
IM-SNN: Memory-Efficient Spiking Neural
Network with Low-Precision Membrane Potentials

and Weights
Ahmed Hasssan
School of ECE

Cornell Tech
New York, NY, USA
ah2288@cornell.edu

Jian Meng
School of ECE

Cornell Tech
New York, NY, USA
jm2787@cornell.edu

Anupreetham Anupreetham
School of ECE

Cornell Tech
New York, NY, USA
aa2483@cornell.edu

Jae-sun Seo
School of ECE

Cornell Tech
New York, NY, USA
js3528@cornell.edu

Abstract—Compared to the conventional deep neural net-
work (DNN), the binary activation (spikes) of spiking neural
network (SNN) largely improves energy efficiency, especially
with spatial-temporal computer vision tasks. Despite the memory
reduction introduced by the binary spikes, the full precision
membrane potential of SNNs requires the same-sized memory
array as the full precision activation of DNNs. In other words,
the binary spikes of SNNs elevate the efficiency of layer-wise
communication but do not necessarily improve the total storage
or overall memory efficiency. Prior research works have not
fully investigated low-precision membrane potential considering
the overall SNN memory efficiency and hardware awareness.
Motivated by that, this paper proposes IM-SNN, an integer-only
SNN with low-precision weights and membrane potential. Unlike
prior works that ignore the hardware bottleneck of iterative
membrane updates, IM-SNN provides a systematic compression
scheme that makes the quantized SNN fully deployable to the
hardware accelerator. In addition to the low-precision weights,
IM-SNN compresses the membrane potential down to ternary
precision, leading to outstanding hardware compatibility and
memory efficiency. The proposed method has been validated
against both static image datasets (CIFAR, ImageNet) and event-
based datasets (DVS-CIFAR10, N-Caltech, Prophesee Automo-
tive Gen1) for both classification and object detection tasks.
Compared to the state-of-the-art (SoTA) SNN works, our work
achieves up to 13× memory reduction with negligible accuracy
degradation.

Index Terms—Spiking neural network (SNN), low-precision
quantization, membrane potential, efficient SNN.

I. INTRODUCTION

Spiking neural networks (SNN) have been presented as
efficient AI models for processing spatial-temporal infor-
mation. Empowered by the revolution of deep neural net-
works (DNNs), recent SNNs started applying the spiking pro-
cedure on DNN with spike-based spatial-temporal computer
vision tasks (e.g., event-based computer vision). As the key in-
gredient of SNN, binary spikes largely elevate the efficiency of
neural networks with reduced memory consumption and sim-
plified hardware design. Meanwhile, the non-differentiability
of binary activation required prior works to investigate the
high-performance training methods and mitigate the accuracy
gap between SNN and DNN on large-scale datasets (e.g.,

ImageNet-1K). Besides the accuracy-driven objective, the ul-
timate goal of SNN is employing the algorithm-induced effi-
ciency to practical hardware benefits. Although the binarized
spikes improve the efficiency of computation, generating the
binarized spikes requires high-precision membrane potential
with iterative updates. Regardless of the training methods,
the layer-wise operation of the current SNN design consists
of a) high precision weights, b) high precision membrane
potential, and c) input binary spikes. Compared to the full-
precision DNN, the binary spikes alleviate the complexity
of the SNN operation itself, but the full-precision membrane
potential can require a large amount of memory storage,
as illustrated in Figure 1. Furthermore, the iterative updates
with the high-precision membrane potential require frequent
memory accesses, deteriorating the latency and overall energy
efficiency. Unfortunately, such bottlenecks have not been fully
investigated in prior SNN works [1]–[3].

Motivated by this, representing the membrane potential with
low precision becomes a critical step to enhance the hardware
efficiency of SNNs, towards executing SNN inference for
energy-/area-constrained edge computing. Some of the prior
works, Q-SpiSNN [4], and Loihi [5] have used 12-bit and
24-bit fixed-point membrane potential representation with low
precision of weights to optimize the SNN hardware resources.
However, such works still use relatively high precision for
membrane potential compared to the mainstream quantiza-
tion scheme (e.g., INT8). Furthermore, the accuracy of Q-
SpiSNN [4] failed to achieve comparable performance as the
recent SoTA SNN methods across a wide spectrum of vision
tasks.

To bridge these research gaps, we propose IM-SNN, a fully-
quantized spiking neural network with ultra-low precision
weights and membrane potential, enabling the end-to-end
low precision operations on SNN with outstanding memory
efficiency and negligible accuracy degradation compared to
the SoTA SNN baseline. It should be noted that compressing
the entire SNN operation to low precision is not equivalent
to employing quantizers everywhere. In fact, compressing the
membrane potential to low precision is even more challenging



Fig. 1: (a) Proposed IM-SNN algorithm with memory cost
reduction of IM-SNN with YOLO-V2 on Prophesse Gen 1.

compared to the traditional DNN-based quantization. We first
identify the following challenges for low-precision membrane
potential:

a) Optimal quantization boundary: One of the major
design points of the quantization algorithm is to allocate
the optimal clipping boundary in the full precision distribu-
tion (e.g., weight or activation) of DNN. However, the mem-
brane potential of SNN is iteratively updated at different time
steps during inference. Therefore, finding the optimal clipping
boundary is critical for membrane potential quantization.

b) Incompatibility of iterative dequantization: The stan-
dard quantization process includes the “quantize and dequan-
tize” workflow to scale the low precision representation (e.g.,
INT8) back to the high precision floating point range. The
quantized integer and the dequantized floating point data are
connected by the high-precision scaling factor. As demon-
strated in [6], post-quantization scaling is required to avoid the
mismatched numerical range. In SNN, the iteratively updated
membrane potential for every neuron requires continuous
quantization after each time step to maintain the low precision.
However, rescaling the updated membrane potential at each
time step requires repetitive high-precision multiplication,
magnifying the cost of hardware implementation. Therefore,
the traditional quantization-aware training (QAT) scheme is
incompatible with low-precision membrane potential. Achiev-
ing the integer-only computation on SNN requires a dedicated
quantization scheme and training method.

The proposed IM-SNN work addresses the aforementioned
challenges with the following key contributions:

• This paper first investigates the impact of membrane po-
tential clipping towards optimizing the clipping boundary.
The comprehensive empirical analysis characterizes the

relationship between membrane potential clipping and
neuron spiking.

• This paper proposes a novel quantization-aware training
algorithm designed for integer-only SNN. In particular,
we propose Stacked Gradient Surrogation (SGS), a novel
SNN training scheme designed for low-precision mem-
brane potential training.

• The proposed IM-SNN achieves up to 8.13× and 13× to-
tal inference memory reduction on complex static image
datasets (CIFAR, ImageNet) and event datasets (DVS-
CIFAR10, N-Caltech, Prophesee Gen1) with various deep
SNN architectures.

II. RELATED WORKS

a) Direct SNN Training: Recent SNN works focus on
direct SNN training from scratch with various gradient approx-
imations and computation. To overcome the non-differentiable
bottleneck of the spiking function, BNTT [7] introduces the
gradient surrogation, which approximates the gradient land-
scape by the designed non-linear function (e.g., Sigmoid).
Driven by accuracy and different model architectures, various
SG functions have been proposed, such as rectangle function,
arctangent, and triangle functions [8]. DSpike [9] introduces
a non-linear function in the forward pass. In the meantime,
the emergence of the temporal-batch normalization [10] and
residual gradient paths enables stable SNN training with
deep models. In addition to the gradient approximation of
the spiking function itself, recent work also investigates the
gradient propagation along the temporal domain [11], where
the spatial-temporal computation of SNN can be considered as
a special version of a recurrent neural network (RNN) [11],
[12]. The development of SNN training enables spike-based
computer vision with large and deep models [13] on large-
scale datasets (e.g., ImageNet).

b) SNN Compression: Motivated by the nature of SNN
with binary spikes, prior SNN works have investigated low-
precision quantization. Different from the static weight prun-
ing in DNNs, sparsity in SNN can be explored in the weights
and time domain. [3] investigated the lottery ticket hypoth-
esis to SNNs, which explores the winning ticket in both
weights and temporal steps for the computation skipping.
[14] jointly compresses the low-precision weights down to
5-bit and sparsify the SNN with temporal pruning during
training. Since SNN introduces the temporal dimension during
inference, besides quantizing the weights [2], [5], consid-
ering the quantization of membrane potential is important
for memory-efficient SNNs (Figure 1). Prior works [4], [15]
have employed fixed-point representation for the membrane
potential. However, none of these methods are verified against
large-scale datasets or achieved the ultra-low-precision (≤ 4-
bit) for membrane potential.

III. PRELIMINARY OF SNN

a) Spiking Neurons: With the typical Leaky Integrate-
and-Fire (LIF) neurons, the membrane potential is iteratively



accumulated through time while the binary spikes are gen-
erated after comparing the membrane potential with a pre-
defined threshold.

ut = (1− dt

τ
)ut−1 +

dt

τ
I(t), St = θ(ut − Vth) (1)

However, the spike function θ in LIF is non-differentiable.
The infinite gradient of θ can be approximated by gradient
surrogation with non-linear functions [7], [12].

b) Post-spike High-precision Membrane Potential: In
general hardware implementation of SNN, the membrane
potential of non-spiking pixels is offloaded to the memory cells
and will be fetched back for the membrane accumulation of
the next time step.

ûl
t = ul

t(1− Sl
t) (2)

In conventional SNN algorithm design, the membrane po-
tential ut will be saved in full precision with the size of
N×C×H×W . This iterative update and saving of membrane
potentials, which necessitates high-precision values uniformly
applied to each pixel, results in frequent memory access in
SNNs. In addition, the low firing rate in deep SNNs further
elevates memory demand due to the large-scale local storage
of post-spike high-precision membrane potential.

IV. PROPOSED METHOD

To achieve maximum hardware awareness with high perfor-
mance, we propose IM-SNN with ultra-low precision integer-
only-quantization of membrane potential and low-precision
weights. The proposed IM-SNN addresses all the challenges
to the low-precision representation of membrane in SNN and
achieves maximum hardware efficiency.

A. Membrane Potential Clipping

We perform a two-step analysis to evaluate the robustness
of SNN with respect to different quantization boundaries.
Starting from the first time step of the SNN inference, the
membrane potentials are stored in memory and get fetched
for accumulation in the next time step. We define the negative
clipping boundary as c, and the entire quantization range
becomes [c, γ], where γ is the maximum membrane potential
after spiking. Naturally, 0 ≤ γ < Vth. The mechanism of
“accumulate-and-fire” of SNN makes each membrane poten-
tial pixel possible to fire during the consecutive time steps.
However, the relationship between membrane potential value
and spiking activity is non-observable during inference. Let’s
assume that Γu represents the membrane pixels that are below
the clipping threshold c. Naı̈vely unifying all the Γu values
to the clipping threshold c will change the spiking rate of
the next time step, and also the final output of the layer.
To quantify such impact, we investigate the robustness of
SNN with respect to different clipping thresholds c with the
following two perspectives:

• Step 1: We first quantify the impact of the membrane
clipping by analyzing the firing rate of pixels Γu.

• Step 2: We evaluate the robustness and accuracy of the
SNN model with different clipping thresholds.

Fig. 2: Analysis of spiking activity with different membrane
potential clipping boundaries.

Given the input sample X of the size of N×T×C×H×W ,
with total time steps = T , we first investigate the distribution
of the post-spike membrane potential ûl

t at the very first time
step t = 1. Mathematically, the pixels Γu are defined as:

Γu = {ûl
t=1 | ûl

t=1 < c} (3)

For the remaining t ∈ [2, . . . T ] time steps, the firing rate
rs of Γu can be computed as:

rs =
1

T

∑
t

|Mt|
C ×H ×W

where |Mt| = 1Γu(u
l) ∧ Sl

t

(4)

Where 1 is the indicator function and it returns the binary
flag that represents whether the pixel u is unfired with a small
magnitude. ∧ is the “AND” logic, Sl

t is the binary spikes of
layer l at time step t, and |M | returns the number of non-
zero elements. Therefore, rs in Eq. (4) characterizes how
many membrane potential pixels are initially (t = 1) and
inactive (less than c) but spike in the future t.

Based on the theoretical setup above, we sweep over differ-
ent clipping boundaries c from -5.0 to -1.0. For each value of c,
we compute the average firing rate rs across each t ∈ [2 . . . T ],
and record the layer-wise firing rate (percentage). Figure 2
shows the layer-wise firing rate of a 9-layer lightweight
MobileNet-V1 SNN, pre-trained on the DVS-CIFAR10 dataset
with 30 total time steps. Compared to the widely-used ResNet-
19, the lightweight MobileNet exhibits higher sensitivity to
quantization [16], which provides an accurate insight into the
clipping distortion.

Let’s assume the minimal membrane potential (Min Ut) of
each layer is Umin. As shown in Figure 2, the early layers
exhibit a high magnitude of Umin (e.g., -21.07 for the first
layer) in the floating point baseline. However, only 6.35%
of membrane pixels Ut fire in the future time steps with
all the accumulations, where Umin < Ut < −1. In other
words, the remaining unfired 93.6% of membrane pixels create
a “silent region”, where the membrane pixels have zero
contribution to future time steps and the next layer. Although
Umin increases in the latter layers, the silent region in the
negative membrane potential further extends for the next time



TABLE I: Clipping robustness of IM-SNN.

Negative Clips FP -5.0 -4.0 -3.0 -2.0 -1.0

CIFAR10-Accuracy 94.53 94.33 94.21 94.34 94.22 94.09

steps. As a result, clipping distortions have a negligible impact
on the majority of the membrane potential, even with the most
aggressive clipping (c=-1.0). Therefore, we have the following
observation:

Observation: If the membrane potentials are negative
enough, their impact on spikes is minimal.

We further prove the membrane clipping robustness by
evaluating its impact on the accuracy during inference with no
fine-tuning. As shown in Figure 2, starting from the pretrained
full-precision model with 71.70% inference accuracy, when
the membrane potential is clipped to c = −1.0, the inference
accuracy can still be maintained at 70.50%. We extend the
verification of this observation on the CIFAR-10 dataset with
ResNet-19 and validate the negligible accuracy drop of 0.44%
from the baseline by sweeping the clipping boundary from
-5.0 to -1.0, as shown in Table I. The minimal accuracy
degradation allows us to interpret the Observation into: If
the membrane potentials are negative enough, their impact
on accuracy is minimum, which implies the robustness of
membrane potential to low-precision representation.

B. Membrane Potential Quantization Algorithm

With the proven robustness of SNN using quantized mem-
brane potential, recovering accuracy degradation becomes a
critical task. In this paper, we propose a novel quantization
algorithm designed for SNN training with low-precision mem-
brane potential. Motivated by the dequantization challenge in
Section I, the proposed method quantizes the membrane po-
tential without introducing dequantization scaling [6], leading
to high hardware awareness and efficiency.

Unlike prior works [15] that incorporated high-precision
scaling for quantization, we design an integer-only quantiza-
tion scheme to assign the membrane potential to the nearest
integer level directly. Different from [4], [5] which uses
high-precision fixed point integer on membrane potential, our
method compresses the membrane potential precision down to
ternary, as follows:

Q(ut) =


−1 if ut ≤ 0

0 if ut ≤ 0.5

+1 if ut ≥ 0.5

(5)

The classic non-differentiable quantization operation hin-
ders the backward propagation in both spatial and temporal
directions, which can be factorized as:

∂L

∂St
=

∂L

∂Sl+1
t

∂Sl+1
t

∂St︸ ︷︷ ︸
w.r.t Layer

+
∂L

∂Sl
t+1

∂Sl
t+1

∂St︸ ︷︷ ︸
w.r.t time step

(6)

Where
∂Sl

t+1

∂St
=

∂Sl
t+1

∂ul
t+1

∂ul
t+1

∂ul
t

∂ul
t

∂St
(7)

Algorithm 1: PyTorch-style pseudocode for the mem-
brane potential quantization algorithm
# T: total time steps of each input sample
# y: convolutional output
# c: clipping threshold of membrane
potential
# lv: target quantization levels
# d: decay factor of membrane potential
update
# mem: membrane potential of each time
step
# thre: spiking threshold
def qfunc(mem, lv):

mq = clamp(mem.view(-1), c, max(mem))
idx = (mq.unsqueeze(0) -
lv.unsqueeze(1)).abs().min(dim=0)[1] #
distance and indexes

out = lv[idx].reshape(mem.shape) #
assign to nearest level
return out

def forward(z):
spikes = [] for t in T:

mem = mem * d + y[:, t, ...] #
membrane potential update
spike = fire(mem - thre) # spike
mem = (1 - spike) * mem # reset
mem = qfunc(mem) # quantize membrane
potential
spikes.append(spike)

return spikes

With our proposed quantization scheme, the membrane poten-
tial at each time step is updated with low precision:

ul
t+1 = τ ×Q(ul

t) + ylt (8)

TABLE II: Different SGS functions and accuracy results on
DVS-CIFAR10 dataset.

Architecture Epochs T SGS Accuracy (%)

VGG-9 200 30 ArcTan 77.81

VGG-9 200 30 Triangle 70.83

VGG-9 200 30 Piece-wise 78.81

VGG-9 200 30 Sigmoid 80.04

The temporal gradient ∂ul
t+1/∂u

l
t is inaccessible due to

the quantization function Q(·) which outputs integer levels
only. To resolve this issue, we propose Stacked Gradient
Surrogation (SGS), which approximates the temporal gradient
using the sigmoid function during the backward propagation to
overcome the non-differentiability of quantization. The choice
of Sigmoid function as SGS is empirical and the performance
comparison of different surrogation functions is summarized
in Table II. Formally, we define SGS-based Q∗ as follows:



Q∗(ut) =
K∑

k=1

T
1

1 + e−T (uqt−sk)
(1− 1

1 + e−T (uqt−sk)
) (9)

and sk = (ki + ki+1)/2
(10)

Where T , k, and sk represent the smoothness, quantization
interval, and shift of each surrogation term, respectively. With
SGS, we have:

∂ul
t+1/∂u

l
t = τQ∗(ut) (11)

Combining Eq. (6)-(11), we formulate a smooth gradient
propagation flow for SNN training with quantized membrane.
Algorithm 1 describes the proposed quantization algorithm
during the forward pass of training. Where lv represents
the target quantization levels of membrane potential, which
is defined by the precision of representation. For instance,
lv=[-1.0, 0.0, 1.0] represents the ternary quantization, and the
resultant membrane potential will be offloaded to the hardware
memory with 1.5-bit representation.

C. Sparsified Low Precision Membrane

In addition to the ternarized membrane potential, the en-
hanced robustness of the SNN model exhibits strong resilience,
which further allows “membrane pruning”. Specifically, we
directly de-active all the negative pixels on top of the ternar-
ized membrane. Mathematically, we disable the spikes that
correspond to the negative membrane potential, which is
indexed by Umask:

Umask = Bool(Q(ut) < 0) (12)
St = St · (1− Umask) (13)

In particular, the negative membrane pixels are “pruned”
from the spiking process, which is also skipped during the
subsequent membrane potential updates. To evaluate this, we
first perform an ablation study to estimate the layer-wise
negative membrane potential and firing rate statistics using
ResNet-19 on the CIFAR-100 dataset. Figure 3 demonstrates a
very high percentage around > 40% of “-1” membrane pixels
with below 10% firing rate across most of the ResNet-19-
SNN layers. Such a high percentage of the negative membrane
potential with the low firing rate occupies additional memory.
This motivates us to skip the computation of all the negative
“-1” integer membrane pixels completely.

Ut+1 = Ut ⊙ Umask (14)

In other words, the membrane potential of the proposed
IM-SNN can be further pruned by sparsifying the quantized
ternary membrane, and the resultant membrane pixel values
become binary before and after the spike operation. With the
proposed IM-SNN offering a sparsified low-precision mem-
brane, the resultant model shows high compute and memory
efficiency with the pruned ternary membrane.

As shown in Table III, directly silencing all the “-1” of the
membrane shows around 50% additional memory reduction
with minimal accuracy degradation of <0.97% across different

Fig. 3: Analysis of layer-wise negative membrane poten-
tial (Ut(%)) and its firing rate for dynamic pruning.

TABLE III: IM-SNN performance with pruned ternary mem-
brane potential on different datasets.

Architecture Dataset Masked
Ternary Mem. T Membrane

Memory (KB) Accuracy

ResNet-19 CIFAR-100 No 2 250 71.87

ResNet-19 CIFAR-100 Yes 2 125 71.30

VGG-9 DVS-CIFAR-10 No 2 230 78.13

VGG-9 DVS-CIFAR-10 Yes 2 115 77.16

VGG-9 N-Caltech No 2 230 80.04

VGG-9 N-Caltech Yes 2 115 79.14

datasets, without any fine-tuning. The minimum accuracy
degradation implies the improved robustness empowered by
the IM-SNN training. Furthermore, the sparsified ternary
membrane reduces the number of operations by >57% from
the baseline by reducing 27.52 MOPs to 15.72 MOPs for the
ResNet-19 model on the CIFAR-100 dataset and 18.43 MOPs
to 7.74 MOPs for the VGG-9 model on DVS-CIFAR10 and
N-Caltech datasets.

D. Weight Quantization in SNN Training

On top of membrane potential quantization, we incorporate
low-precision weights to reduce memory occupancy. To train
IM-SNN for low-precision inference, we adopt and modify the
Power of Two (PoT) quantizer [17] to compress the layer-wise
weights of the IM-SNN architecture down to 4-bit and 2-bit
precision.

Binary input spikes of each layer convolving the low preci-
sion weights can be formulated as approximated computing or
look-up tables, which further enhance the hardware efficiency
in practice. In the end, we compute the total memory of IM-
SNN and develop a total memory vs. accuracy comparison
with the current SoTA SNN works.

V. EXPERIMENTS AND RESULTS

We validate the proposed IM-SNN algorithm with both
event-based and static image computer vision datasets.
For event-based datasets, we train IM-SNN on DVS-
CIFAR10 [18], N-Cars [19], N-Caltech101 [20] and Prophesee
Automotive Gen1 [21] datasets. Further, we use CIFAR-10,
CIFAR-100, ImageNet-100, and ImageNet-1k datasets for IM-
SNN training and inference on static image datasets.



TABLE IV: Model architectures for IM-SNN training. “C3”,
“DW”, “MP2” , “AP2” and “FC” represent 3×3 convolution
layer, 2×2 max-pooling, 2×2 average-pooling, and fully con-
nected layer, respectively.

Model Architecture

MobileNet-Light 32C3-64DW-64DW-AP2-128DW-
128DW-AP2-256DW-AP2-FC256-FC10

VGG-7 32C3-32C3-AP2-64C3-64C3-AP2-
128C3-128C3-AP2-256C3-256C3-AP2-FC10

VGG-9 64C3-128C3-AP2-256C3-256C3-AP2-
512C3-512C3-512C3-512C3-AP2-1024C3-AP2-FC10

Custom-Yolo-V2
32C3-MP2-64C3-MP2-128C3-64C1-128C3-MP2-
256C3-128C1-256C3-MP2-512C3-256C1-512C3-

256C1-MP2-1024C3-512C1-1024C3-AP2-FC512-FC576

ResNet-19
64C3-128C3-128C3-128C3-128C3-128C3-128C3-
256C3-256C3-256C3-256C3-256C3-256C3-256C3-

256C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

ResNet-34

64C3-128C3-128C3-128C3-128C3-128C3-128C3-
256C3-256C3-256C3-256C3-256C3-256C3-256C3-
256C3-512C3-512C3-512C3-512C3-512C3-512C3-

512C3-512C3-512C3-512C3-512C3-512C3-AP2-FC256-FC10

A. Experimental Setup

The proposed IM-SNN is evaluated on various datasets and
a wide spectrum of model architectures including VGG-9,
ResNet-19, ResNet-34, and Custom-Yolo-v2 presented in Ta-
ble IV. In particular, for the static image, IM-SNN is employed
with ResNet-19, ResNet-34, and Spikefomer for CIFAR-10,
CIFAR-100, ImageNet-100, and ImageNet-1K classification.
However, for DVS datasets, IM-SNN is implemented with
VGG-9, Spikeformer, and custom-Yolo-V2 architectures for
both classification and object detection tasks.

a) Data preprocessing: event to tensor conversion: The
open-sourced DVS datasets are in the shape of an indexed
bit stream where each chunk represents the axis information,
spike polarity, time-step information, and addresses. At the
data preprocessing stage, we extract spike polarity and time-
step information from the bit streams and convert them to
48×48 binary frames. We sample over different time steps and
formulate event tensors of 5-D shape [Batch, Time, Channels,
Height, Width]. For static image data including CIFAR-10,
CIFAR-100, and ImageNet, we use the 8-bit static images of
shape [N, T, C, H, W] for the training and inference [22].
We repeat the static RGB frames by T times to introduce the
temporal domain of the input.

On the other hand, we convert Prophesee Gen1 events to
binary histograms by sampling over all the time steps. Then the
generated binary histograms are synchronized with artificial
ground truth from [23]. Finally, the events and annotations
are translated to the tensors of shape [Batch, Time, Channels,
Height, Width] and [Batch, Number of boxes, Bounding box]
respectively. Unlike prior works [13], we do not use data
augmentation for performance improvements.

b) IM-SNN training setup: We train the proposed algo-
rithm with different architectures on 4 × A6000 GPUs with
CUDA version 12.1 and Pytorch 2.0 [27]. All the models are
trained using AdaM optimizer with the initial learning rate
value of 0.001. The batch size is set to 128 for static image data
and 32 for DVS image data. We shrink the resolution of DVS

Fig. 4: Membrane potential precision vs. accuracy for CIFAR-
10 and DVS-CIFAR10 datasets and membrane potential
vs. mAP for Prophesee Gen1 object detection dataset. Note
that ‘1.0’ membrane potential precision refers to the pruned
ternary membrane presented in Section IV-C.

input images to 48×48 to optimize the training on available
GPUs. To improve learnability, we optimize the learning rate
with the Cosine annealing scheduler.

c) Choice of low-precision for membrane potential:
With the proposed IM-SNN, we sweep across the different
quantization levels for the membrane potential and weights to
achieve high performance with maximum memory reduction.
We optimally quantize the membrane potential to ternary
levels [−1.0, 0.0, 1.0] for each time step. The choice of ternary
levels is based on the performance vs memory efficiency
trade-off for both classification and object detection datasets,
presented in Figure 4. Regarding low-precision of weights,
we implement 8-bit, 4-bit, and 2-bit weight precision using
the PoT quantization scheme [17] for IM-SNN training.

B. Evaluation Metric

We evaluate the IM-SNN based on memory reduction,
robustness, and accuracy. We compute the total memory (MB)
acquisition of each IM-SNN-based architecture for all the
datasets. The total memory consists of weight, membrane
potential, and convolutional output memory:

Mt = wp ×Nw + up ×Nf + us ×Nf (15)

Where Nw =
ℓ∑

l=1

wl (16)

And Nf =
ℓ∑

l=1

(C ×W ×H)l (17)

Mt is the total memory, wp, up and us represent the weight,
membrane potential and spike precision (0,1) respectively.
Further, Nw, and Nf are total network weights and spikes.

C. Results and Discussion

a) RGB/Static image classification: IM-SNN is evaluated
on both DVS and static computer vision datasets. For static
image datasets, we compare the performance of IM-SNN with



TABLE V: Experimental results of IM-SNN on static image i-e. CIFAR-10, CIFAR-100, and ImageNet-100 datasets. Except
“This work and MINT”, all SoTA prior works in the table have used 32-bit weight precision and membrane potential.

Dataset Method Architecture Weight
Precision

Umem

Precision
Weight

Memory (MB)
Umem

Memory (MB)
Total

Memory (MB) T Top-1
Accuracy

CIFAR-10

tdBN [10] ResNet-19 32-bit 32-bit 49.94 5.5 60.94 6 93.16%
DSR [12] ResNet-18 32-bit 32-bit 44.72 5.33 55.38 6 91.89%
Dspike [1] ResNet-18 32-bit 32-bit 44.72 5.33 55.38 6 94.25%

Spikeformer [13] Spikformer-4-256 32-bit 32-bit 38.20 NA 38.20 4 95.51%

MINT [2] ResNet-19 8-bit 8-bit 12.48 1.37 15.22 4 91.36%
MINT [2] ResNet-19 4-bit 4-bit 6.24 0.69 8.30 4 91.45%
MINT [2] ResNet-19 2-bit 2-bit 3.12 0.35 4.84 4 90.79%
This work ResNet-19 32-bit 32-bit 49.94 5.5 60.94 6 94.56%
This work ResNet-19 4-bit 1.5-bit 6.24 0.25 7.49 2 94.11% (-0.45)
This work ResNet-19 2-bit 1.5-bit 3.12 0.25 3.87 2 92.89% (-1.57)
This work Spikformer-4-256 8-bit 1.5-bit 9.62 0.25 15.26 4 94.99% (-0.52)

CIFAR-100
DSR [12] ResNet-18 32-bit 32-bit 44.72 5.33 55.38 6 68.33%
TET [8] ResNet-19 32-bit 32-bit 49.94 5.33 60.94 2 72.87%

This work ResNet-19 32-bit 32-bit 49.94 5.5 60.94 2 72.78%
This work ResNet-19 4-bit 1.5-bit 6.24 0.25 7.49 2 71.87% (-0.91)

ImageNet-100 TET [8] ResNet-34 32-bit 32-bit 87.19 11.03 109.25 2 74.76%
This work ResNet-34 8-bit 1.5-bit 21.27 0.51 23.83 2 74.42% (-0.34)

ImageNet-1k
tdBN [10] ResNet-34 32-bit 32-bit 87.19 11.03 109.25 2 63.72%
TET [8] ResNet-34 32-bit 32-bit 87.19 11.03 109.25 2 68.00%

Dspike [1] ResNet-34 32-bit 32-bit 87.19 11.03 109.25 2 68.46%
This work ResNet-34 8-bit 1.5-bit 21.27 0.51 23.83 2 67.82% (-0.64)

TABLE VI: Experimental results of IM-SNN on DVS datasets i-e. DVS-CIFAR10 and N-Caltech. Except “This work”, all
SoTA prior works in the table have used 32-bit weight and membrane potential precision.

Dataset Method Architecture Weight
Precision

Umem

Precision
Weight

Memory (MB)
Umem

Memory (MB)
Total

Memory (MB) T Top-1
Accuracy

DVS-CIFAR10

tdBN [10] ResNet-19 32-bit 32-bit 49.94 12.09 74.20 10 67.80%
TET [8] VGG-Like 32-bit 32-bit 40.65 3.68 48.01 10 77.33%

DSR [12] VGG-11 32-bit 32-bit 70.43 9.7 89.7 30 75.70%
Dspike [1] ResNet-18 32-bit 32-bit 44.72 11.7 68.12 10 75.45%

Spikeformer [13] Spikformer-16-256 32-bit 32-bit 38.5 NA 38.5 16 80.90%
This work VGG-9 32-bit 32-bit 41.12 3.68 48.58 10 78.45%
This work VGG-9 2-bit 1.5-bit 2.57 0.23 3.75 10 77.94% (-0.51)

N-Caltech

YOLE [24] VGG7-Like 32-bit 32-bit 42.69 2.01 46.71 1 70.02%
EST [25] ResNet-34 32-bit 32-bit 88.39 43.4 175.19 1 78.70%

Asynet [26] VGG-13 32-bit 32-bit 22.32 4.09 30.50 1 76.10%
This work VGG-9 32-bit 32-bit 41.12 3.68 48.58 10 80.45%
This work VGG-9 2-bit 1.5-bit 2.57 0.23 3.75 10 79.45% (-1.0)

existing full-precision and low-precision [2] SoTA works. We
compare the proposed algorithm with existing SoTA in the
context of total memory, time step, and top-1 accuracy. As
shown in Table V, we achieve up to 8.13× reduction in
memory consumption with minimal accuracy degradation of
0.45% and 0.91% from SoTA SNN baseline for CIFAR-10 and
CIFAR-100. Furthermore, IM-SNN achieves 4.58× memory
reduction with 0.34% and 0.64% accuracy drop from the SNN
baseline on the ImageNet-100 and Imagenet-1K datasets.

In addition, compared to the recent MINT-SNN which
incorporates low-precision membrane potential from 8-bit to 2-
bit, the proposed IM-SNN with 2-bit precision of weights and
1.5-bit precision of membrane achieves 2.1% higher accuracy
with 1.23× memory reduction, as shown in Table V.

b) DVS data classification: For the DVS dataset, we
train IM-SNN-VGG9 and IM-SNN-Spikeformer for direct
comparison of the proposed algorithm with existing works,
and results are shown in Table VI. Using IM-SNN-VGG9, we
attain up to 13× memory reduction with an accuracy drop
of 0.51% and 1% from the full-precision baseline for DVS-
CIFAR-10 and N-Caltech datasets. Compared with existing
SoTA, the proposed IM-SNN scheme surpasses the cutting-

edge SNN with 0.59% and 0.70% accuracy improvement
for DVS-CIFAR-10 and N-Caltech datasets respectively and
reduces the total memory consumption by up to 13×.

c) Object Detection with IM-SNN: We further demon-
strate the performance of the proposed IM-SNN on a large-
scale Automotive Prohesee Gen1 dataset [21]. The DVS events
are converted to binary frames synchronized with their actual
ground truths. To avoid the gradient vanishing in IM-SNN,
we customize the Yolo-V2 model by skipping one convolu-
tion block from the original architecture. We train IM-SNN-
Custom-Yolo-V2 architecture with ternary-level representation
for membrane potential [−1.0, 0.0, 1.0] and 4-bit precision
for weights. As shown in Table VII, the proposed IM-SNN
reduces memory utilization by 7.08× in comparison to the
full-precision baseline with a decrement of 0.042 in the mAP.
Furthermore, compared to SNN-based object detection SoTA
work VGG11-SSD [28], IM-SNN-Custom-Yolo-V2 achieves
0.011 higher mAP with 9.58× reduced memory footprint.

VI. CONCLUSION

In this paper, we propose IM-SNN, a novel SNN algorithm
that enables integer-only SNN with largely reduced memory



TABLE VII: Experimental results of the IM-SNN-Custom-Yolov2 on Prophesee Automotive Gen1 dataset.

Dataset Method SNN Weight
Precision

Umem

Precision
Weight

Memory(MB)
Umem

Memory(MB)
Total

Memory(MB) mAP

Asynet [26] FB-Dense No 32 - 532.00 - 532.00 0.145
MatrixLSTM [9] ResNet-19 No 32 - 260.00 - 260.00 0.300

RED [23] RetinaNet No 32 - 96.00 - 96.00 0.410

VGG-11+SSD [28] VGG+SSD-SNN Yes 32 32 141.61 80.39 302.39 0.187
This work Custom-YoloV2-SNN Yes 32 32 103.46 59.87 223.20 0.240
This work Custom-YoloV2-SNN Yes 4 1.5 12.93 3.76 31.57 0.198

consumption. The proposed algorithm successfully compresses
the membrane potential down to ternary representation, achiev-
ing up to 13× memory footprint reduction, while maintaining
the high simplicity and high performance of SNN. Further-
more, IM-SNN shows strong robustness in dynamic membrane
pruning. The sparsified membrane opens up the potential of
on-device computation skipping during the inference. IM-SNN
is evaluated on a comprehensive spectrum of computer vision
tasks, including both static image classification and event-
based object detection. The outstanding versatility makes the
proposed IM-SNN a powerful solution for energy-efficient
computer vision.

ACKNOWLEDGMENT
This work is supported in part by the National Science

Foundation under grant 2403723, and CoCoSys Center in
JUMP 2.0, an SRC program sponsored by DARPA.

REFERENCES

[1] Y. Li, Y. Guo, S. Zhang, S. Deng, Y. Hai, and S. Gu, “Differentiable
spike: Rethinking gradient-descent for training spiking neural networks,”
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[2] R. Yin, Y. Li, A. Moitra, and P. Panda, “Mint: Multiplier-less
integer quantization for spiking neural networks,” arXiv preprint
arXiv:2305.09850, 2023.

[3] Y. Kim, Y. Li, H. Park, Y. Venkatesha, R. Yin, and P. Panda, “Exploring
lottery ticket hypothesis in spiking neural networks,” in European
Conference on Computer Vision (ECCV). Springer, 2022.

[4] R. V. W. Putra and M. Shafique, “Q-spinn: A framework for quantizing
spiking neural networks,” in International Joint Conference on Neural
Networks (IJCNN), 2021.

[5] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
2018.

[6] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and Training of Neural Networks
for Efficient Integer-arithmetic-only Inference,” in IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

[7] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate Gradient Learning
in Spiking Neural Networks: Bringing the Power of Gradient-based
Optimization to Spiking Neural Networks,” IEEE Signal Processing
Magazine, vol. 36, no. 6, 2019.

[8] S. Deng, Y. Li, S. Zhang, and S. Gu, “Temporal Efficient Training of
Spiking Neural Network via Gradient Re-weighting,” in International
Conference on Learning Representations (ICLR), 2021.

[9] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “A differen-
tiable recurrent surface for asynchronous event-based data,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XX 16. Springer, 2020.

[10] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going Deeper with
Directly-trained Larger Spiking Neural Networks,” in AAAI Conference
on Artificial Intelligence (AAAI), vol. 35, no. 12, 2021.

[11] G. Shen et al., “Backpropagation with Biologically Plausible Spatiotem-
poral Adjustment for Training Deep Spiking Neural Networks,” Patterns,
p. 100522, 2022.

[12] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z. Lin, and Z.-Q. Luo, “Training
High-Performance Low-Latency Spiking Neural Networks by Differen-
tiation on Spike Representation,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[13] Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan,
“Spikformer: When spiking neural network meets transformer,” in
International Conference on Learning Representations (ICLR), 2023.

[14] S. S. Chowdhury, I. Garg, and K. Roy, “Spatio-temporal pruning
and quantization for low-latency spiking neural networks,” in 2021
International Joint Conference on Neural Networks (IJCNN). IEEE,
2021.

[15] R. V. W. Putra and M. Shafique, “tinysnn: Towards memory-and energy-
efficient spiking neural networks,” arXiv preprint arXiv:2206.08656,
2022.

[16] E. Park and S. Yoo, “Profit: A novel training method for sub-4-
bit mobilenet models,” in European Conference on Computer Vision
(ECCV). Springer, 2020.

[17] D. Przewlocka-Rus, S. S. Sarwar, H. E. Sumbul, Y. Li, and B. De Salvo,
“Power-of-two quantization for low bitwidth and hardware compliant
neural networks,” arXiv preprint arXiv:2203.05025, 2022.

[18] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-DVS: An Event-stream
Dataset for Object Classification,” Frontiers in Neuroscience, vol. 11,
2017.

[19] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman,
“HATS: Histograms of Averaged Time Surfaces for Robust Event-based
Object Classification,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[20] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting
Static Image Datasets to Spiking Neuromorphic Datasets Using Sac-
cades,” Frontiers in Neuroscience, vol. 9, 2015.

[21] P. De Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi, “A
large scale event-based detection dataset for automotive,” arXiv preprint
arXiv:2001.08499, 2020.

[22] I. Garg, S. S. Chowdhury, and K. Roy, “Dct-snn: Using dct to distribute
spatial information over time for low-latency spiking neural networks,”
in IEEE/CVF International Conference on Computer Vision (ICCV),
2021.

[23] E. Perot, P. De Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning
to Detect Objects with a 1 Megapixel Event Camera,” Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[24] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asyn-
chronous convolutional networks for object detection in neuromorphic
cameras,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2019.

[25] D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-to-
end learning of representations for asynchronous event-based data,” in
IEEE/CVF International Conference on Computer Vision (CVPR), 2019.

[26] N. Messikommer, D. Gehrig, A. Loquercio, and D. Scaramuzza, “Event-
based Asynchronous Sparse Convolutional Networks,” in European
Conference on Computer Vision (ECCV), 2020.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems (NeurIPS) 32, 2019.

[28] L. Cordone, B. Miramond, and P. Thierion, “Object detection with
spiking neural networks on automotive event data,” in 2022 International
Joint Conference on Neural Networks (IJCNN), 2022.


