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Abstract

With the advent of byte-addressable memory devices, such as
CXL memory, persistent memory, and storage-class memory,
tiered memory systems have become a reality. Page migration
is the de facto method within operating systems for managing
tiered memory. It aims to bring hot data whenever possible
into fast memory to optimize the performance of data accesses
while using slow memory to accommodate data spilled from
fast memory. While the existing research has demonstrated
the effectiveness of various optimizations on page migration,
it falls short of addressing a fundamental question: Is exclu-
sive memory tiering, in which a page is either present in fast
memory or slow memory, but not both simultaneously, the
optimal strategy for tiered memory management?

We demonstrate that page migration-based exclusive mem-
ory tiering suffers significant performance degradation when
fast memory is under pressure. In this paper, we propose non-
exclusive memory tiering, a page management strategy that
retains a copy of pages recently promoted from slow mem-
ory to fast memory to mitigate memory thrashing. To enable
non-exclusive memory tiering, we develop NOMAD, a new
page management mechanism for Linux that features trans-
actional page migration and page shadowing. NOMAD helps
remove page migration off the critical path of program execu-
tion and makes migration completely asynchronous. Evalua-
tions with carefully crafted micro-benchmarks and real-world
applications show that NOMAD is able to achieve up to 6x
performance improvement over the state-of-the-art transpar-
ent page placement (TPP) approach in Linux when under
memory pressure. We also compare NOMAD with a recently
proposed hardware-assisted, access sampling-based page mi-
gration approach and demonstrate NOMAD’s strengths and
potential weaknesses in various scenarios.

1 Introduction

As new memory devices, such as high bandwidth memory
(HBM) [4, 30], DRAM, persistent memory [7, 39], Compute

Express Link (CXL)-based memory [1, 37, 44], and storage-
class memory [53, 55] continue to emerge, future computer
systems are anticipated to feature multiple tiers of mem-
ory with distinct characteristics, such as speed, size, power,
and cost. Tiered memory management aims to leverage the
strength of each memory tier to optimize the overall data
access latency and bandwidth. Central to tiered memory man-
agement is page management within operating systems (OS),
including page allocation, placement, and migration. Efficient
page management in the OS is crucial for optimizing memory
utilization and performance while maintaining transparency
for user applications.

Traditionally, the memory hierarchy consists of storage
media with at least one order of magnitude difference in per-
formance. For example, in the two-level memory hierarchy as-
sumed by commercial operating systems for decades, DRAM
and disks differ in latency, bandwidth, and capacity by 2-3
orders of magnitude. Therefore, the sole goal of page manage-
ment is to keep hot pages in, and maximize the hit rate of the
“performance” tier (DRAM), and migrate (evict) cold pages to
the “capacity” tier (disk) when needed. As new memory de-
vices emerge, the performance gap in the memory hierarchy
narrows. Evaluations on Intel’s Optane persistent memory
[56] and CXL memory [50] reveal that these new memory
technologies can achieve comparable performance to DRAM
in both latency and bandwidth, within a range of 2-3x. As
a result, the assumption of the performance gap, which has
guided the design of OS page management for decades, may
not hold. It is no longer beneficial to promote a hot page to
the performance tier if the migration cost is too high.

Furthermore, unlike disks which must be accessed through
the file system as a block device, new memory devices are
byte-addressable and can be directly accessed by the pro-
cessor via ordinary load and store instructions. Therefore,
for a warm page on the capacity tier, accessing the page di-
rectly and avoiding migration to the performance tier could
be a better option. Most importantly, while the performance
of tiered memory remains hierarchical, the hardware is no
longer hierarchical. Both the Optane persistent memory and
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CXL memory appear to the processor as a CPUless memory
node and thus can be used by the OS as ordinary DRAM.

These unique challenges facing emerging tiered memory
systems have inspired research on improving page manage-
ment in the OS. Much focus has been on expediting page
migrations between memory tiers. Nimble [54] improves
page migration by utilizing transparent huge pages (THP),
multi-threaded migration of a page, and concurrent migration
of multiple pages. Transparent page placement (TPP) [44]
extends the existing NUMA balancing scheme in Linux to
support asynchronous page demotion and synchronous page
promotion between fast and slow memory. Memtis [37] and
TMTS [24] use hardware performance counters to mitigate
the overhead of page access tracking and use background
threads to periodically and asynchronously promote pages.

However, these approaches have two fundamental limita-
tions. First, the existing page management for tiered memory
assumes that memory tiers are exclusive to each other – hot
pages are allocated or migrated to the performance tier while
cold pages are demoted to the capacity tier. Therefore, each
page is only present in one tier. As memory tiering seeks
to explore the tradeoff between performance and capacity,
the working set size of workloads that benefit most from
tiered memory systems likely exceeds the capacity of the per-
formance tier. Exclusive memory tiering inevitably leads to
excessive hot-cold page swapping or memory thrashing when
the performance tier is not large enough to hold hot data.

Second, there is a lack of an efficient page migration mech-
anism to support tiered memory management. As future mem-
ory tiers are expected to be addressable by the CPU, page
migrations are similar to serving minor page faults and in-
volve three steps: 1) unmap a page from the page table; 2)
copy the page content to a different tier; 3) remap the page
on the page table, pointing to the new memory address. Re-
gardless of whether page migration is done synchronously
upon accessing a hot page in the slower capacity tier or asyn-
chronously in the background, the 3-step migration process is
expensive. During migration, an unmapped page cannot be ac-
cessed by user programs. If page migration is done frequently,
e.g., due to memory thrashing, user-perceived bandwidth, in-
cluding accesses to the migrating pages, is significantly lower
(up to 95% lower) than the peak memory bandwidth [54].

This paper advocates non-exclusive memory tiering that al-
lows a subset of pages on the performance tier to have shadow
copies on the capacity tier 1. Note that non-exclusive tiering is
different from inclusive tiering which strictly uses the perfor-
mance tier as a cache of the capacity tier. The most important
benefit is that under memory pressure, page demotion is made
less expensive by simply remapping a page if it is not dirty
and its shadow copy exists on the capacity tier. This allows
for smooth performance transition when memory demand
exceeds the capacity of the performance tier.

1We assume that page migrations only occur between two adjacent tiers
if there are more than two memory tiers.
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Figure 1: The comparison of achieved memory bandwidth in a
micro-benchmark due to different phases in TPP and a baseline
approach that disables page migration. Higher is better performance.

To reduce the cost of page migration, especially for promo-
tion, this paper proposes transactional page migration (TPM),
a novel mechanism to enable page access during migration.
Unlike current page migrations, TPM starts page content copy
without unmapping the page from the capacity tier so that
the migrating page is still accessible by user programs. After
page content is copied to a new page on the performance
tier, TPM checks whether the page has been dirtied during
the migration. If so, the page migration (i.e., the transaction)
is invalidated and the copied page is discarded. Failed page
migrations will be retried at a later time. If successful, the
copied new page is mapped in the page table and the old page
is unmapped, becoming a shadow copy of the new page.

We have developed NOMAD, a new page management
framework for tired memory that integrates non-exclusive
memory tiering and transactional page migration. NOMAD
safeguards page allocation to prevent out-of-memory (OOM)
errors due to page shadowing. When the capacity tier is un-
der memory pressure, NOMAD prioritizes the reclamation of
shadow pages before evicting ordinary pages. We have im-
plemented a prototype of NOMAD in Linux and performed
a thorough evaluation on four different platforms, including
an FPGA-based CXL prototype, a persistent memory system,
and a pre-market, commercial CXL system. Experimental
results show that, compared to two representative page man-
agement schemes: TPP and Memtis, NOMAD achieves up
to 6x performance improvement over TPP during memory
thrashing and consistently outperforms Memtis by as much
as 130% when the working set size fits into fast memory.

2 Motivation and Related Work

We introduce the background of page management in tiered
memory systems and use TPP [44], a state-of-the-art page
placement system designed for CXL-enabled tiered memory,
as a motivating example to highlight the main limitations of
current page management approaches.
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2.1 Memory Tiering

Caching and tiering are two traditional software approaches
to manage a memory, or storage hierarchy, consisting of vari-
ous types of storage media (e.g., CPU caches, DRAM, and
hard disks) differing in performance, capacity, and cost. With-
out loss of generality, we consider a two-level memory hier-
archy with 1) a performance tier (i.e., the fast tier), backed
with smaller, faster, but more expensive storage media; and
2) a capacity tier (i.e., the slow tier) with larger, slower, and
cheaper storage media. For caching, data is stored in the ca-
pacity tier, and copies of frequently accessed or “hot” data are
strategically replicated to the performance tier. For tiering,
new data is first allocated to the performance tier and remains
there if it is frequently accessed, while less accessed data may
be relegated to the capacity tier when needed. At any mo-
ment, data resides exclusively in one of the tiers but not both.
Essentially, caching operates in an inclusive page placement
mode and retains pages in their original locations, only tem-
porarily storing a copy in the performance tier for fast access.
Conversely, tiering operates in an exclusive mode, actively
relocating pages across various memory/storage mediums.

Diverse memory/storage devices, such as high bandwidth
memory (HBM) [4], CXL-based memory [1], persistent mem-
ory (PM) [7], and fast, byte-addressable NVMe SSDs [31],
have emerged recently. While they still make a tradeoff be-
tween speed, size, and cost, the gap between their performance
narrows. For example, Intel Optane DC persistent memory
(PM), available in a DIMM package on the memory bus en-
abling programs to directly access data from the CPU using
load and store instructions, provides (almost) an order of
magnitude higher capacity than DRAM (e.g., 8x) and offers
performance within a range of 2-3x of DRAM, e.g., write
latency as low as 80 ns and read latency around 170 ns [56].
More recently, compute express link (CXL), an open-standard
interconnect technology based on PCI Express (PCIe) [1], pro-
vides a memory-like, byte-addressable interface (i.e., via the
CXL.mem protocol) for connecting diverse memory devices
(e.g., DRAM, PM, GPUs, and smartNICs). Real-world CXL
memory offers comparable memory access latency (<2x) and
throughput (∼50%) to ordinary DRAM [50].

From the perspective of OS memory management, CXL
memory or PM appears to be a remote, CPUless memory
node, similar to a multi-socket non-uniform memory access
(NUMA) node. State-of-the-art tiered memory systems, such
as TPP [44], Memtis [37], Nimble [54], and AutoTiering [32],
all adopt tiering to exclusively manage data on different mem-
ory tiers. Unlike the traditional two-level memory hierarchy
involving DRAM and disks, in which DRAM acts as a cache
for the much larger storage tier, current CXL memory tiering
treats CXL memory as an extension of local DRAM. While
exclusive memory tiering avoids data redundancy, it necessi-
tates data movement between memory tiers to optimize the
performance of data access, i.e., promoting hot data to the

fast tier and demoting cold data to the slow tier. Given that
all memory tiers are byte-addressable by the CPU and the
performance gap between tiers narrows, it remains to be seen
whether exclusive tiering is the optimal strategy considering
the cost of data movement.

We evaluate the performance of transparent page placement
(TPP) [44], a state-of-the-art and the default tiered memory
management in Linux. Figure 1 shows the bandwidth of a
micro-benchmark that accesses a configurable working set
size (WSS) following a Zipfian distribution in a CXL-based
tiered memory system. More details of the benchmark and the
hardware configurations can be found in Section 4. We com-
pare the performance of TPP while it actively migrates pages
between tiers for promotion and demotion (denoted as TPP
in progress) and when it has finished page relocation (TPP
stable) with that of a baseline that disables page migration
(no migration). The baseline does not optimize page place-
ment and directly accesses hot pages from the slow tier. The
tiered memory testbed is configured with 16GB fast memory
(local DRAM) and 16GB slow memory (remote CXL mem-
ory). We vary the WSS to fit in (e.g., 10GB) and exceed (e.g.,
24GB) fast memory capacity. Note that the latter requires
continuous page migrations between tiers since hot data spills
into slow memory. Additionally, we explore two initial data
placement strategies in the benchmark. First, the benchmark
pre-allocates 10GB of data in fast memory to emulate the ex-
isting memory usage from other applications. Frequency-opt
is an allocation strategy that places pages according to the
descending order of their access frequencies (hotness). Thus,
the hottest pages are initially placed in fast memory until the
WSS spills into slow memory. In contrast, Random employs
a random allocation policy and may place cold pages initially
in fast memory.

We have important observations from results in Figure 1.
First, page migration in TPP incurs significant degradation
in application performance. When WSS fits in fast memory,
TPP stable, which has successfully migrated all hot pages
to fast memory, achieves more than an order of magnitude
higher bandwidth than TPP in progress. Most importantly, no
migration is consistently and substantially better than TPP
in progress, suggesting that the overhead of page migration
outweighs its benefit until the migration is completed. Second,
TPP never reaches a stable state and enters memory thrashing
when WSS is larger than the capacity of fast memory. Third,
page migration is crucial to achieving optimal performance
if it is possible to move all hot data to fast memory and the
initial placement is sub-optimal, as evidenced by the wide gap
between TPP stable and no migration in the 10GB WSS and
random placement test.

2.2 Page Management

In this section, we delve into the design of page management
in Linux and analyze its overhead during page migration. We
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focus our discussions on 1) how to effectively track memory
accesses and identify hot pages, and 2) the mechanism to
migrate a page between memory tiers.

Tracking memory access can be conducted by software
(via the kernel) and/or with hardware assistance. Specifi-
cally, the kernel can keep track of page accesses via page
faults [2, 32, 44], scanning page tables [2, 14, 19, 43, 54], or
both. Capturing each memory access for precise tracking
can be expensive. Page fault-based tracking traps memory
accesses to selected pages (i.e., whose page table entry per-
missions are set to no access) via hint (minor) page faults.
Thus, it allows the kernel to accurately measure the recency
and frequency of these pages. However, invoking a page fault
on every memory access incurs high overhead on the critical
path of program execution. On the other hand, page table (PT)
scanning periodically checks the access bit in all page ta-
ble entries (PTE) to determine recently accessed pages since
the last scanning. Compared to page fault-based tracking,
which tracks every access on selected pages, PT scanning has
to make a tradeoff between scanning overhead and tracking
accuracy by choosing an appropriate scanning interval [37].

Linux adopts a lazy PT scanning mechanism to track hot
pages, which lays the foundation for its tiered memory man-
agement. Linux maintains two LRU lists for a memory node:
an active list to store hot pages and an inactive list for cold
pages. By default, all new pages go to the inactive list and
will be promoted to the active list according to two flags,
PG_referenced and PG_active, in the per-page struct page.
PG_reference is set when the access bit in the correspond-
ing PTE is set upon a PTE check and PG_active is set after
PG_reference is set for two consecutive times. A page is
promoted to the active list when its PG_active flag is set.
For file-backed pages, their accesses are handled by the OS
through the file system interface, e.g., read() and write().
Therefore, their two flags are updated each time they are
accessed. For anonymous pages, e.g., application memory
allocated through malloc, since page accesses are directly
handled by the MMU hardware and bypass the OS kernel, the
updates to their reference flags and LRU list management are
only performed during memory reclamation. Under memory
pressure, the swapping daemon kswapd scans the inactive
list and the corresponding PTEs to update inactive pages’
flags, and reclaims/swaps out those with PG_reference un-
set. Additionally, kswapd promotes hot pages (i.e., those with
PG_active set) to the active list. This lazy scanning mecha-
nism delays access tracking until it is necessary to reduce the
tracking overhead, but undermines tracking accuracy.

TPP [44] leverages Linux’s PT scanning to track hot pages
and employs page fault-based tracking to decide whether to
promote pages from slow memory. Specifically, TPP sets
all pages residing in slow memory (e.g., CXL memory) as
inaccessible, and any user access to these pages will trig-
ger a minor page fault, during which TPP decides whether
to promote the faulting page. If the faulting page is on the
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Figure 2: Time breakdown in the execution of TPP in progress:
Synchronous page migration and page fault handling account for a
significant portion of the runtime.

active list, it is migrated (promoted) to the fast tier. Page demo-
tion occurs when fast memory is under pressure and kswapd
migrates pages from the inactive list to slow memory.

Accurate and lightweight memory access tracking can be
achieved with hardware support, e.g., by adding a PTE count
field in hardware that records the number of memory ac-
cesses [45]. However, hardware-based tracking can increase
the complexity and require extensive hardware changes in
mainstream architectures (e.g., x86). In practice, the hardware-
assisted sampling, such as via Processor Event-Based Sam-
pling (PEBS) [24, 37] on Intel platforms, has been employed
to record page access (virtual address) information from sam-
pled hardware events (e.g., LLC misses or store instructions).
However, PEBS-based profiling also requires a careful bal-
ance between the frequency of sampling and the accuracy of
profiling. We observed that the PEBS-based approach [37],
with a sampling rate optimized for minimizing overhead, re-
mains coarse-grained and fails to capture many hot pages.
Further, the sampling-based approach may not accurately mea-
sure access recency, thus limiting its ability to make timely
migration decisions.

Page migration between memory tiers involves a complex
procedure: ① The system must trap to the kernel (e.g., via
page faults) to handle migration; ② The PTE of a migrating
page must be locked to prevent others from accessing the page
during migration and be ummapped from the page table; ③ A
translation lookaside buffer (TLB) shootdown must be issued
to each processor (via inter-processor interrupts (IPIs)) that
may have cached copies of the stale PTE; ④ The content of
the page is copied between tiers; ⑤ Finally, the PTE must be
remapped to point to the new location. Page migration can be
done synchronously or asynchronously. Synchronous migra-
tion, e.g., page promotion in TPP, is on-demand triggered by
user access to a page and on the critical path of program exe-
cution. During migration, the user program is blocked until
migration is completed. Asynchronous migration, e.g., page
demotion in TPP, is handled by a kernel thread (i.e., kswapd),
oftentimes off programs’ critical path, when certain criteria
are met. Synchronous migration is costly not only because
pages are inaccessible during migration but also may involve
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a large number of page faults.
Figure 2 shows the run time breakdown of the aforemen-

tioned benchmark while TPP is actively relocating pages be-
tween the two memory tiers. Since page promotion is syn-
chronous, page fault handling and page content copying (i.e.,
promotion) are executed on the same CPU as the application
thread. Page demotion is done through kswapd and uses a
different core. As shown in Figure 2, synchronous promotion
together with page fault handling incurs significant overhead
on the application core. In contrast, the demotion core re-
mains largely idle and does not present a bottleneck. As will
be discussed in Section 3.1, userspace run time can also be
prolonged due to repeated minor page faults (as many as 15)
to successfully promote one page. This overhead analysis
explains the poor performance of TPP observed in Figure 1.

2.3 Related Work

A long line of pioneering work has explored a wide range
of tiered storage/memory systems, built upon SSDs and
HDDs [12,15,22,26,33,41,49,52,57], DRAM and disks [21,
25, 29, 46], HBM and DRAMs [23, 45, 48], NUMA mem-
ory [2, 3], PM and DRAM [13, 14, 40, 43], local and far mem-
ory [19, 27, 34, 35, 47], DRAM and CXL memory [37, 38, 44],
and multiple tiers [32, 36, 40, 51, 54]. We focus on tiered
memory systems consisting of DRAM and the emerging byte-
addressable memory devices, e.g., CXL memory and PM.
NOMAD also applies to other tiered memory systems such as
HBM/DRAM and DRAM/PM.
Lightweight memory access tracking. To mitigate soft-
ware overhead associated with memory access tracking, Hot-
box [19] employs two separate scanners for fast and slow tiers
to scan the slow tier at a fixed rate while the fast tier at an
adaptive rate, configurable based on the local memory pres-
sure. Memtis [37] adjusts its PEBS-based sampling rate to
ensure its overhead is under control (e.g., < 3%). TMTS [24]
also adopts a periodic scanning mechanism to detect fre-
quency along with hardware sampling to more timely de-
tect newly hot pages. While these approaches balance scan-
ning/sampling overhead and tracking accuracy, an “always-on”
profiling component does not seem practical, especially for
high-pressure workloads. Instead, thermostat [14] samples a
small fraction of pages, while DAMON [3] monitors memory
access at a coarser-grained granularity (i.e., region). Although
both can effectively reduce the scanning overhead, coarse
granularity leads to lower accuracy regarding page access
patterns. On the other hand, to reduce the overhead associated
with frequent hint page faults like AutoNUMA [2], TPP [44]
enables the page-fault based detection only for CXL mem-
ory (i.e., the slow tier) and tries to promote a page promptly
via synchronous migration; prompt page promotion avoids
subsequent page faults on the same page.

Inspired by existing lightweight tracking systems, such as
Linux’s active and inactive lists and hint page faults, NOMAD

advances them by incorporating more recency information
with no additional CPU overhead. Unlike hardware-assisted
approaches [24, 37, 42], NOMAD does not require any addi-
tional hardware support.

Page migration optimizations. To hide reclamation overhead
from applications, TPP [44] decouples page allocation and
reclamation; however, page migration remains in the critical
path, incurring significant slowdowns. Nimble [54] focuses
on mitigating page migration overhead with new migration
mechanisms, including transparent huge page migration and
concurrent multi-page migration. Memtis [37] further moves
page migration out of the critical path using a kernel thread
to promote/demote pages in the background. TMTS [24]
leverage a user/kernel collaborative approach to control page
migration. In contrast, NOMAD aims to achieve prompt, on-
demand page migration while moving page migration off the
critical path. It is orthogonal to and can benefit from existing
page migration optimizations. The most related work is [20],
which leverages hardware support to pin data in caches, en-
abling access to pages during migration. Again, NOMAD does
not need additional hardware support.

3 NOMAD Design and Implementation

NOMAD is a new page management mechanism for tiered
memory that features non-exclusive memory tiering and trans-
actional page migration. The goal of NOMAD design is to
enable the processor to freely access pages from both fast
and slow memory tiers and move the cost of page migration
off the critical path of users’ data access. Note that NOMAD
does not make page migration decisions and relies on the
existing memory access tracking in the OS to determine page
temperature. Furthermore, NOMAD does not impact the initial
memory allocation in the OS and assumes a standard page
placement policy. Pages are allocated from the fast tier when-
ever possible and are placed in the slower tier only when there
is an insufficient number of free pages in the fast tier, or at-
tempts to reclaim memory in the fast tier have failed. After the
initial page placement, NOMAD gradually migrates hot pages
to the fast tier and cold pages to the slow tier. NOMAD seeks
to address two key issues: 1) how to minimize the cost of page
migration? 2) how to minimize the number of migrations?

Overview. Inspired by multi-level cache management in mod-
ern processors, which do not employ a purely inclusive or
exclusive caching policy between tiers [16] to facilitate the
sharing of or avoid the eviction of certain cache lines, NOMAD
embraces a non-exclusive memory tiering policy to prevent
memory thrashing when under memory pressure. Unlike the
existing page management schemes that move pages between
tiers and require that a page is only present in one tier, NO-
MAD instead copies pages from the slow tier to the fast tier
and keeps a shadow copy of the migrated pages at the slow
tier. The non-exclusive tiering policy maintains shadow copies
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only for pages that have been promoted to the fast tier, thereby
not an inclusive policy. The advantage of the non-exclusive
policy is that the demotion of clean, cold pages can be sim-
plified to remapping the page table entry (PTE) without the
need to copy the cold page to the slower tier.

The building block of NOMAD is a new transactional page
migration (TPM) mechanism to reduce the cost of page mi-
grations. Unlike the existing unmap-copy-remap 3-step page
migration, TPM opportunistically copies a page without un-
mapping it from the page table. During the page copy, the
page is not locked and can be accessed by a user program.
After the copy is completed, TPM checks if the page has been
dirtied during the copy. If not, TPM locks the page and remaps
it in the PTE to the faster tier. Otherwise, the migration is
aborted and will be tried at a later time. TPM not only min-
imizes the duration during which a page is inaccessible but
also makes page migration asynchronous, thereby removing
it from the critical path of users’ data access.

Without loss of generality, we describe NOMAD design
in the context of Linux. We start with transactional page
migration and then delve into page shadowing – an essential
mechanism that enables non-exclusive memory tiering.

3.1 Transactional Page Migration
The motivation to develop TPM is to make page migration
entirely asynchronous and decoupled from users’ access to the
page. As discussed in Section 2.2, the current page migration
in Linux is synchronous and on the critical path of users’ data
access. For example, the default tiered memory management
in Linux, TPP, attempts to migrate a page from the slow tier
whenever a user program accesses the page. Since the page
is in inaccessible mode, the access triggers a minor page
fault, leading TPP to attempt the migration. The user program
is blocked and makes no progress until the minor page fault is
handled and the page is remapped to the fast tier, which can
be a time-consuming process. Worse, if the migration fails,
the OS remains in function migrate_pages and retries the

aforementioned migration until it is successful or reaching a
maximum of 10 attempts.

TPM decouples page migration from the critical path of
user programs by making the migrating page accessible dur-
ing migration. Therefore, users will access the migrating page
from the slow tier before the migration is complete. While ac-
cessing a hot page from the slow tier may lead to sub-optimal
memory performance, it avoids blocking user access due to
the migration, thereby leading to superior user-perceived per-
formance. Figure 3 shows the workflow of TPM. Before
migration commences, TPM clears the protection bit of the
page frame and adds the page to a migration pending queue.
Since the page is no longer protected and not yet unmapped
from the page table, following accesses to the page will not
trigger additional page faults.

TPM starts a migration transaction by clearing the dirty bit
of the page (step ❶) and checks the dirty bit after the page
is copied to the fast tier to determine whether the transaction
was successful. After changing the dirty bit in PTE, TPM
issues a TLB shootdown to all cores that ever accessed this
page (step ❷). This is to ensure that subsequent writes to the
page can be recorded on the PTE. After the TLB shootdown is
completed, TPM starts copying the page from the slow tier to
the fast tier (step ❸). To commit the transaction, TPM checks
the dirty bit by loading the entire PTE using atomic instruc-
tion get_and_clear (step ❹). Clearing the PTE is equivalent
to unmapping the page and thus another TLB shootdown is
needed (step ❺). Note that after unmapping the page from
PTE, it becomes inaccessible by users. TPM checks whether
the page was dirtied during the page copy (step ❻) and either
commits the transaction by remapping the page to the fast tier
if the page is clean (step ❼) or otherwise aborts the transac-
tion (step ❽). If the migration is aborted, the original PTE is
restored and waits for the next time when TPM is rescheduled
to retry the migration. The duration in which the page is in-
accessible is between ❹ and ❼/ ❽, significantly shorter than
that in TPP (possibly multiple attempts between ❶ and ❼).

Page migration is a complex procedure that involves mem-
ory tracing and updates to the page table for page remapping.
The state-of-the-art page fault-based migration approaches,
e.g., TPP in Linux [44], employ synchronous page migration,
a mechanism in the Linux kernel for moving pages between
NUMA nodes. In addition to the extended migration time
affecting the critical path of user programs, this mechanism
causes excessive page faults when integrated with the existing
LRU-based memory tracing. TPP makes per-page migration
decisions based on whether the page is on the active LRU
list. Nevertheless, in Linux, memory tracing adds pages from
the inactive to the active LRU list in batches of 15 requests 2,
aiming to minimize the queue management overhead. Due
to synchronous page migration, TPP may submit multiple
requests (up to 15 if the request queue is empty) for a page to

2The 15 requests could be repeated requests for promoting the same page
to the active LRU list
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Figure 4: TPM uses a two-queue design to enable asyn-
chronous page migration.

be promoted to the active LRU list to initiate the migration
process. In the worst case, migrating one page may generate
as many as 15 minor page faults.

TPM provides a mechanism to enable asynchronous page
migration but requires additional effort to interface with
memory tracing in Linux to minimize the number of page
faults needed for page migration. As shown in Figure 4, in
addition to the inactive and active LRU lists in memory trac-
ing, TPM maintains a separate promotion candidate queue
(PCQ) for pages that 1) have been tried for migration but 2)
not yet promoted to the active LRU list. Upon each time a
minor (hint) page fault occurs and the faulting page is added
to PCQ, TPM checks if there are any hot pages in PCQ that
have both the active and accessed bits set. These hot pages
are then inserted to a migration pending queue, from where
they will be tried for asynchronous, transactional migration
by a background kernel thread kpromote. Note that TPM
does not change how Linux determines the temperature of a
page. For example, in Linux, all pages in the active LRU list,
which are eligible for migration, have the two memory tracing
bits set. However, not all pages with these bits set are in the
active list due to LRU list management. TPM bypasses the
LRU list management and provides a more efficient method
to initiate page migration. If all transactional migrations were
successful, TPM guarantees that only one page fault is needed
per migration in the presence of LRU list management.

3.2 Page Shadowing

To enable non-exclusive memory tiering, NOMAD introduces
a one-way page shadowing mechanism to allow a subset of
pages resident in the performance tier to have a shadow copy
in the capacity tier. Only pages promoted from the slow tier
have shadow copies in the slow tier. Shadow copies are the
original pages residing on the slow tier before they are un-
mapped in the page table and migrated to the fast tier. Shadow
pages play a crucial role in minimizing the overhead of page
migration during periods of memory pressure. Instead of

Fast tier Slow tier

Shadow 
page, PFN1

Master
page, PFN0

PFN0 PFN1

Demote: remap PTE

Shadow r/w bit r/w bit

Restore r/w bit after demotion

Figure 5: Shadow page management using shadow r/w bit.

swapping hot and cold pages between memory tiers, page
shadowing enables efficient page demotion through page table
remapping. This would eliminate half of the page migration
overhead, i.e., page demotion, during memory thrashing.

Indexing shadow pages. Inspired by the indexing of file-
based data in the Linux page cache, NOMAD builds an XArray
for indexing shadow pages. An XArray is a radix-tree like,
cache-efficient data structure that acts as a key-value store,
mapping from the physical address of a fast tier page to the
physical address of its shadow copy on the slow tier. Upon
successfully completing a page migration, NOMAD inserts
the addresses of both the new and old pages into the XArray.
Additionally, it adds a new shadow flag to the struct page
of the new page, indicating that shadowing is on for this page.

Shadow page management. The purpose of maintaining
shadow pages is to assist with page demotion. Fast or efficient
page demotion is possible via page remapping if the master
page, i.e., the one on the fast tier, is clean and consistent
with the shadow copy. Otherwise, the shadow copy should
be discarded. To track inconsistency between the master and
shadow copies, NOMAD sets the master page as read-only
and a write to the page causes a page fault. To simplify system
design and avoid additional cross-tier traffic, NOMAD discards
the shadow page if the master page is dirtied.

However, tracking updates to the master page poses a sig-
nificant challenge. Page management in Linux relies heav-
ily on the read-write permission to perform various opera-
tions on a page, such as copy-on-write (CoW). While setting
master pages as read-only effectively captures all writes, it
may affect how these master pages are managed in the ker-
nel. To address this issue, NOMAD introduces a procedure
called shadow page fault. It still designates all master pages as
read-only but preserves the original read-write permission
in an unused software bit on the page’s PTE (as shown in
Figure 5). We refer to this software bit as shadow r/w. Upon
a write to a master page, a page fault occurs. Unlike an ordi-
nary page fault that handles write violation, the shadow page
fault, which is invoked if the page’s shadow flag is set in its
struct page, restores the read-write permission of the fault-
ing page according to the shadow r/w bit and discards/frees
the shadow page. The write may proceed once the shadow
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page fault returns and reinstates the page to be writable. For
read-only pages, tracking shadow pages does not impose
additional overhead; for writable pages, it requires one addi-
tional shadow page fault to restore their write permission.
Reclaiming shadow pages. Non-exclusive memory tiering
introduces space overhead due to the storage of shadow pages.
If shadow pages are not timely reclaimed when the system is
under memory pressure, applications may encounter out-of-
memory (OOM) errors, which would not occur under exclu-
sive memory tiering. There are two scenarios in which shadow
pages should be reclaimed. First, the Linux kernel periodically
checks the availability of free pages and if free memory falls
below low_water_mark, kernel daemon kswapd is invoked
to reclaim memory. NOMAD instructs kswapd to prioritize
the reclamation of shadow pages. Second, upon a memory
allocation failure, NOMAD also tries to free shadow pages. To
avoid OOM errors, the number of freed shadow pages should
exceed the number of requested pages. However, frequent
memory allocation failures could negatively affect system
performance. NOMAD employs a straightforward heuristic
to reclaim shadow pages, targeting 10 times the number of
requested pages or until all shadow pages are freed. While ex-
cessive reclamation may have a negative impact on NOMAD’s
performance, it is crucial to prevent Out-of-Memory (OOM)
errors. Experiments in Section 4 demonstrate the robustness
of NOMAD even under extreme circumstances.

3.3 Limitations
NOMAD relies on two rounds of TLB shootdown to effec-
tively track updates to a migrating page during transactional
page migration. When a page is used by multiple processes
or mapped by multiple page tables, its migration involves
multiple TLB shootdowns, per each mapping, that need to
happen simultaneously. The overhead of handling multiple
IPIs could outweigh the benefit of asynchronous page copy.
Hence, NOMAD deactivates transactional page migration for
multi-mapped pages and resorts to the default synchronous
page migration mechanism in Linux. As high-latency TLB
shootdowns based on IPIs continue to be a performance con-
cern, modern processors, such as ARM, future AMD, and Intel
x86 processors, are equipped with ISA extensions for faster
broadcast-based [17, 18] or micro-coded RPC-like [28] TLB
shootdowns. These emerging lightweight TLB shootdown
methods will greatly reduce the overhead of TLB coherence
in tiered memory systems with expanded memory capacity.
NOMAD will also benefit from the emerging hardware and
can be extended to scenarios where more intensive TLB shoot-
downs are necessary.

4 Evaluation

This section presents a thorough evaluation of NOMAD, fo-
cusing on its performance, overhead, and robustness. Our

RSS

WSS

Fast tier Slow tier

Figure 6: The three memory provisioning schemes used in the
evaluation. From bottom to top concerning fast memory: over-
provisioning, approaching capacity, and under-provisioning.

primary goal is to understand tiered memory management by
comparing NOMAD with existing representative approaches
to reveal the benefits and potential limitations of current page
management approaches for emerging tiered memory.

We analyze two types of memory footprints: 1) resident set
size (RSS) – the total size of memory occupied by a program,
and 2) working set size (WSS) – the amount of memory a
program actively uses during execution. RSS determines the
initial page placement, while WSS dictates the number of
pages that should be migrated to the fast tier. Since we focus
on in-memory computing, WSS is typically smaller than RSS.
Figure 6 illustrates the three scenarios we study with the WSS
size smaller than, close to, and larger than fast memory size.
Testbeds. We conducted experiments on four platforms with
different configurations in CPU, local DRAM, CXL memory,
and persistent memory, as detailed in Table 1.

• Platform A was built with commercial off-the-shelf (COTS)
Intel Sapphire Rapids processors and a 16 GB Agilex-7
FPGA-based CXL memory device [6].

• Platform B featured an engineering sample of the Intel Sap-
phire Rapids processors with the same FPGA-based CXL
memory device. The prototype processors have engineering
tweaks that have the potential to enhance the performance
of CXL memory, which were not available on platform A.

• Platform C included an Intel Cascade Lake processor and
six 256 GB 100 series Intel Optane Persistent Memory. This
platform enabled the full capability of PEBS-based mem-
ory tracking and allowed for a comprehensive comparison
between page fault- and sampling-based page migration.

• Platform D had an AMD Genoa 9634 processor and four
256 GB Micron’s (pre-market) CXL memory modules. This
platform allowed us to evaluate NOMAD with more realistic
CXL memory configurations.

Since the FPGA-based CXL memory device had only 16
GB of memory, we configured local DRAM to 16 GB for all
platforms 3. Note that platform C was equipped with DDR4
DRAM as fast memory while the other platforms used DDR5

3Although platform C and D have larger PM or CXL memory sizes, we
configured them with 16 GB slow memory consistent with platform A and B
for a fair comparison in micro-benchmarks.This limit was lifted when testing
real applications.
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Platform A Platform B Platform C Platform D
(engineering sample)

CPU
4th Gen Xeon Gold

2.1GHz
4th Gen Xeon Platinum

3.5GHz
2nd Gen Xeon Gold

3.9GHz
AMD Genoa

3.7GHz
Performance tier (DRAM) 16 GB DDR5 16 GB DDR5 16 GB DDR4 16GB DDR5

Capacity tier
(CXL or PM Memory)

Agilex 7
16 GB DDR4

Agilex 7
16 GB DDR4

Optane 100
256 GB DDR-T ×6

Micron CXL memory
256GB ×4

Performance tier read latency 316 cycles 226 cycles 249 cycles 391 cycles
Capacity tier read latency 854 cycles 737 cycles 1077 cycles 712 cycles

Performance tier
bandwidth (GB/s)

Single Thread / Peak performance

Read: 12/31.45
Write: 20.8/28.5

Read: 12/31.2
Write: 22.3/23.67

Read: 12.57/116
Write: 8.67/85

Read: 37.8/270
Write: 89.8/272

Capacity tier
bandwidth (GB/s)

Single Thread/Peak performance

Read: 4.5/21.7
Write: 20.7/21.3

Read: 4.45/22.3
Write: 22.3/22.4

Read: 4/40.1
Write: 8.1/13.6

Read: 20.25/83.2
Write: 57.7/84.3

Table 1: The configurations of four testbeds and performance characteristics of various memory devices.

Workload Type In progress Promotion In progress Demotion Steady Promotion Steady demotion

Small WSS
(1.2M|1M)/(15.9K|134K)/

(1.16M|781K)
(2.4M|2.2M)/(15.9K|140K)/

(2.7M|1.5M)
(0|3.3K)/(7.7K|104K)/

(82|74)
(424K|56K)/(0|104K)/

(48K|0)

Medium WSS
(4M|6M)/(0|0)/

(1.6M|5M)
(4.7M|6M)/(2|512)/

(2.5M|4.8M)
(1.8M|3.2M)/(17.4K|0)/

(417K|1.6M)
(1.9M|3.2M)/(16.9K|0)/

(293K|1.4M)

Large WSS
(7M|5.9M)/(0|0)/

(4.5M|7M)
(7.2M|6.5M)/(0|15)/

(4.1M|7.2M)
(7.1M|5.2M)/(0|143K)/

(6.8M|8.8M)
(7.1M|5.3M)/(0|143K)/

(6.8M|8.9M)

Table 2: The number of page promotions/demotions for read|write during the migration in progress and the stable phases for
TPP/Memtis-Default/NOMAD. The data corresponds to Figure 7 for platform A.

DRAM. We evaluated both CXL memory and persistent mem-
ory (PM) as slow memory. Table 1 lists the performance char-
acteristics of the four platforms for single-threaded and peak
(multi-threaded) performance. While CXL memory and PM
have distinct characteristics, including persistence, concurrent
performance, and read/write asymmetry, they achieve com-
parable performance within 2-3x of DRAM and provide a
similar programming interface as a CPUless memory node.
To ensure a fair comparison, we only enabled one socket on
each of the four platforms. Intel platforms were configured
with 32 cores while the AMD platform had 84 cores.

Baselines for comparison. We compared NOMAD with
two state-of-the-art tired memory systems: TPP [44] and
Memtis [37]. We evaluated both TPP and Nomad on Linux
kernel v5.13-rc6 and ran Memtis on kernel v5.15.19, the ker-
nel version upon which Memtis was built and released. We
tested two versions of Memtis – Memtis-Default and Memtis-
QuickCool – with different data cooling speeds (i.e., the num-
ber of samples collected before halving a page’s access count).
Specifically, Memtis-Default used the default cooling period
of 2,000k samples, while Memtis-QuickCool used a period
of 2k samples. A shorter cooling period encourages more
frequent page migration between the memory tiers.

Memtis relies on Intel’s Processor Event-Based Sampling
(PEBS) to track memory access patterns. It samples various
hardware events, including LLC misses, TLB misses, and re-
tired store instructions, to infer accessed page addresses and
build frequency-based histograms to aid in making migra-
tion decisions. Memtis currently only supports Intel-based

systems, though it can be ported to AMD processors with
Instruction-based Sampling (IBS). Thus, Memtis was not
evaluated on platform D. Memtis works slightly differently
on CXL-memory systems (platforms A and B) and the PM
system (platform C). LLC misses to CXL memory are re-
garded as uncore events on Intel platforms and thus cannot be
captured by PEBS. Therefore, Memtis relies solely on TLB
misses and retired store instructions to infer page temperature
on platforms A and B.

4.1 Micro-benchmarks

To evaluate the performance of NOMAD’s transactional page
migration and shadowing mechanisms, we developed a micro-
benchmark to precisely assess NOMAD in a controlled manner.
This micro-benchmark involves 1) allocating data to specific
segments of the tiered memory; 2) running tests with various
working set sizes (WSS) and resident set sizes (RSS); and 3)
generating memory accesses to the WSS data that mimic real-
world memory access patterns with a Zipfian distribution. We
created three scenarios representing small, medium, and large
WSS, as illustrated in Figure 6, to evaluate tiered memory
management under different memory pressures. As platform
B behaved similarly to platform A in micro-benchmarks, it is
excluded from the discussion.

Small WSS. We began with a scenario with a small WSS
of 10 GB and a total RSS of 20 GB. Initially, we filled the
first 10 GB of local DRAM with the first half of the RSS
data. Subsequently, we allocated 10 GB of WSS data as the
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Figure 7: Performance comparison between TPP, Memtis-Default, Memtis-QuickCool, and NOMAD on platform A.

second half of the RSS – 6 GB on the local DRAM and 4 GB
on CXL memory (platforms A and D) and the PM (platform
C). The micro-benchmark continuously performed memory
reads or writes (following a Zipfian distribution) to this 10
GB WSS data, spread across both the local DRAM and CXL
memory or PM. The frequently accessed, or “hot” data, was
uniformly distributed along the 10 GB WSS. In TPP and
NOMAD, accessing data on CXL memory or PM triggered
page migration to the local DRAM, with TPP performing
this migration synchronously and NOMAD asynchronously.
In contrast, Memtis used a background thread to migrate hot
data from CXL memory or PM to the local DRAM. Due
to page migration, the 4 GB WSS data, initially allocated
to CXL memory or PM, was gradually moved to the local
DRAM. Since the WSS was small (i.e., 10 GB), it could be
completely stored in the fast tier (i.e., local DRAM) after the
micro-benchmark reached a stable state.

Figures 7 (a), 8 (a), and 9 (a) show that in the transient
phase, during which page migration was conducted inten-
sively (i.e., migration in progress), both NOMAD and Memtis
demonstrated similar performance regarding memory band-
width for reads. Although page-fault-based page migration
in NOMAD could incur more overhead than the PEBS-based
approach in Memtis, when the WSS can fit in fast memory
and no memory thrashing occurs, the benefit of migration
outweighs its overhead. For writes, e.g., on platform A, NO-
MAD incurred noticeable performance degradation compared
to Memtis due to possibly aborted migrations and the mainte-
nance of shadow pages. Note that NOMAD’s overhead varies
across platforms depending on the performance difference
between fast and slow memory. In contrast, Nomad consis-
tently outperformed TPP for both read and write, except for
the slightly worse performance on platform C, highlighting
the advantage of asynchronous page migration in NOMAD.

In the stable phase (i.e., migration stable), when most of
the WSS data had been migrated from CXL memory or PM
to the local DRAM, both NOMAD and TPP achieved similar
read/write bandwidth. This was because memory accesses
were primarily served by the local DRAM with few page mi-
grations, as shown in Table 2. Memtis performed the worst,
achieving as low as 40% of the performance of the other two
approaches. We make two observations regarding Memtis’s
weaknesses. First, its stable phase performance is not drasti-
cally different from the transient phase. The migration statis-

tics in Table 2 show that Memtis performed significantly
fewer page migrations. This explains its sub-optimal perfor-
mance in the stable phase as most memory accesses were
still served from slow memory. Second, a shorter cooling pe-
riod in Memtis, which incentivizes more frequent migrations,
led to better performance. This also suggests that sampling-
based memory access tracking may not accurately identify
and timely migrate hot pages to fast memory.

Medium WSS. We increased the size of WSS and RSS to
13.5 GB and 27 GB, respectively. Similarly, we placed the
first half of the RSS (13.5 GB) at the start of the local DRAM,
followed by 2.5 GB of the WSS on the local DRAM, with the
remaining 11 GB residing on CXL memory or PM. However,
as the system (e.g., the OS kernel) required approximately
3-4 GB of memory, the WSS could barely fit in the fast tier,
resulting in occasional and substantial migrations even during
the stable phase. Accurately identifying hot pages and avoid-
ing thrashing is crucial to achieving high performance for this
medium-sized benchmark.

Unlike the small WSS case, Figures 7 (b), 8 (b), and 9 (b)
show that during the transient phase, NOMAD and TPP gen-
erally achieved lower performance for both read and write
compared to Memtis. This is because, under the medium
WSS, the system experienced higher memory pressure than
in the small WSS case, causing NOMAD and TPP to conduct
more page migrations (2x - 6x) and incur higher overhead
than Memtis, as shown in Table 2. Many of such migrations
were futile during thrashing. Conversely, Memtis performed
significantly fewer page migrations and avoided the waste.
However, there was no evidence that Memtis effectively de-
tected thrashing and throttled migration. The coarse-grained
sampling was unable to accurately determine page tempera-
ture in a volatile situation and inadvertently sustained high
performance under high memory pressure.

In the stable phase, NOMAD significantly outperformed
TPP in all cases, especially on platform D. These results show
the benefit of NOMAD’s transactional page migration and non-
exclusive memory tiering compared to TPP’s synchronous
page migration and exclusive tiering. On platform D, which
was equipped with an application-specific integrated circuit
(ASIC)-based CXL memory implementation, the performance
gap between fast and slow memory narrows. Thus, the soft-
ware overhead associated with synchronous page migration
was exacerbated and NOMAD offered more pronounced per-
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Figure 8: Performance comparison between TPP, Memtis-Default, Memtis-QuickCool, and NOMAD on platform C.
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Figure 9: Performance comparison between TPP and NOMAD on platform D with AMD Genoa processor. Memtis does not
support AMD’s instruction-based sampling (IBS) and thus was not tested.

formance gains. Similarly, NOMAD achieved substantially
higher performance in reads than Memtis and comparable per-
formance in writes. Unlike in the small WSS case, in which
asynchronous and transactional page migration in NOMAD
contributed most to its performance benefit, the advantage of
page shadowing played a critical role in alleviating thrashing
in the medium WSS case. Under memory thrashing, most
demoted pages, which were recently promoted from the slow
tier, can be simply discarded without migration. However,
for write-intensive workloads, page shadowing requires one
additional page fault for each write to restore a page’s original
read-write permission. This explains NOMAD’s inferior write
performance in the stable phase compared to Memtis.
Large WSS. We scaled up the WSS and RSS both to 27
GB and fully populated local DRAM with the first 16 GB
of the WSS. The remaining WSS spilled onto CXL memory
or PM. Unlike the medium WSS that incurred intermittent
memory thrashing, this workload caused continuous and se-
vere thrashing as the size of hot data greatly exceeded the
capacity of fast memory. Figures 7 (c), 8 (c), and 9 (c) present
the performance results in both the transient phase and the
stable phase. Compared to the tests with the medium-sized
workload in which NOMAD could outperform Memtis for
read-only benchmarks, especially in the stable phase, both
NOMAD and TPP performed worse than Memtis in almost
all scenarios. It suggests that page fault-based tiered mem-
ory management, which makes per-page migration decisions
upon access to a page, inevitably incurs high overhead during
severe memory thrashing. Nevertheless, NOMAD consistently
and significantly outperformed TPP thanks to asynchronous,
transactional page migration and page shadowing.
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Figure 10: The average cache line access latency on platform
C. The benchmark is a point-chasing workload optimized for
PEBS-based memory access tracking.

Limitations of PEBS-based approaches. Our evaluation re-
vealed several issues with PEBS-based memory access track-
ing. While Memtis prevented excessive migrations during
thrashing, it achieved sub-optimal performance and failed to
migrate all hot data to fast memory even when the WSS could
fit in the fast tier. Due to the lack of hardware support for hot
page tracking, PEBS-based approaches employ indirect met-
rics, such as LLC and TLB misses to sample recently accessed
addresses to infer page temperature. Sampling-based memory
tracking has two fundamental limitations. First, there is a dif-
ficult tradeoff between sampling rate and tracking accuracy.
Second and most importantly, cache misses may not effec-
tively capture hot pages. For most frequently accessed pages
that always hit the caches, Memtis fails to collect enough
(cache miss) samples to build the histogram. If such pages
are evicted from the caches, e.g., due to conflict or coherence
misses, they will be falsely regarded as “cold” pages.

To demonstrate these limitations, we created a favorable
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RSS 23GB 25GB 27GB 29GB
Total shadow page size 3.93GB 2.68GB 2.2GB 0.58GB

Table 3: Shadow memory size as RSS changes on platform B.
The size of tiered memory (DRAM+CXL) is 30.7 GB.

scenario where Memtis can capture every page access. We
used a pointer-chasing benchmark that repeatedly accesses
multiple fixed-sized (1 GB) memory blocks. Within each 1
GB block, the benchmark randomly accesses all cache lines
belonging to a block while accesses across blocks follow a
Zipfian distribution. The number of blocks determines the
WSS. Since the block size exceeds the LLC size in our
testbeds, every access generates an LLC miss that can be cap-
tured by Memtis. Effective memory access tracking should
identify hot blocks and place them in fast memory.

Figure 10 shows the average latency to access a cache line
in this benchmark on platform C. Note that platform C with
PM was the only testbed on which Memtis has full tracking
capability and can capture all the PEBS events. According
to Table 1, a latency closer to DRAM performance (∼250
cycles) indicates more effective page placement. As shown in
Figure 10, when the WSS exceeds fast tier capacity, Memtis
achieved latency close to slow memory performance, sug-
gesting that most hot pages still resided in the slow tier. In
comparison, page fault-based approaches, e.g., NOMAD and
TPP, can timely migrate hot pages and achieve low latency.
Robustness. Page shadowing can potentially increase mem-
ory usage and in the worst case can cause OOM errors if
shadow pages are not timely reclaimed. In this test, we evalu-
ated NOMAD’s shadow page reclamation. We measured the
total memory usage and the size of shadow memory using a
micro-benchmark that sequentially scans a predefined RSS
area. Table 3 shows the change of shadow pages as we var-
ied the RSS. The results suggest that NOMAD effectively
reclaimed shadow pages to reduce shadow memory usage as
RSS increased and approached memory capacity.

4.2 Real-world Applications
We continued the evaluation of NOMAD using three repre-
sentative real-world applications with unique memory access
patterns: Redis [10], PageRank [9], and Liblinear [5]. We ran
these three applications on four platforms (as shown in Ta-
ble 1) with two configurations: 1) a small RSS (under 32 GB)
working with all platforms and 2) a large RSS (over 32 GB)
only on platform C and D with large PM or CXL memory.
In addition, we include results from a “no migration” base-
line which disables page migrations to show whether tiered
memory management is necessary.
Key-value store. We first conducted experiments on a latency-
sensitive key-value database, Redis [10]. The workload was
generated from YCSB [11], using its update-heavy workload
A, with a 50/50 distribution of read and write operations. We
crafted three cases with different RSS and total operations.
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Figure 11: Performance comparisons using Redis and YCSB
between TPP, Memtis-Default, Memtis-QuickCool, NOMAD,
and “no migration”.

Note that the parameters of YCSB were set as default unless
otherwise specified. Case 1: We set recordcount to 6 million
and operationcount to 8 million. After pre-loading the dataset,
we used a customized tool to demote all memory pages to
the slow tier before starting the experiment. The RSS of this
case was 13GB. Case 2: We increased the RSS by setting
recordcount to 10 million and operationcount to 12 million.
We demoted all the memory pages to the slow tier in the same
way. The RSS of this case was 24GB. Case 3: We kept the
same total operations and RSS as Case 2. However, after pre-
loading the dataset, we did not demote any memory pages.

Consistent with the micro-benchmarking results, Figure 11
shows that NOMAD delivered superior performance (in terms
of operations per second) compared to TPP across all plat-
forms in all cases. In addition, NOMAD outperformed Memtis
when the WSS was small (i.e., in case 1), but suffered more
performance degradation as the WSS increased (i.e., in case 2
and 3) due to an increased number of page migrations and ad-
ditional overhead. Finally, all the page migration approaches
underperformed compared to the “no migration” baseline.
It is because the memory accesses generated by the YCSB
workload were mostly “random”, rendering migrating pages
to the fast tier less effective, as those pages were unlikely to
be accessed again. It indicates once again that page migration
could incur nontrivial overhead, and a strategy to dynamically
switch it on/off is needed.

We further increased the RSS of the database and opera-
tions of YCSB by setting the recordcount to 20 million and
operationcount to 30 million. The RSS for this case was
36.5GB, exceeding the total size of the tiered memory on
platforms A and B. Thus, the large RSS test was only per-
formed on platforms C and D. We tested two initial memory
placement strategies for the database – 1) thrashing that allo-
cated all pages first to the slow tier and immediately invoked
intensive page migrations, and 2) normal that prioritized page
allocation to fast memory and triggered page migration only
under memory pressure. As shown in Figure 14, NOMAD out-
performed TPP due to its graceful performance degradation
during thrashing but fell short of matching Memtis’s perfor-
mance. The initial placement strategy did not substantially
affect the results and performance under different placements
eventually converged.

Graph-based computation. We used PageRank [9], an ap-
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Figure 12: Performance comparisons of PageRank between
non-migration, TPP, Memtis, and NOMAD. Performance is
normalized to the approach with the lowest speed.
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Figure 13: Performance comparisons of Liblinear between
non-migration, TPP, Memtis, and NOMAD. Performance is
normalized to the approach with the lowest speed.

plication used to rank web pages. It involves iterative com-
putations to determine the rank of each page, based on the
link structures of the entire web. As the size of the dataset in-
creases, the computational complexity also increases, making
it both memory-intensive and compute-intensive. We used a
benchmark suite [8] to generate a synthetic uniform-random
graph comprising 226 vertices, each with an average of 20
edges. The RSS in this experiment was 22 GB, indicating that
the memory pages were distributed at both the local DRAM
and remote CXL memory or PM.

Figure 12 illustrates that there was negligible variance in
performance between scenarios with page migrations (using
NOMAD and TPP) and without page migrations (no migra-
tion). The results suggest that: 1) For non-latency-sensitive
applications, such as PageRank, using CXL memory can sig-
nificantly expand the local DRAM capacity without adversely
impacting application-level performance. 2) In such scenar-
ios, page migration appears to be unnecessary. These findings
also reveal that the overhead associated with NOMAD’s page
migration minimally influences PageRank’s performance. Ad-
ditionally, it was observed that among all evaluated scenarios,
Memtis exhibited the least efficient performance.

Figure 15 shows the case when we scaled the RSS to a
very large scale on platforms C & D. When the PageRank
program started, it first used up to 100GB memory, then its
RSS size dropped to 45GB to 50GB. NOMAD achieved 2x
the performance of TPP (both platforms) and slightly better
than Memtis (platform C), due to more frequent page migra-
tions – the local DRAM (16 GB) was not large enough to
accommodate the WSS in this case.

Workload type Success : Aborted

Liblinear (large RSS) on platform C 1:1.9
Liblinear (large RSS) on platform D 2.6:1

Redis (large RSS) on platform C 153:1
Redis (large RSS) on platform D 278.2:1

Table 4: The Success rate of transactional migration.

Machine learning. Our final evaluation of NOMAD involved
using the machine learning library Liblinear [5], known for
its large-scale linear classification capabilities. We executed
Liblinear with an L1 regularized logistic regression workload
with an RSS of 10 GB. Prior to each execution, we used our
tool to demote all memory pages associated with the Liblinear
workload to the slower memory tier.

Figure 13 demonstrates that both NOMAD and TPP signif-
icantly outperformed “no migration” and Memtis across all
platforms, with performance improvement ranging from 20%
to 150%. This result further illustrates that when the WSS is
smaller than the local DRAM, NOMAD and TPP can substan-
tially enhance application performance by timely migrating
hot pages to the faster memory tier. Figure 16 shows that
with a much larger model and RSS when running Liblinear,
NOMAD consistently achieved high performance across all
cases. In contrast, TPP’s performance significantly declined,
likely due to inefficiency issues, as frequent, high bursts in
kernel CPU time were observed during TPP execution.

Migration success rate. As stated in Section 3.1, NOMAD’s
transactional page migration may be aborted due to updates
to the migrating page, resulting in wasted memory bandwidth
and CPU cycles. Subsequent retries could also fail. A low
success rate could negatively affect application performance.
Table 4 shows NOMAD’s migration success rate for Liblin-
ear and Redis on platforms C and D. We chose a large RSS
for both applications and ensured there were sufficient cross-
tier migrations. We observed a low success rate for Liblinear
while Redis had a high success rate. Interestingly, this con-
trasted with NOMAD’s performance – it was excellent with
Liblinear but poor with Redis with large RSS. This suggests
that a high success rate in page migrations does not necessar-
ily lead to high performance. A low success rate indicates that
the pages being migrated by NOMAD are also being modified
by other processes, implying their “hotness”. Timely migra-
tion of such pages can benefit ongoing and future accesses.
Summary. The results from micro-benchmarks and appli-
cations indicate that when the WSS was smaller than the
performance tier, NOMAD enabled workloads to maintain
higher performance than Memtis through asynchronous, trans-
actional page migrations. However, when the WSS was com-
parable to or exceeded the performance tier capacity, leading
to memory thrashing, the page-fault-based migration in NO-
MAD became detrimental to workload performance, under-
performing Memtis in write operations. Notably, NOMAD’s
page shadowing feature preserved the efficiency of read opera-
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Figure 16: Liblinear (large RSS).

tions even under severe memory thrashing, often maintaining
comparable or superior performance to Memtis. In all test
scenarios, NOMAD significantly outperformed the state-of-
the-art page-fault-based migration approach, TPP.

The evaluation results across four different platforms re-
veal the following observations: First, NOMAD generally per-
formed better on platform D, which was equipped with faster
and larger CXL memory, compared to other platforms. Ad-
ditionally, the reduced performance gap between fast and
slow memory on platform D allowed NOMAD to achieve
greater performance gains than TPP, as the performance over-
head from TPP’s synchronous page migration was more pro-
nounced. Second, while platforms A and B showed similar
behavior in micro-benchmarks, their application-level perfor-
mance varied (slightly) across different applications, suggest-
ing that specific CPU features (differing between the off-the-
shelf Intel Sapphire Rapids CPU for platform A and the engi-
neering sample for platform B) may affect the performance
of page migration under more realistic workloads.

5 Discussions and Future Work

The key insight from NOMAD’s evaluation is that page mi-
gration, especially under memory pressure, has a detrimental
impact on overall application performance. While NOMAD
achieved graceful performance degradation and much higher
performance than TPP, an approach based on synchronous
page migration, its performance is sub-optimal compared to
that without page migration. When the program’s working set
exceeds the capacity of the fast tier, the most effective strategy
is to access pages directly from their initial placement, com-
pletely disabling page migration. It is straightforward to detect
memory thrashing, e.g., frequent and equal number of page
demotions and promotions, and disable page migrations. How-
ever, estimating the working set size to resume page migration
becomes challenging, as the working set now spans multiple
tiers. It requires global memory tracking, which could be
prohibitively expensive, to identify the hot data set that can
potentially be migrated to the fast tier. We plan to extend
NOMAD to unilaterally throttle page promotions and monitor
page demotions to effectively manage memory pressure on
the fast tier. Note that this would require the development
of a new page migration policy, which is orthogonal to the
NOMAD page migration mechanisms proposed in this work.

Impact of Platform Characteristics: There exist difficult
tradeoffs between page fault-based access tracking, such as
TPP and NOMAD, and hardware performance counter-based
memory access sampling like Memtis. While page fault-based
tracking effectively captures access recency, it can be poten-
tially expensive and on the critical path of program execution.
In comparison, hardware-based access sampling is off the
critical path and captures access frequency. However, it is not
responsive to workload changes and its accuracy relies on the
sampling rate. One advantage of NOMAD is that it is a page
fault-based migration approach that is asynchronous and off
the critical path. A potential future work is integrating NO-
MAD with hardware-based, access frequency tracking, such
as Memtis, to enhance the current migration policy.

6 Conclusion

This paper introduces non-exclusive memory tiering as an
alternative to the common exclusive memory tiering strategy,
where each page is confined to either fast or slow memory.
The proposed approach, implemented in NOMAD, leverages
transactional page migration and page shadowing to enhance
page management in Linux. Unlike traditional page migra-
tion, NOMAD ensures asynchronous migration and retains
shadow copies of recently promoted pages. Through com-
prehensive evaluations, NOMAD demonstrates up to 6x per-
formance improvement over existing methods, addressing
critical performance degradation issues in exclusive memory
tiering, especially under memory pressure. The paper calls for
further research in tiered memory-aware memory allocation.
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A Artifact Appendix

Abstract
The artifact contains the source code of NOMAD, TPP, and
Memtis for reproducing the results and graphs presented in
the paper. The code works on platforms with Persistent Mem-
ory, Intel Agilex CXL memory, and/or Micron CXL memory.
To facilitate the reproduction, we have provided a collection
of scripts for compiling and installing these approaches, exe-
cuting the experiments, collecting logs, and creating graphs.
More details are available in the "README.md" file.

Scope
This artifact demonstrates NOMAD’s strengths and weak-
nesses over TPP and Memtis across various scenarios and
platforms, as elaborated in the Evaluation section.

It is open-source and can be used for further research, de-
velopment, or other purposes by the community.

Contents
NOMAD, TPP and Memtis implementation. We provide
two separate patches to enable NOMAD and TPP to work with
the upstream kernel version v5.13-rc6. In particular, the TPP
patch comes from the Linux community email discussions.
Memtis, on the other hand, is directly incorporated from its
original artifact, with a few minor bugs fixed.
Documentation The "Reproducing Paper Results" section of
"README.md" provides a step-by-step guide for reproduc-
ing the results in the paper. This guide includes instructions
for compiling the three implementations (i.e., NOMAD, TPP,
and Memtis), running the experiments, and generating the
graphs as presented in the paper.

Hosting
Artifact link: https://github.com/lingfenghsiang/Nomad
Artifact license: GNU GPL V3.0
Artifact version tag: v0.0

Requirements
To reproduce the results in the paper, the system under test
requires one NUMA node with a CPU and another CPU-
less NUMA node. If the system has more NUMA nodes, the
operating system might encounter unexpected errors. Addi-
tionally, Memtis is only fully functional on platforms with
Optane Persistent Memory. More details are included in the
"Prerequisites" section of "README.md".
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