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We study the voting game where agents’ preferences are endogenously decided by the information they 
receive, and they can collaborate in a group. We show that strategic voting behaviors have a positive impact 
on leading to the “correct” decision, outperforming the common non-strategic behavior of informative voting 
and sincere voting. Our results give merit to strategic voting for making good decisions.

To this end, we investigate a natural model, where voters’ preferences between two alternatives depend on a 
discrete state variable that is not directly observable. Each voter receives a private signal that is correlated with 
the state variable. We reveal a surprising equilibrium between a strategy pro�le being a strong equilibrium 
and leading to the decision favored by the majority of agents conditioned on them knowing the ground truth 
(referred to as the informed majority decision): as the size of the vote goes to in�nity, every Y-strong Bayes 
Nash Equilibrium with Y converging to 0 formed by strategic agents leads to the informed majority decision 
with probability converging to 1. On the other hand, we show that informative voting leads to the informed 
majority decision only under unbiased instances, and sincere voting leads to the informed majority decision 
only when it also forms an equilibrium.
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Distributed arti�cial intelligence.
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1 INTRODUCTION
Today, voting is used to make an array of binary decisions permeating nearly every corner of life 
including in recall/run-o� public elections, adoption of decrees by religious institutions, decisions 
by corporate boards on whether or not to pursue a new strategy/acquisition/etc, hiring and by-law 
decisions at university, and public entertainments like talent shows. In most cases, the voting is 
attempting to aggregate both the agents’ preferences and knowledge. A key aspect of this setting is 
that agents have preferences over outcomes contingent on some underlying state that they cannot 
directly observe, and the goal is to make a “good” decision that re�ects the preferences of the 
agents.
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E������ 1. Suppose the voters vote to decide the policy towards the COVID-19 pandemic. The
two choices are to accept the more-restrictive policy (Accept) and to keep the status quo (Reject). The
consequence of the policy depends on the fact that the COVID virus is of high or low risk, and more
people tend to accept the policy when COVID is of high risk than when COVID is of low risk. The voters
do not know the risk level of the virus directly. Instead, every voter forms a private judgment on the
risk level based on his/her own information sources. voters may have di�erent opinions on whether
to accept the policy which may or may not depend on the risk level. Can the voters achieve a good
decision via the majority vote?

Three di�erent lines of work aim to address this problem under di�erent models andwith di�erent
goals. The �rst line of work is axiomatic social choice [Arrow 2012; Plott 1976], where agents’
preferences are exogenously given, and the goal is to design voting rules that satisfy desiderata,
often called axioms, especially when agents sincerely report their preferences. The second line
of work is along the extensions of the Condorcet Jury Theorem [Condorcet 1785], where agents’
preferences are endogenous and depend on the information structure and the signals they receive.
The goal is to design mechanisms to reveal the true state of the world, especially when agents
vote informatively, i.e., their votes honestly re�ect the private signals they receive. The survey
by Nitzan and Paroush [2017] provides a comprehensive overview. The third line of work originated
from Feddersen and Pesendorfer [1997], where agents’ preferences are endogenous as in the second
line of work, yet the goal is di�erent. Instead of revealing the true state of the world, the goal is to
achieve informed majority decision, which is the decision favored by the majority of the agents if
the world state were known to them. Our paper is along the third line of work.

1.1 Strategic Behaviors
Previous work shows that a good decision can be reached when agents follow sincere or informative
behaviors. However, when agents are strategic, they may have incentives to deviate from sincere or
informative voting to achieve a preferred result with a higher probability. This is not a problem
for axiomatic social choice, as strategic agents will always vote for their preferred alternative in
binary voting [Barberà et al. 1991]. However, when agents have preferences decided by uncertain
world states, the surprising result by Austen-Smith and Banks [1996] shows that even in binary
voting, informative voting may fail to form a Nash equilibrium. The key insight is that an agent’s
vote makes a di�erence only when all other votes form a tie, which means that when an agent
strategically thinks about his/her vote, e�ectively he/she gains more information about the ground
truth (by assuming that other votes are tied). This is illustrated in the following example.

E������ 2. Consider an instance of the COVID policy problem, where the utility of the agents and
signal distribution of di�erent risk levels are shown in the tables below.

State High Signal Low Signal

High Risk 0.9 0.1
Low Risk 0.4 0.6

Table 1. Signal distributions.

State Accept Reject

High Risk 1 0
Low Risk 0 1
Table 2. Agents’ utilities.

Suppose all but one agents are informative and the remaining agent is strategic. Informative agents
vote for Accept when they receive a high signal and Reject when they receive a low signal. The strategic
agent only cares about the pivotal case where exactly half of the informative agents vote for Accept.
However, given that agents receive high signals with a probability of 0.9 given the risk level being high,
the pivotal case implies a high probability that the risk level is low, and the strategic agent will vote
for Reject even after receiving a high signal.
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The above deviation of strategic binary voting with preferences endogenously a�ected by the
unobservable world state sharply contrasts with the axiomatic social choice where preferences
are exogenously given. In the latter case, the majority rule is strategy-proof while the former case
attracts a large literature to study the binary voting problem under game theoretical contexts,
studying the impact of strategic behavior. For the truth-revealing goal, Wit [1998] and Myerson
[1998] show that a selected equilibrium with mixed strategy reveals the world state with high
probability. Feddersen and Pesendorfer [1998] show the existence of such equilibrium in any non-
unanimous voting, while in unanimous voting strategic voting has a constant probability to make a
mistake. And for the informed majority decision, Feddersen and Pesendorfer [1997] adopt a model
with continuous world states and an asymptotically large number of agents whose preferences
are drawn from a distribution with full support on a continuum and show that the equilibrium is
unique and always leads to the informed majority decision with high probability. Schoenebeck and
Tao [2021] proposes a mechanism incentivizing informative voting from agents and leading to the
informed majority decision with high probability.
Nevertheless, there are two aspects not addressed by previous works. Firstly, previous works

(except for Schoenebeck and Tao [2021]) focus on Nash equilibrium which allows only individual
manipulation. In real-world scenarios, on the other hand, such strategic manipulation often occurs
in a coalition of agents. Coalitional manipulation is more powerful than individual manipulation as
it allows multiple agents to coordinate and deviate at the same time. The following example shows
that a Nash equilibrium is still prone to a group of manipulators in binary voting.

E������ 3. Consider an instance with three agents, whose utility is shown as follows.

Agent (High, Accept) (High, Reject) (Low, Accept) (Low, Reject)

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
Table 3. The utility of three agents under di�erent states and decisions.

The following strategy pro�le is a Nash equilibrium: agent 1 always votes for Accept, agent 2 votes
informatively, and agent 3 always votes for Reject. Here, agent 1 and 3 play their dominant strategies,
and, consequently, informative voting is the best strategy for agent 2. However, this strategy pro�le is
dominated by the pro�le where all agents vote informatively. Under informative voting, the decision in
accord with the state (Accept in High state, and Reject in Low state) is selected with a larger probability,
and the utility of agent 2 increases. On the other hand, the overall probability of choosing to Accept or
Reject does not change, so agent 1 and 3’s utilities remain the same.

Secondly, previous works focus on the existence of certain equilibria that achieves the goal
(revealing the world state or reaching the informed majority decision). However, the existence of
multiple equilibria [Wit 1998], including “bad equilibria” that do not lead to the goal, makes the
behavior of strategic agents unpredictable, as it is uncertain which equilibrium agents will play.
One response to multiple equilibria is to select an equilibrium that is more “natural” or “reasonable”
than others, named equilibrium selection. However, equilibrium selection cannot guarantee that
agents will play the selected equilibrium, as it is unclear which equilibrium is more “natural” or
“reasonable” in many scenarios, and agents may not agree on a "more natural" equilibrium even if
it exists.
As a consequence, the following research question remains unanswered: does binary voting

always lead to the informed majority decision with coalitional strategic agents?
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1.2 Our contribution
We give a surprising con�rmative answer to this question under mild conditions. We show that
coalitional strategic behaviors positively impact achieving the informed majority decision and
outperform non-strategic voting. We show that every equilibrium leads to the informed majority
decision, and every voting pro�le that leads to the informed majority decision is an equilibrium.
On the contrary, non-strategic behaviors lead to the informed majority decision only under certain
conditions. Our results give merit to strategic behaviors and extend Feddersen and Pesendorfer’s
results to settings with coalitional strategic agents.
We study the solution concept of Y-strong Bayes Nash Equilibrium, which precludes groups of

agents from reaching higher expected utilities by coordinating. We show the equivalence of a
strategy pro�le being “good” (leading to the informed majority decision with high probability,
or, equivalently, of high �delity) and being an Y-strong Bayes Nash Equilibrium with Y = > (1)
(Theorem 2). We also guarantee the existence of an Y-strong Bayes Nash with Y = > (1) in any
instance (Theorem 3).
On the other hand, we characterize the conditions where strategy pro�les succeed and fail to

achieve the informedmajority decision. Applying these results, we study two common non-strategic
behavior – informative voting, where agents honestly re�ect their private information in their votes,
and sincere voting, where agents vote as if they are the only decision-maker. We show that (1)
informative voting leads to the informed majority decision only when the majority vote threshold
is unbiased compared with the signal distribution (Corollary 3), and (2) sincere voting leads to the
informed majority decision only when it is also an equilibrium (Corollary 4). These observations
indicate that strategic behavior “prevails” over non-strategic behaviors in binary voting!
The technical key for the probability analysis is to compute the excess expected vote share, i.e.,

the amount of expected vote share an alternative attracts that exceeds the threshold, and to upper
(or lower) bound the �delity given di�erent cases of excess expected vote shares. A strategy pro�le
has high �delity if and only if its excess expected vote share is strictly positive (Theorem 4).
We follow the setting in Schoenebeck and Tao [2021], which is an extension of the setting in

Austen-Smith and Banks [1996], and consider agents with preferences contingent on underlying
world states in a single framework. Also, as in Example 1 and previous work, we assume that various
constraints in the real world prevent discussion after agents see their signals. Such constraints can
be of a time aspect (a quick decision must be made and there is no time for discussion), a procedural
aspect (a formal conference that prohibits participants from discussing privately before voting),
and/or a societal aspect (it is socially unsuitable to discuss some preferences), etc. Therefore, we
consider an ex-ante setting where the expected utilities are computed before agents receive their
signals.

1.3 Related Work
The famous Jury Theorem from Condorcet [1785] has “formed the basis for the development of
social choice and collective decision-making as modern research �elds” [Nitzan and Paroush 2017].
The theorem states that a group of decision-makers could reveal the correct world state with a
higher probability than any individual in the group, and such probability converges to 1 as the
number of group members increases. A large literature on collective decision-making has followed
Condorcet’s path trying to extend the result into more general models [Boland et al. 1989; Grofman
et al. 1983; Miller 1986; Owen et al. 1989].

The game-theoretical study of the Condorcet Jury Theorem starts from Austen-Smith and Banks
[1996]. Austen-Smith and Banks study a collaborative voting game where each agent shares the
same preference and receives a binary signal correlated with an unknown binary state of the
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world. However, even in this case, they showed that sincere voting and informative voting do not
always form a Nash Equilibrium. As a consequence, the following works focus on the e�ect of
strategic behavior in the majority vote and propose equilibria that reveal the ground truth [Duggan
and Martinelli 2001; Feddersen and Pesendorfer 1998; Meirowitz 2002; Myerson 1998; Wit 1998].
Feddersen and Pesendorfer [1997] adopt a similar information structure with the game theoretical
study of Condorcet Jury Theorem but aim to achieve a di�erent goal of informed majority decision.
Other generalizations of the Condorcet Jury Theorem include dependent agents [Kaniovski 2010;
Nitzan and Paroush 1984; Shapley and Grofman 1984], agents with di�erent competencies [Ben-
Yashar and Zahavi 2011; Gradstein and Nitzan 1987; Nitzan and Paroush 1980], and voting with
more than two alternatives [Goertz and Maniquet 2014; Young 1988].

Another line of work related to collective decision-making focuses on designing mechanisms that
lead to the correct decision. Recent work shows the reliability of the “surprisingly popular” answer
when agents are sincere [Hosseini et al. 2021; Prelec et al. 2017] and strategic [Schoenebeck and
Tao 2021]. In particular, Schoenebeck and Tao [2021] adopt the “surprisingly popular” technique
into a social choice context with strategic agents, and propose a truthful mechanism to aggregate
information. They show that even in a setting where agents have subjective preferences contingent
on an objective underlying state, their mechanism reveals the informed majority decision with
high probability and is an (ex-ante) Y-strong Bayes Nash Equilibrium with Y converging to 0 at an
exponential rate. Our work follows the setting in Schoenebeck and Tao’s work, but our work is
di�erent in that the aggregation happens implicitly because agents are acting strategically rather
than because a mechanism explicitly selects a surprisingly popular answer.
Our work is also related to information elicitation, which aims to collect truthful and high-

quality information from agents under a noisy information structure. Information elicitation is well
developed with multiple lines of research focusing on di�erent aspects of the problem, including
scoring rules [Bickel 2007; Gneiting and Raftery 2007], peer prediction mechanisms [Miller et al.
2005; Schoenebeck and Yu 2021; Schoenebeck et al. 2021], Bayesian Truth Serum [Prelec 2004;
Witkowski and Parkes 2012], and predictionmarkets [Miller and Drexler 1988;Wolfers and Zitzewitz
2004]. Unfortunately, information elicitation is incompatible with the voting scenario in our paper
for two reasons. Firstly, information elicitation requires agents to be indi�erent to the outcome,
while agents are incentivized by the outcome of the vote. Secondly, information elicitation uses
payments to reward the agents, while voting does not have monetary rewards.

2 MODELS AND PRELIMINARIES
We �rst present our model and results with binary world states and binary private signals, which
convey the main ideas of this work while also hiding much of the complexity. The general extension
into the non-binary setting is in Section 5. We follow the setting in Schoenebeck and Tao [2021]
and consider agents with subjective preferences contingent on an objective underlying state in one
framework.

Alternatives and World States. # agents vote for two alternatives A (standing for “accept”) and R
(standing for “reject”). There are  = 2 possible world statesW = {!,� } (standing for “low risk”
and “high risk” respectively), where A is more preferred in � , and R is more preferred in !. We
use : to denote a generic world state. The world state is not directly observable by the agents. Let
%� = Pr[, = � ] and %! = Pr[, = !] be the common prior of the world states. We assume %� > 0
and %! > 0.

Private Signals. Every agent receives a signal in S = {;,⌘}. We use< to denote a generic signal,
and (= to denote the random variable representing the signal that agent = receives. We assume the
signals agents receive are independent and have identical distributions conditioned on the world
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state. Let %<: = Pr[(= =< |, = :] be the probability that an agent receives signal< under world
state : . The signal distributions ((%⌘� , %;� ), (%⌘!, %;!)) are also common knowledge. We assume
that the signals are positively correlated to the world states. Speci�cally, we have %⌘� > %⌘! and
%;� < %;! . On the other hand, we allow biased signals and DO NOT assume %⌘� > %;� or %⌘! < %;! .

Majority Vote. This paper considers the majority vote with threshold `. Each agent = votes for A
or R. If at least ` ·# agents vote for A, A is announced to be the winner; otherwise, R is announced
to be the winner.

Utility and Types of Agents. Each agent = has a utility which is a function of the true world state
and the outcome of the vote. Formally, we have E= : W ⇥ {A,R} ! {0, 1, . . . ,⌫}, where ⌫ is the
positive integer upper bound. We assume that A is more preferable in � than in !, and R is the
opposite: for every agent =, E= (� ,A) > E= (!,A) and E= (� ,R) < E= (!,R).
The di�erent endogenous preferences of agents are re�ected by di�erent utility functions.

Predetermined agents always prefer the same alternative, and contingent agents have preferences
depending on the world state. Predetermined agents can be further divided into friendly and
unfriendly agents based on the alternative they prefer. For an agent =, if = is a friendly agent,
E= (� ,A) > E= (!,A) > E= (!,R) > E= (� ,R); if = is an unfriendly agent, E= (!,R) > E= (� ,R) >
E= (� ,A) > E= (!,A); and if = is a contingent agent, E= (� ,A) > E= (� ,R) and E= (!,R) > E= (!,A).

Let U� ,U* , and U⇠ be the approximated fraction of each type of agent. Formally, given # agents,
#� = bU� · # c is the number of friendly agents, #* = bU* · # c is the number of unfriendly agents,
and #⇠ = # �#� �#* is the number of contingent agents. U� ,U* , and U⇠ are common knowledge
and do not depend on # .

Informed Majority Decision. The goal of the voting is to output the informed majority decision,
which is the alternative favored by the majority of the agents if the world state were known. The
informed majority decision shares the same threshold ` as the majority vote threshold. If A is
preferred by at least ` · # agents, then A is the informed majority decision; otherwise, R is the
informed majority decision.
In this paper, we assume that neither friendly agents nor unfriendly agents can dominate the

vote. Otherwise, the informed majority decision does not depend on the state and one coalition can
always enact it via a dominant strategy. As a result, A is the informed majority decision when the
world state is � , and R is the informed majority decision when the world state is !.

E������ 4. Consider the COVID policy-making scenario. # = 20 voters decide whether to accept
(denoted as A) or reject (denote as R) the more-restrictive policy. The world state {!,� } describes the
real risk level of the virus., = � means high risk level, and, = ! means low risk level. The voters’
beliefs form a common prior based on some preliminary reports. Suppose %� = 0.4 and %! = 0.6, which
means the risk level has a prior probability of 0.4 to be high.
Every voter receives a private signal ; or ⌘ from his/her information sources. The signals somehow

re�ect the risk level but are noisy. Suppose this is a biased scenario (for example, there has been a boost
of positive cases in the past week), and members are always more likely to receive the high signal. For
example, %⌘� = 0.8 and %⌘! = 0.6, i.e., a voter will receive an ⌘ signal with probability 0.8 if the risk
level is high and receive an ⌘ signal with probability 0.6 if the risk level is low.
The majority vote threshold is ` = 0.6. Therefore, A is the winner if and only if at least 12 voters

vote for it. There are 4 friendly voters, 6 unfriendly voters, and 10 contingent voters. The informed
majority decision depends on the world state: “accept” is the informed majority decision if the world
state is � , and “reject” is the informed majority decision if the world state is !.

We assume that agents of the same type share the same utility function (which may not be true in
general) shown in Table 4.
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(Winner, World State) (A,� ) (A, !) (R,� ) (R, !)

Friendly agent 8 6 2 4
Unfriendly agent 3 1 5 8
Contingent agent 3 2 1 8

Table 4. Utility of agents in Example 4.

Strategy. A (mixed) strategy is a mapping from the agent’s private signal to a distribution on
{A,R}. For a set ( , let �(() be the set of all possible distributions on ( . Formally, an agent =’s
strategy f= : S ! �({A,R}). A strategy can be represented as a vector f = (V; , V⌘), where V< is
the probability that the agent votes for A when receiving signal<. A strategy pro�le is the vector
of strategies of all agents. ⌃ = (f1,f2, . . . ,f# ). We call a strategy pro�le ⌃ a symmetric strategy
pro�le induced by strategy f if all agents play the same strategy f in ⌃.

De�nition 1. An informative strategy is f = (0, 1), i.e. voting for A when receiving ⌘ and voting
for R when receiving ; . A strategy pro�le is informative when every agent votes informatively.

In this paper, we focus on regular strategy pro�les.

De�nition 2. A strategy pro�le ⌃ is regular if all friendly agents always vote for A, and all
unfriendly agents always vote for R in ⌃.

We believe this restriction is mild and natural since “always vote for A” is the dominant strategy
for a friendly agent, and “always vote for R” is the dominant strategy for an unfriendly agent in
the majority vote.

Fidelity and Expected Utility. Given a strategy pro�le ⌃, let _A: (⌃) (_
R
: (⌃), respectively) be the

(ex-ante, before agents receiving their signals) probability that A (R, respectively) becomes the
winner when the world state is : .

De�nition 3 (Fidelity). Fidelity is the likelihood that the informed majority decision is reached.
In our setting, the �delity when agents play strategy pro�le ⌃ is

�(⌃) =%! · _R! (⌃) + %� · _A� (⌃).

We use the word �delity to distinguish the notion from accuracy, which usually denotes the
likelihood that the correct world state is revealed.

The (ex-ante) expected utility of an agent = exclusively depends on _A: (⌃) and _
R
: (⌃):

D= (⌃) = %! (_A! (⌃) · E= (!,A) + _
R
! (⌃) · E= (!,R)) + %� (_

A
� (⌃) · E= (� ,A) + _

R
� (⌃) · E= (� ,R)).

Instance and Sequence of Strategy Pro�les. We de�ne an instance I of a voting game on the
agent number # , the majority vote threshold `, the world state prior distribution (%!, %� ), the
signal distributions ((%⌘� , %;� ), (%⌘!, %;!)), the utility functions of all the agents {E=}#==1, and the
approximated fraction of each type (U� ,U* ,U⇠ ). Let {I# }1#=1 (or {I# } for short) be a sequence of
instances, where each I# is an instance of # agents. The instances in a sequence share the same
parameters {`, (%!, %� ), ((%⌘� , %;� ), (%⌘!, %;!)), (U� ,U* ,U⇠ )}. We do not regard agents in di�erent
instances as related and have no additional assumption on the utility functions of agents.
We de�ne a sequence of strategy pro�les {⌃# }1#=1 on an instance sequence {I# }. Similarly,

we do not have additional assumptions about the agents. Therefore, for di�erent instances in the
sequence, the strategies and utility functions of agents can be drastically di�erent. A strategy pro�le
sequence {⌃# } is symmetric and induced by strategy f if every strategy pro�le ⌃# in the sequence
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is a symmetric strategy pro�le induced by f . A sequence of strategy pro�les is regular if every
strategy pro�le in the sequence is a regular pro�le.

Y-strong Bayes Nash Equilibrium. In this paper, we use the solution concept of Y-strong Bayes
Nash Equilibrium, an approximation of strong Bayes Nash Equilibrium where no group of agents
can increase their utilities by more than Y through deviation. A strategy pro�le ⌃ = (f1,f2, · · · ,f# )
is an Y-strong Bayes Nash Equilibrium (Y-strong BNE) if there does not exist a subset of agents ⇡
and a strategy pro�le ⌃0 = (f 01,f

0

2, · · · ,f
0

# ) such that
(1) f= = f 0= for all = 8 ⇡ ;
(2) D= (⌃0

) � D= (⌃) for all = 2 ⇡ ; and
(3) there exists = 2 ⇡ such that D= (⌃0

) > D= (⌃) + Y.
By de�nition, when Y = 0, the equilibrium is a strong Bayes Nash Equilibrium where no group

of agents can strictly increase their utilities through deviation. Unfortunately, a strong BNE does
not always exist, as shown in the following theorem. Therefore, we seek Y-strong BNE as an
approximation.

T������ 1. For any #0 2 N, there exists an instance of # > #0 agents, in which a strong Bayes
Nash Equilibrium does not exist.

P���� S�����. For any #0 2 N, we construct an instance of # = 2#0 + 3 agents. The agents
consist of three parts: � is a set of #0 + 1 friendly agents. ⇠ is a set of two contingent agents. And
* is a set of #0 unfriendly agents. Agents in the same set share the same utility, which is shown in
Table 5. The threshold is ` = 0.5. The prior distribution is %! = %� = 0.5. The signal distribution is
%⌘� = %;! = 0.8 and %;� = %⌘! = 0.2.

Agents E (� ,A) E (!,A) E (!,R) E (� ,R)

� 100 99 1 0
⇠ 90 0 100 0
* 1 0 100 99

Table 5. Utility of three groups

Agents ⌃1 ⌃2 ⌃3

� 50.396 66.14 50.3
⇠ 85.12 75.2 76
* 50.396 34.46 50.3

Table 6. Expected utility under three profiles

Consider the following three strategy pro�les, under which the expected utility of each group is
shown in Table 6.

• ⌃1: #0 agents in � always vote for A, and one agent votes informatively.⇠ vote informatively.
* always vote for R.

• ⌃2: � always vote for A. ⇠ vote informatively.* always vote for R.
• ⌃3: � always vote for A. One ⇠ agent votes informatively, and the other always votes for R.
* always vote for R.

These three strategy pro�les form a cycle ⌃1 ! ⌃2 ! ⌃3 ! ⌃1 of deviation, where a group of
agents has incentives to deviate to the next pro�le.
For any other strategy pro�le ⌃, there exists a group of agents with incentives to deviate to

one of the three pro�les. Firstly, � agents and * agents would like to deviate from their dominant
strategy of always voting for A (R, respectively) whenever it can increase the probability that their
preferred candidate wins. Given � and* agents play dominant strategies, the best strategy for two
⇠ agents is to play the strategy in ⌃3 (one agent votes informatively, the other votes for R). Then we
know that an � agent and two ⇠ agents have incentives to deviate from ⌃3 to ⌃1. Therefore, there
does not exist a strong Bayes Nash in this instance. Full proof is available in the full version. ⇤
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3 EQUIVALENCE BETWEEN HIGH FIDELITY AND STRONG EQUILIBRIUM
In this section, we show that strategic behaviors indeed have a positive impact on leading to
the informed majority decision. Theorem 2 states that if the �delity of a regular (De�nition 2)
strategy pro�le sequence {⌃# }1#=1, i.e.,�(⌃# ), converges to 1 as # goes to in�nity, every ⌃# in the
sequence will be an Y-strong Bayes Nash Equilibrium where Y converges to 0. On the other hand, if
�(⌃# ) does not converge to 1, then we can �nd in�nitely many ⌃# that are not Y-strong BNE with
a constant Y. Moreover, Theorem 3 guarantees that there always exists a regular strategy pro�le
whose �delity converges to 1, which leads to an Y-strong BNE with Y = > (1). The two theorems
together indicate that strategic voting leads to the informed majority decision in any sequence of
instances.

T������ 2. Given an arbitrary sequence of instances and an arbitrary regular strategy pro�le
sequence {⌃# }1#=1, let {�(⌃# )}

1

#=1 be the sequence of the �delities of ⌃# .

• If lim#!1�(⌃# ) = 1, then for every # , ⌃# is an Y-strong BNE with Y = > (1).
• If lim#!1�(⌃# ) = 1 does not hold, then there exist in�nitely many # such that ⌃# is NOT
an Y-strong BNE for some constant Y.

T������ 3. Given any arbitrary sequence of instances, there always exists a sequence of regular
strategy pro�les {⌃0

# }
1

#=1 such that �(⌃0

# ) converges to 1.

We �rst give a concrete example to illustrate Theorem 2, in which we show an instance for each
case in the theorem.

E������ 5. We follow the setting of Example 4 except for two di�erences. First, there is a series
of # = 20, 30, . . . , 500. For each # , the ratio of friendly, unfriendly, and contingent agents is �xed at
2 : 3 : 5. Second, we consider two di�erent cases of signal distributions that fall into di�erent cases of
Theorem 2. They share the same signal distribution in world state !: %;! = 0.8, %⌘! = 0.2, but the signal
distribution for � is di�erent. In case (1), %;� = 0.1, %⌘� = 0.9; and in case (2), %;� = 0.25, %⌘� = 0.75.

We focus on regular strategy pro�les where all contingent agents vote informatively (De�nition 1).
For case (2), we also consider another series of regular strategy pro�les ⌃0

# where contingent agents
play f 0 = (0.48, 0.96). In Example 7 and Theorem 4 later, we verify that the �delity of the regular
informative voting converges to 1 in case (1) but does not converge to 1 in case (2). On the other hand,
the �delity of the deviating strategy pro�le ⌃0

# in case (2) converges to 1. Figure 1(a) illustrates these
trends of �delity.

The expected utilities of contingent agents in di�erent cases and strategies are shown in Figure 1(b).
Note the maximum expected utility that a contingent agent can get is 0.4 ⇥ 3 + 0.6 ⇥ 8 = 6.0. In
accordance with the �delity, the expected utility of ⌃# in case (1) converges to the maximum. In case
(2), on the other hand, ⌃# is dominated by ⌃0

# by a utility gain of at least 0.4. Therefore, the group of
contingent agents has no incentive to deviate in case (1) but has incentives to deviate to ⌃0

# in case (2).

3.1 Proof Sketch of Theorem 2
To show the relationship between �(⌃# ) and Y, we have the following lemma.

L���� 1. For every # , a regular strategy pro�le ⌃# is an Y-strong BNE with Y = 2⌫(⌫ + 1) (1 �
�(⌃# )), where ⌫ is the upper bound of utility function E= .

Lemma 1 is an extension of Theorem 3.3 in Schoenebeck and Tao [2021]. It shows that every ⌃#
is an Y-strong BNE with Y proportional to 1 � �(⌃# ). To prove Lemma 1, we show that, for any
other strategy pro�le ⌃0

# , a group of agents with incentives to deviate does not exist.
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(a) Fidelity (b) Expected utility for contingent agents

Fig. 1. Fidelity and expected utilities of informative voting.

There are two cases of ⌃0

# . In the �rst case, the �delity ⌃0

# is bounded by the �delity of ⌃# . More
precisely, (1 � �(⌃0

# )) < (⌫ + 1) · (1 � �(⌃# )). Then two pro�les do not make a big di�erence,
and no agent can gain more than Y = 2⌫(⌫ + 1) (1 ��(⌃# )) after deviation (Claim 1).

In the second case, the �delity ⌃0

# is unbounded and much worse than the �delity of ⌃# . Then
any contingent agent has no incentives to deviate, as their expected utilities are most positively
correlated with �delity (Claim 2). Next, we show that a deviating group cannot contain both friendly
and unfriendly agents, because if the expected utility of one side increases by more than Y, the other
side’s will decrease (Claim 3). Therefore, a deviating group contains either only friendly agents or
only unfriendly agents. Finally, we show that in neither case can the deviation succeed, because
pre-determined agents have already played their dominant strategies in a regular pro�le (Claim 4).
Now we are ready to propose the proof for Theorem 2. We will actually use Lemma 1 and

Theorem 3 to prove Theorem 2. We will discuss the two cases separately.
When lim#!1�(⌃# ) = 1, we apply Lemma 1 to each ⌃# , and get that every ⌃# is an Y-strong

BNE where Y = 2⌫(⌫ + 1) · (1 ��(⌃# )). Then Y will converge to 0 as # ! 1.
When lim#!1�(⌃# ) = 1 does not hold, there are in�nitely many # with ⌃# being of low

�delity. By Theorem 3 there exists a regular strategy pro�le sequence {⌃0

# } with �delity converging
to 1. Because of the di�erence in �delity, there are in�nitely many # such that ⌃# < ⌃0

# . Then
we show that, for all su�ciently large # where ⌃# is of low �delity, if all contingent agents turn
to play ⌃0

# from ⌃# , every contingent agent will gain at least a constant amount of extra utility.
Therefore, for in�nitely many # , ⌃# is NOT an Y-strong BNE for some constant Y. Full proof is
available in the full version.

3.2 Proof Sketch of Theorem 3
In the proof of Theorem 3, we construct a strategy f 0 and show that the regular strategy pro�le
sequence {⌃0

# } where all contingent agents play f
0 has �delity that converges to 1. It su�ces to

construct f 0 such that
(1) if � is the actual world state, the expected fraction of the voters voting for A is more than `

by a constant;
(2) if ! is the actual world state, the expected fraction of the voters voting for A is less than ` by

a constant.
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If this is true, �(⌃0

# ) converges to 1 due to the Hoe�ding Inequality. It remains to construct f 0
such that (1) and (2) hold.
We �rst construct f 0` such that the expected fraction of the voters voting for A is exactly `,

where in f 0` the contingent voter votes for A with a probability that is independent to the signal
she receives. This can be done by setting f 0` = (V⇤, V⇤) where V⇤ satis�es U� + U⇠ · V⇤ = ` (notice
that, given the fraction U� of the friendly voters who always vote for A, the fraction U* of the
unfriendly voters who never vote for A, and the fraction U⇠ of the contingent voters who vote for
A with probability V⇤, the expected fraction of votes for A is U� + U⇠ · V⇤).

Next, we will adjust f 0` to f 0 = (V; , V⌘) that satis�es (1) and (2). Naturally, we would like to
increase the probability for voting A if an ⌘ signal is received, and we would like to decrease this
probability if ; is received. That is, we have V; = V⇤ � X; and V⌘ = V⇤ + X⌘ for some X; , X⌘ > 0, and
we need to show the existences of X; and X⌘ that make (1) and (2) hold.

When � is the actual world, comparing with f 0` , the probability that each contingent agent votes
for A is increased by %⌘� · X⌘ � %;� · X; in f 0. Thus, the total expected fraction of votes for A is
increased by

U⇠ · (%⌘� · X⌘ � %;� · X; ) .

Similarly, when ! is the actual world, similar calculations reveal that the total expected fraction of
votes for A is increased by

U⇠ · (%⌘! · X⌘ � %;! · X; ) .

Since the expected fraction of votes for A is exactly ` for f 0` , we need to choose X⌘ and X; such that⇢
U⇠ · (%⌘� · X⌘ � %;� · X; ) > 0
U⇠ · (%⌘! · X⌘ � %;! · X; ) < 0 .

This can always be done due to the positive correlation %⌘� > %⌘! and %;� < %;! . In particular,
if we set X⌘ = X; ·

%;�
%⌘�

, the �rst inequality would become equality, while the second inequality
holds due to the positive correlation. By slightly increasing X⌘ , we can make both inequalities hold.
During these adjustments, we just need to make sure the two constants X⌘ and X; are small enough
such that V⌘ and V; are valid probabilities. Full proof is available in the full version.

E������ 6. In this example, we follow the setting of case (2) in Example 5 to illustrate the construction
of the strategy f 0. Recall that U� = 0.2,U* = 0.3, and U⇠ = 0.5. The signal distribution %⌘� = 0.75
and %;! = 0.8. The threshold ` = 0.6.

In the �rst step, let f 0` = (0.8, 0.8). We could verify that U� + U⇠ · 0.8 = 0.2 + 0.5 ⇥ 0.8 = 0.6 = `.
In the second step, let X; = 0.3. Then X⌘ = X; ·

%;�
%⌘�

= 0.1. Then f 0 = (0.5, 0.9). Then we have

%⌘� · X⌘ � %;� · X; = 0.75 ⇥ 0.1 � 0.25 ⇥ 0.3 = 0.
%⌘! · X⌘ � %;! · X; = 0.2 ⇥ 0.1 � 0.8 ⇥ 0.3 = �0.22 < 0.

Finally, we increase X⌘ by 0.06. Then X; = 0.3, X⌘ = 0.16, and f 0 = (0.5, 0.96). We have

%⌘� · X⌘ � %;� · X; = 0.75 ⇥ 0.16 � 0.25 ⇥ 0.3 = 0.05 > 0.
%⌘! · X⌘ � %;! · X; = 0.2 ⇥ 0.16 � 0.8 ⇥ 0.3 = �0.208 < 0.

Therefore, f 0 = (0.5, 0.96) satis�es the condition.

4 PROBABILITY ANALYSIS ON FIDELITY
In this section, we analyze the condition that a strategy pro�le is of high �delity and apply the
analysis to the most common forms of non-strategic voting: informative voting and sincere voting.
We show that neither informative nor sincere voting can lead to the informed majority decision
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in every instance, and we characterize the conditions where they lead to the informed majority
decision. Our results give merit to strategic voting.
In order to characterize the �delity, we introduce the notion of the excess expected vote share.

Given a world state : , the excess expected vote share is the expected vote share the informed
majority decision alternative attracts under state : minus the threshold of the alternative.

De�nition 4 (Excess expected vote share). Given an instance of # agents, and a strategy pro�le
⌃, let random variable -#= be "agent = votes for A": -#= = 1 if agent = votes for A, and -#= = 0 if =
votes for R. Then the excess expected vote share is de�ned as follows:

5 #� =
1
#

#’
==1

⇢ [-#= | � ] � ` . (1)

5 #! =
1
#

#’
==1

⇢ [1 � -#= | !] � (1 � `). (2)

Speci�cally, 5 #� is the excess expected vote share of A condition on world state � , and 5 #! is the
excess expected vote share of R condition on world state !. For technical convenience, we de�ne
5 # = min(5 #� , 5 #! ).

Our next result shows that we can judge whether the �delity of a strategy pro�le sequence
converges to 1 with the tendency of its excess expected vote share (or more precisely, the lower
limit of

p
# · 5 # ). If

p
# · 5 # has a lower limit of +1, Then the �delity of the pro�les in the sequence

converges to 1. Otherwise, the �delity is likely not to converge to 1.

T������ 4. Given an arbitrary sequence of instances and arbitrary sequence of strategy pro�les
{⌃# }1#=1, let 5

# be the excess expected vote share for each ⌃# .

• If lim inf#!1

p
# · 5 # = +1, the �delity of ⌃# converges to 1 , i.e., lim#!1�(⌃# ) = 1.

• If lim inf#!1

p
# · 5 # < 0 (including �1), �(⌃# ) does NOT converge to 1.

• If lim inf#!1

p
# · 5 # � 0 (not including +1), and the variance of

Õ#
==1-

#
= is at least

proportional to # , �(⌃# ) does NOT converge to 1.

R�����. Although Theorem 4 does not cover the case when lim inf#!1

p
# · 5 # � 0 and the

variance of
Õ#
==1-

#
= is not large enough, we argue that this case is very special and rare. In this case,

(inf 5 # ) converges to 0 at the rate of $ (
1

p
#
), which means the expected vote share of an alternative

is almost equal to the threshold. Moreover, the strategies of the agents have low randomness in total.
Therefore, we believe that Theorem 4 covers the most interesting cases of a sequence of strategy pro�les.

P���� S�����. Recall that �(⌃) = %! · _R! (⌃) + %� · _A� (⌃). Note that _
A
� (⌃) is the probability

that the total vote share on A exceeds the threshold ` when the world state is � . Therefore, we can
write _A� (⌃) using the following formula. _R! (⌃) can be written using a similar formula.

_A� (⌃# ) = Pr

"
#’
==1

-#= � ` · # | �

#
= Pr

"
#’
==1

-#= �

#’
==1

⇢
⇥
-#= | �

⇤
� �5 #� · # | �

#

For the �rst and the second case, we apply the Hoe�ding Inequality. For the �rst case, we show that
both _A� (⌃) and _

R
! (⌃) are lower bounded by a function of # that converges to 1. For the second

case, we show that either _A� (⌃) and _
R
! (⌃) is upper bounded by a constant smaller than 1.

For the third case, we apply the Berry-Esseen Theorem [Berry 1941; Esseen 1942], which bounds
the di�erence between the distribution of the sum of independent random variables and the normal
distribution. Therefore, for some constant X and in�nitely many # , _A� (⌃# ) (or _

R
! (⌃# )) will not
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deviate from 1 � �(X) too much and is bounded away from 1 by a constant. � is the CDF of the
standard normal distribution. The requirements for the variance in the third case are from the
Berry-Esseen Theorem.
The full proof of Theorem 4 and the detailed de�nition of the Berry-Esseen Theorem are available

in the full version. ⇤

Theorem 4 provides a criterion for judging whether a strategy pro�le sequence is of high �delity.
If we apply Theorem 2 to each case of Theorem 4, we directly get a criterion for judging whether a
regular strategy pro�le sequence is an Y-strong equilibrium.

C�������� 1. Given an arbitrary sequence of instances and an arbitrary regular sequence of
strategy pro�les {⌃# }1#=1, let 5

# be de�ned for each ⌃# .

• If lim inf#!1

p
# · 5 # = +1, then for every # , ⌃# is an Y-strong BNE with Y = > (1).

• If lim inf#!1

p
# · 5 # < 0 (including �1), there are in�nitely many # such that ⌃# is NOT

an Y-strong BNE with constant Y.
• If lim inf#!1

p
# · 5 # � 0 (not including +1), and the variance of

Õ#
==1-

#
= is at least

proportional to # , there are in�nitely many # such that ⌃# is NOT an Y-strong BNE with
constant Y.

E������ 7. In this example, we use Theorem 4 to bound the �delity of di�erent cases in Example 5.
Note that in each # the ratio of friendly, unfriendly, and contingent agents is �xed to be 2 : 3 : 5, and
agents of the same type play the same strategy for di�erent # . Therefore, the excess expected vote
share of pro�le ⌃# and ⌃0

# is independent of # .

Case 1: %;� = 0.1, %⌘� = 0.9. In both world states, we have ⇢ [-#= | � ] = 1 for friendly agents and
⇢ [-#= | � ] = 0 for unfriendly agents. Contingent agents vote for A with probability %⌘� = 0.9 in �
state and for R with probability %;! = 0.8 in ! state. Therefore, 5 # > 0, and

p
# · 5 # goes to +1.

5 #� = 0.2 + 0.5 ⇥ 0.9 � 0.6 = 0.05 5 #! = 0.3 + 0.5 ⇥ 0.8 � 0.4 = 0.3.

Case 2: %;� = 0.25, %⌘� = 0.75. For ⌃# , we have 5 # < 0, and
p
# · 5 # goes to �1.

5 #� = 0.2 + 0.5 ⇥ 0.75 � 0.6 = �0.025 5 #! = 0.3 + 0.5 ⇥ 0.8 � 0.4 = 0.3.

And for the the deviating strategy pro�le ⌃0

# , we have 5
# > 0, and

p
# · 5 # goes to +1.

5 #� =0.2 + 0.5 · (0.75 ⇥ 0.96 + 0.25 ⇥ 0.48) � 0.6 = 0.02

5 #! =0.3 + 0.5 · (0.8 ⇥ 0.52 + 0.2 ⇥ 0.04) � 0.4 = 0.112.

In Case 1, the regular strategy pro�le ⌃# lies in the �rst case of Theorem 4, has an �delity converging
to 1, and is an Y-strong BNE with Y = > (1). In Case 2, ⌃# lies in the second case of Theorem 4 and is
dominated by the deviating strategy pro�le ⌃0

# . This is in accordance with our observation in Figure 1
and Example 5.

Although Theorem 4 (and Corollary 1) do not cover all the strategy pro�le sequences, the
following result provides a dichotomy for symmetric pro�le sequences to judge �delity. Given
a symmetric strategy pro�le ⌃# induced by strategy f = (V; , V⌘), we can compute the excess
expected vote share of ⌃# . Recall the de�nition of excess expected vote share:

5 #� =
1
#

#’
==1

⇢ [-#= | � ] � ` .
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In � state, an agent with signal ⌘ votes for A with probability V⌘ , and an agent with signal ;
votes for A with probability V; . Therefore, ⇢ [-#= | � ] = %⌘� · V⌘ + %;� · V; . Then we have

5 #� =
1
#

#’
==1

(%⌘� · V⌘ + %;� · V; ) � ` = %⌘� · V⌘ + %;� · V; � ` .

With similar reasoning, we can compute 5 #! and 5 # :

5 #! = (%⌘! · (1 � V⌘) + %;! · (1 � V; )) � (1 � `), 5 # = min
⇣
5 #� , 5 #!

⌘
.

An interesting observation for the symmetric strategy pro�les is that its excess expected vote
share is independent of the number of agents # . This is because when every agent plays the same
strategy, the expectation of every -#= is the same. For simplicity, given a sequence of symmetric
strategy pro�les {⌃# }, we write its excess expected vote share as 5� , 5!, and 5 .

C�������� 2. For an arbitrary strategy f and an arbitrary sequence of instances, let {⌃# } be the
sequence of symmetric strategy pro�le ⌃# induced by f , and 5 be the excess expected vote share of
{⌃# }.

• If 5 > 0, �(⌃# ) converges to 1.
• If 5  0, �(⌃# ) does not converge to 1.

P���� S�����. The proof of Corollary 2 works by showing that each case of a symmetric
strategy pro�le falls into some case of Theorem 4. When 5 > 0,

p
# · 5 # ! +1. When 5 < 0,

p
# · 5 # ! �1. And when 5 = 0,and

p
# · 5 # = 0. The variance requirement is also satis�ed.

(Otherwise, the strategy f must be always voting for the same candidate. This directly implies
5 < 0, which is a contradiction.) Full proof is available in the full version. ⇤

4.1 Case Study: Informative Voting and Sincere Voting
In this section, we study the two most common non-strategic voting schemes – informative voting
and sincere voting under our information structure. We show that both voting schemes lead to the
informed majority decision if and only if certain conditions are satis�ed.
In informative voting, all agents play the strategy f = (0, 1). When the world state is � , an

agent receives signal ⌘ and votes for A with probability %⌘� . Therefore, the excess expected vote
share in the � state is 5� = %⌘� � `. Similarly, the excess expected vote share in the ! state is
5! = %;! � (1 � `) = ` � %⌘! . Applying Corollary 2, we get the following statement.

C�������� 3. For an arbitrary sequence of instances, let {⌃# } be the sequence of informative
voting pro�le. Then, the �delity �(⌃# ) converges to 1 if and only if %⌘� > ` > %⌘! .

Fig. 2. Illustration of Corollary 3.
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Corollary 3 forms a comparison with Theorem 2. Strategic behavior always leads to the informed
majority decision, while non-strategic informative voting achieves the same only when the majority
vote threshold is “unbiased” compared with the signal distribution.

In sincere voting, an agent votes as if she is making the decision individually. A sincere agent
chooses the alternative that maximizes the expected utility conditioned on the signal. The expected
utility of an agent making an individual decision conditioned on signal< is

D= (A | <) = Pr[, = ! | <] · E= (A, !) + Pr[, = � | <] · E= (A,� ) .
D= (R | <) = Pr[, = ! | <] · E= (R, !) + Pr[, = � | <] · E= (R,� ) .

De�nition 5. A strategy pro�le ⌃ is sincere if for any agent 8 , conditioned that 8 receives signal<,
8 votes for A if D= (A | <) > D= (R | <) and votes for R otherwise.

A sincere strategy pro�le is not always symmetric, because the sincere behavior of agents
not only depends on his/her signal but also on his/her utility. Therefore, sincere agents with
di�erent utility functions may play di�erent strategies. Given the assumption of %⌘� > %⌘! , we
have Pr[, = ! | ;] > Pr[, = ! | ⌘] and Pr[, = � | ;] < Pr[, = � | ⌘]. As a result,
D= (A | ;) < D= (A | ⌘) and D= (R | ;) > D= (R | ⌘). Therefore, a sincere voter would play one of the
�ve strategies below based on her utility function E= .
(1) If D= (A | ;) < D= (R | ;), and D= (A | ⌘) < D= (R | ⌘), an agent always votes for R.
(2) If D= (A | ;) < D= (R | ;), and D= (A | ⌘) = D= (R | ⌘), an agent votes for R under signal ; and

votes arbitrarily under signal ⌘.
(3) If D= (A | ;) < D= (R | ;), and D= (A | ⌘) > D= (R | ⌘), an agent votes informatively.
(4) If D= (A | ;) = D= (R | ;), and D= (A | ⌘) > D= (R | ⌘), an agent votes arbitrarily under signal ; ,

and vote for A under signal ⌘.
(5) If D= (A | ;) > D= (R | ;), and D= (A | ⌘) > D= (R | ⌘), an agent always votes for A.
A sincere pro�le is also a regular pro�le, as friendly agents always vote for A, and unfriendly

agents always vote for R in their individual decisions. Therefore, applying Theorem 2, we have the
following statement.

C�������� 4. For an arbitrary sequence of instances, let {⌃# } be the sequence of sincere strategy
pro�les. Then the �delity �(⌃# ) converges to 1 if and only if ⌃# is an Y-strong Bayes Nash with
Y = > (1).

Corollary 4 tells us that sincere voting performs aswell as strategic voting if and only if itself is also
strategic. The following example illustrates di�erent behaviors of sincere voters by “manipulating”
their utility functions under the same world state and signal distribution and gives examples where
sincere voting succeeds and fails.

E������ 8. Consider the following scenario. The world state prior %� = %! = 0.5. The signal
distribution %⌘� = %;! = 0.8, and %;� = %⌘! = 0.2. By the Bayes Theorem, we compute the probability
of a world state conditioned on a private signal as follows.

Pr[, = ! | ;] = 0.8, Pr[, = � | ;] = 0.2
Pr[, = ! | ⌘] = 0.2, Pr[, = � | ⌘] = 0.8.

We assume all agents are contingent and share the same utility function, and consider three di�erent
cases as shown in Table 7. Suppose ⌃ is a strategy pro�le where all agents vote sincerely.
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(Winner, World State) (A,� ) (A, !) (R,� ) (R, !)

Case 1 1 0 0 1
Case 2 5 1 0 2
Case 3 4 1 0 2
Table 7. Utility functions for three cases.

In case 1, D= (A | ⌘) = D= (R | ;) = 0.8, and D= (A | ;) = D= (R | ⌘) = 0.2. Therefore, every sincere
voter votes informatively, and ⌃ is also informative voting. By corollary 3, ⌃ leads to the informed
majority decision if and only if the threshold 0.2 < ` < 0.8.
In case 2, D= (A | ;) = 1.8,D= (R | ;) = 1.6, D= (A | ⌘) = 4.2, and D= (R | ⌘) = 0.4. Therefore, all

sincere agents always vote for A even if they are contingent. In this case, A is always the winner, and
�(⌃) does not converge to 1.

In case 3, D= (A | ;) = D= (R | ;) = 1.6, D= (A | ⌘) = 3.4, and D= (R | ⌘) = 0.4. In this case, a sincere
agent votes A under signal ⌘, and votes arbitrarily under signal ; . Then for any 0.2 < ` < 1, ⌃ induced
by strategy f = (V; , 1) leads to the informed majority decision with high probability, where V; � 0
satis�es V; > 5` � 4 and V; < 1.25` � 0.25. These conditions guarantee the excess expected vote share
of ⌃ to be strictly positive.

As shown in Example 8, sincere agents can have drastically di�erent behaviors in di�erent
scenarios. Nevertheless, once we know the strategy of each agent, we can apply Theorem 4 to
analyze the probability of a sequence of sincere voting leading to the informed majority decision.

5 NON-BINARYWORLD STATES AND NON-BINARY SIGNALS
In this section, we discuss how we extend our model and results to a setting with non-binary world
states and non-binary signals. We follow the setting of Schoenebeck and Tao [2021]. The largest
di�erence in the non-binary setting is that the preferences of agents form a spectrum along multiple
world states. Di�erent agents have di�erent thresholds of world states in which they switch the
preferred alternatives.

World State. There are  possible world states W = {1, 2, · · · , }. The higher the world state is,
the more A is preferred to R. We use : to denote a generic world state. Let %: = Pr[, = :] be the
common prior of the world state. We assume %: > 0 for every : 2 W.

Signal. Every agent receives a signal from S = {1, 2, · · · ,"}. We use< to denote a generic signal.
Signals are i.i.d conditioned on the world state. Let %<: = Pr[(= =< |, = :] be the probability
that an agent receives signal< given world state is : . The assumption of %⌘� > %⌘! in the binary
state is extended to the following assumption of stochastic dominance, which requires signals to be
positively correlated to world states.

A��������� 1 (S��������� D��������). For any agent = and any world states :1 > :2,

Pr[(= � < |, = :1] > Pr[(= � < |, = :2] .

Utility. Every agent = has a utility function E= : W ⇥ {A,R} ! {0, 1, · · · ,⌫}, where ⌫ is the
positive integer upper bound. We assume that A is more preferable in a higher world state than
in a lower state, and R is the opposite: for any :1 and :2 with :1 > :2, E= (:1,A) > E= (:2,A), and
E= (:1,R) < E= (:2,R). We also assume E= (:,A) < E= (:,R) for any : and any =.

Fraction of agents. Given a world state : , let UA: and UR: be the approximated fraction of agents
prefer A (R, respectively) in world state : . We assume UA: and UR: are independent from # . Formally,
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given # , let # (:,A) = {= | E= (:,A) > E= (:,R)} be the set of agents preferring A in : (# (:,R)
de�ned similarly). We have |# (:,R) | = bUR: · # c and |# (:,A) | = # � |# (:,R) |. Naturally, UA:
increases, and UR: decreases as : increases. We assume that UA: and UR: are common knowledge.

Majority vote and informed majority decision. We study the majority vote with threshold `. If at
least ` · # agents vote for A, A is announced to be the winner; otherwise, R is announced to be the
winner. The informed majority decision is de�ned on each world state : . Given a world state : , if
UA: > `, we say A is the informed majority decision; otherwise, we say R is the informed majority
decision. We assume that UA: < ` for all : 2 W, and the rounding between UA: and |# (:,A) | (UR:
and |# (:,R) |, respectively) does not �ip the informed majority decision.

Types of agents. Let L = {: 2 W | UA: < `} and H = {: 2 W | UA: > `} be the sets of
world states where R (A, respectively) is the informed majority decision. We only consider the
case where both L and H are non-empty. (Otherwise, an alternative is unanimously the informed
majority decision, and there is no uncertainty.) There is a threshold partitioning W into two sets.
Let ! = max{: 2 L} to be the largest world where R is the informed majority decision, and
� = min{: 2 H} to be the smallest world where A is the informed majority decision. We have
� = ! + 1.

Similarly, for an agent =, let L= = {: 2 W | E= (:,R) > E= (:,A)} andH= = {: 2 W | E= (:,R) <
E= (:,A)}. L= (H= , respectively) is the set of world states where R (A, respectively) is preferred by =.
For a agent =, let != = max{: 2 L=} be the largest world where = prefers R, and�= = min{: 2 H=}

to be the smallest world where = prefers A. Speci�cally, let != = 0 if L= = ; and �= =  + 1 if
H= = ;. We have �= = != + 1.
(1) We say an agent = is (candidate) friendly if L \H= < ;. This says that there exists a world

state : where = prefer A while the informed majority decision is R.
(2) Similarly, an agent = is (candidate) unfriendly if H \ L= < ;. This says that there exists a

world state : where = prefers R while the informed majority decision is A.
(3) Finally, an agent = is contingent if L= = L. or equivalently,H= = H .

Unlike the binary setting, friendly/unfriendly agents in the non-binary setting do not always prefer
one alternative. They just have thresholds above or below the majority.

E������ 9. We extend the COVID policy-making scenario in Example 4 to the non-binary setting.
# = 20 voters decide whether to accept or reject the more-restrictive policy. The world states W =
{1, 2, 3} describe the risk level of the virus, whereas a larger state represents a higher risk. Suppose
%1 = %2 = 0.3, and %3 = 0.4.
Every voter receives a private signal from S = {1, 2, 3, 4}. The larger the signal is, the higher the

risk is likely to be. Table 8 is the signal distribution given the world state.

World State Signal 1 Signal 2 Signal 3 Signal 4

1 0.6 0.2 0.1 0.1
2 0.4 0.2 0.2 0.2
3 0.1 0.2 0.3 0.4

Table 8. Signal distribution.

The majority threshold is ` = 0.6. Therefore, A is the informed majority decision if and only if at
least 12 agents prefer A to R. The voters are categorized into four di�erent groups. Each group has �ve
voters, and voters in the same group share the same utility shown in Table 9. The larger the group
index is, the more voters prefer A to R.

901



EC ’23, July 9–12, 2023, London, United Kingdom Qishen Han, Grant Schoenebeck, Biaoshuai Tao, and Lirong Xia

Table 10 shows the preferences of each group and the informed majority decision under each world
state. The preference of each group comes from the comparison of utilities in Table 9. The informed
majority decision is the aggregation of group preferences. Since each group has �ve voters, and the
majority threshold is 12 agents, A needs to be preferred by at least three groups to become the informed
majority decision. Therefore, A is the informed majority decision only in state 3. By comparing the
preferences of each group and the informed majority decision, we know that group 1 voters are
unfriendly agents, group 2 voters are contingent agents, and group 3 and 4 voters are friendly agents.

Winner A R

World State 1 2 3 1 2 3

Group 1 1 2 3 8 6 4
Group 2 2 3 4 6 4 2
Group 3 2 5 8 4 3 2
Group 4 4 6 9 3 2 1

Table 9. Utility function of each group

World State 1 2 3

Group 1 R R R
Group 2 R R A
Group 3 R A A
Group 4 A A A

Informed Majority R R A
Table 10. Preference of each group and the majority.

Strategy. In the non-binary setting, a strategy can be represented as a vector f = (V1, V2, · · · , V" ),
where V< is the probability that the agent votes for A when receiving signal<. A strategy pro�le
is the vector of strategies of all agents. ⌃ = (f1,f2, · · · ,f# ).

The de�nition of the regular strategy pro�le remains the same as in the binary setting: friendly
agents always vote for A, and unfriendly agents always vote for R.

Fidelity and Expected Utility. Given a strategy pro�le ⌃, let _A: (⌃) (_
R
: (⌃), respectively) be the

probability that A (R, respectively) becomes the winner when world state is : . We can de�ne the
�delity and the expected utility in the same manner as in the binary setting.

�(⌃) =
’
:2L

%: · _
R
: (⌃) +

’
:2H

%: · _
A
: (⌃).

D= (⌃) =
 ’
:=1

%: (_
A
: (⌃) · E= (:,A) + _

R
: (⌃) · E= (:,R)).

Excess Expected Vote Share. Similarly, the excess expected vote share is the expected vote share
that an alternative attracts under state : minus the threshold of the alternative. In di�erent instances,
the informed majority decision may change in di�erent world states. Therefore, we de�ne the
excess expected vote share for both A and R in every world state.

5 #:A =
1
#

#’
==1

⇢ [-#= | :] � ` . 5 #:R =
1
#

#’
==1

⇢ [1 � -#= | :] � (1 � `).

For world states : 2 H where A is the informed majority decision, we care about 5 #:A; and for
states : 2 L, we care about 5 #:R. Therefore, we de�ne 5

# to be the smallest excess expected vote

share among those we care about, i.e. 5 # = min
⇣
min:2H(5 #:A),min:2L (5 #:R)

⌘
. We use 5:A, 5:R,

and 5 to denote excess expected vote share in symmetric pro�le sequences.

Instance and Sequence of Strategy Pro�les. Let {I# }1#=1 (or {I# } for short) be a sequence of
instances, where each I# is an instance of # agents. The instances in a sequence share the same
majority threshold `, world state prior distribution {%: }, signal prior distribution {%<: }, and
approximated type fractions (UA: ,U

R
: ). Same to the binary setting, we do not regard agents in
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di�erent instances as related and have no additional assumption on the utility functions of agents.
We de�ne a sequence of strategy pro�le {⌃# }1#=1 based on the instance sequence, where for each
# , ⌃# is a strategy pro�le in I# .
Our positive results on strategic voting can be extended to the non-binary setting. Theorem 5

states the equivalence of �delity converging to 1 and the Y-strong Bayes Nash with Y = > (1).
Theorem 6 guarantees the existence of the regular pro�le sequence with �delity converging to 1.

T������ 5. Given an arbitrary sequence of instance and an arbitrary regular strategy pro�le
sequence {⌃# }1#=1, let {�(⌃# )}

1

#=1 be the sequence of the �delities of ⌃# .
• If lim#!1�(⌃# ) = 1, then for every # , ⌃# is an Y-strong BNE with Y = > (1).
• If lim#!1�(⌃# ) = 1 does not hold, then there exist in�nitely many # such that ⌃# is NOT
an Y-strong BNE for some constant Y.

T������ 6. Given any arbitrary sequence of instances, there always exists a sequence of regular
strategy pro�les {⌃0

# }
1

#=1 such that �(⌃0

# ) converges to 1.

Theorem 5 and Theorem 6 preserves the same reasoning as Theorem 2 and Theorem 3. More
details as well as the characterization of the �delity in the non-binary setting are available in the
full version of this paper.

6 CONCLUSION AND FUTUREWORK
We study the binary voting game where agents can coordinate in groups. We show that strategic
voting always leads to the informed majority decision, while non-strategic behaviors sometimes
fail. In particular, we show that a strategy pro�le is an Y-strong Bayes Nash Equilibrium with small
Y if and only if it leads to the “correct” decision with high probability. Moreover, we analyze the
�delity of the strategy pro�le and provide criteria for judging whether a strategy pro�le is an
equilibrium based on excess expected vote share. Applying the analysis to non-strategic voting,
we characterize the conditions that informative and sincere voting lead to the informed majority
decision. Our results stand on the framework where agents have endogenous preferences over
outcomes contingent on some underlying state.

One limitation of our work is that our results are restricted to a setting with two alternatives. An
interesting yet challenging future direction is to study the impact of strategic behavior in a setting
with more than two alternatives. We expect more complicated results as Goertz and Maniquet
[2014] show that informative voting may be an equilibrium but leads to the wrong alternative in a
model of three alternatives.

Another interesting direction is to explore strategic iterative voting with information uncertainty.
We expect iterative voting to be more powerful in aggregating information and able to simulate
some sophisticated mechanisms. For example, the mechanism in Schoenebeck and Tao [2021] can
be regarded as a two-round voting game where only the second round counts, and every agent
votes informatively in the �rst round and plays a surprisingly popular strategy in the second round.
Kavner and Xia [2021] show a surprising result that strategic behaviors increase the social welfare
of agents in iterative voting on average. Nevertheless, the behavior of strategic agents is even more
complicated in iterative voting, and the analysis of equilibria will be highly challenging.
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