
A Green Granular Convolutional Neural Network
with Software-FPGA Co-designed Learning

Huaiyuan Chu, Yanqing Zhang ∗

Department of Computer Science
Georgia State University
Atlanta, GA 30302-5060

chuhy4@gmail.com, yzhang@gsu.edu

Abstract

Different from traditional tedious CPU-GPU-based training algorithms using
gradient descent methods, the software-FPGA co-designed learning algorithm is
created to quickly solve a system of linear equations to directly calculate optimal
values of hyperparameters of the green granular neural network (GGNN). To
reduce both CO2 emissions and energy consumption effectively, a novel green
granular convolutional neural network (GGCNN) is developed by using a new
classifier that uses GGNNs as building blocks with new fast software-FPGA
co-designed learning. Initial simulation results indicate that the FPGA equation
solver code runs faster than the Python equation solver code. Therefore,
implementing the GGCNN with software-FPGA co-designed learning is feasible.
In the future, The GGCNN will be evaluated by comparing with a convolutional
neural network with the traditional software-CPU-GPU-based learning in terms
of speeds, model sizes, accuracy, CO2 emissions and energy consumption by
using popular datasets. New algorithms will be created to divide the inputs
to different input groups for building different GGNNs to solve the curse of
dimensionality.

1 Introduction

In recent years, deep neural networks such as a Convolutional Neural Network (CNN) have been
effectively used in various applications. However, a major problem is that traditional tedious
CPU-GPU-based training algorithms using gradient descent methods take huge amount of training
time, generate much CO2 emissions and waste a lot of energy. For instance, a popular CNN needs
a large number of training epochs for very slow hyperparameter optimization. Thus, traditional
neural network software systems with very slow hyperparameter optimization algorithms are not
suitable for high-speed real-time learning and fast real-time prediction applications. In addition
to the long training time problem, the conventional neural networks have the black-box problem
(i.e., hyperparameters such as weights are not meaningful). How to build explainable open-box
machine learning systems with low CO2 emissions and low energy consumption is an important
long-term problem.
In recent years, new green machine learning (ML) systems have been made to reduce both
CO2 emissions and computational energy consumption. For instance, the AutoML framework
for different methods such as neural architecture search (NAS), and automated pruning and
quantization is used to build efficient on-device ML systems with low energy consumption and
low CO2 emissions by measuring GPU hours and the estimated CO2 emission amount CO2e [1].

∗This material is based upon work supported by the National Science Foundation under Grant No.
2234227.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Since CO2e is proportional to the total computational power pt: CO2e = 0.954pt [2], effectively
reducing training times results in greatly reducing both energy consumption and CO2 emissions.
Currently, popular ML systems running on CPUs and GPUs generate a lot of CO2 emissions
and also waste much energy because (1) tedious traditional training algorithms such as gradient
descent algorithms and genetic algorithms take huge amount of time to optimize billions of
hyperparameters, and (2) CPUs and GPUs are not green effective and not energy efficient. In
summary, an urgent challenge is developing a novel ML system with high-speed non-traditional
training algorithms running on the green and energy efficient hardware to significantly reduce
both CO2 emissions and energy consumption.
Based on the successful implementation of the FPGA-based direct linear equation solver [3-5],
the high-speed FPGA-based direct linear equation solver can be used to quickly generate optimal
hyperparameters in just one epoch for the new green granular neural network (GGNN) in a
real-time manner. For example, the Questa*-Intel FPGA Edition Software provides the FPGA
design simulation that involves generating simulation files, compiling simulation models, running
the simulation, and viewing the results. We use FPGA software simulation systems to implement
the high-speed FPGA-based direct linear equation solver. The goal is to develop more effective
and faster hardware-based hyperparameter optimization algorithms with a fast direct linear
equation solver for training a new GGNN. We develop the novel Green Granular Convolutional
Neural Network (GGCNN) with new fast FPGA-based training algorithm to effectively reduce
both CO2 emissions and energy consumption more effectively than the CPU-GPU-based training
algorithms.

2 A Building Block: An Efficient FPGA-based GGNN

The GGNN with new fast software-FPGA co-designed learning is designed using granular sets and
the software-FPGA co-designed learning algorithm. It uses the software-based learning system
to compute the coefficients for a linear system of hyperparameter equations, then uses the fast
FPGA-based learning system to optimize the hyperparameters, and finally builds a GGNN model
for prediction.
For convenience, an N -record relational database has n numerical input fields xi for i = 1, 2, ..., n,
and one numerical output field y. Now the problem is how to build a GGNN using given N records
in the relational database. Here, granular sets are used as basic granules in granular partitions of
the input variables xi for i = 1, 2, ..., n and the output variable y. The interval [ai, bi] of xi are
partitioned into mi − 1 intervals (ai1 ≤ xi ≤ ai2, ai2 ≤ xi ≤ ai3, ..., ai(mi−1) ≤ xi ≤ aimi). So
mi granules Aij are used to cover the mi − 1 intervals for i = 1, 2, ..., n, j = 1, 2, ...,mi. The
granules Aij are defined by granular sets such as a fuzzy set [6]. After the above granulation of
xi for i = 1, 2, ..., n, there are G data base granules for G =

∏n
i=1(mi − 1). For each data base

granule, a GGNN with an output g(x1, x1, ..., xn) is constructed by using two input granular sets
covering one interval of xi and 2n output granular sets of y. So y has 2n granular sets Bk for
k = 1, 2, ..., 2n.
The granular rule base has 2n granular IF-THEN rules for one database granule such that
IF x1 is A1j1 and ... xn is Anjn THEN y is Bk for ji ∈ 1, 2, i = 1, 2, ..., n, and k = 1, 2, ..., 2n.
A database granule has K =

∏n
i=1 ki records totally if an input xi has ki values for i =

1, 2, ..., n in the database granule, and an output y has K corresponding values yk for k =
1, 2, ...,K. The optimization function for the database granule is to minimize Q = 1

2
∑K

k=1[yk −
g(x1k

, x2k
, ..., xnk

)]2. Based on ∂Q
∂pj

= 0 for the GGNN, we can get a linear system of M -
hyperparameter equations for k = 1, 2, ...,M for M = 2n+1:

T k
1 q1 + T k

1 q2 + ...+ T k
MqM = ψk (1)

Now we can solve the linear system of M -hyperparameter equations to directly get optimal M
hyperparameters qk of the GGNN for k = 1, 2, ...,M .
Based on the successful design of the FPGA-based linear equation solver [3-5], it is feasible to
use the same architecture of the FPGA-based linear equation solver to solve equation (1) to get
optimized hyperparameters qk for k = 1, 2, ...,M .

2



The major merits of the granular constructive learning method are (1) quickly optimize parameters
using predefined formulas, and (2) discover meaningful granular rules from training data.
We develop the novel GGNN with new fast FPGA-based training algorithm to reduce CO2
emissions more effectively than the CPU-GPU-based training algorithms. Popular CPUs and
GPUs generate much more CO2 emissions and run less efficiently than the field programmable
gate array (FPGA) [7, 8]. For instance, the new FPGA-based massive parallel data processing
system can reduce CO2 emissions by around 50% [8]. FPGA is a light-weight hardware with low
CO2 emissions and low energy consumption [9] for quickly solving a system of linear equations.
For example, on a Xilinx Vertex 6 FPGA (200MHz), the minimum latency of the FPGA-based
direct linear equation solver was lower than 5 microseconds for a linear system of equations
of order 32 [3]. Thus, it is feasible to use FPGA to implement the new FPGA-based training
algorithm.

3 Previous Simulations for FPGA-based Learning Methods

Our previous work [10] shows that it is feasible to use FPGA to solve equation (1) quickly by
matrix inversion techniques like LUP (LU factorization with partial pivoting). Furthermore, by
using HLS (High-Level Synthesis), we can compose codes suitable for FPGA. Experiments also
indicate that the performance of FPGA code can outperform MATLAB and Python in the matrix
inversion task.
To compare an artificial neural network (ANN) and the GGNN using a fuzzy set (a special granular
set), simulations using the 3-input-1-output benchmark function are done [10]. The simulation
results show that the GGNN outperforms both the 10-Layer ANN and the 20-layer ANN in
terms of the prediction Mean Square Error (MSE), and the prediction Root Mean Square Error
(RMSE) for 100, 500, and 1000 training epochs [10].

4 A New GGCNN with Software-FPGA Co-Designed Learning

Since the previous simulations indicate that the new software-FPGA-based learning method is
feasible and useful to quickly train the GGNN, the GGNN can be used to build a new machine
learning model as a basic building block. A CNN consists of convolutional layers, activation
layers, pooling layers, and a classifier such as an MLP. The new GGCNN consists of convolutional
layers, activation layers, pooling layers, a new FPGA-based GGNN layer called a FPGA learner,
and a hybrid decision model for making a final decision. The new GGCNN with software-FPGA
co-designed learning is shown in Fig. 1.

Figure 1: A GGCNN framework with Software-FPGA Co-Designed Learning

Feature maps generated by the last pooling layer are converted to flatten features used by the
FPGA-based granular neural network. The outputs generated by the FPGA-based granular neural
network are used as inputs by a classifier to make final decisions.

3



The FPGA-based direct hierarchical hyperparameter optimization algorithm for a GGCNN, a
hybrid software-hardware-based algorithm, is given below as Algorithm 1. The linear equation
solver can quickly solve a linear system of L hyperparameter equations. A n× n Feature Map
(FM) has n× n features. N n× n feature maps FMp for p = 1, 2, ..., N are generated by the
last pooling layer. K = N × n× n.

for k = 1 to n do
Step 1: Use software to partition n× n feature map FMp into Mj nj × nj sub-feature
maps for Mj = lj × lj , and nj < L).
Step 2: Use software to pre-calculate coefficients for Mj linear systems of
hyperparameter equations for nj × nj sub-feature maps): Use software to calculate
coefficients such as P 1k

1 , ..., P 1k
m , P 2k

1 , . . ., P 2k
m , P 3k

1 , . . ., P 3k
m , and then calculate

P 1k
1 = P 1k

1 + S1k
1 , ..., P 1k

m = P 1k
m + S1k

m , P 2k
1 = P 2k

1 + S2k
1 , ..., P 2k

m = P 2k
m + S2k

m ,
P 3k

1 = T 3k
1 + S3k

1 , ..., P 1k
m = P 3k

2n + S3k
m of a linear system of hyperparameter equations.

Step 3: Use the FPGA-based linear equation solver to solve Mj linear systems of
hyperparameter equations using Mj l × l sub-feature maps): Use the FPGA-based linear
equation solver to calculate optimal hyperparameters such as (ci, ηi, and δi) for
i = 1, 2, ...,m of each linear system of hyperparameter equations. The optimized
hyperparameters are used to build new Mj GGNNs with relevant granular knowledge
bases with meaningful granular If-Then rules.
Step 4: Use Mj Use the Mj FPGA-based GGNNs to make Mj decisions Dp

j for a new
test feature map.
Step 5: Use all individual decisions Dp

j to make a hybrid decision.
end

Algorithm 1: Software-FPGA Co-Designed Learning Algorithm for the GGCNN

5 Conclusions

Initial simulation results indicate that the FPGA equation solver code runs faster than the Python
equation solver code. In addition, the GGNN can perform more accurately than a traditional
neural network. Therefore, it is feasible to make a novel software-FPGA co-designed GGNN to
reduce both CO2 emissions and energy consumption more effectively than the CPU-GPU-based
neural networks. Since FPGA is a high-speed light-weight hardware with low CO2 emissions
and low energy consumption, the FPGA is used to quickly solve a system of linear equations to
directly calculate optimal values of hyperparameters of the shallow GGNN. Thus, it is feasible to
build the GGCNN using the GGNNs as basic building blocks to solve image recognition problems.

6 Future Works

In the future, the GGCNN with the software-FPGA co-designed learning will be evaluated by
comparing with other machine learning models with traditional software-CPU-GPU co-designed
learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by
using popular datasets. New intelligent algorithms will be developed to find out optimal or near
optimal sub-spaces in which accurate GGCNN models are built.
A GGCNN with a large number of inputs has the curse of dimensionality. New algorithms will be
created to divide the inputs to different input groups that will be used to build different small-size
GGCNNs to solve the problem.
We will use different granular sets with different nonlinear membership functions, and then select
the best one to improve performance (accuracy, AUC, F1-score, etc.) of the GGCNN.
After the software-FPGA co-designed learning is successful, a special high-speed FPGA hardware
based direct linear equation solver as a fast learner will be implemented for building an efficient
GGCNN with high classification accuracy to significantly reduce both CO2 emissions and energy
consumption.

4



References

[1] Y. H. Cai and J. Lin and Y. Lin and Z. Liu and H. Tang and H. Wang and L. Zhu and S. Han,
“Enable Deep Learning on Mobile Devices: Methods, Systems, and Applications,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), Volume 27, Issue 3, Article 20, pp. 1–50, 2021.
[2] E. Strubell and A. Ganesh and A. McCallum, “Energy and Policy Considerations for Deep Learning in
NLP,” the 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
[3] Z. Jiang and S. A. Raziei, “An efficient FPGA-based direct linear solver,” 2017 IEEE National
Aerospace and Electronics Conference (NAECON), pp. 159–166, 2017.
[4] L. Miller, “Adaptive Beamforming for Radar: Floating-Point QRD+WBS in an FPGA,” 2014.
[5] M. Ruan, “Scalable Floating-Point Matrix Inversion Design Using Vivado High-Level Synthesis,” 2017.
[6] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[7] Using FPGA chip system to reduce the carbon emissions of using web search
(https://www.fpgakey.com/technology/details/using-fpga-chip-system-to-reduce-the-carbon-emissions-
of-using-web-search).
[8] THALES LEVERAGES NEW TECHNOLOGIES TO BOOST BIOMETRIC MATCH-
ING PERFORMANCE WHILST HAVING ENVIRONMENTAL IMPACT, 20 JAN 2020.
(https://www.thalesgroup.com/en/group/journalist/press-release/thales-leverages-new-technologies-
boost-biometric-matching).
[9] J. Morss, “FPGAs vs. GPUs: A Tale of Two Accelerators,” January 16, 2019.
https://www.dell.com/en-us/blog/fpgas-vs-gpus-tale-two-accelerators/
[10] H. Chu and Y.-Q. Zhang, “A Green Granular Neural Network with Efficient Software-FPGA
Co-designed Learning,” IEEE 22nd International Conference on Cognitive Informatics and Cognitive
Computing (ICCI*CC’2023), Stanford University, Aug. 19-21, 2023.

5


	Introduction
	A Building Block: An Efficient FPGA-based GGNN
	Previous Simulations for FPGA-based Learning Methods 
	A New GGCNN with Software-FPGA Co-Designed Learning 
	 Conclusions 
	 Future Works 

