality holds due to AM-GM inequality. Plugging (D.2) into (D.1), we derive the desired upper bound
for DKL(Pθ||Pθ′).
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