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Abstract
Statistical fairness stipulates equivalent out-
comes for every protected group, whereas
causal fairness prescribes that a model makes
the same prediction for an individual regard-
less of their protected characteristics. Counter-
factual data augmentation (CDA) is effective
for reducing bias in NLP models, yet models
trained with CDA are often evaluated only on
metrics that are closely tied to the causal fair-
ness notion; similarly, sampling-based meth-
ods designed to promote statistical fairness are
rarely evaluated for causal fairness. In this
work, we evaluate both statistical and causal de-
biasing methods for gender bias in NLP models,
and find that while such methods are effective
at reducing bias as measured by the targeted
metric, they do not necessarily improve results
on other bias metrics. We demonstrate that
combinations of statistical and causal debias-
ing techniques are able to reduce bias measured
through both types of metrics.1

1 Introduction

Auditing NLP models is crucial to measure poten-
tial biases that can lead to unfair or discrimina-
tory outcomes when models are deployed. Sev-
eral methods have been proposed to quantify social
biases in NLP models including intrinsic metrics
that probe bias in the internal representations of
the model (Caliskan et al., 2017; May et al., 2019;
Guo and Caliskan, 2021) and extrinsic metrics that
measure model behavioral differences across pro-
tected groups (e.g., gender and race). In this pa-
per, we focus on extrinsic metrics as they align
directly with how models are used in downstream
tasks (Goldfarb-Tarrant et al., 2021; Orgad and Be-
linkov, 2022).

Proposed extrinsic bias metrics can be catego-
rized based on whether they correspond to a sta-
tistical or causal notion of fairness. A bias metric

1Code for reproducing the experiments is available at: ht
tps://github.com/hannahxchen/composed-debiasing

quantifies model bias based on a fairness criterion.
Two common kinds of fairness criteria are statisti-
cal and causal fairness. Statistical fairness calls for
statistically equivalent outcomes for all protected
groups. Statistical bias metrics estimate the dif-
ference in prediction outcomes between protected
groups based on observational data (Barocas et al.,
2019; Hardt et al., 2016). Causal fairness shifts the
focus from statistical association to identifying root
causes of unfairness through causal reasoning (Lof-
tus et al., 2018). Causal bias metrics measure the
effect of the protected attribute on the model’s pre-
dictions via interventions that change the value of
the protected attribute. A model satisfies counter-
factual fairness, as defined by Kusner et al. (2017),
if the same prediction is made for an individual
in both the actual world and in the counterfactual
world in which the protected attribute is changed.

While there is no consensus on which metric is
the right one to use (Czarnowska et al., 2021), most
work on bias mitigation only uses a single type
of metric in their evaluation. This is typically a
metric that is closely connected to the proposed de-
biasing method. For example, counterfactual data
augmentation (CDA) (Lu et al., 2019), has been
shown to reduce bias in NLP models. However,
prior works that adopt this method often evaluate
only on causal bias metrics and do not include
any tests using statistical bias metrics (Park et al.,
2018; Lu et al., 2019; Zayed et al., 2022; Lohia,
2022; Wadhwa et al., 2022). We find only one
exception—Garg et al. (2019) found causal debias-
ing exhibits some tradeoffs between statistical and
causal metrics (Section 2.3). This raises concerns
about the effectiveness and reliability of these debi-
asing methods in settings where multiple fairness
criteria may be desired.

In this work, we first show that methods designed
to reduce bias according to one fairness criteria
often do not reduce bias as measured by other bias
metrics. Then, we propose training methods to
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Figure 1: Statistical and causal debiasing methods perform best on the bias metric aligned with their targeted
fairness notion. However, CDA is not effective at reducing statistical TPR gap. Our proposed combination approach
achieves the best overall results. Results are based on BiasBios dataset with BERT-Base-Uncased model. Section 4
provides details on the experiments.

achieve statistical and causal fairness for gender in
NLP models. We focus on gender bias as it is a
well-studied problem in the literature.

Contributions. We empirically show the differ-
ences between statistical and causal bias metrics
and explain why optimizing one of them may not
improve the other (Section 3). We find that they
may even disagree on which gender the model is
biased towards. We cross-evaluate statistical and
causal-based debiasing methods on both types of
bias metrics (Section 4), and find that debiasing
methods targeted to one type of fairness may even
make other bias metrics worse (Section 4.3). We
propose debiasing methods that combine statistical
and causal debiasing techniques (Section 5). Our
results, summarized in Figure 1, show that a com-
bined debiasing method achieves the best overall
results when both statistical and causal bias metrics
are considered.

2 Background

This section provides background on bias metrics
based on statistical and causal notions of fairness
and overviews bias mitigation techniques.

2.1 Bias Metrics
We consider a model fine-tuned for a classification
task where the model f makes predictions Ŷ given
inputs X and the ground truths are Y .

Statistical bias metrics. Statistical bias metrics
quantify bias based on statistical fairness (also
known as group fairness), which compares predic-
tion outcomes between groups. Common statisti-
cal fairness definitions include demographic parity
(DP), which requires equal positive prediction rates
(PPR) for every group (Barocas et al., 2019). Dif-
ferent from DP, equalized odds consider ground

truths and demand equal true positive rates (TPR)
and false positive rates (FPR) across groups (Hardt
et al., 2016).

Statistical PPR gap (SGPPR) between binary
genders g (female) and ¬g (male) can be defined
as (Zayed et al., 2022):

E[Ŷ = 1 | G = g]→ E[Ŷ = 1 | G = ¬g]

where the model predictions Ŷ can be either 0 or
1. If SGPPR > 0, the model produces positive
predictions for females more often than for males.

Statistical TPR gap of binary genders for class y
can be formulated as (De-Arteaga et al., 2019):

SGTPR
y = TPRs(g, y)→ TPRs(¬g, y)

TPRs(g, y) = E[Ŷ = y | G = g, Y = y]

A positive SGTPR would mean that the model
outputs the correct positive prediction for female
inputs more often than for male inputs. Statistical
FPR gap can be defined analogously as in Equa-
tion 1 (Appendix A).

Causal bias metrics. Causality-based bias metrics
for NLP models are usually based on counterfactual
fairness (Kusner et al., 2017), which requires the
model to make the same prediction for the text in-
put even when group identity terms in the input are
changed. The evaluation set is usually constructed
by perturbing the identity tokens in the inputs from
datasets (Prabhakaran et al., 2019; Garg et al., 2019;
Qian et al., 2022) or by creating synthetic sentences
from templates (Dixon et al., 2018; Lu et al., 2019;
Huang et al., 2020).

Following Garg et al. (2019), we can define
causal gender gap for an input x as:

|f(x | do(G = g))→ f(x | do(G = ¬g))|
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where the do-operator enforces an intervention on
gender. The term f(x | do(G = g)) indicates the
model’s prediction for x if the gender of x were set
to female. To identify the bias direction, we will
consider the causal gap without the absolute value.
More information on how we perform gender inter-
vention on texts is given in Appendix B.3.

Causal PPR Gap (CGPPR) can be estimated by
the average causal effect of the protected character-
istic on the model’s prediction being positive. (Ru-
bin, 1974; Pearl et al., 2016):

E[Ŷ = 1 | do(G = g)]→ E[Ŷ = 1 | do(G = ¬g)]

If CGPPR is zero, it would mean that gender has no
influence on model’s positive prediction outcome.
To compare with statistical TPR gap, we formulate
causal TPR gap by averaging the TPR difference
for each individual:

CGTPR
y = TPRc(g, y)→ TPRc(¬g, y)

TPRc(g, y) = E[Ŷ = y | do(G = g), Y = y]

Similarly, we can define causal FPR gap as in Equa-
tion 2 (Appendix A).

Comparing statistical and causal bias metrics.
The key difference between statistical and causal
metrics is how the test examples are selected and
generated for evaluation. Statistical metrics are
based on the original unperturbed examples, while
causal metrics consider an additional perturbation
process to generate test examples besides the origi-
nal examples. Proponents of causal metrics argue
that statistical metrics are based on observational
data, which may contain spurious correlations and
therefore cannot determine whether the protected
attribute is the reason for the observed statistical
differences (Kilbertus et al., 2017; Nabi and Sh-
pitser, 2018). On the other hand, statistical metrics
are easy to assess, whereas causal metrics require
a counterfactual version of each instance. Due to
the discrete nature of texts, we can conveniently
generate counterfactuals at the intervention level by
perturbing the identity terms in the sentences (Garg
et al., 2019). Yet, it is possible to produce ungram-
matical or nonsensical sentences using such pertur-
bations (Morris et al., 2020). In addition, changing
the identity terms alone may not be enough to hide
the identity signals as there could be other terms
or linguistic tendencies that are correlated with the
target identity. Czarnowska et al. (2021) provides
a comprehensive comparison of existing extrinsic
bias metrics in NLP.

2.2 Bias Mitigation

Bias mitigation techniques for NLP models can be
categorized broadly based on whether the mitiga-
tion is done to the training data (pre-processing
methods), to the learning process (in-processing),
or to the model outputs (post-processing).

Pre-processing methods attempt to mitigate bias
by modifying the training data before training. Sta-
tistical methods adjust the distribution of the train-
ing data through resampling or reweighting. Re-
sampling can be done by either adding examples for
underrepresented groups (Dixon et al., 2018; Costa-
jussà and de Jorge, 2020) or removing examples
for overrepresented groups (Wang et al., 2019; Han
et al., 2022). Reweighting assigns a weight to each
training example according to the frequency of its
class label and protected attribute (Calders et al.,
2009; Kamiran and Calders, 2012; Han et al., 2022).
Causal methods such as counterfactual data aug-
mentation (CDA) augment the training set with ex-
amples substituted with different identity terms (Lu
et al., 2019). This is the same as data augmenta-
tion based on gender swapping (Zhao et al., 2018;
Park et al., 2018). While both statistical and causal
methods seek to balance the group distribution,
CDA performs interventions on the protected at-
tribute whereas resampling and reweighing do not
modify the attribute in the examples. Previous
works have also considered removing protected at-
tributes (De-Arteaga et al., 2019). However, this
“fairness through blindness” approach is ineffective
as there may be other proxies correlate with the
protected attributes (Chen et al., 2019).

In-processing methods incorporate a fairness con-
straint in the training process. The constraint can
be either based on statistical fairness (Kamishima
et al., 2012; Zafar et al., 2017; Donini et al., 2018;
Subramanian et al., 2021; Shen et al., 2022b) or
causal fairness (Garg et al., 2019). Adversarial
debiasing methods train the model jointly with a
discriminator network from a typical GAN as an
adversary to remove features corresponding to the
protected attribute from the intermediate represen-
tations (Zhang et al., 2018; Elazar and Goldberg,
2018; Li et al., 2018; Han et al., 2021)

Post-processing methods adjust the outputs of the
model at test time to achieve desired outcomes for
different groups (Kamiran et al., 2010; Hardt et al.,
2016; Woodworth et al., 2017). Zhao et al. (2017)
use a corpus-level constraint during inference. Rav-
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fogel et al. (2020) remove protected attribute infor-
mation from the learned representations.

2.3 Related Work

Garg et al. (2019) is the only work that evaluates
NLP models with both statistical and causal bias
metrics. They evaluate toxicity classifiers trained
with CDA and counterfactual logit pairing and ob-
serve a tradeoff between counterfactual token fair-
ness and TPR gaps. Han et al. (2023) is the only
work that attempts to achieve both statistical and
causal fairness through fair representational learn-
ing on tabular data.

Previous work has studied the impossibility the-
orem of statistical fairness, which states that, for
binary classification, equalizing multiple common
statistical bias metrics between protected attributes
is impossible unless the distribution of outcome
is equal for both groups (Kleinberg et al., 2016;
Chouldechova, 2017; Bell et al., 2023). While
these works focus on tabular data and statistical
bias metrics, our work studies statistical and causal
bias metrics used for NLP tasks.

Comparison between various bias metrics for
NLP models has also been explored. Intrinsic and
extrinsic bias metrics have been shown to have
no correlation with each other (Delobelle et al.,
2022; Cabello et al., 2023). Delobelle et al. (2022)
also shows that the measure of intrinsic bias varies
depending on the choice of words and templates
used for evaluation. Shen et al. (2022a) find no
correlation between statistical bias metrics and an
adversarial-based bias metric, which measures the
leakage of protected attributes from the intermedi-
ate representation of a model.

Dwork et al. (2012) proposes individual fairness,
which demands similar outcomes to similar indi-
viduals. This is similar to counterfactual fairness in
the sense that two similar individuals can be consid-
ered as counterfactuals of each other (Loftus et al.,
2018; Pfohl et al., 2019). The difference is that
individual fairness considers similar individuals
based on some distance metrics while counterfac-
tual fairness considers a counterfactual example for
each individual from a causal perspective. Zemel
et al. (2013) proposes learning representations with
group information sanitized and individual infor-
mation preserved to achieve both individual and
group (statistical) fairness.

3 Bias Metrics Are Disparate

Disparities between different statistical fairness def-
initions and group and individual fairness have
been studied in the tabular data settings (Sec-
tion 2.3). We focus on the most common type
of bias metrics, statistical and causal, used for eval-
uating NLP tasks. We first explain why statistical
and causal bias metrics may produce inconsistent
results. We then report on the experiments to mea-
sure disparities between the metrics on evaluating
gender bias in an occupation classification task.

3.1 Statistical does not Imply Causal Fairness
While correlation and causation can happen si-
multaneously, correlation does not imply causa-
tion (Fisher, 1958). Correlation refers to the sta-
tistical dependence between two variables. Sta-
tistical correlation is not causation when there is
a confounding variable that influences both vari-
ables (Pearl, 2009), leading to spurious correla-
tions (Pearson, 1896).

To equate statistical estimates with causal es-
timates, the exchangeability assumption must be
satisfied (Neal, 2015). This means that the poten-
tial outcome of a protected group is independent
of the group assignment. The model’s prediction
outcome should be the same even when the groups
are swapped. One common way to achieve this
is through randomized control trials by randomly
assigning individuals to different groups (Fisher,
1935), making the groups more comparable. In the
case of bias evaluation, it is impossible to assign
gender or identity to a person randomly. Further-
more, most data are sampled from the Internet,
which does not guarantee diversity and may still
encode bias (Bender et al., 2021). Despite the dis-
parities between statistical and causal bias estima-
tion, it does not entail that achieving both statistical
and causal fairness is impossible.

3.2 Evaluation

Task. We use the BiasBios dataset (De-Arteaga
et al., 2019) comprising nearly 400,000 online bi-
ographies of 28 unique occupations scraped from
the CommonCrawl. The task is to predict the oc-
cupation given in the biography with the occupa-
tion title removed. Each biography includes the
name and the pronouns of the subject. The gender
of the subject is determined by a pre-defined list
of explicit gender indicators (Appendix B.3). We
use the train-dev-test split of the BiasBios dataset
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from Ravfogel et al. (2020). We perform a dif-
ferent data pre-processing for the biographies (see
Appendix B.2 for details).

Setup. We fine-tune ALBERT-Large (Lan et al.,
2020) and BERT-Base-Uncased (Devlin et al.,
2019) on the BiasBios dataset with normal training.
We then evaluate the models with statistical and
causal TPR gap.

(a) ALBERT-Large

(b) BERT-Base-Uncased

Figure 2: Statistical and causal TPR gaps evaluated on
models with normal training. Red dashed line indicates
SG = CG. Shaded areas represent SG and CG reporting
opposite gender bias direction.

Results. Figure 2 shows the statistical and causal
TPR gap for ALBERT and BERT models. Each
data point represents the TPR gap of an occupation
evaluated over the test examples with the occu-
pation label. The results reveal the disparity be-
tween statistical estimation and causal estimation.
Most occupations are off the red dashed line where
SG = CG. For nearly all occupations, CG is closer
to zero than SG. In addition, we find a few cases
where SG and CG show bias in opposite directions
such as dj and pastor in Figure 2a. Similar results
are found for statistical and causal FPR gap (see
Appendix D).

3.3 Bag-of-Words Analysis

To test the extent to which statistical and causal bias
metrics can capture gender bias we train a Bag-of-
Words (BoW) model with logistic regression on
the BiasBios dataset where we can intentionally
control the model’s bias. We do this by identifying
the model weights corresponding to gender signal
tokens (Appendix B.3) and multiplying the weights
for these tokens by a weight w. This allows us to
tune the bias of a simple model and see how the
different bias metrics measure the resulting bias.

Figure 3 shows SGTPR and CGTPR of the BoW
model when changing the weights for all gender-
associated tokens. The magnitude of both bias
scores increases as we increase the weighting of the
gender tokens. The model is biased in the opposite
gender direction when we reverse the weight w by
multiplying by a negative value. This demonstrates
that both metrics are indeed able to capture bias
in the model and, for the most part, reflect the
amount of bias in the expected direction. Note that
CGTPR = 0 for all occupations when w = 0. This
is because CGTPR considers the average difference
between pairs of sentences that only differ in tokens
representing the gender. When w = 0, the model
would exclude all gender tokens and each sentence
pair would render the same to the model. On the
other hand, SGTPR is nonzero for most occupations
when w = 0, meaning that it captures gender bias
beyond explicit gender indicators. This suggests
models trained to achieve causal fairness may still
be biased toward other implicit gender features not
identified in our explicit gender token list.

The spikes in Figure 3 may be attributed to
the relatively large gap in token weights between
the two genders for predicting the occupation, as
shown in Figure 11. The increased TPR gap is par-
ticularly significant for occupations with positive
token weights for the dominant gender and neg-
ative token weights for the other gender, such as
rapper and paralegal. In one extreme case, both gen-
der token weights are positive for physician, with
female tokens having a lot higher weight value than
male tokens. This results in a huge TPR gap in-
crease only in the negative direction when applying
a larger negative value of w.

We further analyze how model weights of indi-
vidual gender affect bias scores. Figure 4 shows
the statistical and causal TPR gap of each occu-
pation when increasing female token weights, and
Figure 10 (in Appendix D.2) shows the results of
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Figure 3: Statistical and causal TPR gap of BoW model per occupation when adjusting both gender token weights.
w = 1 indicates the weight is unchanged. Occupations are sorted by gap with w = 1. Increasing the magnitude of
the gender token weights increases bias on both statistical and causal bias metrics. Yet, CGTPR = 0 when w = 0.
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Figure 4: Statistical and causal TPR gap of BoW model per occupation when increasing female token weights in the
model. The occupations highlighted in red demonstrate an increased TPR gap toward the opposite bias direction.
The grey dashed line shows where the gap is zero when w = 1. The grey bars are the gender ratio difference of the
occupation in the training set.

increasing male token weights. We observed that
increasing female token weights has a greater ef-
fect on increasing the TPR gap of male-biased oc-
cupations (on the left side of the grey dashed line
in Figure 4), and vice versa. In addition, some
occupations (as highlighted in red) show an in-
creased TPR gap to the opposite gender bias di-
rection of their bias scores indicated by the metric
when w = 1. For instance, filmmaker, architect, and
pastor are female-biased based on the statistical met-
ric but become male-biased when increasing the
female token weights due to their negative weight
values (Figure 11). We find that these occupations
are the ones that the two metrics contradict in the
bias direction (Table 3). However, both metrics
show similar patterns and directions of TPR gap
increase across occupations (Figure 12). The only
difference is the starting point of TPR gap score
when w = 1.

4 Cross-Evaluation

This section cross-evaluates the effectiveness of ex-
isting debiasing methods on gender bias in an occu-
pation classification and toxicity detection task. We
show using statistical and causal debiasing methods
alone may not achieve both types of fairness.

4.1 Setup

We focus on pre-processing methods since Shen
et al. (2022b) found that resampling and reweight-
ing achieve better statistical fairness than the in-
processing and post-processing methods. For the
statistical methods, we apply both resampling us-
ing oversampling (OS) and undersampling (US)
and reweighting (RW) using the weight calculation
from Kamiran and Calders (2012). For the causal
methods, we fine-tune the model with CDA.

We apply each debiasing method to the
ALBERT-Large (Lan et al., 2020) and BERT-Base-
Uncased (Devlin et al., 2019) models. We also in-
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Figure 5: Statistical and causal TPR gap per occupation evaluated on BERT-Base-Uncased model, averaged over 3
different runs. Each data point is computed over test examples labeled with the same occupation. We show outliers
for normal training in red dots and how their values change with different debiasing methods. Statistical and causal
debiasing methods perform better on the metric they are targeting, but may not reduce bias on the other metric. Our
proposed methods, US-CDA and RW-CDA, achieve the best overall performance.

clude experiments with Zari (Webster et al., 2020),
which is an ALBERT-Large model pre-trained with
CDA. To consider the effect of CDA during pre-
training alone and during both pre-training and fine-
tuning, we fine-tune Zari with normal training and
CDA. Training details are provided in Appendix E.

4.2 Tasks
We test all the models on two benchmark tasks
for bias detection: occupation classification and
toxicity detection.

Occupation Classification. We use the BiasBios
dataset introduced in Section 3.2. We evaluate
gender bias with TPR and FPR gap based on both
statistical and causal notions of fairness as defined
in Section 2.1. Since the BiasBios dataset contains
multiple classes, we follow Romanov et al. (2019)
and compute a single score that quantifies overall
gender bias. For each bias metric M (e.g., SGTPR

g,y ),
we compute the root mean square of the bias score
across all occupation classes Y :

RMSM =

√
1

|Y |
∑

y→Y
(My)

where My is the bias score for occupation y com-
puted with M .

Toxicity Detection. We use the Jigsaw dataset
consisting of approximately 1.8M comments taken
from the Civil Comments platform. The task is to

predict the toxicity score of each comment. For our
experiments, we use binary toxicity labels, toxic
and non-toxic. In addition to the toxicity score, a
subset of examples are labeled with the identities
mentioned in the comment. We only select the
examples labeled with female and male identities
and with high annotator agreement on the gender
identity labels. Since some examples contain a mix
of genders, we assign the gender to each exam-
ple based on the gender labeled with the highest
agreement. To perform gender intervention with
CDA, we use the gender-bender Python package to
generate counterfactual examples 2. Appendix C.1
provides details on how we preprocess the data.
Following Zayed et al. (2022), we compute sta-
tistical and causal PPR gap. As female and male
groups do not have the same label distribution, the
PPR gap of a perfect predictor will be non-zero.
Therefore, we also compute statistical and causal
TPR gap for toxic and non-toxic classes.

4.3 Results

Occupation classification. Figure 5 and Figure 6
show statistical and causal TPR gap per occupa-
tion evaluated on BERT and ALBERT models with
each debiasing method. Causal debiasing methods
show greater effectiveness when evaluated with the
causal metric (we discuss the combination meth-

2
https://github.com/Garrett-R/gender_bender
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Figure 6: Statistical and causal TPR gap per occupation results for ALBERT-Large, averaged over 3 different runs.

ods included in these figures in Section 5). Fine-
tuning with CDA reduces CGTPR to nearly zero for
all occupations, but does not produce any signifi-
cant reduction for SGTPR. On the other hand, Zari
exhibits higher statistical and causal gap than per-
forming CDA during fine-tuning (Figure 6). Thus,
using CDA during pre-training alone is insufficient
to reduce bias. Statistical debiasing methods such
as undersampling and reweighting reduce bias on
both statistical and causal metrics, though the bias
reduction on the causal metric is not as significant
as CDA. We find that oversampling is less effective
than other statistical debiasing methods on both
metrics. We found similar results with statistical
and causal FPR gaps (Appendix F.2).

Toxicity detection. Table 1 shows the bias evalua-
tion results for the BERT model trained with differ-
ent debiasing methods on the Jigsaw dataset. We
find that statistical and causal bias metrics some-
times disagree on which gender the model is biased
toward. Similar to the results for the BiasBios task,
statistical and causal debiasing methods do particu-
larly well on the bias metrics based on their targeted
fairness definition. However, they increase bias on
metrics that use the other type of fairness notion.
Similar results are found for ALBERT model (Ap-
pendix G.1).

5 Achieving Both Statistical and Causal
Fairness

In the previous section, we saw that using either
statistical or causal debiasing method alone may
not achieve both statistical and causal fairness. To
counter this problem, this section considers simple
methods that combine both statistical and causal
debiasing techniques.

5.1 Composed Debiasing Methods

We introduce three approaches that combine tech-
niques from both statistical and causal debiasing:

Resampling with CDA. OS-CDA and US-CDA com-
bines resampling methods (oversampling and un-
dersampling) with CDA. For Biasbios, we first per-
form resampling on the training set, then augment
the resampled set with CDA. For Jigsaw, we bal-
ance the original examples based on the original
gender and the counterfactual examples based on
the counterfactual gender.

Reweighting with CDA. RW-CDA applies CDA
on the training set and fine-tunes the model with
reweighting. For BiasBios, we use the same weight
computed on the original training set for both the
original and its counterfactual pair. For Jigsaw, we
use weight of 1 for all counterfactual examples.

We use different combination strategies for the
two datasets as we noticed the methods used for
BiasBios do not work well on the Jigsaw dataset.
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Method SGPPR CGPPR SGTPR
y=1 CGTPR

y=1 SGTPR
y=0 CGTPR

y=0

Normal →2.79±0.28 0.89±0.10 →2.77±0.67 2.33±1.06 1.28±0.30 →0.73±0.11
CDA →3.02±0.23 0.25±0.08 →2.62±2.07 0.36±0.57 1.52±0.29 →0.24±0.06
OS →1.21±0.22 1.33±0.31 2.21±0.35 5.24±0.42 0.20±0.17 →0.88±0.30
US →1.54±0.26 1.67±0.29 1.61±1.11 4.56±0.63 0.37±0.24 →1.34±0.26
RW →1.44±0.31 1.44±0.24 2.09±0.85 4.92±0.53 0.39±0.26 →1.05±0.25

OS-CDA →2.09±0.30 0.18±0.16 →1.11±0.99 0.39±0.46 0.79±0.28 →0.15±0.15
US-CDA →1.90±0.19 0.11±0.11 →1.66±1.88 0.14±0.70 0.57±0.26 →0.11±0.06
RW-CDA →1.76±0.36 0.33±0.11 0.56±1.27 1.08±0.74 0.62±0.40 →0.24±0.10

Table 1: Bias evaluation results evaluated on the Jigsaw dataset with BERT-Base-Uncased model. The results shown
are averaged over 5 different runs. All values are on a log scale with base 10→2.

This may be due to the mix of genders in a subset of
examples in the Jigsaw dataset. The gender signals
in the examples may be flipped after performing
CDA. We provide performance comparisons be-
tween the different combination strategies we have
tried on the Jigsaw task in Appendix G.2.

5.2 Results

Figure 5 and Figure 6 show statistical and causal
TPR gap per occupation evaluated on the BiasBios
dataset for BERT and ALBERT models. The com-
bined methods US-CDA and RW-CDA are more effec-
tive at reducing bias on both metrics compared to
other methods. To compare overall performance,
we show the root mean square of each bias metric
in Table 4 and Table 5 (both in Appendix F.1). All
three combination approaches perform better on
CGTPR compared to using a statistical or causal de-
biasing method alone. OS-CDA and US-CDA also
reduce bias on SGTPR (11–16% decrease) and
SGFPR (1–8% decrease), comparing to their sta-
tistical debiasing counterparts. RW-CDA achieves
comparable performance on SG to reweighting.
Undersampling and US-CDA sacrifice the general
performance with a decrease of around 0.7% in ac-
curacy compared to other methods, which preserve
the baseline accuracy within 0.3%.

Table 1 and Table 6 (Appendix G.1) report the
results of BERT and ALBERT models for the Jig-
saw dataset. While statistical and causal debiasing
methods only improve one type of bias metric and
worsen the other, our proposed combination ap-
proaches are able to reduce bias on both types of
bias metrics. The combined methods OS-CDA and
US-CDA perform better than CDA on all causal bias
metrics. RW-CDA performs better on SG but is less
effective at reducing bias on CG compared to the
other combination approaches.

6 Summary

We demonstrate the disparities between statistical
and causal bias metrics and provide insight into
how and why optimizing based on one type of met-
ric does not necessarily improve the other. We
show this by cross-evaluating existing statistical
and causal debiasing methods on both metrics and
find that they sometimes may even worsen the other
type of bias metrics. To obtain models that perform
well on both types of bias metrics, we introduce
simple debiasing strategies that combine both sta-
tistical and causal debiasing techniques.

Limitations

Due to the limited benchmark datasets compatible
with extrinsic metrics (Orgad and Belinkov, 2022),
we only conduct experiments on two gender bias
tasks. Further testing is needed to determine if the
bias metric disparities are present in other tasks
and whether our proposed debiasing methods can
still be effective. The gender intervention method
used for counterfactual data augmentation is based
on a predefined list of gender tokens, which may
not cover all possible tokens representing gender.
In addition, our experiments exclusively focus on
binary-protected attributes. Future work should ex-
plore how to generalize our results to tasks with
non-binary protected attributes. While our pro-
posed debiasing methods are able to reduce bias
on both statistical and causal bias metrics, there is
room for improvements in the statistical bias met-
rics when compared to statistical debiasing meth-
ods. Future work could consider other types of
debiasing techniques beyond pre-processing-based
methods. For instance, in-processing methods can
be adapted by enforcing both statistical and causal
fairness constraints during training.
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A False Positive Rate Gap

Statistical FPR gap between binary gender g (female) and ¬g (male) for class y is defined as:

SGFPR
y = FPRs(g, y)→ FPRs(¬g, y) (1)

FPRs(g, y) = E[Ŷ = y | G = g, Y ↑= y]

Causal FPR gap is computed by averaging the FPR difference for each individual:

CGFPR
y = FPRc(g, y)→ FPRc(¬g, y) (2)

TPRc(g, y) = E[Ŷ = y | do(G = g), Y ↑= y]

B BiasBios Dataset Details

B.1 Dataset Statistics
The dataset contains 255,707 training examples, 39,369 validation examples, and 98,339 testing examples.
Figure 7 shows the full list of occupations and their gender frequency in the BiasBios training set. The
gender and occupation distribution for validation and testing sets are similar to the training set.
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Figure 7: Gender frequency for each occupation in the training set.

B.2 Dataset Construction
The original BiasBios dataset consists of extracted biographies with the first sentences removed from each
biography as they include the occupation titles corresponding to the ground truth labels. We notice a lot
of the important information is in the first sentences and it is hard to correctly identify the occupation of
some examples without the first sentences even for humans. Thus, we keep the first sentence but replace
any occupation tokens that appear in the biography with an underscore (e.g., "Alice is a nurse working at
a hospital" to "Alice is a _ working at a hospital"). We notice that our model performance is higher than
the same model trained on the original dataset (Webster et al., 2020). This can be attributed to having
longer sequences and more context information in the inputs.

B.3 Gender Intervention
To perform gender intervention, we first identify words with explicit gender indicators in the input. If
the assigned gender value is different from the original input, we swap the identified words with the
corresponding words in the mapping with an opposite gender. We use the same list of explicit gender
indicators used in BiasBios dataset and perform gender mapping as follows:
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• Bidirectional: he ↓ she, himself ↓ herself, mr ↓ ms

• Unidirectional: hers ↔ his, his ↔ her, him ↔ her, her ↔ his or him, mrs ↔ mr

Words in blue are associated with male gender and words in red are associated with female gender.
Since "her" can be mapped to either "his" or "him" depending on the context, we use Part-of-Speech
tagging to determine which one to map to.

C Jigsaw Dataset Details

C.1 Dataset Construction
Each comment is associated with a toxicity label and several identity labels. The label values range
from 0.0 to 1.0 representing the percentage of annotators who agreed that the label fit the comment. We
binarized the toxicity values and considered comments as toxic if their toxicity values exceeded 0.5. We
assigned female gender to an example if its female identity label value is higher than the male one and
assigned male gender vice versa. To make better differentiation between the two genders, we filtered
out examples if the difference between male and female label values is smaller or equal to 0.5. We
use train.csv from the Kaggle competition for training and validation with an 80/20 split. We use
test_public_expanded.csv and test_private_expanded.csv for testing.

Label Gender Count Percentage (%)

Toxic F 2504 5.89
Toxic M 2123 4.99

Non-Toxic F 22,465 52.83
Non-Toxic M 15,431 26.29

Table 2: Gender and label distribution of Jigsaw training set.

C.2 Dataset Statistics
The final dataset after pre-processing contains 42,523 training examples, 10,631 validation examples, and
5,448 testing examples. Table 2 shows the gender and label distribution on the training set. All three data
splits have similar distributions. We also show the distribution of the gender label values in Figure 8. For
examples that contain a mix of both female and male genders, we show the gender label value of the final
gender we assigned (the gender with a higher label value).
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Figure 8: Distribution of annotation agreement on the gender labels. 1.0 indicates all annotators agree that the
gender is mentioned in the comment.
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D Disparities between Statistical and Causal Bias Metrics

D.1 Statistical vs Causal FPR Gap

(a) ALBERT-Large (b) BERT-Base-Uncased

Figure 9: Statistical and causal FPR gap on ALBERT-Large and BERT-Base-Uncased models with normal training.
Red dashed line indicates SP = CP . Shaded areas represent SP and CP reporting opposite gender bias direction.
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Figure 10: Statistical and causal TPR gaps of BoW model for each occupation when increasing the male token
weights. Occupations are sorted by gap with w = 1.

Occupation SGTPR CGTPR Diff Gender ratio diff in train set

dj -0.115 0.008 0.123 -0.695
physician 0.105 -0.005 0.110 -0.140

pastor 0.013 -0.088 0.101 -0.523
psychologist 0.036 -0.003 0.039 0.260

poet 0.028 -0.010 0.038 -0.008
architect 0.002 -0.030 0.033 -0.490
filmmaker 0.02 -0.009 0.011 -0.325

Table 3: Occupations where statistical and causal TPR gap shows contradictory bias direction.
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Figure 11: The sum of model weights for male and female gender tokens weighted by the token frequency in test
examples of the occupation class.
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Figure 12: The TPR gap difference when increasing either female or male token weights from w = 1 to w = 5.
Both metrics show similar patterns of TPR gap change for all occupations.

E Training Details

Computing Infrastructure. All the models were trained on 4 Nvidia RTX 2080Ti GPUs.

BiasBios Dataset. We trained all the models with a learning rate of 2e-5 and batch size of 64. We
fine-tuned the models for 5-8 epochs with early stopping and choose the model checkpoints with the
best validation accuracy. Most models reach the best validation accuracy before epoch 5. We notice that
ALBERT with subsampling requires training a few epochs longer than other models to reach comparable
performance due to the downsized training data.

Jigsaw Dataset. We trained all the models with a learning rate of 1e-5 and batch size of 128 for 4 epochs
with early stopping. Most models converge after 2-3 epochs.
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F BiasBios Results

F.1 Overall Bias Scores

SG CG
Method Acc (%) TPR FPR TPR FPR

Normal 95.49±0.13 7.853±0.761 0.127±0.009 2.569±0.509 0.051±0.005
OS 95.50±0.04 6.430±0.172 0.115±0.004 1.590±0.035 0.041±0.003
US 94.79±0.08 5.600±0.422 0.097±0.005 0.529±0.402 0.011±0.005
RW 95.26±0.06 4.269±0.427 0.085±0.011 0.391±0.094 0.010±0.001

CDA 95.47±0.09 7.266±0.870 0.113±0.007 0.207±0.043 0.003±0.000
Zari 95.23±0.09 8.353±0.550 0.132±0.006 2.849±0.341 0.067±0.005

Zari w/ CDA 95.20±0.01 7.559±0.787 0.119±0.008 0.216±0.048 0.004±0.001
OS-CDA 95.39±0.13 5.403±0.176 0.109±0.006 0.130±0.020 0.013±0.011
US-CDA 94.73±0.09 4.969±0.230 0.096±0.015 0.174±0.051 0.007±0.009
RW-CDA 95.43±0.11 4.300±0.424 0.095±0.011 0.137±0.020 0.008±0.004

Table 4: Root mean square of bias metrics for ALBERT-Large model fine-tuned with different debiasing methods.
The results shown are averaged over 3 different runs. SG and CG are on a log scale with base 10→2.

SG CG
Method Acc (%) TPR FPR TPR FPR

Baseline 95.64±0.02 7.472±0.898 0.129±0.004 1.456±0.271 0.033±0.005
OS 95.69±0.17 6.161±0.282 0.116±0.018 0.805±0.134 0.029±0.008
US 94.95±0.19 5.257±0.865 0.108±0.017 0.595±0.083 0.023±0.000
RW 95.51±0.06 4.630±0.288 0.096±0.008 0.377±0.074 0.014±0.004

CDA 95.65±0.08 6.490±1.159 0.109±0.011 0.138±0.046 0.002±0.001
OS-CDA 95.67±0.09 5.485±0.327 0.106±0.022 0.121±0.033 0.005±0.003
US-CDA 95.09±0.12 4.673±0.270 0.104±0.007 0.131±0.012 0.009±0.002
RW-CDA 95.78±0.07 4.601±0.190 0.102±0.002 0.148±0.021 0.004±0.003

Table 5: Root mean square of bias metrics for BERT-Base-Uncased model fine-tuned with different debiasing
methods. The values shown are averaged over 3 different runs on a log scale with base 10→2.
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F.2 Statistical vs Causal FPR Gap
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Figure 13: Statistical and Causal FPR gap per occupation, averaged over 3 different runs. Each data point is
computed over test examples labeled with the same occupation. We show the outliers for normal training in red dots
and how their values change with different debiasing methods. Causal-based debiasing methods perform particularly
better on the causal FPR gap while statistical-based debiasing methods are able to reduce bias based on both metrics.
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F.3 Correlation to Gender Imbalances in Training Data
In Figure 14, we compare the statistical and causal TPR gap to the female ratio in the training data for
each occupation. Both bias metrics show a positive correlation with the gender distribution in the training
data. This observation is consistent with the results found in De-Arteaga et al. (2019), where they measure
the statistical TPR gap on non-transformer-based models such as BoW.
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Figure 14: Statistical and causal TPR gap versus the female ratio of each occupation in the training data.

G Jigsaw Results

G.1 Overall Bias Scores for ALBERT Model

Method SGPPR CGPPR SGTPR
y=1 CGTPR

y=1 SGTPR
y=0 CGTPR

y=0

Normal →2.73±0.42 0.42±0.21 →4.60±3.65 1.90±1.37 1.21±0.45 →0.25±0.08
CDA →3.14±0.59 0.20±0.08 →3.56±3.08 0.86±0.67 1.66±0.36 →0.13±0.07

Zari w/ CDA →2.89±0.98 →0.05±0.12 →5.68±2.10 →0.32±0.57 1.31±0.92 0.02±0.07
US →2.37±0.58 1.00±0.10 →2.57±2.75 4.20±0.82 1.03±0.45 →0.63±0.08
RW →1.70±0.21 0.95±0.25 →2.07±2.15 4.13±0.30 0.39±0.29 →0.58±0.28
OS →1.79±0.24 0.81±0.22 →3.18±2.75 3.99±0.80 0.48±0.22 →0.45±0.21

OS-CDA →2.29±0.42 0.01±0.11 →3.40±2.74 0.29±0.69 0.83±0.30 0.02±0.06
US-CDA →2.22±0.23 0.08±0.10 →2.57±2.60 0.36±0.25 0.88±0.30 →0.05±0.11
RW-CDA →1.96±0.25 0.24±0.09 →1.98±1.36 0.97±0.73 0.76±0.25 →0.16±0.07

Table 6: Bias evaluation results evaluated on the Jigsaw dataset with ALBERT-Large model. The results shown are
averaged over 5 different runs. All values are on a log scale with base 10→2.

G.2 Combination Strategies Comparison
Table 7 shows the performance of two different strategies of combining resampling and CDA. Resample
↔ CDA performs resampling first, then applies CDA on the resampled set. CDA ↔ Resample performs
CDA first, then resamples the original and the counterfactual sets separately. The original examples
are resampled based on the original gender distribution. The counterfactual examples are resampled
based on their counterfactual genders (not the gender of the original example they originated from). The
difference between the two methods is that Resample ↔ CDA uses the original gender label for both
original and counterfactual examples while CDA ↔ Resample considers the counterfactual gender for the
counterfactual examples during resampling. We find that the second method performs better on SGPPR

but increases CGPPR compared to the first method. The increase in the causal bias metric may be due to
separate resampling on original and counterfactual sets, meaning that some of them may not come in pairs.
Nonetheless, the performance still exceeds CDA.
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BERT-Base-Uncased ALBERT-Large
Strategy Method SGPPR CGPPR SGPPR CGPPR

Resample ↔ CDA OS-CDA →2.73±0.72 0.011±0.086 →2.51±0.49 0.004±0.082
US-CDA →2.12±0.51 0.117±0.114 →2.88±0.78 0.022±0.134

CDA ↔ Resample OS-CDA →2.09±0.30 0.176±0.160 →2.29±0.42 0.015±0.107
US-CDA →1.90±0.19 0.114±0.113 →2.22±0.23 0.084±0.096

Table 7: Debiasing performance between two different strategies of combining resampling and CDA. The results
shown are evaluated on the BERT model, averaged over 5 different runs. SGPPR and CGPPR are on a log scale with
base 10→2.

Table 8 shows the performance of using different reweighting strategies on counterfactual examples for
RW-CDA. We tried RW-CDA method for training on BiasBios dataset, which uses the same weight for both
the original and counterfactual examples (first row in Table 8). It is not effective at reducing SGPPR, but
very effective on CGPPR. We think it may be due to the gender signals of some examples being flipped
by CDA. We then tried using weights that correspond to the counterfactual gender for the counterfactual
examples. This decreases bias on SGPPR, but increases bias on CGPPR. We found that setting the weight
to 1 for all counterfactual examples gives the best overall balance between SGPPR and CGPPR. It also
outperforms other strategies on SGPPR.

BERT-Base-Uncased ALBERT-Large
Strategy SGPPR CGPPR SGPPR CGPPR

Same weight →2.30±0.35 0.162±0.109 →2.41±0.30 0.070±0.059
Counterfactual gender weight →1.82±0.36 0.653±0.242 →2.19±0.31 0.371±0.063

Weight=1 →1.76±0.36 0.327±0.110 →1.96±0.25 0.239±0.091

Table 8: Debiasing performance of different reweighting strategies on counterfactual examples for RW-CDA. The
results shown are evaluated on the BERT model, averaged over 5 different runs. SGPPR and CGPPR are on a log
scale with base 10→2.

G.3 General Performance

Method AUC (ALBERT) AUC (BERT)

Normal 0.930±0.002 0.925±0.003
CDA 0.930±0.002 0.928±0.002

Zari w/ CDA 0.928±0.005 —
OS 0.931±0.001 0.932±0.002
US 0.929±0.003 0.924±0.004
RW 0.930±0.005 0.929±0.003

OS-CDA 0.930±0.003 0.931±0.002
US-CDA 0.929±0.003 0.931±0.002
RW-CDA 0.929±0.002 0.930±0.003

Table 9: AUC scores of different debiasing methods. The results shown are averaged over 5 different runs.

G.4 Gender Label Annotation Agreement
We test if gender label annotation agreement in the Jigsaw dataset has an effect on the bias scores.
In Figure 15, we show statistical and causal PPR gap of examples with different range of annotation
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agreement for each debiasing methods. All methods have the highest score of statistical PPR gap at [0.85,
0.96) including the normal training method and have the lowest score when annotation agreement >=0.95.
On the other hand, causal PPR gap of each debiasing method remain similar at different range of gender
annotation agreement.
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Figure 15: Statistical and Causal PPR Gap of examples with different range of gender label annotation agreement.
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