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ABSTRACT
Algorithmic fairness in recommender systems requires close atten-
tion to the needs of a diverse set of stakeholders that may have
competing interests. Previous work in this area has often been lim-
ited by fixed, single-objective definitions of fairness, built into algo-
rithms or optimization criteria that are applied to a single fairness
dimension or, at most, applied identically across dimensions. These
narrow conceptualizations limit the ability to adapt fairness-aware
solutions to the wide range of stakeholder needs and fairness defini-
tions that arise in practice. Our work approaches recommendation
fairness from the standpoint of computational social choice, using a
multi-agent framework. In this paper, we explore the properties of
different social choice mechanisms and demonstrate the successful
integration of multiple, heterogeneous fairness definitions across
multiple data sets.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies→Multi-agent systems; • Social and pro-
fessional topics → User characteristics.
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1 INTRODUCTION
Fairness in algorithmic systems is a complex and multi-faceted area
that is of research and practical concern. Different definitions may
apply in different contexts, to different stakeholders, and in differ-
ent types of applications. This complexity is particularly evident
in recommender systems [29] where there may be stakeholders
of interest on the consumer or provider side of the recommenda-
tion interaction, or both [6]. In the literature on fair recommender
systems, a plethora of fairness definitions have emerged in the
literature [11, 27], each with its own logic and associated algorith-
mic techniques. What nearly all of this literature has in common
is two simplifying assumptions that are severely limiting to the
potential applications of these ideas, and a barrier to deploying fair
recommender systems in practice [9].

The first limitation is an inability to capture the multiplicity
of fairness issues. With few exceptions [2, 33, 34], fairness-aware
recommender systems apply a single fairness definition to a single
protected group, potentially one on each side of the interaction.
This limitation is not realistic, as in most application contexts there
will be multiple dimensions of fairness that need to be implemented.
A second limitation is the assumption that a single fairness definition
will be appropriate, regardless of the protected group or the area of
application. An architecture that assumes fairness will always take
a certain form and measure is limited in its applicability [26].

These limitations were addressed by the introduction of the So-
cial Choice for Recommendation Fairness - Dynamic (SCRUF-D)
architecture for fairness-aware re-ranking [1, 2, 7]. In this paper,
we extend prior results with two agents with the same underlying
fairness definition to three agents with differing fairness definitions,
showing that the system can support multiple heterogeneous fair-
ness definitions simultaneously. We examine how different social
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choice mechanisms offer different trade-offs (and sometimes no
trade-off) between fairness and accuracy.

2 RELATEDWORK
Fairness in machine learning, especially in classification settings,
is a popular topic, including formalizing definitions of fairness [8,
10, 13, 17, 21] and offering algorithmic techniques to mitigate un-
fairness [18, 25, 35, 36]. However, despite these recent research
efforts, the state-of-the-art offers little concrete guidance to in-
dustry practitioners [9, 16]. The unique problems of fairness in
recommender systems have also been studied; see Ekstrand et al.
[11] for an overview. In recommendation, fairness concerns may
arise on either the consumer side or on the provider side [6]. Other
machine learning environments, such as classification, generally
only need to consider the fairness properties of the system relative
to the individuals being classified.

Both in the machine learning and the recommender systems
formulation of fairness, there has been little recognition of the in-
tersection of multiple fairness definitions and dimensions, although
recent work has noted the benefits of combining multiple fairness
definitions [3, 24]. Most existing research considers only a single
protected class. Even in cases where multiple groups are considered
[5, 15, 19, 37], fairness is defined the same way for all groups.

Many of the recent works on fair recommendation take a partic-
ular definition of fairness, and train a ranking model that includes
fairness as a type of regularization on the subsequent loss function
[23, 32, 33]. Such algorithms are brittle to changes in the definitions
or measures of fairness. Post processing of the recommendations
lists, often called re-ranking, is another popular method [12] and
one that we employ here for its ability to allowmultiple and change-
able definitions of fairness.

3 THE SCRUF-D ARCHITECTURE
The Social Choice for Recommendation Under Fairness - Dynamic
(SCRUF-D) platform was introduced in Aird et al. [2], as an exten-
sion to a simpler version found in Sonboli et al. [30]. At a high level,
SCRUF-D embodies the fairness concerns of multiple stakeholders
as a set of fairness agents that are allocated to a user when recom-
mendations are being generated. Once the agents are allocated to a
user, their ordering of items is aggregated with the user’s prefer-
ences (here coming from a traditional recommendation algorithm)
by using a choice mechanism, and the result is delivered to the user
as their recommendations.

A fairness agent is defined by three functions: a fairness metric
which is able to evaluate the history of the system and judge how
fair the system has been to the agent over some time window, a
compatibility metric which is the agent’s evaluation of how much
they want to be matched to a particular user, and a ranking function
which expresses the agent’s ordering/score of items.

When a user arrives at the system, the set of agents express
their preference for being matched with this user and their evalua-
tion of how fair the system has been. These scores are passed to
an allocation mechanism which outputs a (randomized) allocation
over the set of agents. Formally this is a probability distribution
over the agents, and we examine different allocation functions.

Once we have an allocation, the system generates an initial rec-
ommendation scoring of the items for the user using any standard
recommendation algorithm. Each of the allocated fairness agents
also express their ranking/scores of the items to give us a set of
lists of items. These lists are then passed through a choice function,
which aggregates these lists into a final recommendation.

4 FAIRNESS AGENTS
By necessity, our choice of fairness metrics is somewhat arbitrary.
While our metrics are informed by research in particular application
areas, we have not yet engaged in the full cycle of stakeholder
consultation that would be required to formulate specific fairness
metrics appropriate to each stakeholder group. Note also that we
are examining only provider-side group fairness; consumer-side
and individual fairness we leave to future work.

The literature of provider-side fairness measures in recom-
mender systems is extensive; see Ekstrand et al. [11]. For the present
study, we make use of fairness metrics that can be tied to a partic-
ular protected group. This excludes global fairness measures that
provide a score for the overall performance of the system relative
to a fairness target distribution 1.

In this paper, we explore the following types of fairness met-
rics. Note that we are not proposing these classes of metrics as
appropriate or desirable for any particular application of fairness-
aware recommendation. The goal in formulating these metrics is
to implement common but very different types of fairness met-
rics and demonstrate the ability of SCRUF-D to accommodate this
heterogeneity across agents:

Group Proportional Fairness (𝑚𝐺𝑃𝐹 ): Under group propor-
tional fairness, we assume that there is a fixed proportion of recom-
mendation results associated with the protected group that counts
as a fair result from that group’s perspective. We count the number
of items that protected items appear across some set of recommen-
dation lists, divide by the total number of recommendations and
normalize by the desired target proportion, truncating at 1 once
the target proportion is reached to maintain the 0..1 range.

Group Utility Fairness (𝑚𝐺𝑈𝐹 ):While𝑚𝐺𝑃𝐹 above captures
the presence or absence of protected items in a list, it is indifferent
to the item’s position. However, highly-ranked positions may be of
greater utility to providers. Also,𝑚𝐺𝑃𝐹 does not take into account
the number of items that might be in each category. These consider-
ations can be captured by modifying𝑚𝐺𝑃𝐹 to sum rank-discounted
utilities (here we discount by 𝑙𝑜𝑔2 of the rank) rather than just
count occurrences, and to normalize the utility for protected and
unprotected groups by their respective sizes.

Group MRR Fairness (𝑚𝑀𝑅𝑅): The measures above look at
all recommended items in a set of lists summing a total value for
protected items. In some cases it might be desirable to focus on
a minimal degree of representation across recommendation lists,
and we capture this type of metric using mean reciprocal rank. We
average the reciprocal rank of the highest ranking protected item
across all lists and normalize by the target MRR value.
1An agent seeking fairness with respect to such measures could be implemented within
SCRUF-D but it would be using a single definition of fairness on all groups, a different
case from what we are considering here.
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5 METHODOLOGY
We make use of two data sets MovieLens and Microlending. For
each data set, we define three sensitive attributes and protected
values and define an agent for each using metrics based on the
three different definitions above. The MovieLens 1M dataset [14]
contains user ratings for movies with has 3,900 movies, 6,040 users,
and approximately 1 million ratings. We consider the sensitive
attributes in this dataset to be (1) movies with at least one female
writer and/or director, (2) movies with non-English scripts, and
(3) older movies (released before 1990). Our second dataset is the
Microlending 2017 dataset [28]. This dataset includes 2,673 pseudo-
items2, 4,005 lenders and 110,371 ratings. We consider the sensitive
attributes in this dataset to be (1) loans from countries with low
funding rates, (2) loans funding sectors that have low funding rates,
and (3) loans larger than $5,000.

5.1 Agent Definitions
As noted in Section 3, fairness agents in SCRUF-D are defined by a
fairness metric, a compatibility metric, and a ranking function. In
this study, we concentrate on the fairness metric.

We define the compatibility between a user and an item
feature as the frequency of occurrence of that feature among
the items that the user likes. For the Microlending dataset,
all funded loans are considered liked; in the Movies dataset,
we categorize any movie with a rating over 3 as liked. Com-
patibility is calculated as 𝑐𝑢,𝑓 = 𝑝𝑢,𝑓 /𝑝 𝑓 where 𝑝𝑢,𝑖 =

count of liked items with feature f/total count of items rated and
𝑝 𝑓 is the average number of items with feature 𝑓 . The compat-
ibility scores are normalized across features for each user.

For ranking, we use two approaches depending on the type of
choice mechanism. For the Rescoring Mechanism, we use a simple
binary partial order V𝑠 > V¬𝑠 where the agent prefers all items
that it considers as protected. For our other choice mechanisms,
this two-level partial ranking works poorly as it induces many
ties, forcing the system to rely on an arbitrary tie-breaking rule.
To address this issue, we implement a cascaded ranking function
that integrates both the protected class preference and inherits, as
a secondary ranking criterion, the ranking of the recommender
system agent. This is effectively the same as moving all of the
protected items to the front of the recommendation list, keeping
the between-item preferences the same. This method removes ties,
inducing a total order.

For each of our datasets we define three different fairness agents,
with three different metrics, to explore the flexibility and trade-
offs of SCRUF-D. For the Microlending experiments, the first agent
is focused on loans in amounts greater than $5,000, which are
considered to have proportionally stronger economic impact but
also tend to be funded at a lower rate. This agent aims to have such
loans represented across the recommendation lists with MRR target
value of 0.5. The second agent is focused on loans from countries
with low funding rates. The aim for this agent is to ensure higher
utility for loans for countries with historically low funding rates.
2The Microlending 2017 dataset represents user preferences relative to clusters of
items (pseudo-items) in place of individual loans since loans in this dataset have small
numbers of associated users and the unclustered data is too sparse for collaborative
recommendation. See [28] for additional details.

The third agent focuses on loans from sectors with low funding
rates. This agent uses the proportional definition of fairness; the
goal is that 20% of all loans recommended are from sectors with
historically low funding rates. For the Movie data experiments, the
first agent is focused on movies with women writers and directors.
This agent is to ensure that a movie with a woman writer and/or
director is in the top 1–2 positions of users’ lists. The second agent
is focused on non-English movies. This agent has a goal of ensuring
non-English movies receive equal utility compared to movies in
English. The third agent is focused on older movies, with the goal
of making 25% of all recommended movies older movies.

5.2 Mechanisms
Instantiating the SCRUF-D system requires choosing mechanisms
that will be applied in the allocation and choice phases. There are a
wide variety of options for each of these tasks. For the purposes of
this study, we concentrate on three allocation mechanisms:

Least Fair: This mechanism allocates a single agent for each
recommendation opportunity by comparing the fairness metric𝑚𝑖

for each agent and allocating the agent with the lowest value. If all
agents have a fairness of 1.0 (the target), then no agents are allocated
to the arriving user(s). This mechanism ignores the compatibility
computation, which optimizes fairness but as we show, ignoring
the user’s preferences results in a greater loss of accuracy.

Lottery: This mechanism allocates only a single agent using a
non-deterministic allocation [4] over the set of agents using a prob-
ability distribution. The distribution is computed by calculating the
product of unfairness (1 - fairness) and compatibility, where each is
raised to a small integer power. An agent is to a recommendation
opportunity with high probability if fairness need and the compat-
ibility are high, and the exponentiation allows the product to be
tuned. In our experiments we set the power of compatibility to 2,
which discounts it somewhat compared to fairness. These scores
are computed over all agents and normalized to sum to 1.

Weighted: The weighted mechanism uses the same distribution
as calculated for the Lottery mechanism, but instead of selecting
only a single agent, all agents with fairnness < 1.0 are allocated
and weighted according to their value in the distribution.

These allocation mechanisms allow us to explore two key aspects
of the SCRUF-D platform. First, by comparing Least Fair against the
other mechanisms, we can see the value of considering user char-
acteristics in agent allocation. Second, by comparing the Lottery
vs Weighted schemes, we can see the difference between sending
all of the agents to the choice phase as opposed to allocating a
single agent. Since the scoring and re-ranking processes can be
computationally intensive, there is an advantage to having only
two agents in the choice phase if there is no cost in performance.

In the choice phase, we have again a wide variety of preference
aggregation schemes to choose from. SCRUF-D integratesWhalrus3,
a well-known library implementing a variety of voting rules. From
the available methods, this paper explores three:

Borda: The Borda method [38] assigns a score to each rank
and sums these scores for every item to achieve a final scoring
/ ranking. To allow our implementation to be tuned for the best
trade-off between fairness and accuracy, we use a weighted version
3https://github.com/francois-durand/whalrus
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(a) Microlending data (b) Movies data

Figure 1: nDCG vs 𝑙1/2 Fairness Norm for Microlending (Left) and Movies (Right).

of the method with the recommender weight set to 0.6. This gives
the recommender 1.5x as much weight in the final outcome as
compared to the allocated agents.

Copeland: The Copeland mechanism is a pair-wise method. It
uses the win-loss record for each pair of items on each the ballot,
and awards each item a point per win. These scores are then used
to order the items [22]. We use a weighted version; as with Borda,
this is realized by multiplying the number of ballots.

Rescoring: The Rescoring mechanism makes use of the scores
from the recommendation function, rather than only rankings. A
linear combination of the scores from each allocated agent (and the
recommender) are computed and the items are reordered based on
these values. In our scoring function, an agent contributes a fixed
𝛿 = 0.5 to the score for protected items and 0 for unprotected items4.
The values are weighted first by the agent’s allocation weight and
then by the inverse of the weight associated with the recommender.

These mechanisms allow us to explore several dimensions of
preference aggregation. First, there is the pair-wise versus scoring-
based distinctionwith Copeland, the pair-wise option. Second, there
is the difference between ordinal social choice methods and the
Rescoring method that makes use of the real-valued predicted rat-
ings arising from the recommendation function.

Layering the allocation and choice mechanisms onto an existing
recommender system introduces a small computational overhead
(complexity), however, we see the risks of integrating a single fair-
ness definition into the recommender (which would need to be
completely retrained for a new metric) as far outweighing the
(computational) cost. In terms of the allocation stage, each of the
proposed mechanisms can be computed from the lottery history
in O(𝑛) time where 𝑛 is the length of the history to be considered.
This computation is bounded by the window size and can scale
depending on how reactive we want the system to be. For the choice
mechanism, Borda and Rescoring can be computed in O(𝑛) while
Copeland is O(𝑛2) where 𝑛 is the number of elements in the output
list [38]. We expect in most practical applications for both of these
to be smaller numbers which do not incur significant overhead.
4This 𝛿 value was found to provide a good fairness / accuracy trade-off in prior work.

5.3 Evaluation
We evaluate the results of these experiments examining fairness
and accuracy. All results were computed over five training / test
folds of the data and averaged. Fairness is computed relative to
the metric associated with each agent. However, this summative
fairness score is over the entire experiment, not the time-bounded
window that agents compute over during experiment execution.

We summarize the fairness scores across all the agents using
a function of the 𝑙1/2 norm of over the fairness scores for each
individual agent [20]. This metric is maximized (and equal to the
mean) when all of the scores are equal, and it is below the mean
when the scores are unequal. The value is normalized to [0, 1].

Accuracy is computed using nDCG based on held-out test data
in each data set. For the purposes of this study, we did not use any
other algorithms as comparators; we are only comparing SCRUF-
D’s output against the non-re-ranked results. As noted in Section 2,
there are very few algorithms that attempt to address multiple fair-
ness concerns simultaneously and only one, OFair [31], is capable
of supporting heterogeneous fairness definitions. Prior work found
that OFair is not competitive against SCRUF-D [2].

6 RESULTS
Figure 1a shows the results for the Microlending data comparing ac-
curacy (x-axis) with the 𝑙1/2 fairness norm on the y-axis. (Individual
fairness results for each agent are not included for reasons of space.)
Although Least Fair has very strong fairness outcomes across differ-
ent options for the choice mechanism, it suffers from low accuracy.
This matches our expectation that taking user compatibility into
account allows the system to make a better trade-off.

For the Borda and Rescore choice mechanisms, the Lottery and
Weighted allocations look quite similar considering their 95% confi-
dence intervals, suggesting that these allocation mechanisms can
give similar results. This is encouraging because the Lottery has
the potential for greater efficiency.

Across the choice mechanisms, Borda tends to have the smallest
fairness improvement and does a somewhat better job of preserv-
ing accuracy. Copeland offers improved fairness, but these choice
mechanisms are dominated by Rescore, which achieves better than
0.9 on the 𝑙1/2 metric without a noticeable loss in accuracy.



Social Choice for Heterogeneous Fairness in Recommendation RecSys ’24, October 14–18, 2024, Bari, Italy

Figure 1b shows the positioning of the different mechanism com-
binations in the accuracy / fairness space for the Movies dataset. We
still see Rescoring as dominant and Borda in a lower fairness/higher
accuracy position, with Copeland somewhere in the middle. We
also see the Rescore and Copeland mechanisms clustered at the
far right indicating that they are able to reach the fairness targets
across all the agents almost fully.

One interesting difference is the positioning of the Lottery and
Weighted mechanisms. In the Microlending data, these mechanisms
gave similar results with Lottery a bit lower in accuracy. In the
Movies results, the difference is more pronounced and there is
greater cost for the Lottery mechanism. On the other hand, the
accuracy values are closer to baseline in Movies, showing that high
fairness does not have to come at the cost of accuracy loss.

7 CONCLUSION
This paper addresses two key limitations in existing fairness-aware
recommendation research that have not been addressed in prior
work. First, we formulate multiple definitions of provider-side fair-
ness relevant to real-world datasets. Prior work has been limited to,
at most two concerns, usually on different sides of the recommen-
dation interaction. Second, the work posits heterogeneous fairness
definitions, allowing different fairness issues to be represented by
different metrics. We believe that allowing a multiplicity of con-
cerns and allowing for varied fairness definitions and targets is
essential in practical settings.

In the context of computational social choice, we show that
SCRUF-D is compatible with a range of different allocation and
choice mechanisms and, while some general patterns can be seen,
that these mechanisms work differently across recommendation
domains and datasets. We find that in some datasets a Lottery
mechanism can be competitive with one that allocates multiple
fairness agents at a time, suggesting potential efficiency in applying
these techniques in practice.

Numerous additional challenges remain. This work has concen-
trated on provider-side group fairness under multiple definitions.
Additional definitions exist and are worth exploring. There is also
the question of scale: how many simultaneous agents can be sup-
ported? In addition, we believe that SCRUF-D is capable of support-
ing individual fairness and consumer-side fairness, but additional
work needs to be done to demonstrate this capacity.
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