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Dispersive Vertex Guarding for Simple and Non-Simple Polygons*

Sandor P. Fekete! Joseph S. B. Mitchell*

Abstract

We study the DISPERSIVE ART GALLERY PROBLEM
with vertex guards: Given a polygon P, with pairwise
geodesic Euclidean vertex distance of at least 1, and a
rational number ¢; decide whether there is a set of ver-
tex guards such that P is guarded, and the minimum
geodesic Euclidean distance between any two guards
(the so-called dispersion distance) is at least (.

We show that it is NP-complete to decide whether
a polygon with holes has a set of vertex guards with
dispersion distance 2. On the other hand, we provide an
algorithm that places vertex guards in simple polygons
at dispersion distance at least 2. This result is tight, as
there are simple polygons in which any vertex guard set
has a dispersion distance of at most 2.

1 Introduction

The ART GALLERY PROBLEM is one of the fundamen-
tal challenges in computational geometry. It was first
introduced by Klee in 1973 and can be stated as follows:
Given a polygon P with n vertices and an integer k; de-
cide whether there is a set of at most k£ many guards,
such that these guards see all of P, where a guard sees
a point if the line segment connecting them is fully con-
tained in the polygon.

Chvétal [4] and Fisk [8] established tight worst-case
bounds by showing that |n/3] many guards are some-
times necessary and always sufficient. On the algorith-
mic side, Lee and Lin [11] proved NP-hardness; more
recently, Abrahamsen, Adamaszek, and Miltzow [1]
showed dR-completeness, even for simple polygons.
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In this paper, we investigate the DISPERSIVE AGP
in polygons with vertex guards: Given a polygon P and
a rational number /¢, find a set of vertex guards such
that P is guarded and the minimum pairwise geodesic
Fuclidean distance between each pair of guards is at
least £. (Note that the cardinality of the guard set does
not come into play.)

1.1 Our Contributions

We give the following results for the DISPERSIVE ART
GALLERY PROBLEM in polygons with vertex guards.

e For polygons with holes, we show NP-completeness
of deciding whether a pairwise geodesic Euclidean
distance between any two guards of at least 2 can
be guaranteed.

e For simple polygons, we provide an algorithm for
computing a set of vertex guards of minimum pair-
wise geodesic distance of at least 2.

e We show that a dispersion distance of 2 is worst-
case optimal for simple polygons.

1.2 Previous Work

Many variations of the classic ART GALLERY PROBLEM
have been investigated [13, 15, 16]. This includes vari-
ants in which the number of guards does not play a role,
such as the CHROMATIC AGP [6, 7, 10] as well as the
CoNFLICT-FREE CHROMATIC AGP [2, 3, 9.

The DIsSPERSIVE AGP was first introduced by
Mitchell [12], and studied for the special case of poly-
ominoes by Rieck and Scheffer [14]. They gave a method
for computing worst-case optimal solutions with disper-
sion distance at least 3 for simple polyominoes, and
showed NP-completeness of deciding whether a poly-
omino with holes allows a set of vertex guards with dis-
persion distance of 5.

1.3 Preliminaries

Given a polygon P (possibly with holes), we say that
two points p,q € P see each other, if the connecting
line segment pq is fully contained in P. A (finite) set of
points G C P is called a guard set for P, if all points
of P are seen by at least one point of G. If G is a subset
of the vertices of P, we are dealing with verter guards.
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Distances between two points p,q € P are measured
according to the Euclidean geodesic metric, i.e., that is
the length of a shortest path between p and ¢ that stays
fully inside of P, and are denoted by d(p, ¢). The small-
est distance between any two guards within a guard set
is called its dispersion distance.

2 First Observations

We start with two easy observations; the second resolves
an open problem by Rieck and Scheffer [14], who raised
the question about the ratio of the cardinalities of guard
sets in optimal solutions for the DISPERSIVE AGP and
the classical AGP.

2.1 Shortest Polygon Edges Are Insufficient as
Lower Bounds

To see that an optimal dispersion distance may be con-
siderably shorter than the shortest polygon edge, con-
sider Figure 1. Every edge in the polygon has similar
length (say, between 1 and 1+ ¢). To guard the colored
regions, one of each of the same colored vertices needs
to be in the guard set. This results in two guards that
are arbitrarily close to each other.

Figure 1: A polygon in which edges have similar length.

This motivates our assumption that the geodesic dis-
tance between any pair of vertices is at least 1.

2.2 Optimal Solutions May Contain Many Guards

Even for a polygon that can be covered by a small num-
ber of guards, an optimal solution for the DISPERSIVE
AGP may contain arbitrarily many guards; see Fig-
ure 2. An optimal solution for the classical AGP con-
sists of 2 guards placed at both ends of the central edge
of length . On the other hand, we can maximize the
dispersion distance in a vertex guard set by placing one
guard at the tip of each of the (n—2)/2 spikes. These two
sets have a dispersion distance of ¢ and 2(, respectively,
and the ratio 2¢/e can be arbitrarily large.

Figure 2: A polygon for which the optimal guard num-
bers for AGP and DIsSPERSIVE AGP differ considerably.

3 NP-Completeness for Polygons with Holes

We now study the computational complexity of the Dis-
PERSIVE AGP for vertex guards in non-simple polygons.

Theorem 1 [t is NP-complete to decide whether a poly-
gon with holes and geodesic vertex distance of at least 1
allows a set of vertexr guards with dispersion distance 2.

We first observe that the problem is in NP. For a po-
tential guard set G, we can check the geodesic distance
between any pair of vertices g1,g2 € G as follows. Be-
cause any two polygon vertices have mutual distance of
at least 1, a shortest geodesic path between g; and go
consisting of at least two edges has a length of at least 2.
This leaves checking the length of geodesic paths con-
sisting of a single edge, which is straightforward.

3.1 Overview and Gadgets

For showing NP-hardness, we utilize the NP-complete
problem PLANAR MONOTONE 3SAT [5], which asks for
the satisfiability of a Boolean 3-CNF formula, for which
the literals in each clause are either all negated or all
unnegated, and the corresponding variable-clause inci-
dence graph is planar.

To this end, we construct gadgets to represent (i) vari-
ables, (ii) clauses, (iii) a gadget that splits the respective
assignment, and (iv) gadgets that connect subpolygons
while maintaining the given truth assignment.

Variable Gadget. A wvariable gadget is shown in Fig-
ure 3. Its four vertices vy, v9,v3,v4 are placed on the
vertices of a rhombus (shown in grey) formed by two ad-
jacent equilateral triangles of side length 1. We add two
sharp spikes by connecting two additional vertices (vs
and vg) to the two pairs vy, v3 and vg, vy, respectively;
the edges {vs, vs}, {ve, v6} have unit-length. (The func-
tion of these spikes is to impose an upper bound of 2
on the achievable distance.) We also attach two narrow
polygonal corridors to two other pairs of vertices, indi-
cated in green for the pair vy, v2, and in red for vs, v4.
These corridors have appropriate width, up to 1, at the
other end, to attach them to other gadgets.
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Figure 3: A variable gadget.

Lemma 2 FEzactly four wvertexr guard sels realize a
dispersion distance of 2 to guard the subpolygon
P, = (v1,v2,v6,v4,v3,05,v1) 0f a variable gadget.

Proof. Asshown in Figure 3, at least one guard has to
be placed on one of {v1, v2, vs,v4} to guard the rhombus
that represents the variable. Conversely, it is easy to see
that the dispersion distance is less than 2 if more than
one guard is chosen from {vy,v2,v3,v4}. Furthermore,
if we choose v; or ws, the spike at v5 is guarded, and
we can choose vg (which has distance 2 from both vy
and v3) to guard the other spike; conversely, a guard at
v or vy covers the spike at vg and allows a guard at vs.

Now a guard from {v1, v} also covers the green por-
tion of the polygon; this will correspond to setting the
variable to true. Omn the other hand, a guard from
{v3,v4} also covers the red portion of the polygon, cor-
responding to setting the variable to false. O

Clause Gadget. A clause gadget is depicted in Fig-
ure 4. Its three vertices lie on the vertices of an equi-
lateral triangle of side length 1; attached are narrow
polygonal corridors, which are nearly parallel to the tri-
angle edges, each using two of the triangle vertices as
end points. These corridors have appropriate width, up
to 1, at the other end, to attach them to other gadgets.

(%]

Figure 4: A clause gadget.

Observation 1 As the vertices {vy,va,v3} have a pair-
wise distance of 1, only a single gquard can be placed
within a clause gadget, if the guard set have to realize a
dispersion distance of at least 2. A direct consequence
s that mo more than two of the incident corridors can
be guarded by a guard placed on these vertices; hence,
at least one corridor needs to be seen from somewhere
else, which in turn corresponds to satisfying the clause.
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Split Gadget. A split gadget is illustrated in Figure 5.
It has one incoming horizontal polygonal corridor, end-
ing at two vertices (v, and vs) within vertical distance 1.
These vertices form an equilateral triangle with a third
vertex, v4, where the polygon splits into two further cor-
ridors, emanating horizontally from vertices vs, vg, and
vs, U7, respectively. For the upper corridor, the vertices
v1, V3, U4, Vg form slightly distorted adjacent equilateral
unit triangles: We move vz and vg slightly upwards,
such that the edges {v1,v3} and {vy, v} as well as the
distances between vy and v4 and between vz and vg re-
main 1, but the distance between v3 and vy increases to
1+ e. An analogous construction yields the lower out-
going horizontal corridor. Both of these corridors start
with a height smaller than 1, but can end with a height
of 1 or a very small height.

U3

Figure 5: A split gadget.

Lemma 3 The split gadgetl correctly forwards the re-
spective variable assignment.

Proof. We refer to Figure 5 and distinguish two cases.
First, assume that the variable adjacent to the left is
set to true, implying that the connecting corridor is
alrecady guarded. Therefore, two guards placed on wg
and vy guard the whole subpolygon, and in particular
both corridors to the right.

Now assume that the variable is set to false, im-
plying that the corridor to the left is not fully guarded
yet. Because this corridor is constructed long enough
to contain the intersection of the (dotted) lines through
v1,vg and vg, v7, we need to place a guard at one of the
vertices in {v1,va2,v4}. Then no further guard can be
placed in a distance of at least 2, and the corridors to
the right are not guarded, as claimed. O

Connector Gadget. The connector gadget is depicted
in Figure 6. The distance between all pairs of vertices
is at least 1 and less than 2. Furthermore, a guard on
either vy or vy cannot see the horizontal corridor, while
a guard on vs or vy does not see the vertical one.

Observation 2 The gadget is designed such that only
a single guard can be placed on its vertices while main-
taining a distance of at least 2. If a previously placed
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Figure 6: A connector gadget.

guard already sees the vertical corridor, we can place an-
other one to see the horizontal corridor as well. On the
other hand, no guard sees both corridors simultaneously.
Thus, we propagate a truth assignment.

3.2 Construction and Proof

We now describe the construction of the polygon for the
reduction, and complete the proof.

Theorem 1 [t is NP-complete to decide whether a poly-
gon with holes and geodesic vertex distance of at least 1
allows a set of vertex guards with dispersion distance 2.

Proof. To show NP-hardness, we reduce from PLANAR
MONOTONE 3SAT. For any given Boolean formula ¢,
we construct a polygon P, as an instance of DISPERSIVE
AGP as follows. Consider a planar embedding of the
variable-clause incidence graph of ¢, place the variable
gadgets in a row, and clause gadgets that only consist of
unnegated literals or entirely of negated literals to the
top or to the bottom of that row, respectively, as illus-
trated in Figure 7. Furthermore, connect variables to
clauses via a couple of connector gadgets, and introduce
split gadgets where necessary.

| x1 Vx5V xg |

| x1 Vx3 Vs |

|.T1\/.T2\/1‘3||
l | |
o] [o=] [os] [ [os] [
|

| ) \Y T4 |

.133\/ZE5 |

| -1V x4 V Zg |

Figure 7: Rectilinear embedding of a PLANAR MONO-
TONE 3SAT instance.

Claim 1 If ¢ is satisfiable, then P, has a vertex guard
set with dispersion distance 2.

Proof. Given a satisfying assignment, we construct a
set of vertex guards with a dispersion distance of 2:

For every variable that is set to true, we place guards
on {v1, v}, and for every variable that is set to false,
we place guards on {vs,vs} within the respective vari-
able gadget. Furthermore, we place guards for split and
connector gadgets to maintain the given assignments.
As we have a satisfying assignment, each clause is sat-
isfied by at least one literal, i.e., at least one corridor
incident to the clause gadget is already guarded. There-
fore, we can place one guard in each clause gadget. This
yields a guard set with a dispersion distance of 2. |

Claim 2 If P, has a vertex guard set with dispersion
distance 2, then o is satisfiable.

Proof. As we have a set of vertex guards with a disper-
sion distance of 2, there is only a single guard placed
within each clause gadget. Furthermore, no guard set
can have larger dispersion distance within a variable
gadget. As argued before, there is no guard set with a
dispersion distance larger than 2 in the split and connec-
tor gadgets. Therefore, the vertex guards placed within
the variable gadgets provide a suitable variable assign-
ment for ¢. |

Given that the problem is in NP, these two claims
complete the proof. O

4 Worst-Case Optimality for Simple Polygons

In this section we prove that a guard set realizing a
dispersion distance of 2 is worst-case optimal for simple
polygons. In particular, we describe an algorithm that
constructs such guard sets for any simple polygon.
First, we observe that there are polygons for which
there is no guard set with a larger dispersion distance.

Observation 3 There are simple polygons with
geodesic vertex distance at least 1 for which every guard
set has a dispersion distance of at most 2.

Refer to Figure 8. Bold edges have length 1. One of
the three vertices (with pairwise distance 1) incident to
the gray triangle A must be picked to guard A, so no
guard set can have a dispersion distance larger that 2.

Figure 8: Godfried’s favorite polygon.

From this, we can easily obtain polygons with any
number of vertices of dispersion distance at most 2: Sim-
ply modify the polygon at the end of each spike.

36
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In the remainder of this section, we provide a
polynomial-time algorithm that constructs a guard set
with dispersion distance of at least 2.

We start with a useful lemma that provides some
structural properties for the analysis. Refer to Figure 9
for visual reference.

Lemma 4 Let P = (vq,va,...,v7) be a simple polygon
with seven wvertices labeled in counterclockwise order.
Assume that the pairwise (geodesic) distance between
all pairs of vertices is at least 1 and further that the
following properties are satisfied:

1. The distance between v and vs is §(v1,vs5) < 2.

2. va,vq, and vy are reflex, i.e., the interior angle at
these vertices is strictly larger than 180°.

Then the geodesic distance between the two vertices v
and vg s 0(v3, vg) > 2.

Ug

V1

U3

Figure 9: Schematic layout of P.

Proof. Throughout the proof, we will frequently make
use of the assumption that d(v;, v;) > 1 for any i # j.

As a first step, we argue that v; and vs must be mutu-
ally visible (along line segment S), as shown in Figure 9:
Otherwise, a shortest geodesic path from v; to vs must
visit one of the reflex vertices vs, v4, or vy, implying the
contradiction 6(vy,vs) > 2.

By a similar argument, we claim that vs and vg are
mutually visible (say, along segment L); otherwise we
can conclude that §(vs, vg) > 2, and we are done.

In the following, we prove that L has length at least 2,
by establishing the following two auxiliary claims.

(a) The geodesic distance from vg to S is at least V3/2.

(b) The geodesic distance from vs to S is at least
2 —V3/2=1.13397....

To this end, assume that the cord S lies horizon-
tally, with v; = (0,0) and vs = (x5,0), and par-
titions P into two subpolygons: (a) the quadrangle
P’ = (v1,v5,v6,v7) above S, and (b) the pentagon
P := (v1, v2,v3,v4,v5) below S. Because vy is reflex, it
must lie inside the convex hull of P’, which is spanned
by the three remaining vertices vy, vs,vg. Analogously,
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Figure 10: Subpolygons for the proof of the two aux-
iliary claims: (a) The quadrangle P’ = (v1,vs,ve, V7).
(b) The pentagon P’ = (vy,va, v3, V4, Us).

vy and vy must lie inside the convex hull of P”, which
is spanned by the three remaining vertices vy, vz, vs.

For the auxiliary claim (a), refer to Figure 10(a).
If v¢ = (x6,ys) lies outside the vertical strip defined
by 0 < = < x5, then its closest point on S is vs (for
Zg > x5) or a point ¢ for which the geodesic to S runs
via vy (for g < 0), so the minimum distance of vg
is 6(v1,v6) > 1, (or §(vs,ve) > 1, respectively). There-
fore, the convex hull of P’ must lic within the strip,
including v7. Furthermore, vg must have the largest
vertical distance from S, so v7 must lie within the axis-
aligned rectangle R’ of height v3/2 above S. Consider
the three circles C7, C5, and C7 of unit radius around
v1, vs, and v7. It is straightforward to verify that R’ is
completely covered by C4, Cs, and C7, implying that vg
cannot lie inside R/, and the first claim follows.

For the auxiliary claim (b), refer to Figure 10(b).
Without loss of generality, assume that the vertical dis-
tance —y, of vo from S is not smaller than the vertical
distance —y4 of vy. Consider the horizontal positions
To, T3, x4 Of U9, v3,v4. Because vy lies inside the convex
hull of P”, the assumption zo < 0 (which differs from
the figure) implies that 3 < x9 < 0; then the shortest
distance from v to S is §(ve,v1) > 1, and (because vy
is reflex), a shortest geodesic path from vz to S passes
through va, so §(vs, v1) = §(vs, v2)+8(va, v1) > 2. Anal-
ogously, we can assume that x4 < x5. Furthermore,
the assumption on the relative vertical positions of wvs
and v4 implies that vy must also lie to the right of vy,
ie., x4 > 0.



36" Canadian Conference on Computational Geometry, 2024

Consider 2 > s and refer to Figure 11.

Figure 11: Estimating d(vz, v4).

Then the assumption —y, < V3/2 (together with
0(vg,v5) > 1) implies that xo > x5 + /2. Furthermore,
vy must lic above the edge (v1, v2).

We now consider the point ¢ = (25 — 3/4,y,). Be-
cause x5 < 2, we conclude —y, < —v2/2 < V3/4. There-

fore, d(q,v5) < \/(2)2 + (¥%3)2 = 0.96824... < 1. Be-
cause v4 must lie outside of the circle with radius 1
around vj, we conclude that x4 < x5—3/4, implying that
0(va,vyq) > 5/ = 1.25. Furthermore, vy cannot lie on the
convex hull of P”| thus, x5 > x5 and y3 < ya, implying
0(vs,vq4) > 0(v2,vs). As the geodesically shortest path
from v3 to S passes through vy, we conclude that the
length of this path, 6('03, U4) —Yg > 5(113, 1,’4) > (S(?Jg, ’U4)
is bounded from below by 1.25. Thus, we can assume
that —xo > V3/2 in this case.

Alternatively, consider zo < z5. Then an argument
for v1,v9,v4,v5 analogous to the one from claim (a) for
v1, Vs, Vg, U7 also implies that —xo > V3/2.

Consider the vertical distance h := —y3 + y2 between
vy and vg, and refer to Figure 12.

v = (0, 0)

Figure 12: Angles and vertical distances at v; and vs.

To this end, note that the angle ¢; at v; between
(v1,v2) and S satisfies tan ¢y = —¥2/z, > V3/a = 5 be-
cause of —yo > \/5/2 and zo < x5 < 2. Because vy is
reflex, the angle ¢3 between (vs, v2) and a horizontal line
at vg satisfies ¢3 > ¢1; moreover, sin ¢z = m, with

d(ve,v3) > 1, s0 h > sinarctann = \/11_2 =0.3973....
n

This implies that the vertical distance —ys of wvg
to S (and thus the distance of vs to S) is at least
V3/2 4+ 0.3973 = 1.26338... > 1.13397... = 2 — V32,
as claimed. O

We now show the main result of this section.

Theorem 5 For every simple polygon P with pairwise
geodesic distance between vertices at least 1, there exists
a guard set that has dispersion distance at least 2.

Proof. Refer to Figures 13 and 14 for visual orienta-
tion. By triangulating P, we obtain a triangulation T'
whose dual graph is a tree 77. We consider a path II
between two leaves (say, ¢ and t;) in 77, and obtain
a caterpillar C' by adding as feet all vertices adjacent
to IT; let C be the corresponding set of triangles (shown
in dark cyan in Figure 13).

Now the idea is to place guards on vertices of C
(that is a subset of the vertices of P), aiming to see
all of C. We then consider a recursive subdivision of P
into caterpillars, by proceeding from foot triangles of
covered caterpillars to ears, until all of P is covered; this
corresponds to the colored subdivision in Figure 13.

Figure 13: Polygon P in black, triangulation T in gray,
and a partition into (colored) caterpillars.

To cover C, we start by placing a guard on a ver-
tex v of an ear triangle (say, ¢1). If C’ is a path (i.e.,
a caterpillar without foot triangles), we can proceed in
a straightforward manner: Either the next triangles on
the path are visible from the guard on wvg, or there is
a reflex vertex v, obstructing the view to a triangle ;.
In the latter case, we can place the next guard on an
unseen vertex v; of ¢;, i.e., v; is not seen by any of the
previously placed guards; by assumption, the distance
of vg and v, is at least 1, as is the distance of v, and v;.
Because v, is reflex, a shortest path from vy to v; has
length at least 2 by triangle inequality.

This leaves the case in which we have foot triangles,
which is analyzed in the following. Assume that we al-
ready placed a guard on a vertex incident to the path
of the caterpillar. We argue how we proceed even if all
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path triangles have incident foot triangles, that is, we
show that we can place a set of guards that together
monitor all caterpillar triangles, while ensuring a dis-
tance of at least 2 between any pair of guards. Further-
more, whenever we place a guard in a foot triangle, then
this guard is never needed to cover any path triangles,
hence, even if not all path triangles have incident foot
triangles, we yield a feasible guard placement.

Figure 14: Vertices and triangular faces of a caterpillar
for the proof of Theorem 5.

In the recursive call, we also take into account what
previously placed guards see; note that unseen vertices
arc feasible guard locations with a distance of at least 2
to all previously placed guards.

To indicate that a vertex v is reflex in the polygonal
chain u,v,w, we say that v is reflex w.r.t. u — w; note
that the polygonal chain u,v,w must not be the poly-
gon boundary. The line segment uv contained in P is
denoted by uv; it is either a diagonal or a polygon edge.

Now we consider the situation in Figure 14 and as-
sume that a guard on a has been placed to monitor the
triangle to the left of ab. We aim to monitor triangles
1,2,...,8. The guard on a sees the triangles 2, 3 and 4.
If a sees ¢, then a sees triangle 1 as well. If a does not
see ¢, we place a guard on ¢ (in this case either b or d is
reflex w.r.t. a — ¢, thus, ¢ has distance at least 2 to a).

We now provide a case distinction on the next place-
ment(s) of guards. In case we placed a guard on ¢ in
addition to the guard on a, whenever we consider a see-
ing vertices, this also includes vertex c.

1. If ¢ is reflex w.r.t. a — g, we place a guard on g;
together these guards see triangles 5,7, and 8.

(a) If a or g see e, then they also see triangle 6.

(b) Otherwise, we place another guard on e (which
has distance of at least 2 to all guards placed
before), which then monitors triangle 6.

2. Otherwise, i.e., ¢ is not reflex w.r.t. a — ¢

(a) If d is reflex w.r.t. a —e:
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i. If 6(a, f) > 2, we place a guard on f to see
triangles 5,6, and 7. If i is seen by a or f,
then also triangle 8 is seen. Otherwise, we
place a guard on h to see triangle 8.

ii. Else if d(a, g) > 2, we place a guard on g,
then a and g also see triangles 5,7, and 8.
If e is seen by a or g, then also triangle 6
is seen. Otherwise, we place a guard on e
to see triangle 6.

In the remaining cases iii.— vi., we have 6(a, f) < 2,

0(a,g) <2, thus, a sees both f and g.

iii. Else if e does not see either g or h (which
implies d(e, h) > 2, §(e,g) > 2):
If a does not see h, we place a guard on h,
which covers triangle 8. Moreover, we also
place a guard on e (which is neither seen
from a or h), and the guards then also
cover triangles 5, 6, and 7. Otherwise, i.e.,
a sees h, we place a guard on e to guaran-
tee that triangles 5,6, 7, and 8 are seen.

iv. Else if e sees g, but does not see h:
If a does not see h, we place two guards
on e and h, the guards together then
guard triangles 5,6,7, and 8. Otherwise,
a sees d, f,g,h,i and with that also tri-
angles 5,7, and 8; we place a guard on e,
which sees triangle 6.

v. Else if e sees h, but does not see g:
If 6(e, h) > 2, we place a guard on each e
and h, and thereby cover triangles 5,6, 7,
and 8. If d(e,h) < 2, Lemma 4 yields a
contradiction to §(a,g) < 2 with v; = e,
veg=d, v3 = a, vg =i, v5 = h, vg = g,
and v; = f.

vi. Else if e sees g and h:
If a sees h, we place a guard on e, and
the guards then cover triangles 5,6,7,
and 8. Otherwise, we place a guard on h,
and if h sees f, triangles 5,...,8 are
seen. If not, we place a guard on e if
d(e,h) > 2 and cover triangles 5,...,8;
otherwise, Lemma 4 yields a contradic-
tion to d(e,h) < 2 with v; = a,vy = i,
vg = h,vq4 = g,v5 = f,vs = e, and v; = d.

(b) Otherwise, a also sees f, hence, triangles 5, 6,
and 7 are covered.

i. If a sees h, it also sees triangle 8.

ii. If a¢ does not see h, we place a guard on h,
which then sees triangle 8.

The guards we place in foot triangles are never needed
to cover path triangles, hence, if some of the foot tri-
angles did not exist, we can simply proceed along the
caterpillar path (and place a guard there if a triangle is
not (completely) seen). O



36" Canadian Conference on Computational Geometry, 2024

5 Conclusions and Future Work

We considered the DISPERSIVE ART GALLERY PROB-
LEM with vertex guards, both in simple polygons and
in polygons with holes, where we measure distance in
terms of geodesics between any two vertices. We es-
tablished NP-completeness of the problem of deciding
whether there exists a vertex guard set with a disper-
sion distance of 2 for polygons with holes. For sim-
ple polygons, we presented a method for placing vertex
guards with dispersion distance of at least 2. While we
do not show NP-completeness of the problem in simple
polygons, we conjecture the following.

Conjecture 1 For a sufficiently large dispersion dis-
tance £ > 2, it is NP-complete to decide whether a sim-
ple polygon allows a set of vertex guards with a disper-
sion distance of at least £.

Another open problem is to construct constant-factor
approximation algorithms. This hinges on good lower
bounds for the optimum.

Both our work and the paper by Rieck and Schef-
fer [14] consider vertex guards. This leaves the problem
for point guards (with positions not necessarily at poly-
gon vertices) wide open. Given that the classical AGP
for point guards is IR-complete [1], these may be sig-
nificantly more difficult to resolve.
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