Where dust comes from: Global assessment of dust source 1 attributions with AeroCom models 2 3 Dongchul Kim^{1,2}, Mian Chin², Greg Schuster³, Hongbin Yu², Toshihiko Takemura⁴, Paolo 4 Tuccella⁵, Paul Ginoux⁶, Xiaohong Liu⁷, Yang Shi^{7,8}, Hitoshi Matsui⁹, Kostas Tsigaridis^{11,10}, 5 Susanne E. Bauer^{10,11}, Jasper F. Kok¹², and Michael Schulz¹³ 6 ¹University of Maryland, Baltimore County, Baltimore, MD, United States 7 ²NASA Goddard Space Flight Center, Greenbelt, MD, United States 8 ³NASA Langley Research Center, Hampton, VA, United States 9 10 ⁴Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan ⁵University of L'Aquila, L'Aquila, Italy 11 12 ⁶NOAA/OAR, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, United States ⁷Texas A&M University, College Station, TX, United States 13 ⁸Now at Massachusetts Institute of Technology, Cambridge, MA, United States 14 ⁹ Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan 15 ¹⁰NASA Goddard Institute for Space Studies, New York, NY, United States 16 ¹¹Center for Climate Systems Research, Columbia University, New York, NY, United States 17 ¹²University of California, Los Angeles, Los Angeles, United States 18 ¹³Norwegian Meteorological Institute, Oslo, Norway 19 20 **ABSTRACT** 21 22 The source of dust in the global atmosphere is an important factor to better understand the role of 23 dust aerosols in the climate system. However, it is a difficult task to attribute the airborne dust 24 over the remote land and ocean regions to their origins since dust from various sources are mixed 25 during long-range transport. Recently, a multi-model experiment, namely the AeroCom-III Dust 26 Source Attribution (DUSA), has been conducted to estimate the relative contribution of dust in 27 various locations from different sources with tagged simulations from 7 participating global 28 models. The BASE run and a series of runs with 9 tagged regions were made to estimate the 29 contribution of dust emitted in East- and West-Africa, Middle East, Central- and East-Asia, 30 North America, the Southern Hemisphere, and the prominent dust hot spots of the Bodélé and

Taklimakan Deserts. The models generally agree in large scale mean dust distributions, however models show large diversity in dust source attribution. The inter-model differences are significant with the global model dust diversity in 30 - 50 %, but the differences in regional and seasonal scales are even larger. The multi-model analysis estimates that North Africa contributes 60 % of global atmospheric dust loading, followed by Middle East and Central Asia sources (24 %). Southern hemispheric sources account for 10 % of global dust loading, however it contributes more than 70 % of dust over the Southern Hemisphere. The study provides quantitative estimates of the impact of dust emitted from different source regions on the globe and various receptor regions including remote land, ocean, and the polar regions synthesized

Corresponding author: Dongchul Kim (dongchul.kim@nasa.gov)

Key points:

from the 7 models.

• Contributions of various dust sources are quantitatively estimated in a multi-model experiment.

 Contributions of various sources have different horizontal and vertical distributions and seasonality.

• Dust near source regions are dominated by dust emitted in the upwind source regions; however many remote land, ocean, and polar regions are affected by a mixture of dust from various sources around the globe.

1. Introduction

Mineral dust aerosols are small airborne particles, primarily emitted from soils by aeolian processes including saltation and aerodynamic entrainment (Gillette et al. 1998; Marticorena and Bergametti, 1995; Marticorena et al., 1997; Macpherson et al., 2008; Shao et al., 2011). As the most abundant aerosol type by mass in the Earth's atmosphere, mineral dust plays an important role in global climate by interacting with incoming and outgoing radiation, providing liquid and ice cloud nuclei, and affecting atmospheric stability (Haywood et al., 2005; Forster et al., 2007; Evan et al., 2008, DeMott et al., 2010; Creamean et al., 2013; Colarco et al., 2014; Rosenfeld et al., 2014; Shi and Liu, 2019; Jordan et al., 2020; Shi et al., 2022; Kawai et al., 2023). Dust has important implications on global biogeochemical cycles through fertilizing terrestrial and ocean

67 ecosystems and modulating carbon uptake (Albani et al., 2014; Jickells et al., 2005; Maher et al., 68 2010; Yu et al., 2015; Checa-Garcia et al. 2021; Westberry et al., 2023). Also, dust is a major 69 PM_{2.5} aerosol contributor over or near dust source regions across the global (Hand et al., 2017, 70 Bauer et al., 2019). 71 72 Dust source regions on a global scale have been extensively studied from many previous 73 investigations (e.g., Tegen and Fung, 1995; Ginoux et al., 2001, 2012; Zender et al., 2003; Shao 74 et al., 2011; Kok et al., 2021a-b, 2023). The majority of dust mass is emitted from the so-called 75 dust-belt which includes North Africa, the Middle East, and East Asia. Other regions like North 76 America, South America, South Africa, and Australia are also known as important dust source 77 regions contributing dust to the Earth's atmosphere. Once emitted, dust can travel thousands of 78 kilometers across the entire hemisphere, and some of them reach pristine remote areas and the 79 polar regions. These long-range transported dusts have profound impacts on the regional 80 hydrological cycle and climate system when they are deposited on snow and ice surfaces, by 81 decreasing surface albedo and increasing snow and ice melting (Bullard et al. 2016). Dust from 82 different sources is known to have different mineral compositions, and thus different optical 83 properties, with important implication for climate studies (Formenti et al., 2014; Engelbrecht et 84 al., 2016; Di Biagio et al., 2017). 85 86 Because of the importance of the long-range transported dust in the Earth's atmospheric system, 87 several studies have investigated the source-receptor relationships between major dust sources 88 and various receptors over land, ocean, and the polar regions by using global model simulations, 89 inverse modeling approaches, and composite methods (Mahowald et al., 2005 and references 90 therein; Shao et al., 2011; Hamilton et al., 2019; Kok et al., 2021a, 2021b, 2023). These studies 91 commonly indicate the significant contribution from various sources to the global dust 92 distribution including remote oceans, such as the Northern Pacific and the Northern Atlantic 93 Oceans. However, they also show a wide range of differences between studies, which can reach 94 up to a factor of more than ten, mainly associated with the complex surface and atmospheric 95 processes, including emission parameterization, dry deposition, wet deposition, and atmospheric 96 dynamics (Huneeus et al., 2011; Kim et al., 2014, 2019). Although dust emission is one of the 97 most important drivers for the global and regional dust cycle, the relative contribution of various 98 dust sources to remote areas via long range transport is not well studied.

99 100 It is challenging to attribute dust sources over the remote land and ocean regions, since dust is 101 mixed during long-range transport, where it experiences complex atmospheric processes, 102 including horizontal and vertical-advection, wet deposition, and dry deposition. The spatial and 103 temporal variation of dust emission is also an important factor in estimating dust source 104 attribution. A recent study has estimated the relative contribution of various sources over the 105 remote ocean and polar regions using an inverse modeling technique, showing that dust over 106 most regions are a mixture from many different sources (Kok et al., 2021a,b). However, it is still 107 necessary to conduct more concerted studies to assess the robustness of estimated dust source 108 attributions on global and regional scales. 109 110 We report here the results from a recent multi-model experiment named Dust Source Attribution 111 (DUSA), under the umbrella of the internationally coordinated AeroCom Phase III project. Using 112 the multi-model simulations that tag dust emission and transport from 9 dust source regions in 113 the world, the DUSA study aims to (1) examine the model diversity in dust source attribution 114 and (2) estimate the contribution of dust sources to various receptor regions, including remote 115 land/ocean and the polar regions in different altitudes, from the multi-model statistics. 116 117 The rest of the paper is organized as follows. In section 2, we describe the domains of dust 118 sources and receptors used in this study, the participating global models, and the experiment 119 setup. The source contributions are compared between models in section 3, the source 120 contributions from the multi-model mean are analyzed in section 4, and the impact of sources on 121 various receptor regions are presented in section 5. Finally, discussions and summary are given 122 in section 6 and 7, respectively. 123 124 2. Method 125 AeroCom is an internationally coordinated effort to advance the understanding of atmospheric 126 aerosols and to document and diagnose differences between models and observations 127 (http://aerocom.met.no). The DUSA experiment, as a part of the AeroCom phase III experiments, 128 has been conducted with a goal to better understand the relative role of various sources in the 129 global dust distribution, including for dust in remote land, ocean, and polar regions as well as in

the planetary boundary layer and the free troposphere. Seven models have participated in the

131 AeroCom-III/DUSA experiment, and they have provided daily and monthly model output from 132 2009 to 2012. Each model provided a BASE run, which is a standard model simulation, and 133 multiple experimental runs with tagged source regions. 134 135 The major sources of mineral dust are well recognized as most of the air-borne dust originate 136 from a few major arid and semiarid regions in North Africa, the Middle East, and Asia, which 137 account for more than 80% of global dust emission, with other smaller dust sources accounting 138 for the remaining portion (Ginoux et al., 2012). The DUSA experiment considers 9 dust source 139 regions that comprise nearly all dust sources except for the Arctic sources, as shown in Figure 1. 140 The source regions include West Africa (WAF), East Africa (EAF), Bodélé Depression (BOD), 141 Middle East (MDE), Central Asia (CAS), East Asia (EAS), Taklimakan desert (TAK), North 142 America (NAM), and the Southern Hemisphere (SOH), which in turn contains dust sources in 143 South America, southern Africa, and Australia. Each model provides a total of 10 simulations, 144 including one BASE simulation with all sources (see Figure S1) and 9 tagged dust source 145 simulations, each with dust emission from a particular source region excluded. The difference 146 between the dust from the BASE run and the tagged run (i.e., BASE minus Tag) are considered 147 as dust from the tagged region. It is worth noting that the sum of dust from all tagged regions is 148 not always the same as total dust from the BASE simulation, which can be explained by a) there 149 are some dust emissions outside of the prescribed tagged regions, and b) model simulations with 150 interactions between aerosol and radiation or cloud can cause changes of the meteorological 151 conditions (such as winds, circulations, precipitation). They induce the differences in dust 152 quantities between BASE and the sum of the 9 tagged runs (denoted as SUM). The global 153 difference of dust emissions between BASE and SUM is between 0 and 2.5 % for the 7 models. 154 To conserve the mass, we use SUM as total dust in most of the DUSA analysis, otherwise specified as BASE. 155 156 157 We define 14 receptor regions across the globe for budget analysis of the source-receptor 158 relationships. They consist of 7 land regions, 5 ocean regions, and 2 polar regions (Figure 2). The 159 land receptor regions include 5 populated regions (i.e., North America (NAM), Europe (EUR), 160 India (IND), East Asia (EAS), and Tropical North Africa (TNAF)) and 2 relatively remote 161 regions (i.e., Amazon (TMZ) and Tibetan Plateau (TBP)). Tibetan Plateau is defined as the area 162 where the elevation is higher than 4 km in the region (70°E~120°E; 29°N~40°N). The ocean

163 regions are grouped to the North Atlantic (NATL), South Atlantic (SATL), North Pacific 164 (NPAC), South Pacific (SPAC), and Indian Ocean (INDO). The Arctic (ARC) and Antarctic 165 (AARC) regions are defined as the area with latitudes higher than 66.3°N and 66.3°S, 166 respectively. The 7 land receptor regions are chosen by the importance in the geochemical cycles 167 and source-receptor relationship. And the other 7 regions are chosen to cover all the oceanic 168 regions and two polar regions. 169 170 The 7 participating models are GFDL-AM4, CAM5-ATRAS, CESM2.1.3 (hereafter CESM2), 171 GEOS-GOCART (hereafter GEOS), GEOS-Chem, GISS-ModelE2.1.1-OMA (hereafter GISS-172 OMA), and MIROC-SPRINTARS (hereafter SPRINTARS). The model setup and configurations 173 are model-dependent, for example, their horizontal resolutions range from 0.5° (longitude) $\times 0.5^{\circ}$ 174 (latitude) in GEOS to 2.5°×2° in GEOS-Chem and GISS-OMA (Table 1). Vertical coordinates 175 range from 30 layers in CAM5-ATRAS to 72 in GEOS. The meteorology fields that drive dust 176 emissions, transport, and deposition in most models are simulated with various levels of 177 observational nudging and reinitialization. 178 179 There are also similarities and differences in dust physical properties among models. Although dust density values are similar across the models at 2.5 or 2.65 g cm⁻³, the range of dust size and 180 181 the number of size groups are different (Table 1). GFDL-AM4, GEOS, and SPRINTARS have 182 the same size range (0.1-10 µm in radius), but size bins in SPRINTARS are different from 183 GFDL-AM4 and GEOS. CAM5-ATRAS and GEOS-Chem have similar maximum dust size (5 184 and 6 µm in radius, respectively) but CAM5-ATRAS considers several additional ultra-fine 185 aerosol bins with radius at 0.0005-0.078 μm. Overall, the maximum dust particle size of 16 μm 186 in radius from GISS-OMA is the largest among all models. While most models report dust 187 particle size range in each bin and the size distribution for dust emission and mass concentration 188 are same, CESM2 specifies 3 size modes for dust emissions in the ranges of 0.01-0.1-1.0-10.0 189 µm of modal diameter. Dust is assumed to be internally mixed with other aerosol species in each 190 mode and the mode diameters are freely evolving with time and locations. All models calculate 191 dust emissions driven mostly by either 10-m wind or friction velocity and dust loss processes of 192 dry deposition (including gravitational sedimentation and surface layer aerodynamic dry 193 deposition) and wet deposition (including in-cloud rainout and below-cloud washout). The dust

194 optical depth (DOD) is calculated from dust column mass by using the mass extinction efficiency 195 (MEE), which is computed from the refractive indices of dust and particle size distributions. 196 However, these physical and optical properties and atmospheric processes are mostly calculated 197 with various degrees of parameterizations that can vary significantly among models. 198 199 In most of the analysis presented in this study, we use the percentage of dust mass fraction from 200 a particular source region, F_{src} , to quantify the relative contributions of region-specific dust in 201 horizontal and vertical spaces. By definition, F_{src} is simply the percentage of dust from a tagged 202 source region to total dust in SUM. Following previous AeroCom multi-model studies (e.g., 203 Textor et al., 2006; Schultz et al., 2006; Kim et al., 2019), we use the term "diversity" to express 204 the differences among model simulated quantities, which is defined as the ratio of standard 205 deviation of the model results to the multi-model mean in percentage. 206 207 3. Comparisons of dust source contribution between the models 208 3.1 Global dust budget and evaluation 209 We first examine the global dust budget related variables from the BASE simulations of the 210 participating models (Table 2). The multi-model mean and standard deviation of global total emission (EMI) are 2196 ± 1091 Tg yr⁻¹, where the difference among the models is almost a 211 factor of four with the largest emission in CAM5-ATRAS (4311 Tg yr⁻¹) and the lowest emission 212 in GEOS-Chem (1130 Tg yr⁻¹), which is consistent with previous estimations (Huneeus et al., 213 214 2011; Kok et al., 2021b). Globally, the annual mean of total deposition (DEP) amount is 215 approximately the same as the total emission (within a few percent of difference). The multimodel mean of dust column loading (LOAD) and DOD are 21.4 ± 9.4 (Tg yr⁻¹) and $0.023 \pm$

216 217 0.007, respectively. Model diversity of EMI and DEP is around 50 % while the diversities of

218

219

220

221

222

223

224

225

LOAD and DOD are slightly lower with the values of 44 % and 31 %, respectively. Three

models (i.e., GFDL-AM4, GEOS, and SPRINTARS) have the same particle size range but they

still differ by 61 % in emission and 80 % in column loading. The differences among models are a

factor of three or four in global dust emission, loading, and DOD. From previous studies, it has

been revealed that most parameters associated with dust cycles exhibit large diversities among

models, including size distributions, emission parameterizations, surface conditions, dry- and wet

removal schemes, advection/convection transport schemes, and MEE (Kim et al., 2014, 2019).

226 Although most dust quantities listed in Table 2 are difficult to observe such that there is no 227 credible data to evaluate or constrain them, the coarse-mode AOD (AODc) from the ground-228 based AErosol RObotic NETwork (AERONET) retrievals (SDA algorithm of Version 3, Level 2) 229 (Holben et al., 1998; O'Neill et al. 2003) can be considered as the closest proxy of DOD from 230 observations, even though not all the coarse-mode aerosols such as sea-salt are dust and some 231 dust is in the fine-mode. Here, we compared the monthly averaged model simulated DOD with 232 the monthly averaged AODc from AERONET in Figure 3, following previous studies (e.g., Kim 233 et al., 2021). The model grid points nearest to AERONET locations are chosen in the comparison. 234 235 A total of 55 AERONET sites were chosen, based on a previous dust study by Capelle et al. 236 (2018), with AODc data available for the study period of 2009-2012. While the mean DOD in 237 these 55 AERONET sites is 0.142, modeled mean DODs at the same locations have a wide range from 0.063 (SPRINTARS) to 0.219 (CAM5-ATRAS) (Figure 3a). Correlation coefficient 238 between model simulated DOD and the AERONET are in the range of 0.476 for GISS-OMA to 239 240 0.862 for GEOS. Normalized standard deviations to observation in models are between 0.64 for 241 SPRINTARS and 1.87 for CAM5-ATRAS. Overall, the Taylor diagram of the comparison 242 shows that models have a certain level of skills in simulating global dust in terms of DOD, 243 however, they exert significant discrepancies (Figure 3b). The multi-model mean DOD is 0.131 244 for the 55 sites, which is 22 % lower than the mean AODc from AERONET, and its correlation 245 coefficient with AERONET AODc is 0.67. The horizontal distribution of the multi-model mean 246 DOD captures that of the AERONET AODc (Figure 3c). The spatial distribution of models and 247 remote sensing (i.e., MODIS) capture the dominant contribution of the dust belt, however the 248 detailed structure and magnitude vary by models (Figure S2). The multi-model mean also shows 249 a reasonable performance when its deposition is compared with observations with a correlation 250 coefficient of 0.71 (Albani et al., 2014, Figure S3). 251 252 3.2 Dust source contribution from the AeroCom models 253 In this section, we show the fractions of dust emitted from each tagged region to total global dust 254 emission (SUM) from the models (Figure 4 and Table 3). From the multi-model mean, 255 contributions of North African sources to total dust emissions are 24.3 %, 19.0 %, and 8.7 %, for 256 WAF, EAS, and BOD, respectively; together, North Africa (WAF+EAF+BOD) accounts for 52 % 257 of total dust emission, representing the most significant dust source region. Although BOD is

258 considered as a prominent dust source in North Africa, the model estimates that only 8.7±5.3 % dust is emitted from BOD. The 2nd largest dust source region group is western Asia (MDE and 259 CAS) that account for 25 % of total dust emissions with MDE and CAS contribute 14.5 % and 260 261 10.5 %, respectively. For the rest of the dust regions in the northern hemisphere, eastern Asia contributes to 9.1 % (5.3 % from EAS and 3.8 % from TAK), and NAM contributes to only 262 263 1.2%. Together, the dust source regions in the northern hemisphere emit 87.3% of dust whereas 264 the southern hemisphere SOH contributes to 12.7 %. 265 266 The regional emissions and their relative contributions from each individual model are also 267 detailed in Figure 4 and Table 3. Most models agree that WAF (24 ~ 36 %) emits more dust than 268 EAF (15 ~ 23 %), except for CESM2 (8 % for WAF and 26 % for EAF). Most models also agree 269 that North Africa (WAF+EAF+BOD) is the most significant dust source accounting for about 270 one half of total dust emission (46 % \sim 62 %), except for CESM2 (34 %). The region among the 271 largest differences in model estimated emissions is SOH with the maximum-to-minimum 272 emission ratio of a factor of 19 and diversity of 113%. Although the diversity is even larger for 273 NAM, the emission amount is very small compared to other regions. The differences over 274 regions in Asia (MDE, CAS, TAK, and EAS) are also large with the max-to-min ratio of dust 275 emissions ranging from a factor of 6 (MDE) to 13 (TAK) and diversity from 59 % (CAS) to 87 % 276 (MDE). The models agree the best over the Northern Africa regions, although the max-to-min 277 ratio is still a factor of 3-5. 278 279 The source contributions to the global dust are also calculated for LOAD and DOD. As shown in 280 Figure 4, the regional percentage contributions to EMI, LOAD, and DOD are quite similar for 281 each model, suggesting that the contributions of dust column load and DOD from different 282 source regions are closely proportional to the regional emissions on global and annual average 283 bases. As displayed in Figure 4, CESM2 shows a remarkably larger fraction of dust from SOH (around 30 % for emission, load, and DOD) than from all other models (from 3 % to 14 %). 284 285 Conversely, it attributes a much smaller fraction of dust from WAF (≤ 10 % for emission, load, 286 and DOD) than the rest of the models (from 25 % to 40 %) due to the source function (Zender et 287 al., 2003) used for dust emission (Wu et al., 2020). A recent study has implemented several new parameterizations of aeolian processes (e.g., soil size distribution, drag partitioning, intermittent 288

289 dust emissions by turbulent wind) to further improve the spatial distribution in CESM2 (Leung et 290 al., 2024). 291 292 3.3 Spatial features of regional dust contributions simulated by models: WAF as an 293 example 294 We choose a case of WAF to demonstrate how models are compared for the dust mass load 295 (Figure 5) and vertical zonal mean of dust mass concentrations (Figure 6) from that region as 296 well as the F_{src} of WAF average for 2009-2012 (Similar plots for all tagged regions are included 297 in Figure S4-S21). While most of the WAF generated dust is transported to the west by the trade 298 winds across the Atlantic Ocean (Figure 5), a branch of eastward transport appears following the 299 prevailing-westerlies. As a result, F_{src} is highest over the source region of West Africa (>80 %) 300 and the North Atlantic Ocean ($40 \sim 80 \%$), and moderate F_{src} values ($20 \sim 40 \%$) appear over 301 the mid- and high latitude of the Northern Hemisphere. The magnitude of F_{src} of WAF is 302 different between models with the highest global value in SPRINTARS (20.3 %) and the lowest in CESM2 (8.8 %), while multi-model mean is about 28 %. The models also show different 303 304 transport features, for example, CAM5-ATRAS has the highest dust load but dust is more 305 concentrated near the source, whereas the load in GISS-OMA is lower than CAM5-ATRAS but 306 dust is more widely spread to downwind regions. 307 308 The zonal mean vertical distributions of dust concentrations and F_{src} of WAF between models 309 are compared in Figure 6. All models show highest value over the latitudes of West Africa (10°N 310 ~ 30°N) in the range of 30 ~ 70 %. Vertical extent depends on models; some models (GFDL-311 AM4 and GISS-OMA) show F_{src} of >30 % reaching 200 hPa, while other models display lower 312 extent below 300 hPa. Dust concentration in the middle to upper troposphere is lowest in GEOS-Chem with 0.1 µg m⁻³ contour line confined below 400 hPa, but highest in GISS-OMA with the 313 same contour line extending to 200 hPa. Latitudinal patterns of WAF dust F_{src} are generally 314 315 similar among models, which show a poleward extension of WAF F_{src} to the Arctic in the free 316 troposphere except SPRINTARS. Dust mass from WAF is however mostly confined in the 317 equator and northern hemisphere (latitudes > 10°S, black contour lines in Figure 6) with little 318 trans-hemispheric transport.

In summary, all models show high F_{src} from WAF over source regions and it gradually decreases downwind in horizontal and vertical directions. Although there are differences in patterns and magnitudes, the general characteristics of F_{src} among models are comparable. Similar characteristics for the model agreement are generally shown for other source regions as well (see Figures S2-S19 in supplementary material). Therefore, in next section (Section 4), we use the multi-model mean, instead of using individual models, to present the dust source attributions from different source regions.

327

328

320

321

322

323

324

325

326

4. Dust source attributions from multi-model mean

In this section, contributions of dust from different source regions (Figure 1) to the receptor regions (Figure 2) are estimated using the multi-model mean of DUSA experiment averaged for 2009-2012. The resolutions of 7 participating models are regridded to a common 1°×1° horizontal resolution and 51 vertical layers at 20 hPa interval between 1000 and 1 hPa for the multi-model mean calculations.

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

4.1 Horizontal distribution of air-borne dust from different source regions

In this section, we compute the source contribution using LOAD and F_{src} calculated from the multi-model mean. In general, all sources show the largest LOAD and F_{src} over the source region then gradually decrease during transport (Figure 7). Their transport patterns are shown on the map. Dust mass from North African sources (WAF, EAF, BOD) are transported both to the west over the Atlantic Ocean and to the east toward Asia and the Northern Pacific Ocean, although the westward transport is stronger than the eastward transport in latitudes south of 30°N. Global mean LOAD values are 11.8, 9.0, and 4.2 mg m⁻² for WAF, EAF, and BOD, respectively, and the sum of three regions are 25.0 mg m⁻², accounting for 59.4 % of the total load (42.1 mg m⁻²). The distribution of F_{src} is quite different from that of LOAD due to mixing with dust from other regions. Relative to other tagged regions, WAF is the most important dust source region with the largest F_{src} over extended land and ocean areas in the Northern Hemisphere. It dominates the dust over the western North Africa, Central America, and the entire Northern Atlantic Ocean with values of 50 to >90 %. The F_{src} of WAF is also the highest over the eastern tropical Pacific Ocean $(30 \sim 50 \%)$ and even over the Arctic (>20 %). Collectively, the North African sources (WAF, EAF and BOD) account for almost 60% of the global dust loading (28 % for WAF, 21 % for EAF, and 10 % for BOD), although their dominance is mostly in the Northern Hemisphere.

352	
353	Dust emitted in MDE and CAS also exert large influences beyond the source locations. Model
354	simulations show that dust emitted from MDE is the largest contributor to the dust load over the
355	northern Indian Ocean, whereas dust originating from CAS has significant impact over Eurasia.
356	The F_{src} of CAS dust over the Arctic is the 2 nd largest one (10 ~ 20 %) after WAF, and the F_{src} of
357	MDE and CAS over the North Pacific are in the order of >10%, larger than that from the East
358	Asian sources in the tropical and subtropical area. The global mean dust LOAD for MDE and
359	CAS are 6.35 and 3.70 mg m ⁻² , respectively. Together, MDE and CAS contributes to nearly 24 %
360	of global total dust load (15 % for MDE and 8.8 % for CAS).
361	
362	Compared with the regions discussed so far, dust emitted in East Asia from EAS and TAK have
363	smaller global influences. They transported almost exclusively to the east across the North
364	Pacific to the northern part of North America, and some of them are transported to the Arctic.
365	The global mean LOAD values are 1.26 and 1.15 mg m ⁻² for EAS and TAK, respectively,
366	representing 6 % of global dust load from these two regions (3.0 % for EAS and 2.7 % for TAK).
367	Dust emission from NAM is the lowest among all tagged regions and its influence is mainly over
368	the U.S. and neighboring coastal areas. The global mean LOAD of NAM dust is 0.29 mg m ⁻² , or
369	only 0.7 %.
370	
371	Lastly, Figure 7 shows that 80% of the air-borne dust over the Southern Hemisphere is from
372	SOH, which combines source regions of Patagonia in South America, along the Namibian coast
373	and in Southern Africa, and the Lake Eyre basin and surrounding areas in Australia. Although it
374	is a predominant source in the Southern hemisphere, SOH only contributes to 10% of the global
375	dust load (mean LOAD 4.38 mg m ⁻²), which is in a similar magnitude as BOD. The multi-model
376	dust estimations and the contribution of various dust sources to the global dust is summarized in
377	Tables 4 and 5.
378	
379	4.2. Vertical distribution of air-borne dust from different source regions
380	The zonal mean vertical profiles of the model-mean dust mass and F_{src} for each dust sources are
381	plotted in Figure 8. All sources commonly show the maximum dust mass and F_{src} values from
382	each source region are near the latitudes of the source, then they are being transported vertically
282	and horizontally by convection and the large-scale circulation. The vertical distributions of dust

mass concentration from WAF, EAF, BOD, and MDE show similar features, i.e., the 0.1 µg m⁻³ 384 385 contour line reaches 300-250 hPa, and latitudinally it extends to the south of the equator to 386 ~10°S. Vertically, F_{src} of WAF dust is quite uniform at 30-50 % from surface to 200 hPa in the 387 Northern Hemisphere, but the cores of F_{src} of EAF, BOD, and MDE are located at different 388 latitudes. 389 390 Because of the locations of Asian dust sources of CAS and EAS are a little further north than the 391 dust source regions in North Africa and MDE, emitted dust are easier to be advected northward 392 to the Arctic, such that the F_{src} of CAS and EAS are higher in the north (35-90°N) than other 393 latitudes. On the other hand, because the elevation of TAK source is relatively higher at 1.2-1.5 394 km above sea level, dust emitted from TAK is more readily to reach higher altitudes than from 395 CAS and EAS, as shown in Figure 8 that its maximum contributions is in the upper troposphere 396 at 400-300 hPa. For the rest of the tagged regions, dust from NAM contributes no more than 10 % 397 of zonal mean dust fraction, and, as expected, SOH dust dominates the entire southern 398 hemisphere throughout the atmospheric column. 399 400 Evidently, dust emitted from different source regions are much better mixed at higher altitudes 401 even though the concentrations are orders of magnitudes lower than that in the PBL. Similar 402 source-transport relationship is shown in longitude-pressure plots (Figure S22). In the next 403 section, we will show distributions of dust from different source regions in the 3-dimensional 404 space, i.e., horizontal distributions at several layers in different altitudes, to better comprehend 405 the source attributions. 406 407 4.3. Source contributions in different vertical layers 408 In this section, we examine dust distribution and source contributions in different vertical 409 altitudes with the multi-model mean. We have specifically defined 4 layers roughly representing 410 the mixed layer (0 \sim 2.5 km; Layer 1), lower free troposphere (2.5 \sim 6 km; Layer 2), upper free 411 troposphere (6 ~ 12 km; Layer 3), and stratosphere and above (12 km ~ top of atmosphere; Layer 412 4) to characterize the dust amount and source contributions in these layers (Figure 9). The multi-413 model mean shows that on an annual averaged basis, 95% of the 21 Tg dust column mass is 414 located below 6 km, with 72% (15.5 Tg) in Layer 1 and 23% (5.0 Tg) in Layer 2. For the rest, 4 % (0.8 Tg) and 1 % (0.2 Tg) are contained in Layer 3 and Layer 4, respectively (left and middle 415

416 columns in Figure 9). The dust mass distributions in the tropospheric layers are similar 417 throughout the layers (i.e., Layers 1~4) showing the dust source locations and transport to 418 downwind regions. Although there is only 1 % of the dust in Layer 4, the dust belt still contains 419 more dust than the rest of the world in the upper troposphere. 420 421 The fraction of LOAD_k (dust mass integrated in layer k) to the total column LOAD (Figure 9, 422 middle column) shows that 72 % of LOAD is over the source regions in Layer 1, with the 423 highest fractions over the source areas. However, the spatial pattern for Layer 2 is the opposite to 424 Layer 1, showing that the fraction over remote regions is larger than over source regions. It 425 means that transported dust becomes more important for the remote region than near surface in 426 Layer 2, e.g., LOAD_k in Layer 2 ($40 \sim 50$ %) over the North Pacific Ocean is larger than LOAD_k 427 in Layer 1 (30 \sim 40 %). The contrast of dust fractions between remote and source regions are 428 even larger in Layers 3 and 4, and the dust fractions over the polar regions are $20 \sim 30$ % in 429 Layer 3, compared to less than 5 % over the source regions. The results in Figure 9 and 10 shows 430 that the contribution of sources is most dominant near source, however mixing of different 431 sources becomes more important at higher altitudes. In the further analysis of Figure 9, we have 432 found that more dust is placed in Layer 1 in winter than summer (80 % in winter and 60 % in 433 summer) (Figure S23). Especially, the LOAD_k to LOAD ratio in Layer 2 over the Saharan Air 434 Layer (SAL), which is over the Northern Atlantic Ocean, experiences a large seasonal change 435 from 20 % in winter to 50 % in summer. 436 437 The vertical change in the dust distribution is analyzed with the ratio of DU_f to DU for Layers 1 438 \sim 4, where DU_f is the PM_{2.5} size and DU is the whole size range, respectively (right column in 439 Figure 9). In Layer 1, the global DU_f/DU values are 19 %. The lowest values appear over the 440 source regions (<20 %) and it gradually increases during transport (>30 %), due to the faster 441 settling of larger particle size. The strong spatial contrast of DU_f/DU diminishes as the 442 considered layer over the source regions and the global mean values increase with layers to 27 %, 443 35 %, and 51 % in Layers 2, 3, and 4, respectively. The horizontal and vertical variation can be 444 explained with the longer lifetime of DU_f than total DU. 445 446 Next, we investigate how the source contributions vary for the different layer heights (Figure 10).

For the analysis, we have combined 8 dust sources to 4 larger groups of NAF

448 (WAF+EAF+BOD), MDECAS (MDE+CAS), EASTAK (EAS+TAK), and SOH. NAM is 449 omitted in the figure due to its much smaller contributions, as its contribution to global loading is 450 only 0.6 % as shown in Table 5. The source fractions in Layer 1 shows that NAF accounts for 451 59 % of total dust mass in that layer, followed by MDECAS (23 %) and EASTAK (6 %), which 452 is almost the same as the column-based estimations. For Layer 1, the dust contribution of NAF is 453 most dominant over North Africa and the Northern Atlantic Ocean with values of 80 % or 454 greater. NAF values are also large over the Northern Pacific ($20 \sim 30 \%$) and the Arctic ($30 \sim$ 455 40 %). MDECAS dust are transported toward the east impacting the Northern Pacific ($20 \sim 30$ %) 456 and the Arctic ($30 \sim 40 \%$). The regional impact of EASTAK dust is not negligible with the 457 values over the Northern Pacific ($30 \sim 50$ %) and the Arctic ($20 \sim 30$ %). The patterns of these 458 larger-source contributions in Layers 2 and 3 are similar to that in Layer 1. The contributions of 459 sources decrease by layer height over the source regions, whereas other source contributions 460 increase over the remote area, suggesting that mixing between sources becomes more important 461 over the remote regions and upper layers. Our estimate of EASTAK contribution to the upper 462 free tropospheric layer (i.e., $6 \sim 12$ km) ($30 \sim 40$ %) over the Northern Hemispheric Pacific Ocean is similar with another estimate (~40 %) using CESM/CARMA model for the upper 463 464 troposphere (Froyd et al., 2022). The signature of source impact is mostly diminished in Layer 4 465 due the mixing between sources during the long-range transport, where NAF contribution is 466 decreased to 47 % (by 12 % from Layer 1) and contributions from MDECAS and EASTAK increased to 30 % and 10 % (by 7 % and 4 % from Layer 1, respectively). 467 468 469 4.4. Seasonal variations of dust emission, deposition, and load from different source regions 470 The monthly mean global budget related variables are calculated for mass and F_{src} (Figure 11). Globally, total dust emission (EMI) is the highest between March and July (200 ~ 250 Tg mon⁻¹), 471 and the lowest in November to January (~150 Tg mon⁻¹). The magnitude and pattern of 472 473 deposition is similar to that of EMI. In contrast, the column loading (LOAD) has a peak in July 474 (30 Tg) and a low from November to January (~12 Tg). The seasonality of relative contributions 475 by different sources is clearly shown with the fraction plots (i.e., right column in Figure 11). 476 While dust emission from the North Africa sources (WAF+EAF+BOD) constantly contributes between $50 \sim 60$ % of total emission throughout the year, a notable opposite seasonal change 477 478 appears between BOD and MDE or CAS, with the larger emission in the boreal winter season for 479 BOD but summer season for MDE and CAS. On the other hand, contributions of EAS and TAK

480 emissions are larger during the boreal spring than in other seasons, and SOH emission makes 481 more contributions in austral spring and summer seasons. The lifetime of each dust source is 482 ranging 1.2 days for NAM to 4.1 days for WAF, with 3.6 days for SUM. The short lifetime range 483 among sources and the similar seasonality of DEP and LOAD to that of EMI indicate that EMI is 484 the major driver for the seasonality of dust cycle in global scale. 485 486 487 5. Dust source attribution over various receptor regions 488 A total of 14 continental and oceanic receptor regions are predetermined to examine 489 contributions from various sources to these regions as described in Figure 2 and summarized in 490 Tables 6 and 7. 491 5.1. Dust source attributions from individual models and multi-model mean 492 493 We select 3 land (EAS, NAM, and AMZ), 2 ocean (NATL and NPAC), and 1 polar (ARC) 494 receptor regions to compare source contribution between models (Figure 12 and 13), and the 495 source contribution comparisons of the multi-model mean are listed in Table 6 and 7. 496 497 Among the three land receptor regions in Figure 12, EAS and NAM are either a dust source 498 region itself or adjacent to major dust sources. Yet, they are affected not only by their own 499 regional dust sources but also long-range transported dust. Over the receptor region EAS, most 500 models estimate that Asian dust source regions in eastern Asia comprises more than half of the 501 total dust load with the multi-model mean of 65 % from EAS and 12 % from TAK, whereas dust 502 emitted over North Africa (WAF+EAF+BOD) and MDE contribute to 10 % and 12%, 503 respectively. In comparison, most models estimate that only less than half of the dust load over NAM is from its own regional source with the multi-model mean of 24 %, while dust transported 504 505 from North African sources appears to be the major contributor to supply 49 % (32 % from WAF, 506 11 % from EAF, and 6 % from BOD) of NAM's dust load. The rest is contributed by dust 507 emitted over other regions with a few percent from each. 508 509 Different from EAS and NAM, AMZ does not emit dust. The dust load over AMZ is all from 510 long-range transport. Most models agree that North Africa, especially WAF, supplies more than 511 half the dust over AMZ with the multi-model mean of 73 % collectively from WAF (40 %), EAF

512 (17 %), and BOD (16 %). The rest is from SOH (13%) and other source regions. The present 513 study estimates that the contribution of Bodélé to AMZ varies depending on models in the range 514 from 3 % in CAM5-ATRAS to 24 % in GEOS with 139 % of diversity. 515 516 It is clearly noticeable from Figure 12 that there are significant differences in source attributions 517 to the receptor regions among the 7 models. For example, most models estimate that more than 518 70 % of LOAD over the EAS receptor is from EAS and TAK sources, but GISS-OMA and 519 SPRINTARS show their contributions less than 40%. Over NAM, GISS-OMA attributes only 6% 520 of LOAD to NAM own source, in sharp contrast with other models' estimation of 24%-52%. 521 Over AMZ, GEOS model shows that 92% of the LOAD is from North Africa and almost nothing 522 from SOH, but CAM5-ATRAS estimates 47% from SOH and less than 50% from North Africa. 523 Such large discrepancy can be partly explained by the differences in dust emissions from various 524 source regions, but different transport efficiency may play more important role causing the 525 remarkable differences among models in dust source attribution over downwind regions. 526 527 The source contributions for two oceanic receptor regions of NATL and NPAC and a polar 528 region of ARC are compared in Figure 13. The multi-model consensus is that more than 90 % of 529 the dust load over NATL is from North African with the multi-model mean of 95 % (69 % from 530 WAF and 13 % each from EAF and BOD). However, attribution to individual source regions in 531 North Africa is different among models, as CAM5-ATRAS and GEOS-Chem attributes >80 % 532 of the LOAD to WAF but CESM2 and GISS-OMA designate the WAF contribution of 52 ~ 533 55 %. The largest difference among models is the contribution of BOD to NATL with a range 534 spreading from 2 % from CAM5-ATRAS to 27 % from GISS-OMA and the model diversity of 535 107 % (Table 7). 536 537 The source attribution over NPAC is more diverse than over NATL among models. Although 538 dust originating from eastern Asia (EAS+TAK) is considered as a major contributor for the 539 NPAC region, the inter-model difference is significant with large spread from 18 ~19 % (GISS-540 OMA and SPRINTARS) to 72 % (GEOS-Chem). All models clearly show the contributions of 541 dust from North Africa regions to the dust loading over NPAC, but the relative contribution 542 among models is also substantially different, from 13 % (CESM2) to 58 % (SPRINTARS). 543 Interestingly, most models (except GEOS-Chem) find a distinguishable contribution ($16 \sim 29 \%$)

544 of dust from MDE+CAS to NPAC. Overall, the multi-model mean shows the contributions of 545 dust emitted in eastern Asia (EAS+TAK), western Asia (MDE+CAS), and North Africa 546 accounted for 32 %, 25%, and 39%, respectively, of the dust loading in NPAC with North Africa 547 being the largest contributor. 548 549 Over the Arctic region ARC, dust from CAS and MDE arise as an outstanding contributor 550 accounting for 36 % in the multi-model mean, which is consistent with most model estimates 551 that fall in the range of a little over 30 %. The clear "outlier" model is CESM2 that assigns 65% 552 of ARC dust from MDE+CAS with 60 % from CAS alone; in contrast, GEOS-Chem shows only 553 18% dust originating in MDE+CAS. Dust from North Africa appears still being the most 554 important contributor to the dust over ARC with the multi-model mean of 42 %, and the range 555 from most individual models is between $36 \sim 53$ % except CESM2 (16 %). The remaining 556 important dust source region for the ARC dust is eastern Asia (EAS+TAK), which accounts for 557 20 % of ARC dust load from the multi-model mean that is in the middle of the range of $17 \sim 31$ % 558 from individual model estimates. It is worth noting that the local dust from the Arctic (e.g., 559 Bullard et al., 2016) is missing in the present study and it needs to be considered in future studies. 560 Previous studies have estimated that the high latitude dust emission accounts for about $2 \sim 3 \%$ 561 of global dust emissions (Groot Zwaaftink et al., 2016; Shi et al, 2021). 562 563 The diversity of source contribution varies significantly depending on source regions and 564 receptors (Table 6 and 7). Over land receptors, whereas the model diversity of SUM (i.e., sum of 565 9 sources) is ranging from 40 % in EUR to 93 % in AMZ, the diversity of various sources is 566 ranging from 42 % (EAF in EUR) to 173 % (EAS in IND). Over ocean and polar receptors, 567 whereas the diversity of SUM (i.e., sum of 9 sources) is ranging 45 % in NATL to 106 % in 568 SATL, the diversity of sources is ranging from 33 % (EAS in NAPC) to 226 % (NAM in AARC). 569 Overall, we have found a large spread between models in estimating source contributions over 570 the various receptor regions. Depending on the region and season, the difference of relative 571 source contribution can be a factor of more than ten. 572 573 5.2. Seasonal variations of dust source attribution over receptor regions 574 We examine the seasonality of dust source contribution to the dust loading (LOAD) and

deposition (DEP) over the receptor regions with the multi-model monthly mean (Figure 14 and

576 15). There are distinctive differences in seasonal dust source contribution of LOAD in the 577 receptor regions. For the 7 land receptor regions (see Figure 2), the NAM shows two peaks in 578 spring (April) and summer (July-August). While the local NAM dust and the long-range 579 transported dust from the Pacific Ocean are major sources for the NAM receptor in April, WAF 580 is the dominant source for July-August. EUR has a peak in May, where EUR is most affected by 581 WAF followed by EAF. The EAS receptor has two maximums in April-June and October that 582 are mainly due to the dust emitted in EAS, and IND has a peak in May-June mainly caused by 583 dust from CAS. Dust seasonal cycle over TNAF is controlled by dust from EAF and BOD that 584 are stronger in March and November, and it is noted that the impact of WAF is not dominant 585 throughout the year. Over AMZ, North African sources are dominant in spring, while the MDE 586 and SOH source contribution is increased in summer and Fall, respectively. TAK is a dominant 587 source over TBP between April and August when dust loading is elevated, but other dust from 588 other source regions also makes noticeable contributions especially from CAS. 589 590 Over the broad ocean basins, both INDO and NATL show a maximum in July, dominated by 591 dust transported from MDE for INDO and WAF for NATL. In comparison, dust over NPAC is a 592 mixture of dust from all source regions in the northern hemisphere with a peak in spring, which 593 is mainly because of more favorable long-range transport of dust from EAS and TAK to NPAC. 594 In the southern hemisphere, SATL and SPAC are dominated by SOH, as expected, while the 595 peak months are February and November over SATL and October over SPAC. The contributions 596 from dust originating in the northern hemisphere to SATL and SPAC are mostly in the upper 597 troposphere, as indicated in Figure 8. For the two polar regions, both show a maximum in their 598 respective spring time, but ARC receives a mixture of dust from all regions in the northern 599 hemisphere whereas AARC is dominated by SOH, mainly because the dust source regions in the 600 southern hemisphere are aggregated together as SOH in this study such that the individual source 601 contributions are not discernable. 602 603 The lifetime in ocean receptors (3.2 days in SATL \sim 6.9 days in AARC) are longer than the land 604 receptors (1.1 days in TBP \sim 3.9 days in NTAF), which can be explained with the short lifetime 605 of coarse dust particles in land regions and more lofted aerosol vertical distributions in remote 606 ocean regions. A factor of 10 difference in DEP and LOAD is also found in ARC and AARC,

which are far from the dust source and dominated by fine particles. Interestingly, the seasonality

508	of DEP is notably different to LOAD over most land and ocean receptors, except for a few
509	receptors such as TNAF and INDO. Some receptors show one or two months change of peak
510	month in DEP from LOAD (e.g., EUR, EAS, IND, TBP, SATL, and SPAC), while some
511	receptors shift the peak season from one to another (e.g., NAM, AMZ, ARC, and AARC). In the
512	remaining receptors, seasonality of DEP is significantly reduced from LOAD, with more
513	prevalent deposition throughout the year (e.g., NATL and NPAC). Although the most
514	contributing dust sources in LOAD also appear in DEP in general (e.g., WAF in NATL), major
515	contributing sources between LOAD and DEP are different depending on season of the year (e.g
516	NAM, NPAC, and ARC). Finally, contributions of DEP from nearby source regions are higher
517	than that of LOAD in non-dust belt receptor regions (e.g., NAM, TBP, and AARC).
518	
519	Figure 16 and 17 summarize the source attributions of LOAD and DEP, respectively, in all
520	receptor regions from the multi-model mean. It shows that the magnitude of the source
521	contribution varies depending on the location. It should be noted that the source attributions
522	between LOAD and DEP over various receptors are different even in annual mean, which can be
523	explained with the differences in vertical distributions and size-dependent lifetime of dust.
524	
525	Overall, each receptor has a unique seasonal pattern, magnitude of LOAD and DEP, and relative
526	contribution of sources, indicating that source contribution is non-linear and is an important
527	factor for better understanding of the regional and global dust cycle.
528	
529	6. Discussion
530	As stated in the Introduction section, the aims for the DUSA model experiment are twofold: (1)
531	examine the model diversity in dust source attribution and (2) estimate the contribution of dust
532	sources to various receptor regions from the multi-model statistics. We discuss these two aspects
533	below.
534	
535	6.1. Model diversity
636	Models that participated in the DUSA experiment show common features in several aspects.
537	First, North Africa is the dominant source, accounting for $35 \sim 66$ % and $44 \sim 75$ % of global
538	dust emission and column loading, respectively. Second, all models commonly show that the
539	fractions of source region contributions to the global annual mean of dust emission, dust column

loading, and DOD are similar (Figure 4), suggesting that source strength from each region determine the relative contributions to the global airborne dust amount from that region, despite the source locations. Third, models show similar features of F_{src} spatial distributions, which can be explained by common large-scale circulation patterns and convection characteristics in models, although the transport efficiency varies greatly across the models. Meanwhile, the DUSA experiment shows remarkable differences among the models that cannot be explained just by model spatial resolution, dust particle size range, or emission magnitude. For example, CAM5-ATRAS and GEOS-Chem have similar horizontal resolution and similar maximum dust size up to 10 µm in diameter (Table 1), and both models show that dust column load is more confined near the source location (Figure 12 and 13). However, emission from CAM5-ATRAS is the highest and GEOS-Chem is the lowest among the 7 models with a factor of ~4 difference in total emission (Table 2) and a factor of ~3 in column loading. Another example shows that GFDL-AM4 and GEOS have same size bins and similar emission and deposition amounts (within ~10%), but the fraction of emissions from source regions are evidently different (Figure 4) and the lifetime of dust from GEOS ~60% longer than GFDL-AM4. Regarding the transport efficiency, GEOS-Chem and GISS-OMA show sharp contrasts (Figure 5 and 6), as GEOS-Chem usually keeps the dust close to locations near the source whereas GISS-OMA sends dust far beyond their source areas, resulted in the disparity of their source attributions in receptor regions (Figure 12 and 13). The large differences between models can be attributed to several factors in the model physics that cannot be tracked down by the available diagnostics in the DUSA experiment. Other than using the common regional domains for tagging the dust emissions, all models have their own freedoms in simulating dust, from dust emission parameterizations to dry- and wet-removal processes, advection schemes, and dust particle configurations. In addition, differences in the meteorological fields due to the different host models are inevitable, which including horizontal and vertical advection, large- and convective precipitation, radiative flux, and surface conditions. Understanding the impact of different aerosol (including dust) parameterization and host models is important to better understand the Earth climate system and is an active research area (Hodzic et al., 2023), which requires more in-depth diagnostics such as implementing a common

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

transport tracer to quantify the transport efficiency and a common removal tracer to analyze the removal processes in the future multi-model dust experiments.

673

674

671

672

6.2. Source attributions from multi-model mean

675 In the previous sections, we have discussed the contribution of various sources using multi-676 model mean. A few highlights of the analysis are as follows: (1) Dust from BOD accounts for 677 about 10 % of global dust emission and loading, and it shows the largest diversity among models 678 in all receptor regions (Table 6 and 7). Given the considerable attention on the BOD dust (Tegen 679 et al., 1996; Koren et al., 2006; Ben-Ami et al., 2010; Yu et al., 2018), it needs more devoted 680 studies on particularly the transport pathways of dust generated in BOD, which should have 681 distinguishable seasonal variations from dust originating in other regions in North Africa (Figure 682 11 and 12; Yu et al., 2018). Although BOD is very important source region for global dust cycle, 683 the impact of dust from Bodélé is still unsettled: While a remote sensing study estimates a strong 684 contribution of Bodélé (~ 50 %) to the Northern Atlantic dust (Koren et al., 2006), another 685 remote sensing study suggests only a few percent contribution of Bodélé to North America (Yu 686 et al., 2020). In our estimation, the contribution of dust emitted from Bodélé accounts for about 687 13 % and 17 % to AMZ and NATL, respectively. (2) CAS dust effects over the ARC from the 688 multi-model mean is 24 %, which is more than the contribution of dust from WAF (23 %) even 689 though the emission amount from CAS is 43 % of that from WAF. This study has revealed the 690 potential importance of CAS dust impact, which has drawn much less attention than other 691 regions in the dust belt. (3) NAF makes more contribution than EAS (EAS+TAK) to dust 692 loading over NPAC, which is also unexpected since EAS is a strong source right upwind of 693 NPAC while most NAF dust is being transported to the west over the Atlantic. However, our 694 study suggests that the influence of the EAS dust is more significant over the extra-tropical 695 NPAC but NAF dust dominates the dust loading in the tropical eastern NPAC via westward 696 transport (Figure 10, Figure S4-S6 vs. Figure S9-S10). (4) ARC and NPAC receives a mixture of 697 dust from all regions with no clear outstanding dominant source in terms of column loading, 698 however the relative importance of each source depends not only on geographic locations 699 (latitude and longitude) but also on altitudes (Figure 10; Figure S13-S21). (5) Diversities of SOH 700 source contribution among models exceed 100% in most receptor regions. Because this study 701 lumps the dust source regions in the southern hemisphere together, it is not allowed to diagnose 702 the model differences regarding individual dust sources there. Better designed model

703 experiments with southern hemispheric dust attribution can be considered in future modeling 704 studies. 705 706 6.3. Comparisons of global dust source attributions with previous studies 707 While we have used the multi-model ensemble to estimate the source attribution in this 708 AeroCom-III/DUSA experiment, a similar study has been conducted with an inverse modeling 709 method for DustCOMM and AeroCom-I (Kok et al., 2021a,b). The three estimations have 710 similarity in the overall picture with some differences, considering differences in participating 711 models, differences in methods, and time periods (Figure 18). DUSA estimates that North Africa 712 sources contribute about 60 % of the global dust loading, which is about 10 % larger than 713 DustCOMM and 5 % less than AeroCom-I. These methods all agree that MDECAS and 714 EASTAK are the second and third sources, respectively, for the global dust loading, however 715 DustCOMM estimations are about $5 \sim 10$ % larger than DUSA and $2 \sim 5$ % larger than 716 AeroCom-I. The three estimations agree that NAM source is marginal, accounting for $0 \sim 3 \%$ 717 for global loading. DUSA attributes about 10 % of global dust loading to SOH source, which is 718 3 % and 5 % larger than DustCOMM and AeroCom-I, respectively. Both DUSA and 719 DustCOMM commonly show summer peak of dust emission in NAF and MDECAS, and spring 720 peak of dust emission in EASTAK and NAM. While these differences can come from 721 simulations done for different time periods with different analysis methods, it also suggests that the results can vary by participating models or model versions. Unfortunately, currently there are 722 723 no adequate, reliable observations to offer definitive evaluations of dust source attributions. 724 725 6.4. Recommendations for future studies 726 Although correctly estimating dust source attribution is an important subject to better understand 727 the role of dust to the global and regional climate, the present study has revealed a large diversity 728 between models. Unfortunately, there are no direct observations available for evaluating the dust 729 source attributions. Furthermore, the large model differences in dust source attribution cannot be 730 resolved by a simple global tuning factor for total dust emission or DOD. This finding has an 731 implication that improving dust source attribution is an important task for future global dust

732

733

modeling.

Based on the present and our previous works (e.g., Kim et al., 2014, 2019), we make the following suggestions toward having more process-level diagnostics of inter-model differences and more observation-based constraints of dust modeling. On the observation side, it is desirable to establish and maintain ground-based networks or mobile observation programs measuring the seasonal cycle of size-resolved dust mass concentrations, deposition fluxes, and optical properties over major dust source regions as well as receptor regions. Measurements over the source regions can help better estimate freshly emitted dust amount, which are rarely directly observable, to improve the emission parameterizations used by the models, whereas the measurements over the receptor regions can help evaluate the model transport and deposition processes that are connected to the source locations near and far.

On the multi-modeling side, more process-level diagnostics are needed to better determine the major factors causing the model diversities. For example, parameters determine dust emissions should be assessed to include the winds or friction velocities, soil moisture and texture, and erodibility that depends on vegetation cover and ephemeral rivers and lakes as potential dust source; parameters associated with dust removal should be assessed to include size-dependent settling velocity, convective and large-scale precipitation, and scavenging efficiency for rainout and washout processes. Finally, differences in atmospheric circulations between hosting models need to be examined to analyze the differences in dust transport; in that regard, implementation of a suitable common transport tracer may help quantify the inter-model differences in transport patterns of both advection and convection.

There are distinguishable differences in dust mineralogy between sources, for example, the Bodélé depression (very white dust), the Sahara ("average" dust), and Australia (red dust), which motivate the NASA Earth Surface Mineral Dust Source Investigation (EMIT) mission to have high-quality global mineralogy map from the space measurement (Green et al., 2020). Also, understanding the modern-day source apportionment is a prerequisite for understanding how dust has changed in the past since deposition records tend to measure regional dust. More careful consideration of dust source attribution would be required for these studies.

7. Conclusions

In the present study, we have investigated the relative contribution of various dust sources in the Earth's atmospheric system using multi-model analysis from 7 global models that participated in the AeroCom-III DUSA experiment. Each model simulated the BASE run and a series of runs with 9 tagged regions for 2009-2012 to estimate the contribution of dust in the atmosphere that are emitted from broad regions of East- and West-Africa, Middle East, Central- and East-Asia, North America, and the Southern Hemisphere, as well as from prominent dust hot spots of the Bodélé and Taklimakan Deserts. For source-receptor relationships, we defined 14 receptor regions across the globe, consisting of 7 land regions, 5 ocean regions, and 2 polar regions. In addition to the individual models, we have generated the multi-model mean of 3-dimensional distribution of dust concentration and source contribution. Whereas observational data to evaluate dust source contribution in models is absent, the comparison of model DOD with the 55 AERONET retrieved coarse-mode AOD data as a proxy of DOD showed that the correlation coefficients between model-calculated DOD and AERONET coarse-mode AOD are from 0.4 to 0.8 with considerable spread of the agreement for spatial and temporal variability across the AERONET sites. The multi-model analysis has revealed large model diversity of dust emission, loading, and deposition on both global and regional scales. The result indicated that differences in regional dust emission is the first order factor to explain the diversities of global mean dust load, DOD, and deposition among models. Further analysis reveals that the relative dust source strength from

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

various sources is strongly model-dependent. Qualitatively, all models showed that the dust load over the dust-belt regions are dominated by their local sources such as North Africa, Middle East, and/or Asian sources. However, some models show that contribution of a source is much stronger (e.g., SOH in CESM2) or weaker (e.g., WAF in CESM2 and BOD in GISS-OMA) than other models. Horizontal and vertical distribution of source contribution is also substantially different among models, with some models (e.g., GISS-OMA) more effectively transporting dust than other models (e.g., GEOS-Chem). Quantitatively, the inter-model differences are significant with the model diversity in 30 - 50 % for global, annual averaged quantities of total dust emission, deposition, column load, and lifetime, but the differences in regional and seasonal scales are much larger.

796 The study has estimated the large diversity values depending on source regions and receptors. 797 Whereas the diversity of total dust load is $40 \sim 93$ % over land receptors and $45 \sim 106$ % over 798 ocean and polar receptors, the diversity of contributions from different source regions are 42 ~ 799 173 % over land receptors and $33 \sim 226$ % over ocean and polar receptors. The widespread 800 diversity values suggest that there is a large disparity in simulating dust cycles among models. 801 802 We have quantitatively estimated source contribution using the multi-model mean of 3-803 dimensional distribution of monthly dust column loading and source contribution in the global 804 scale and various receptor regions. Overall, the multi-model mean shows that North Africa and 805 MDE contribute about three quarters of global dust loading (~75 %). Dust from the North Africa 806 and MDE sources are mainly transported toward both west and east directions, affecting the 807 Northern Atlantic Ocean and the Northeast Pacific Ocean. CAS contributes 8.8 % of global 808 loading, however it is an important source in the lower troposphere over mid-latitudes and the 809 Arctic. EAS and TAK are significant sources for the Pacific Ocean (32%), although their global 810 contribution is only 5.6 %. NAM dust contribution is confined near the source region, with the 811 global contribution of 0.6 %. The inter-hemispheric transport is not strong column-wise, such 812 that the SOH sources are the most important over the Southern Hemisphere (>70%), with the 813 global contribution of 10.4 %. On the other hand, dust from both hemispheres are better mixed at 814 higher altitudes in the upper-troposphere and lower-stratosphere, although the concentrations are 815 in orders of magnitudes lower than that in the planetary boundary layer. 816 817 Multi-model mean analysis showed that the vertical distribution of source contributions is 818 strongly source dependent. North Africa and MDE sources contribute most to the northern 819 hemisphere in most latitudes and altitudes due to the strong convection, source strength, and 820 large-scale circulation. Other sources also make significant contributions to certain regions of the 821 Earth, such as the Arctic (e.g., CAS), high-altitude (e.g., TAK), and southern hemisphere by (e.g., 822 SOH). In the 4-layer analysis of F_{src} , it is found that about 95 % of dust mass is located below 6 823 km and 72 % below 2.5 km. 824 825 The source contribution in column loading is not necessarily the same as deposition, rather the 826 present study showed quite different results between two variables, as dust deposition is more 827 responding to the dust load in the lower atmosphere closer to the surface, therefore the dust from

nearby source locations contributes more to the deposition than to the column loading. Overall, dust over receptor regions immediate downwind of nearby source are dominated by dust emitted in the upwind source regions, whereas over remote land, ocean, and polar regions dust are a mixture from various sources around the globe. Finally, we show that the large model differences in dust source attribution cannot be resolved with a simple global tuning factor, rather it requires more comprehensive studies. Based on the present and past studies, we suggest some actions toward more process-level diagnostics of intermodel differences and more observation-based constraints, including satellite, of dust modeling. Acknowledgements We thank NASA CALIPSO, ISFM, and MAP for the funding support, AERONET teams for the data used in this study, and AeroCom for handling model simulations. Computational resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. HM was supported by the Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (MEXT/JSPS) KAKENHI Grant Numbers, JP20H00196, JP22H03722, JP23H00515, JP23H00523, JP23K18519, JP23K24976, and JP24H02225; by the MEXT Arctic Challenge for Sustainability II (ArCS II) Project (JPMXD1420318865); and by the Environment Research and Technology Development Fund 2–2301 (JPMEERF20232001) of the Environmental Restoration and Conservation Agency. Kok has been supported by the NSF (grant nos. ATM 1856389 and 2151093). **Data Availability Statement** AERONET data are available at https://aeronet.gsfc.nasa.gov/ and AeroCom model simulations are available at http://aerocom.met.no/. Deposition data is available at Albani et al. (2014).

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

- 854 References
- Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi,
- V., Kok, J. F., & Otto-Bliesner, B. L. (2014). Improved dust representation in the Community
- Atmosphere Model. Journal of Advances in Modeling Earth Systems, 6, 541-
- 858 570. https://doi.org/10.1002/2013MS000279.
- Bauer, S. E. & D. Koch (2005). Impact of heterogeneous sulfate formation at mineral dust
- surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general
- 861 circulation model, J. Geophys. Res., 110, D17202, doi:10.1029/2005JD005870.
- Bauer, S. E., Im, U., Mezuman, K., & Gao, C. Y. (2019). Desert dust, industrialization, and
- agricultural fires: Health impacts of outdoor air pollution in Africa. Journal of Geophysical
- Research: Atmospheres, 124, 4104–4120. https://doi.org/10.1029/2018JD029336.
- Ben-Ami, Y., Koren, I., Rudich, Y., Artaxo, P., Martin, S. T., & Andreae, M. O. (2010).
- Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study,
- 867 Atmos. Chem. Phys., 10, 7533–7544, https://doi.org/10.5194/acp-10-7533-2010.
- Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H.
- Y., Mickley, L. J., &Schultz, M. G. (2001). Global modeling of tropospheric chemistry with
- assimilated meteorology: Model description and evaluation, J. Geophys.
- 871 Res., 106(D19), 23073–23095, doi:10.1029/2001JD000807.
- Bullard, J. E., et al. (2016). High-latitude dust in the Earth system, Rev. Geophys., 54, 447–485,
- 873 doi:10.1002/2016RG000518.
- Capelle, V., Chédin, A., Pondrom, M., Crevoisier, C., Armante, R., Crepeau, L., & Scott, N. A.
- 875 (2018). Infrared dust aerosol optical depth retrieved daily from IASI and comparison with
- 876 AERONET over the period 2007–2016. Rem. Sens. Env., 206, 15-32.
- 877 Checa-Garcia, R., Balkanski, Y., Albani, S., Bergman, T., Carslaw, K., Cozic, A., Dearden, C.,
- Marticorena, B., Michou, M., Van Noije, T., Nabat, P., O'Connor, F. M., Olivié, D., Prospero, J.
- M., Le Sager, P., Schulz, M., & Scott, C. (2021). Evaluation of natural aerosols in CRESCENDO
- Earth system models (ESMs): Mineral dust. Atmospheric Chemistry and Physics, 21(13), 10295-
- 881 10335. https://doi.org/10.5194/acp-21-10295-2021.
- 882 Chin, M., et al. (2002). Tropospheric aerosol optical thickness from the GOCART model and
- comparisons with satellite and Sun photometer measurements, *J. Atmos. Sci.*, 59, 461–483.
- 884 Chin, M., Diehl, T., Dubovik, O., Eck, T. F., Holben, B. N., Sinyuk, A., & Streets, D. G. (2009).
- Light absorption by pollution, dust and biomass burning aerosols: A global model study and
- evaluation with AERONET data, Ann. Geophys., 27, 3439-3464.
- Colarco, P. R., Nowottnick, E. P., Randles, C. A., Yi, B., Yang, P., Kim, K.-M., Smith, J. A., &
- Bardeen, C. G. (2014). Impact of radiatively interactive dust aerosols in the NASA GEOS-5
- climate model: Sensitivity to dust particle shape and refractive index, J. Geophys. Res. Atmos.,
- 890 119, 753–786, doi:10.1002/2013JD020046.
- 891 Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., De-Mott, P. J., Sullivan, R. C., White,
- A. B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., & Prather, K. A. (2013).
- 893 Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western
- 894 U.S., Science, 339, 1572–1578, https://doi.org/10.1126/science.1227279.

- DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H.,
- 896 Richardson, M. S., Eidhammer, T., & Rogers, D. C. (2010). Predicting global atmospheric ice
- nuclei distributions and their impacts on climate, Proc. Natl. Acad. Sci. U.S.A., 107, 11,217–
- 898 11,222.
- 899 Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E.,
- Nowak, S., Caquineau, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D.,
- Williams, E., & Doussin, J.-F. (2017). Global scale variability of the mineral dust long-wave
- 902 refractive index: a new dataset of in situ measurements for climate modeling and remote sensing,
- 903 Atmos. Chem. Phys., 17, 1901–1929, https://doi.org/10.5194/acp-17-1901-2017.
- Engelbrecht, J. P., Moosmüller, H., Pincock, S., Jayanty, R. K. M., Lersch, T., & Casuccio, G.
- 905 (2016). Technical note: Mineralogical, chemical, morphological, and optical interrelationships of
- mineral dust re-suspensions, Atmos. Chem. Phys., 16, 10809–10830,
- 907 https://doi.org/10.5194/acp-16-10809-2016, 2016.
- 908 Evan, A. T., Heidinger, A. K., Bennartz, R., Bennington, V., Mahowald, N. M., Corrada-Bravo,
- 909 H., Velden, C. S., Myhre, G., & Kossin, J. P. (2008). Ocean temperature forcing by aerosols
- across the Atlantic tropical cyclone development region. Geochem. Geophy. Geosy., 9, Q05V04.
- 911 doi:10.1029/2007GC001774.
- 912 Formenti, P., Caquineau, S., Desboeufs, K., Klaver, A., Chevaillier, S., Journet, E., & Rajot, J. L.
- 913 (2014) Mapping the physicochemical properties of mineral dust in western Africa: mineralogical
- 914 composition, Atmos. Chem. Phys., 14, 10663–10686, doi:10.5194/acp-14-10663-2014, 2014.
- Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J.,
- Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., & Van Dorland, R.
- 917 (2007). Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007:
- The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report
- of the Intergovernmental Panel on Climate Change, edited by: Solomon, S. D., Qin, M., Manning,
- 22., Chen, M., Marquis, K. B., Averyt, M. T., and Miller, H. L., Cambridge University Press,
- 921 Cambridge, United Kingdom and New York, NY, USA, 129–234.
- 922 Froyd, K. D., Yu, P., Schill, G. P., Brock, C. A., Kupc, A., Williamson, C. J., et al. (2022).
- 923 Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements.
- 924 Nature Geoscience, 15, 177–183. https://doi.org/10.1038/s41561-022-00901-w.
- 925 Gillette, D. (1978). A wind tunnel simulation of the erosion of soil: Effect of soil texture,
- sandblasting, wind speed, and soil consolidation on dust production. Atmos. Environ., 12, 1735–
- 927 1743.
- 928 Gillette, D. A., Marticorena, B., & Bergametti, G. (1998). Change in the aerodynamic roughness
- height by saltating grains: Experimental assessment, test of theory, and operational
- parameterization. Journal of Geophysical Research, 103(D6), 6203–6209.
- Ginoux, P., et al. (2001). Sources and distributions of dust aerosols simulated with the GOCART
- 932 model, J. Geophys. Res., 106(D17), 20,255–20,273.
- Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, & M. Zhao (2012). Global-scale attribution of
- anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue
- 935 aerosol products, Rev. Geophys., 50, RG3005, doi:10.1029/2012RG000388.

- Green, R. O., Mahowald, N., Ung, C., Thompson, D. R., Bator, L., Bennet, M., Bernas, M.,
- 937 Blackway, N., Bradley, C., Cha, J., Clark, P., Clark, R., Cloud, D., Diaz, E., Ben Dor, E., Duren,
- 938 R., Eastwood, M., Ehlmann, B. L., Fuentes, L., Ginoux, P., Gross, J., He, Y., Kalashnikova, O.,
- 939 Kert, W., Keymeulen, D., Klimesh, M., Ku, D., Kwong-Fu, H., Liggett, E., Li, L., Lundeen, S.,
- 940 Makowski, M. D., Mazer, A., Miller, R., Mouroulis, P., Oaida, B., Okin, G. S., Ortega, A.,
- 941 Oyake, A., Nguyen, H., Pace, T., Painter, T. H., Pempejian, J., Pérez García-Pando, C., Pham, T.,
- Phillips, B., Pollock, R., Purcell, R., Realmuto, V., Schoolcraft, J., Sen, A., Shin, S., Shaw, L.,
- 943 Soriano, M., Swayze, G., Thingvold, E., Vaid, A., & Zan, J. (2020). The Earth Surface Mineral
- 944 Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission, in: 2020 IEEE
- 945 Aerospace Conference, Big Sky, MT, USA, 1–14 March, 1–15,
- 946 https://doi.org/10.1109/AERO47225.2020.9172731.
- 947 Groot Zwaaftink, C. D., H. Grythe, H. Skov, and A. Stohl (2016), Substantial contribution of
- northern high-latitude sources to mineral dust in the Arctic, J. Geophys. Res. Atmos., 121,
- 949 13,678–13,697, doi:10.1002/2016JD025482.
- Hamilton, D. S., Moore, J. K., Arneth, A., Bond, T. C., Carslaw, K. S., Hantson, S., et al. (2020).
- 951 Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical
- 952 cycles in the Anthropocene. Global Biogeochemical Cycles, 34, e2019GB006448.
- 953 https://doi.org/10.1029/2019GB006448.
- Hand, J. L., T. E. Gill, and B. A. Schichtel (2017), Spatial and seasonal variability in fine
- mineral dust and coarse aerosol mass at remote sites across the United States, J. Geophys. Res.
- 956 Atmos., 122, 3080–3097, doi:10.1002/2016JD026290.
- Haywood, J. M., Allan, R. P., Culverwell, I., Slingo, A., Milton, S., Edwards, J., & Clerbaux, N.,
- 958 (2005). Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during
- 959 July 2003?, J. Geophys. Res., 110, D05105. doi:10.1029/2004JD005232.
- Hodzic, A., Mahowald, N., Dawson, M., Johnson, J., Bernardet, L., Bosler, P., Fast, J., Fierce, L.,
- Liu, X., Ma, P., Murphy, B., Riemer, N. & Schulz, M. (2023). GeneralIzed Aerosol/chemistry
- 962 iNTerface (GIANT): a community effort to advance collaborative science across weather and
- of the American Meteorological Society.
- 964 https://doi.org/10.1175/BAMS-D-23-0013.1
- Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J.
- A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, F., & Smirnov, A. (1998). AERONET
- 967 A federated instrument network and data archive for aerosol characterization, *Remote Sens*.
- 968 Environ., 66, 1–16.
- 969 Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S.,
- 970 Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P.,
- 971 Grini, A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R.,
- Morcrette, J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T., & Zender, C. S.
- 973 (2011). Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781-
- 974 7816, doi:10.5194/acp-11-7781-2011.
- Jickells, T. D., et al., (2005). Global iron connections between desert dust, ocean
- biogeochemistry, and climate. Science, 308, 67–71.
- Jordan, A. K., Zaitchik, B. F., Gnanadesikan, A., Kim, D., & Badr, H. S. (2020). Strength of
- 978 linkages between dust and circulation over North Africa: Results from a coupled modeling

- 979 system with active dust. Journal of Geophysical Research: Atmospheres, 125,
- 980 e2019JD030961. https://doi.org/10.1029/2019JD030961
- Kawai, K., Matsui, H., & Tobo, Y. (2023). Dominant role of Arctic dust with high ice nucleating
- ability in the Arctic lower troposphere. Geophysical Research Letters, 50, e2022GL102470.
- 983 https://doi. org/10.1029/2022GL102470
- Kim, D., Chin, M., Yu, H., Diehl, T., Tan, Q., Tsigaridis, K., Bauer, S. E., Takemura, T., Pozzoli,
- 985 L., Bellouin, N., Schulz, Peyridieu, M., S., & Chédin A. (2014). Source, sinks, and transatlantic
- 986 transport of North African dust aerosol: A multi-model analysis and comparison with remote-
- 987 sensing data, J. Geophy. Res. Atmos., 119, 6259–6277, doi:10.1002/2013JD021099.
- 988 Kim, D., Chin, M., Yu, H., Pan, X., Bian, H., Tan, Q., Kahn, R. A., Tsigaridis, K., Bauer, S. E.,
- 989 Takemura, T., Pozzoli, L., Bellouin, N., & Schulz, M. (2019). Asian and trans-Pacific Dust: A
- multi-model and multi-remote sensing observation analysis, J. Geophy. Res. Atmos., 124.
- 991 https://doi.org/10.1029/2019JD030822
- 892 Kim, D., Chin, M., Cruz, C. A., Tong, D., & Yu, H. (2021). Spring dust in western North
- America and its interannual variability—Understanding the role of local and transported dust.
- Journal of Geophysical Research: Atmospheres, 126, e2021JD035383.
- 995 <u>https://doi.org/10.1029/2021JD035383</u>
- 896 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S., Albani, S.,
- 897 & Haustein, K. (2017) Smaller desert dust cooling effect estimated from analysis of dust size and
- 998 abundance, Nat. Geosci., 10, 274–278.
- 999 Kok, J. F., Adebiyi, A. A., Albani, S., Balkanski, Y., Checa-Garcia, R., Chin, M., Colarco, P. R.,
- Hamilton, D. S., Huang, Y., Ito, A., Klose, M., Leung, D. M., Li, L., Mahowald, N. M., Miller, R.
- L., Obiso, V., Pérez García-Pando, C., Rocha-Lima, A., J. Wan, S., & Whicker, C. A. (2021a).
- 1002 Improved representation of the global dust cycle using observational constraints on dust
- 1003 properties and abundance, Atmospheric Chemistry and Physics, 21, 8127-67.
- 1004 Kok, J. F., Adebiyi, A. A., Albani, S., Balkanski, Y., Checa-Garcia, R., Chin, M., Colarco, P. R.,
- Hamilton, D. S., Huang, Y., Ito, A., Klose, M., Li, L., Mahowald, N. M., Miller, R. L., Obiso, V.,
- 1006 Pérez García-Pando, C., Rocha-Lima, A., & Wan, J. S. (2021b). Contribution of the world's
- main dust source regions to the global cycle of desert dust, Atmospheric Chemistry and Physics,
- 1008 21, 8169-93.
- 1009 Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan, A. T., He, C.,
- Leung, D. M. (2023). Mineral dust aerosol impacts on global climate and climate
- 1011 change, Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-022-00379-5.
- 1012 Koren, I., Kaufman, Y. J., Washington, R., Todd, C. C., Rudich, Y., Martins, J. V., & Rosenfeld,
- D. (2006). The Bodélé depression: a single spot in the Sahara that provides most of the mineral
- 1014 dust to the Amazon forest, Environ. Res. Lett., 1, 1–5.
- Leung, D. M., Kok, J. F., Li, L., Mahowald, N. M., Lawrence, D. M., Tilmes, S., Kluzek, E.,
- 1016 Klose, M., & Pérez García-Pando, C. (2024). A new process-based and scale-aware desert dust
- 1017 emission scheme for global climate models Part II: Evaluation in the Community Earth System
- 1018 Model version 2 (CESM2), Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-
- 1019 2287-2024.

- Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., et al. (2012). Toward a minimal
- representation of aerosols in climate models: Description and evaluation in the Community
- 1022 Atmosphere Model CAM5. Geoscientific Model Development, 5(3), 709–
- 1023 739. https://doi.org/10.5194/gmd-5-709-2012
- 1024 Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., & Rasch, P. J.
- 1025 (2016) Description and evaluation of a new four-mode version of the Modal Aerosol Module
- 1026 (MAM4) within version 5.3 of the Community Atmosphere Model, Geosci. Model Dev., 9, 505–
- 1027 522, https://doi.org/10.5194/gmd-9-505-2016.
- Macpherson, T., Nickling, W. G., Gillies, J. A., & Etyemezian, V. (2008). Dust emissions from
- undisturbed and disturbed supply-limited desert surfaces, J. Geophys. Res., 113, F02S04,
- 1030 doi:10.1029/2007JF000800.
- Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P., & Balkanski, Y. (2010). Global
- 1032 connections between aeolian dust, climate and ocean biogeochemistry at the present day and at
- the last glacial maximum. 99, 1–2, 61–97. doi:10.1016/j.earscirev.2009.12.001.
- Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubilay,
- N., Prospero, J. M., v Tegen, I. (2005). Atmospheric global dust cycle and iron inputs to the
- ocean, Global Biogeochem. Cycles, 19, GB4025, doi:10.1029/2004GB002402.
- 1037 Marticorena, B., & G. Bergametti (1995). Modeling the atmospheric dust cycle: 1. Design of a
- soil-derived dust emission scheme, J. Geophys. Res., 100, 16,415–16,430.
- Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N'Doume, C., & Legrand, M. (1997).
- Modeling the atmospheric dust cycle: 2 simulation of Saharan dust sources. J. Geophys. Res.
- 1041 102D, 4387–4404.
- Matsui H, Koike M, Kondo Y, Fast JD, & Takigawa M. (2014). Development of an aerosol
- microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging
- 1044 Simulation (ATRAS) Atmos. Chem. Phys.,14, 10315–10331. doi: 10.5194/acp-14-10315-2014.
- Matsui, H. (2017). Development of a global aerosol model using a two dimensional sectional
- 1046 method: 1. Model design, J. Adv. Model. Earth Syst., 9, 1921–1947,
- 1047 doi:10.1002/2017MS000936.
- Matsui, H. & Mahowald, N. (2017). Development of a global aerosolmodel using a two-
- dimensional method: 2. Evaluation and sensitivity simulations, J. Adv. Model. Earth
- 1050 Syst., 9, 1887–1920, doi:10.1002/2017MS000937.
- Miller, R. L., et al. (2006). Mineral dust aerosols in the NASA Goddard Institute for Space
- Sciences ModelE atmospheric general circulation model, J. Geophys. Res., 111, D06208,
- 1053 doi:10.1029/2005JD005796.
- 1054 O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., & Thulasiraman, S. (2003). Spectral
- discrimination of coarse and fine mode optical deph, J. Geophys. Res., 108(D17), 4559,
- 1056 doi:10.1029/2002JD002975.
- Rosenfeld, D., et al. (2014). Global observations of aerosol-cloud-precipitation climate
- interactions, Rev. Geophys., 52, doi:10.1002/2013RG000441.
- 1059 Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher,
- O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X.,

- 1061 Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., & Takemura,
- T. (2006). Radiative forcing by aerosols as derived from the AeroCom present-day and pre-
- industrial simulations, Atmos. Chem. Phys., 6, 5225–5246, https://doi.org/10.5194/acp-6-5225-
- 1064 2006.
- Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami, M.,
- Tanaka, T. Y., Wang, X., & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth
- system science, Aeolian Res., 2(4), 181–204, doi: 10.1016/j.aeolia.2011.02.001.
- 1068 Shi, Y., & Liu, X. (2019). Dust radiative effects on climate by glaciating mixed-phase clouds.
- 1069 Geophysical Research Letters, 46, 6128-6137. https://doi.org/10.1029/2019GL082504
- 1070 Shi, Y., Liu, X., Wu, M., Zhao, X., Ke, Z., & Brown, H. (2022). Relative importance of high-
- latitude local and long-range-transported dust for Arctic ice-nucleating particles and impacts on
- Arctic mixed-phase clouds, Atmos. Chem. Phys., 22, 2909–2935, https://doi.org/10.5194/acp-22-
- 1073 2909-2022.
- Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Higurashi A., & Nakajima, T. (2000).
- Global three-dimensional simulation of aerosol optical thickness distribution of various origins, J.
- 1076 *Geophys. Res.*, 105, 17,853 17,873.
- Takemura, T., Nozawa T., Emori S., Nakajima T. Y., & Nakajima T. (2005). Simulation of
- climate response to aerosol direct and indirect effects with aerosol transport-radiation model, J.
- 1079 Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.
- Tegen, I., & Fung, I. (1995). Contribution to the atmospheric mineral aerosol load from land
- 1081 surface modification, J. Geophys. Res., 100, 18,707-18,726.
- Tegen, I., Lacis, A., & Fung, I. (1996). The influence on climate forcing of mineral aerosols
- from disturbed soils, Nature, 380, 419–422.
- Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,
- Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S.,
- 1086 Gi- noux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, T.,
- Kloster, S., Koch, D., Kirkevag, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu,
- 1088 X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T.,
- and Tie, X. (2006). Analysis and quantification of the diversities of aerosol life cycles within
- 1090 AeroCom, Atmos. Chem. Phys., 6, 1777–1813, http://www.atmos-chem-phys.net/6/1777/2006/.
- 1091 Westberry, T. K., Behrenfeld, M. J., Shi, Y. R., Yu, H., Remer, L. A., & Bian, H. (2023).
- "Atmospheric nourishment of global ocean ecosystems." Science 380 (6644): 515-519.
- 1093 https://doi.org/10.1126/science.abq5252
- 1094 Wu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., Darmenov, A., Wu, C., Wang, Z., Luo, T.,
- Feng, Y., & Ke, Z. (2020). Understanding processes that control dust spatial distributions with
- global climate models and satellite observations, Atmos. Chem. Phys., 20, 13835–13855,
- 1097 https://doi.org/10.5194/acp-20-13835-2020.
- 1098 Yu, H., Chin, M., Yuan, T., Bian, H., Remer, L. A., Prospero, J. M., Omar, A., Winker, D., Yang,
- 1099 Y., Zhang, Y., Zhang, Z., & Zhao, C. (2015). The fertilizing role of African dust in the Amazon
- rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared
- Pathfinder Satellite Observations, Geophys. Res. Lett., 42, doi:10.1002/2015GL06304.

- Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., & Notaro, M. (2018). Identification and
- characterization of dust source regions across North Africa and the Middle East using MISR
- satellite observations. Geophysical Research Letters, 45, 6690–6701.
- 1105 https://doi.org/10.1029/2018GL078324
- 1106 Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., Notaro, M., Campbell, J. R., et al. (2020).
- Disproving the Bodélé depression as the primary source of dust fertilizing the Amazon
- Rainforest. Geophysical Research Letters, 47, e2020GL088020. https://doi.org/
- 1109 10.1029/2020GL088020
- Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. (2018). The GFDL
- global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed
- 1112 SSTs. Journal of Advances in Modeling Earth Systems, 10, 691–
- 1113 734. https://doi.org/10.1002/2017MS001208
- Zender, C. S., D. Newman, and O. Torres (2003), Spatial heterogeneity in aeolian erodibility:
- 1115 Uniform, topographic, geomorphologic, and hydrologic hypotheses, J. Geophys. Res., 108(D17),
- 1116 4543, doi:10.1029/2002JD003039.
- 1117
- 1118

Figure Captions

1119 1120

- Figure 1. Map of dust sources for model simulation and analysis. The color shade is the annual
- mean dust emission of the GEOS model for 2009~2012. Source regions are color coded as
- shown below the map. Source regions are West Africa (WAF), East Africa (EAF), Bodélé
- (BOD), Central Asia (CAS), Middle East (MDE), East Asia (EAS), Taklimakan desert (TAK),
- North America (NAM), and Southern Hemisphere (SOH).

1126

- Figure 2. Map of dust receptors. Seven receptors are located over land and the remaining
- receptors cover ocean or polar regions. The receptor names are North America (NAM), Europe
- 1129 (EUR), India (IND), East Asia (EAS), Tropical North Africa (TNAF), Amazon (TMZ), Tibetan
- 1130 Plateau (TBP), North Atlantic (NATL), South Atlantic (SATL), North Pacific (NPAC), South
- Pacific (SPAC), Indian Ocean (INDO), Arctic (ARC), and Antarctic (AARC).

1132

- Figure 3. Comparisons of dust optical depths at 550 nm between AERONET and model
- averaged for 2009 and 2012. (a) Mean and standard deviation of AERONET and model, and (b)
- 1135 Taylor diagram of DOD from the AERONET and the models. (c) Map of multi-model mean
- DOD. AERONET DOD is overplotted in circle.

1137

- Figure 4. Percent contributions by mass of dust sources in global dust emission (EMI), column
- loading (LOAD), and dust optical depth (DOD).

1140

- Figure 5. Horizontal distribution of F_{src} (contribution of WAF; brown shade) and dust column
- loading (LOAD) (black contour lines at 5, 20, 50, 200, 500 mg m⁻²) for WAF. Numbers in
- parenthesis are the area-weighted global mean of F_{src} (left) and LOAD (right).

1144

- Figure 6. Vertical distribution of F_{src} (contribution of WAF; brown shade) and dust concentration
- 1146 (black contour lines at 0.1, 0.2, 0.5, 1, 2, 5, 10 µg m⁻³) for WAF.

1147

- Figure 7. Horizontal distribution of multi-model mean F_{src} (contribution of sources; brown shade)
- and column dust loading (black contour lines at 5, 20, 50, 200, 500 mg m⁻²). Numbers in
- parenthesis are the area-weighted global mean of F_{src} (left) and LOAD (right).

1151

- Figure 8. Vertical distribution of multi-model mean F_{src} (contribution of sources; brown shade)
- and dust concentration (black contour lines at 0.1, 0.2, 0.5, 1, 2, 5, $10 \,\mu g \, m^{-3}$ from the 9 source
- 1154 regions).

1155

- Figure 9. Horizontal distribution of (left) dust layer loading (mg m⁻²), (middle) dust layer
- 1157 contribution to column (fraction), and (right) ratio of DU_f (diameter <2.5 μm) to DU (i.e., all size
- range) for each layer. Numbers in panels are the global total values (left) and mean values
- 1159 (middle and right) of each layer.

1160

- Figure 10. Horizontal distribution of F_{src} (contribution of sources) of multi-model mean for each
- layer. NAF is the sum of WAF, EAF, and BOD; MDECAS is the sum of MDE and CAS;
- 1163 EASTAK is the sum of EAS and TAK. Numbers in panels are the contribution of sources to the
- global dust loading of each layer.

- Figure 11. (Left) Global monthly dust emission, deposition, and column loading. (Right) Percent contributions of dust sources.
- 1168
- Figure 12. Mass percentage contributions from nine source regions to the dust load over three
- land receptor regions EAS, NAM, and AMZ estimated by 7 individual models and their mean
- 1171 values.
- 1172
- Figure 13. Mass percentage contributions from nine source regions to the dust load over two
- oceanic receptors (NATL, NPAC) and one polar region (ARC) estimated by 7 individual models
- and their mean values.
- 1176
- Figure 14. Global monthly dust column loading over the 14 receptor regions averaged for 2009-
- 1178 2012.
- 1179
- Figure 15. Global monthly dust total deposition over the 14 receptor regions averaged for 2009-
- 1181 2012.
- 1182
- Figure 16. Dust source contribution of multi model mean for dust loading over the 14 receptor
- 1184 regions.
- 1185
- Figure 17. Dust source contribution of multi model mean for dust deposition over the 14 receptor
- 1187 regions.
- 1188
- Figure 18. Percent contribution of dust sources to global dust loading from the previous studies
- and the present study. Estimates of the previous study are taken from Kok et al. (2021). Original
- source regions are regrouped to 5 larger regions.

Table 1. Description of the participating models.

	GFDL- AM4	CAM5- ATRAS	CESM2	GEOS	GEOS- Chem	GISS- OMA	SPRINTARS
Resolution (°lon×°lat)	288×180 (1.25×1)	144×96 (2.5×1.88)	288×192 (1.25×1.93)	720×361 (0.5×0.5)	144×91 (2.5×2)	144×90 (2.5×2)	640×320 (0.56×0.56)
Vertical Layers	33	30	32	72	47	40	40
Meteorology (Simulation Type) ²	AM4 (Nudged)	CAM5 (Nudged)	CESM (Nudged)	MERRA2 (Replay)	GEOS (CTM)	ModelE (Nudged)	MIROC (Nudged)
Size distribution (µm in radius)	5 bins 0.1-1.0- 1.8-3.0- 6.0-10.0	12 bins 0.0005- 0.001-0.003- 0.079-0.196- 0.039-0.078- 0.156-0.313- 0.625-1.25- 2.5-5.0	3 modes ¹ 0.005-0.05-0.5-5.0	5 bins 0.1-1.0-1.8- 3.0-6.0-10.0	4 bins 0.1-1.0-1.8- 3.0-6.0	8 bins 0.05-0.1- 0.25-0.15- 1-2-4-8-16	6 bins 0.1-0.22-0.46- 1.0-2.15-4.64- 10.0
Dust emission scheme	Ginoux et. al. (2001)	Zender et al. (2003)	Zender et al. (2003)	Ginoux et. al. (2001)	Zender et al. (2003)	Miller et al. (2006)	Gillett (1978)
References	Zhao et al. (2018)	Matsui et al. (2014, 2017) Matsui and Mahowald (2017)	Liu et al. (2012, 2016)	Chin et al. (2002, 2009) Ginoux et al. (2001)	Bey et al. (2001)	Miller et al., (2006); Bauer and Koch (2005)	Takemura et al. (2000, 2005)

^{1.} Size of CESM2 is the modal radius of each mode. CESM2 has four aerosol modes, but dust is only carried in three of them.
2. Nudged: meteorological field observations (e.g., q, T, p) are ingested to the model, Replay: the model is re-initialized every day, CTM (chemistry transport model): there is no interaction between meteorology and chemistry.

Table 2. Global mean dust quantities from the DUSA participating models averaged for 2009-2012. The three bottom rows are the mean, standard deviation, and diversity of 7 models. The underlined values are the maximum and minimum model values. Diversity is the ratio of standard deviation to mean and in percent. Lifetime is calculated by LOAD/Deposition×365 and in days.

	Emission (Tg yr ⁻¹)	Deposition (Tg yr ⁻¹)	LOAD (Tg)	DOD	Lifetime (days)
GFDL-AM4	1578	1595	14.6	0.022	3.3
CAM5-ATRAS	4311	4531	34.2	0.026	2.8
CESM2	2826	2929	31.6	0.034	<u>3.9</u>
GEOS	1417	1418	20.8	0.025	5.4
GEOS-Chem	<u>1130</u>	<u>1132</u>	<u>11.2</u>	0.012	<u>3.6</u>
GISS-OMA	1830	1830	26.0	0.026	5.2
SPRINTARS	2278	2084	11.6	0.017	2.0
Mean	2196	2217	21.4	0.023	3.5
Standard deviation	1091	1171	9.4	0.007	1.2
Diversity (%)	49.7	52.8	44.1	31.2	34.4

Table 3. Dust emission of SUM and various sources by models (Tg yr⁻¹). Percent contribution is given in parenthesis. Diversity is defined as the ratio of standard deviation to mean multiplied by 100. Source regions are West Africa (WAF), East Africa (EAF), Bodélé (BOD), Central Asia (CAS), Middle East (MDE), East Asia (EAS), Taklimakan desert (TAK), North America (NAM), and Southern Hemisphere (SOH).

Source	GFDL-	CAM5-			GEOS-	GISS-	SPRIN			
Name	AM4	ATRAS	CESM2	GEOS	Chem	OMA	-TARS	Mean	STD	Diversity
SUM	1556	4253	2823	1416	1130	1830	2221	2175	1073	49.3
SOM	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(0)	(0)
WAF	382.7	1099.0	226.7	419.2	406.2	517.0	648.9	528.5	282.6	53.5
****	(24.6)	(25.8)	(8.0)	(29.6)	(36.0)	(28.3)	(29.2)	(24.3)	(8.7)	(33.5)
EAF	239.3	891.9	637.8	262.6	213.2	275.0	376.3	413.7	255.9	61.9
L/ II	(15.4)	(21.0)	(22.6)	(18.5)	(18.9)	(15.0)	(16.9)	(19.0)	(2.8)	(15.3)
BOD	107.3	201.7	103.2	171.1	128.7	348.0	263.1	189.1	90.3	47.8
ВОВ	(6.9)	(4.7)	(3.7)	(12.1)	(11.4)	(19.0)	(11.8)	(8.7)	(5.3)	(53.3)
MDE	218.1	927.2	179.8	273.3	180.8	284.0	148.7	316.0	274.1	86.7
WIDE	(14.0)	(21.8)	(6.4)	(19.3)	(16.0)	(15.5)	(6.7)	(14.5)	(5.9)	(41.2)
CAS	169.3	432.9	382.7	136.8	52.5	210.0	213.7	228.2	134.8	59.1
CAS	(10.9)	(10.2)	(13.6)	(9.7)	(4.6)	(11.5)	(9.6)	(10.5)	(2.7)	(27.2)
EAS	101.4	276.7	134.2	45.6	79.8	39.3	125.2	114.6	80.2	70.0
LAG	(6.5)	(6.5)	(4.8)	(3.2)	(7.1)	(2.1)	(5.6)	(5.3)	(1.8)	(36.1)
TAK	92.2	89.9	203.4	38.2	15.3	48.4	90.4	82.6	61.2	74.1
1711	(5.9)	(2.1)	(7.2)	(2.7)	(1.4)	(2.6)	(4.1)	(3.8)	(2.1)	(57.6)
NAM	32.3	45.7	8.9	6.0	3.0	2.9	81.6	25.8	29.6	115.0
11/4/1/1	(2.1)	(1.1)	(0.3)	(0.4)	(0.3)	(0.2)	(3.7)	(1.2)	(1.3)	(114.3)
SOH	213.1	287.7	946.5	63.2	49.9	101.0	273.4	276.4	311.1	112.6
5011	(13.7)	(6.8)	(33.5)	(4.5)	(4.4)	(5.5)	(12.3)	(12.7)	(10.4)	(90.2)

Table 4. Multi-model mean and standard deviation of dust emission, column loading, deposition, and DOD from SUM and various sources. Units are Tg yr⁻¹ for emission, load, and deposition, and dimensionless for DOD. Lifetime is calculated by LOAD/Deposition×365 and in days.

	Emission (Tg yr ⁻¹)	LOAD (Tg yr ⁻¹)	Deposition (Tg yr ⁻¹)	DOD (×10 ³)	Lifetime (days)
SUM	2174.8±1118	21.1±9.8	2171.7±1199	22.9±7.6	3.5
WAF	528.5±292.1	5.9±2.9	521.2±283.2	3.2±1.4	4.1
EAF	413.7±261.1	4.5±2.9	402.8±252.3	2.9±2.8	4.1
BOD	189.1±99.3	2.1±1.5	189.6±96.4	1.1±0.6	4.0
MDE	316.0±278.2	3.2±2.2	312.0±277.5	1.7±1.1	3.7
CAS	228.2±154.0	1.8±1.2	228.9±160.9	1.5±1.7	2.9
EAS	114.6±87.3	0.6±0.3	118.7±98.8	0.5±0.4	1.8
TAK	82.6±66.3	0.6±0.5	86.3±71.4	0.5±0.7	2.5
NAM	25.8±30.0	0.1±0.1	30.6±31.8	0.1±0.1	1.2
SOH	276.4±314.2	2.2±3.0	281.6±319.8	2.0±3.6	2.9

Table 5. Global scale contribution of SUM and various sources for emission, column loading, deposition, and DOD in percentage. Numbers in the parenthesis are the model diversity, which is the ratio of standard deviation to mean. Unit is percent for both variables.

	Emission (%)	LOAD (%)	Deposition (%)	DOD (%)
SUM	100 (51.4)	100 (46.3)	100 (55.2)	100 (76.0)
WAF	24.3 (13.4)	28.1 (13.7)	24.0 (13.0)	23.5 (10.5)
EAF	19.0 (12.0)	21.5 (13.9)	18.5 (11.6)	22.0 (20.8)
BOD	8.7 (4.6)	10.0 (7.0)	8.7 (4.4)	8.4 (4.6)
MDE	14.5 (12.8)	15.1 (10.6)	14.4 (12.8)	12.9 (8.0)
CAS	10.5 (7.1)	8.8 (5.8)	10.5 (7.4)	11.0 (13)
EAS	5.3 (4.0)	2.9 (1.6)	5.5 (4.6)	3.4 (2.7)
TAK	3.8 (3.0)	2.7 (2.3)	4.0 (3.3)	3.7 (5.0)
NAM	1.2 (1.4)	0.6 (0.5)	1.4 (1.5)	0.6 (0.6)
SOH	12.7 (14.4)	10.4 (14.0)	13 (14.7)	14.6 (26.7)

Table 6. Contribution of sources to receptors over land from the multi-model mean. Top row is the annual mean loading (LOAD) of SUM and standard deviation over the receptor regions. Numbers in the parenthesis are the model diversity, which is the ratio of standard deviation to mean (%).

Source Region	NAM	EUR	IND	EAS	TNAF	AMZ	TBP
LOAD (×10 ⁻³ Tg yr ⁻¹)	84±71	208±82	419±252	418±171	2272±1146	155±144	72±57
SUM (%)	100 (84.6)	100 (39.6)	100 (60.1)	100 (41.0)	100 (50.5)	100 (92.5)	100 (78.6)
WAF (%)	31.7 (113.0)	53.0 (43.2)	4.5 (69.5)	4.7 (93.7)	13.3 (56.3)	34.8 (88.0)	6.8 (87.1)
EAF (%)	11.2 (110.3)	23.5 (41.6)	6.0 (46.3)	3.4 (56.5)	46.0 (97.9)	15.0 (91.3)	6.0 (50.9)
BOD (%)	6.3 (162.1)	5.2 (93.1)	2.7 (98.8)	1.9 (94.5)	25.9 (74.3)	16.7 (138.9)	3.3 (101.7)
MDE (%)	8.3 (113.3)	4.2 (75.1)	33.6 (74.5)	5.2 (77.3)	12.2 (60.5)	11.5 (204.8)	12.6 (67.3)
CAS (%)	6.4 (128.3)	10.8 (79.9)	50.2 (68.5)	6.6 (68.1)	1.1 (48.5)	3.0 (157.1)	16.2 (66.3)
EAS (%)	5.0 (79.0)	1.1 (79.0)	0.9 (172.9)	65.3 (66.6)	0.4 (117.6)	1.0 (91.7)	14.9 (146.2)
TAK (%)	6.1 (85.5)	1.2 (71.1)	0.9 (117.7)	11.7 (73.4)	0.4 (109.5)	0.9 (90.7)	38.7 (107.5)
NAM (%)	24.3 (46.9)	0.7 (85.4)	0.5 (129.0)	0.6 (108.6)	0.4 (127.9)	0.6 (120.6)	0.7 (125.3)
SOH (%)	0.6 (83.3)	0.5 (105.7)	0.6 (146.5)	0.7 (100.5)	0.4 (95.2)	16.7 (93.5)	0.7 (125.7)

Table 7. Same as Table 6 except for ocean and the polar regions.

Source Region	NPAC	SPAC	NATL	SALT	INDO	ARC	AARC
LOAD							
$(\times 10^{-3} \text{Tg yr}^{-1})$	545±424	331±248	2593±1159	594±627	1730±987	75±57	14±13
SUM (%)	100 (77.9)	100 (74.8)	100 (44.7)	100 (105.7)	100 (57.1)	100 (75.8)	100 (94.9)
WAF (%)	20.9 (118.0)	4.6 (111.6)	69.2 (49.9)	3.7 (83.3)	3.5 (74.2)	22.9 (89.1)	4.8 (164.3)
EAF (%)	11.0 (92.8)	3.3 (75.5)	12.7 (52.4)	12.1 (85.9)	8.5 (68.3)	12.7 (82.9)	5.6 (161.8)
BOD (%)	7.6 (155.7)	2.8 (112.6)	12.7 (106.5)	8.4 (125.0)	2.4 (120.7)	6.0 (113.0)	4.4 (170.7)
MDE (%)	14.2 (99.5)	4.1 (100.3)	2.1 (92.6)	3.2 (82.3)	44.9 (70.3)	11.9 (99.9)	5.0 (174.4)
CAS (%)	11.0 (94.1)	1.8 (73.8)	0.9 (73.9)	0.8 (50.5)	11.8 (54.0)	23.7 (75.4)	4.2 (164.9)
EAS (%)	19.8 (32.7)	0.9 (90.2)	0.5 (67.9)	0.5 (71.9)	0.4 (69.3)	11.0 (62.4)	2.8 (217.0)
TAK (%)	11.8 (74.3)	0.8 (74.8)	0.7 (67.3)	0.6 (72.0)	0.5 (62.6)	9.0 (90.9)	3.5 (181.2)
NAM (%)	1.7 (69.4)	0.9 (95.5)	0.7 (82.8)	0.5 (73.7)	0.4 (81.5)	1.6 (103.8)	2.7 (225.5)
SOH (%)	2.0 (74.0)	80.7 (89.4)	0.6 (88.0)	70.2 (141.9)	27.7 (154.2)	1.0 (137.0)	67.0 (91.6)

Figure.

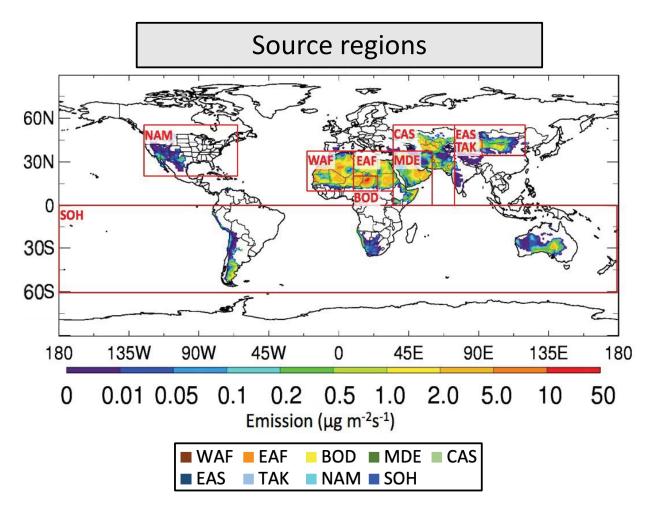


Figure 1. Map of dust sources for model simulation and analysis. The color shade is the annual mean dust emission of the GEOS model for 2009~2012. Source regions are color coded as shown below the map. Source regions are West Africa (WAF), East Africa (EAF), Bodélé (BOD), Central Asia (CAS), Middle East (MDE), East Asia (EAS), Taklimakan desert (TAK), North America (NAM), and Southern Hemisphere (SOH).

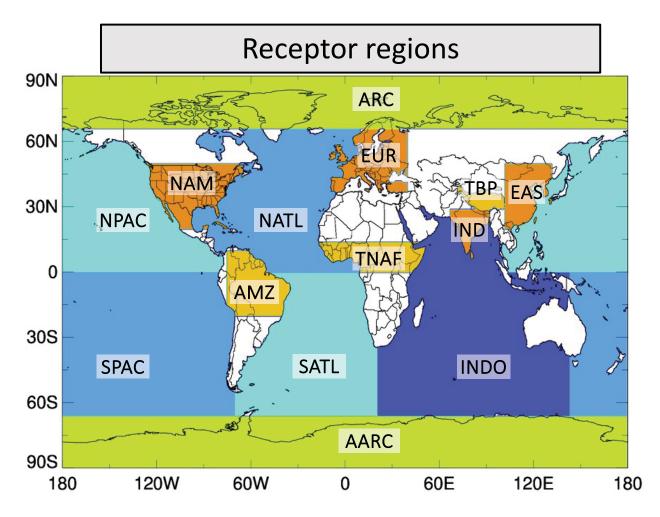


Figure 2. Map of dust receptors. Seven receptors are located over land and the remaining receptors cover ocean or polar regions. The receptor names are North America (NAM), Europe (EUR), India (IND), East Asia (EAS), Tropical North Africa (TNAF), Amazon (TMZ), Tibetan Plateau (TBP), North Atlantic (NATL), South Atlantic (SATL), North Pacific (NPAC), South Pacific (SPAC), Indian Ocean (INDO), Arctic (ARC), and Antarctic (AARC).

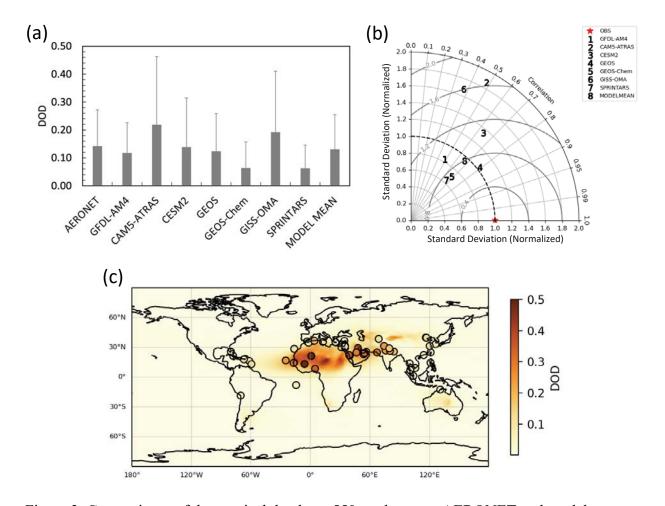


Figure 3. Comparisons of dust optical depths at 550 nm between AERONET and model averaged for 2009 and 2012. (a) Mean and standard deviation of AERONET and model, and (b) Taylor diagram of DOD from the AERONET and the models. (c) Map of multi-model mean DOD. AERONET DOD is overplotted in circle.

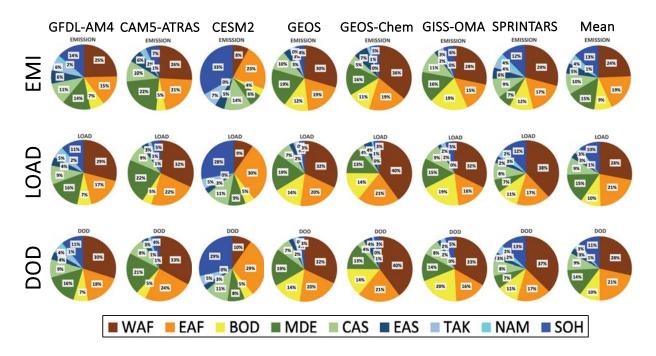


Figure 4. Percent contributions by mass of dust sources in global dust emission (EMI), column loading (LOAD), and dust optical depth (DOD).

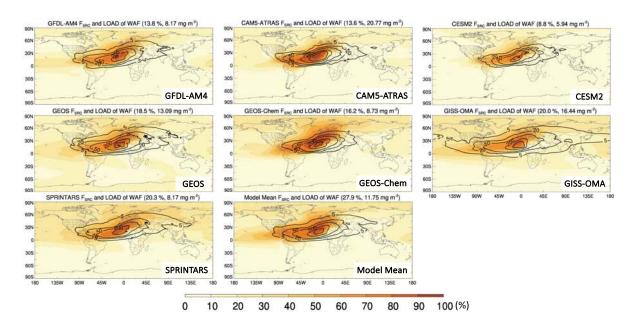


Figure 5. Horizontal distribution of $\bar{A}_{\bar{A}\bar{A}}$ (contribution of WAF; brown shade) and dust column loading (LOAD) (black contour lines at 5, 20, 50, 200, 500 mg m⁻²) for WAF. Numbers in parenthesis are the area-weighted global mean of $\bar{A}_{\bar{A}\bar{A}}$ (left) and LOAD (right).

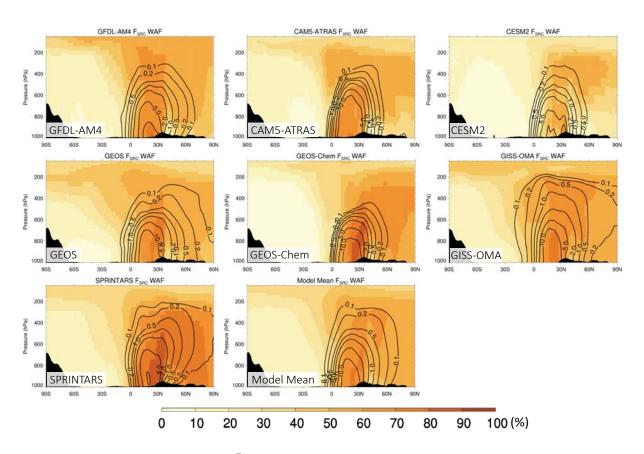


Figure 6. Vertical distribution of $\bar{A}_{\bar{A}\bar{A}}$ (contribution of WAF; brown shade) and dust concentration (black contour lines at 0.1, 0.2, 0.5, 1, 2, 5, 10 µg m⁻³) for WAF.

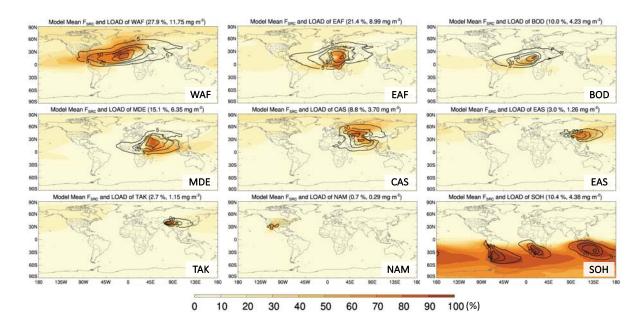


Figure 7. Horizontal distribution of multi-model mean $\bar{A}_{A\bar{A}}$ (contribution of sources; brown shade) and column dust loading (black contour lines at 5, 20, 50, 200, 500 mg m⁻²). Numbers in parenthesis are the area-weighted global mean of $\bar{A}_{A\bar{A}}$ (left) and LOAD (right).

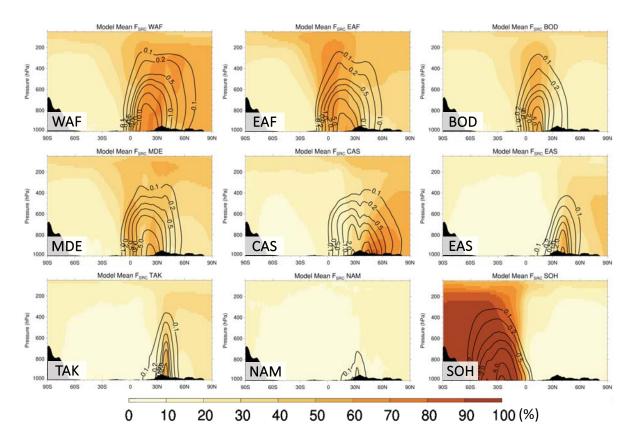


Figure 8. Vertical distribution of multi-model mean $\bar{A}_{\bar{A}\bar{A}}$ (contribution of sources; brown shade) and dust concentration (black contour lines at 0.1, 0.2, 0.5, 1, 2, 5, 10 µg m⁻³ from the 9 source regions).

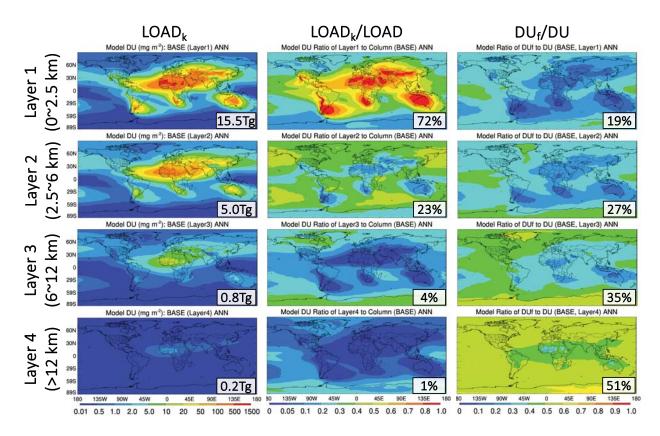


Figure 9. Horizontal distribution of (left) dust layer loading (mg m $^{-2}$), (middle) dust layer contribution to column (fraction), and (right) ratio of DU_f (diameter <2.5 μ m) to DU (i.e., all size range) for each layer. Numbers in panels are the global total values (left) and mean values (middle and right) of each layer.

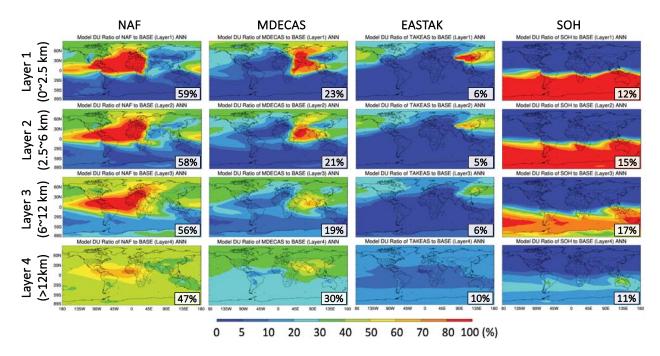


Figure 10. Horizontal distribution of $\bar{A}_{\bar{A}\bar{A}}$ (contribution of sources) of multi-model mean for each layer. NAF is the sum of WAF, EAF, and BOD; MDECAS is the sum of MDE and CAS; EASTAK is the sum of EAS and TAK. Numbers in panels are the contribution of sources to the global dust loading of each layer.

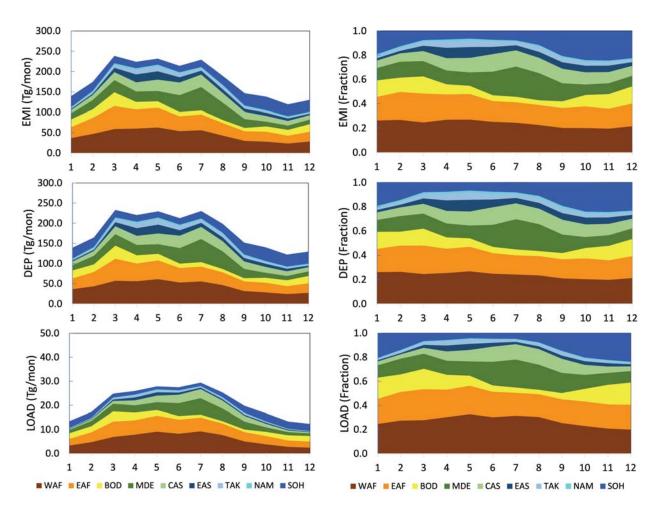


Figure 11. (Left) Global monthly dust emission, deposition, and column loading. (Right) Percent contributions of dust sources.

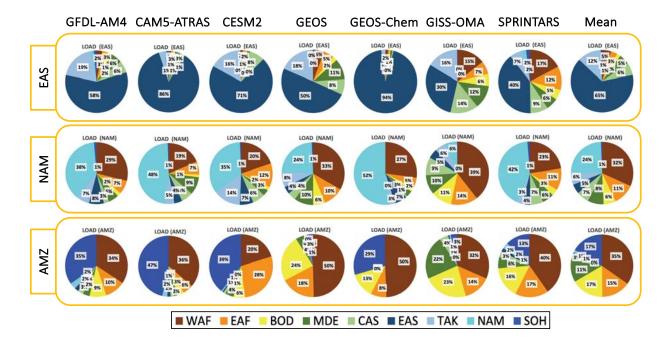


Figure 12. Mass percentage contributions from nine source regions to the dust load over three land receptor regions EAS, NAM, and AMZ estimated by 7 individual models and their mean values.

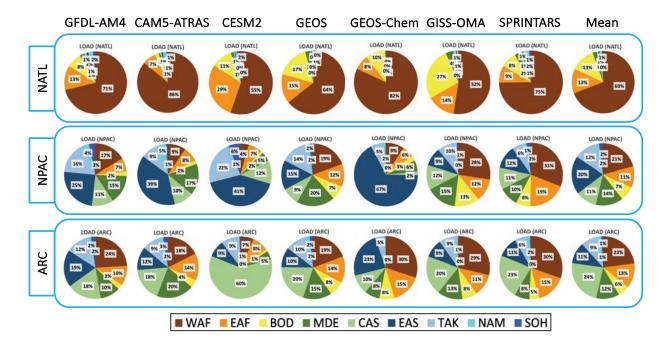


Figure 13. Mass percentage contributions from nine source regions to the dust load over two oceanic receptors (NATL, NPAC) and one polar region (ARC) estimated by 7 individual models and their mean values.

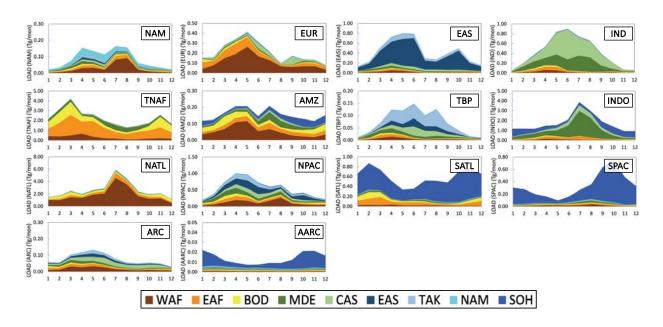


Figure 14. Global monthly dust column loading over the 14 receptor regions averaged for 2009-2012.

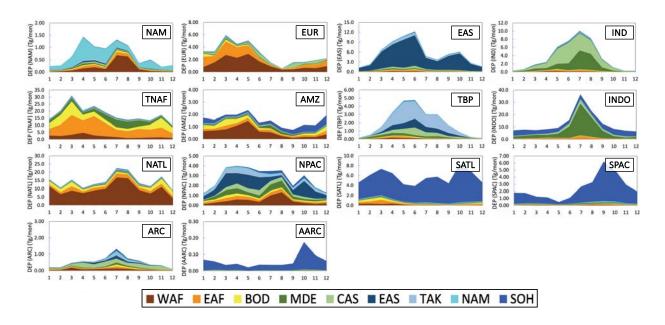


Figure 15. Global monthly dust total deposition over the 14 receptor regions averaged for 2009-2012.

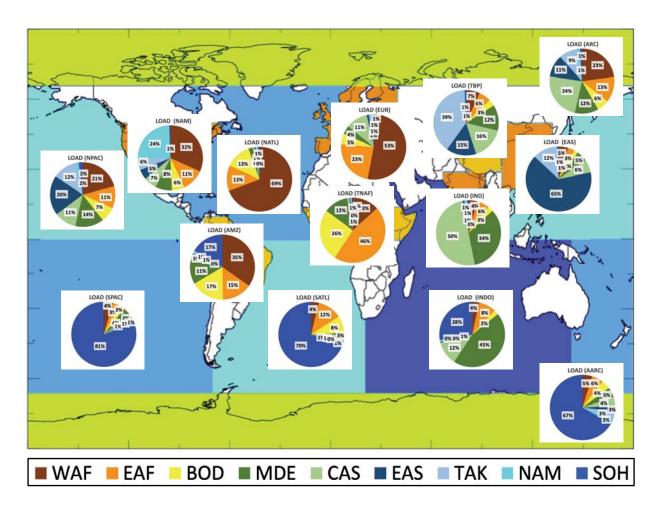


Figure 16. Dust source contribution of multi model mean for dust loading over the 14 receptor regions.

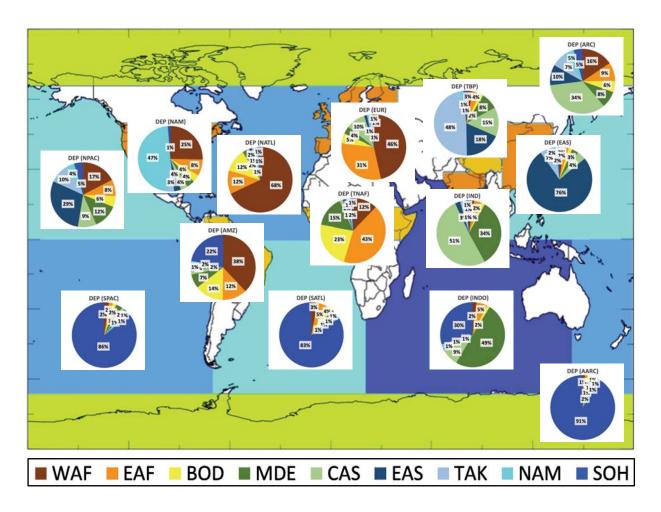


Figure 17. Dust source contribution of multi model mean for dust deposition over the 14 receptor regions.

Contribution of sources to global loading

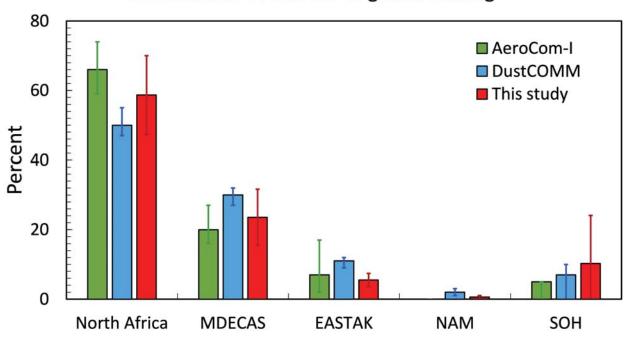
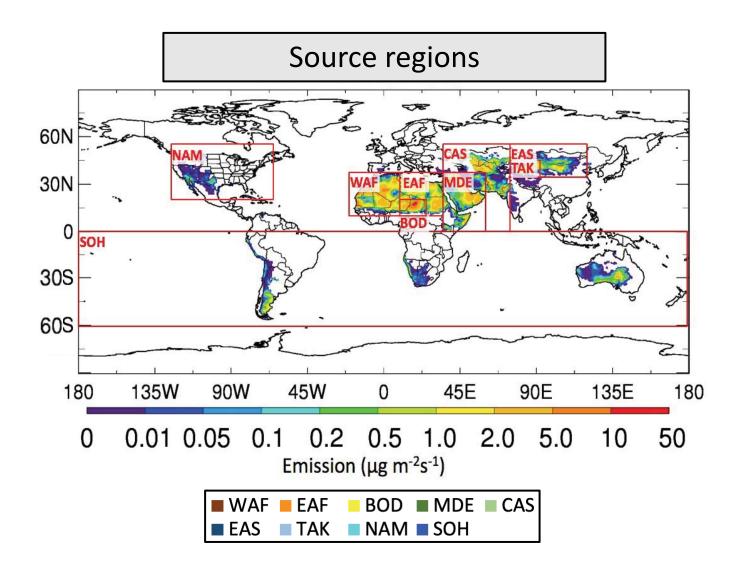
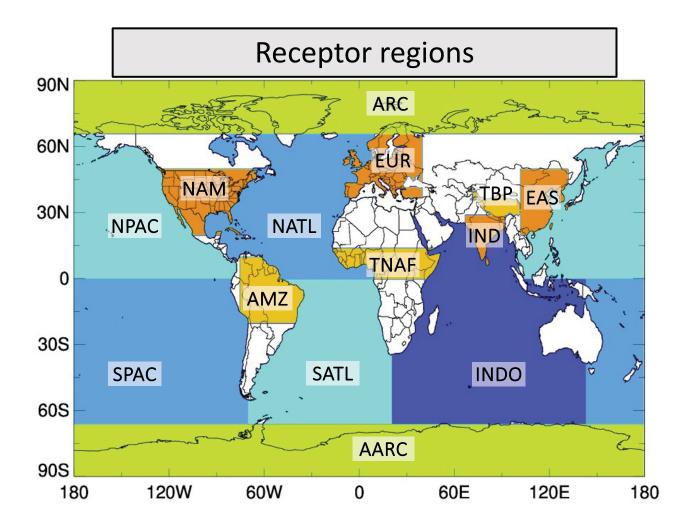
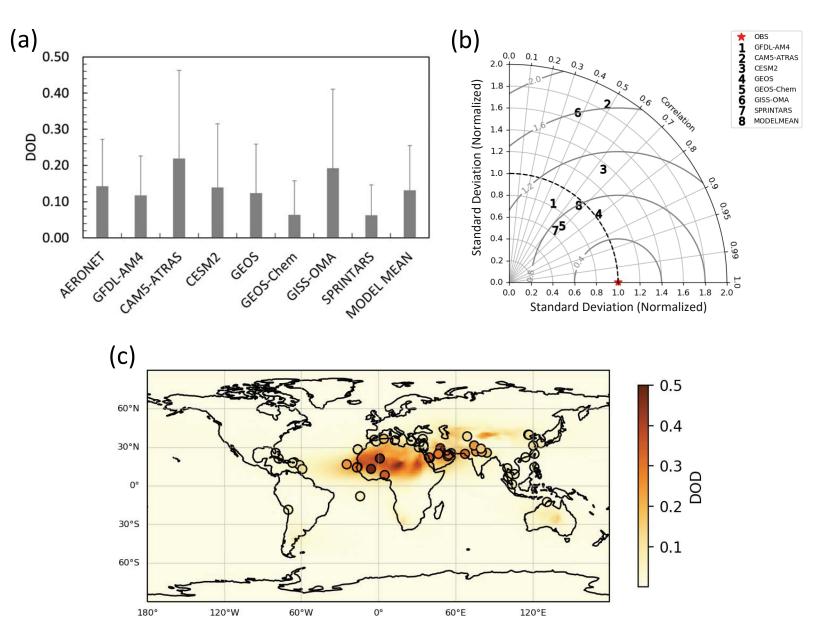
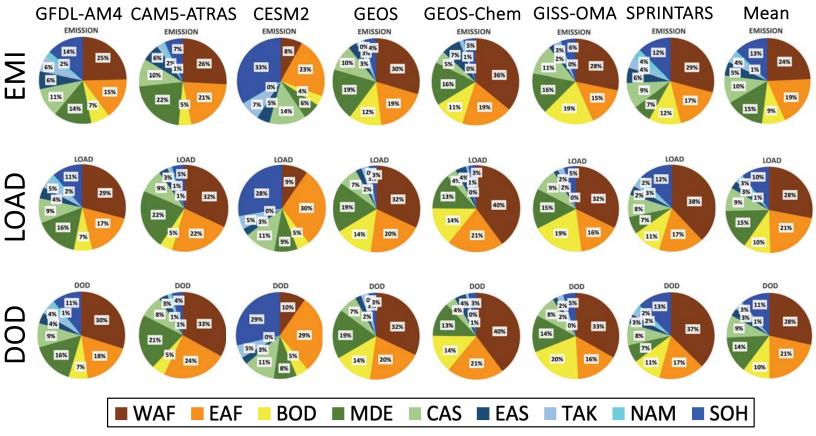
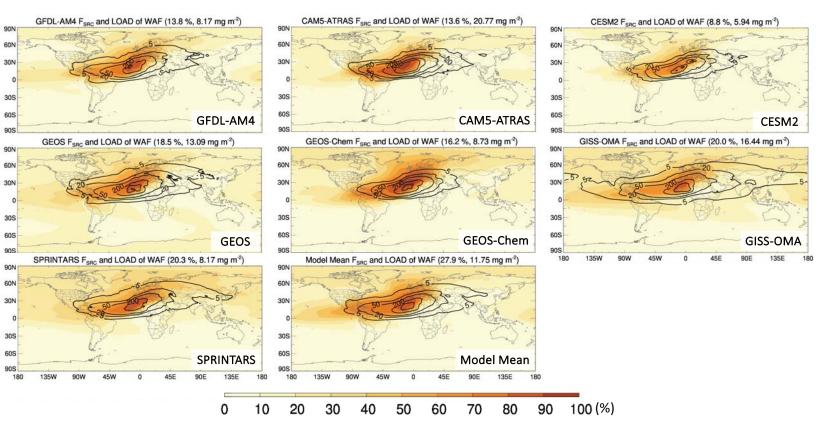
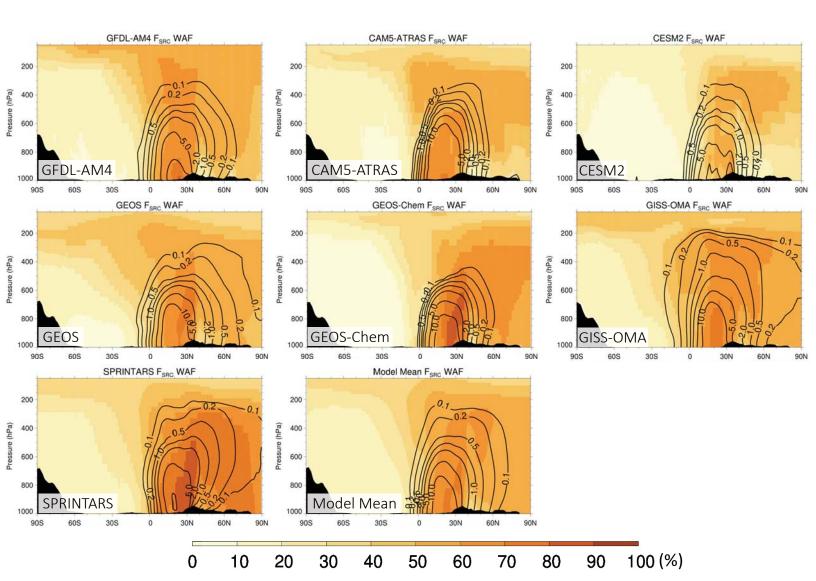




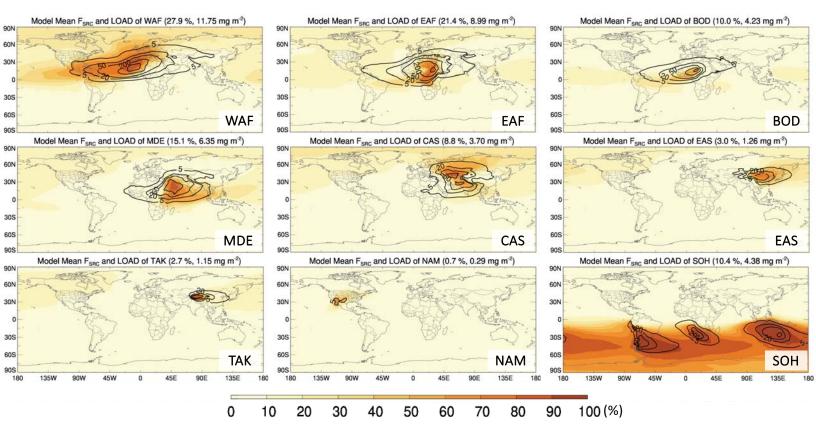
Figure 18. Percent contribution of dust sources to global dust loading from the previous studies and the present study. Estimates of the previous study are taken from Kok et al. (2021). Original source regions are regrouped to 5 larger regions.

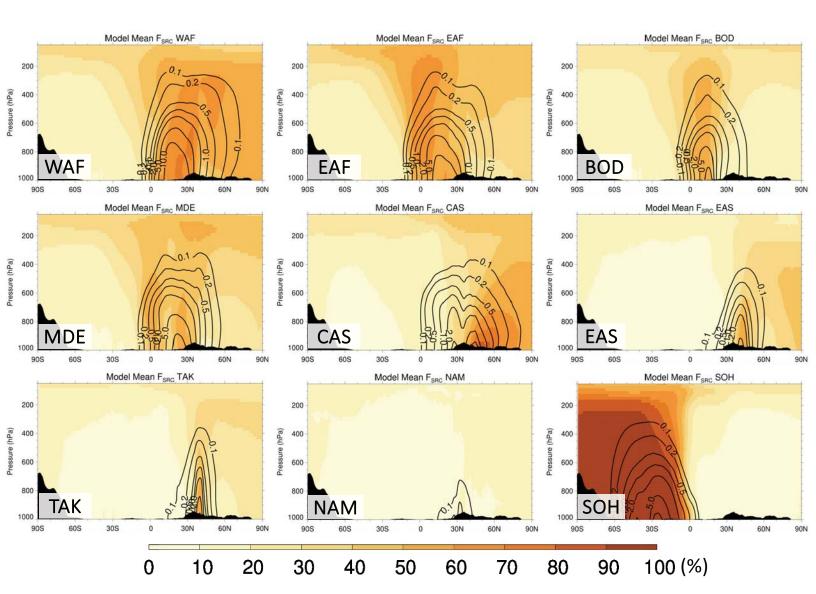

Figure	1.
--------	----

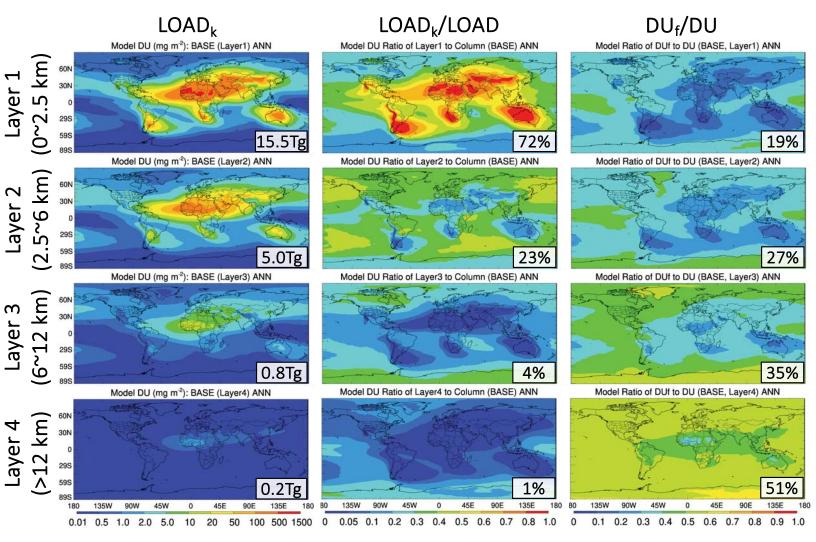

Figure 2	2.
----------	----

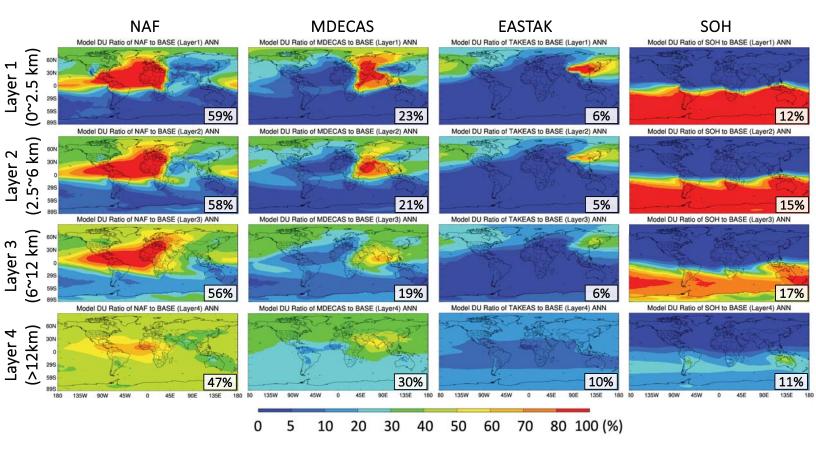

Figure 3	
----------	--


Figure 4	1.
----------	----


Figure 5.	
-----------	--


Figure 6.	
-----------	--


Figure 7.	
-----------	--


Figure 8	В.
----------	----

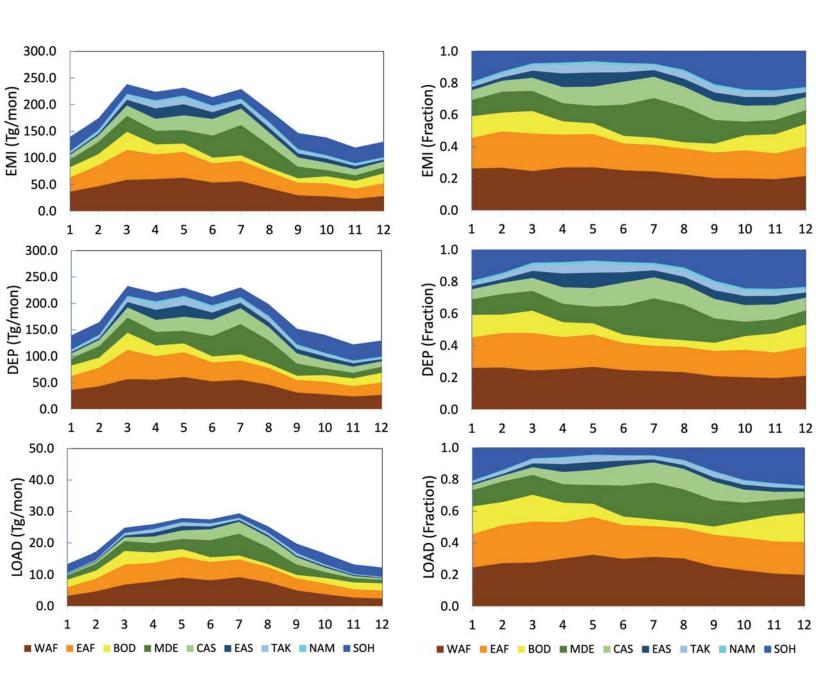


Figure 9.	
-----------	--

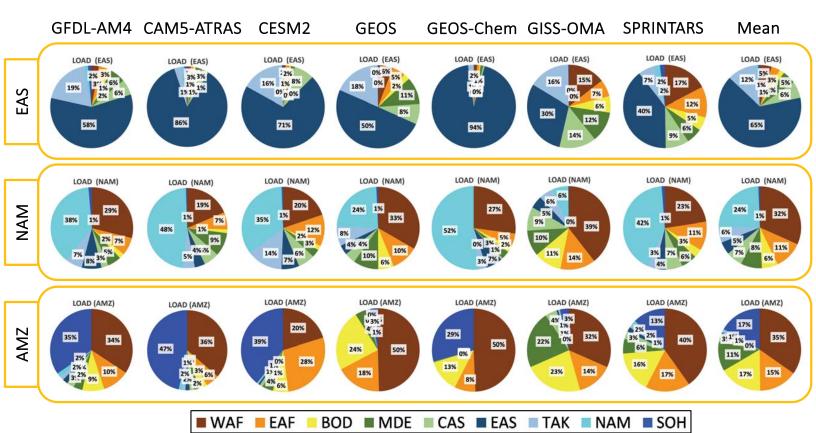
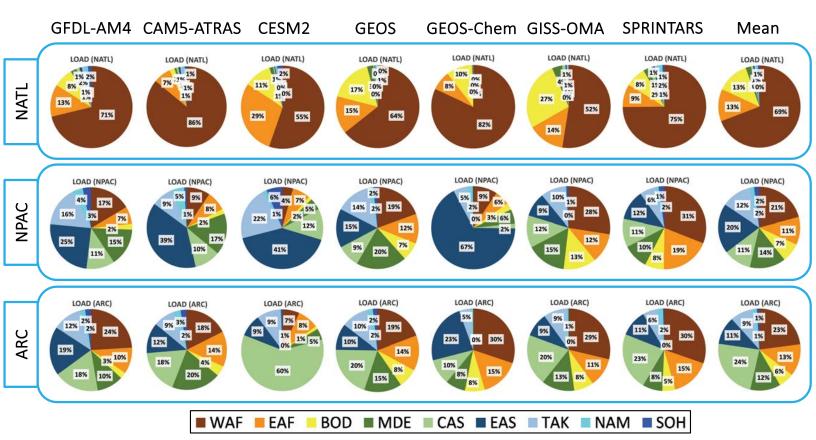
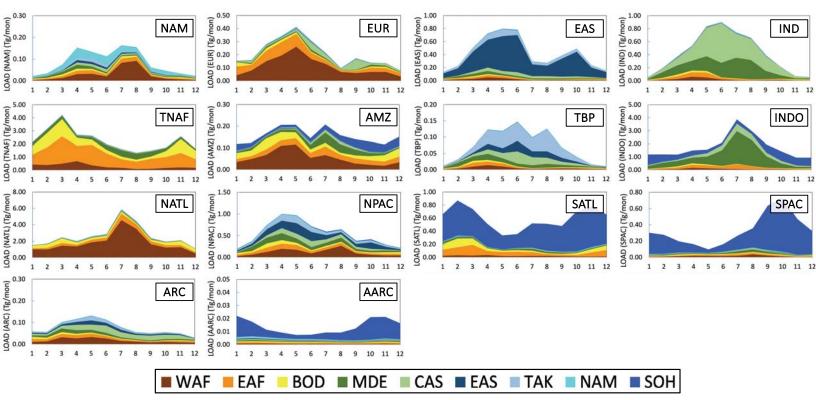
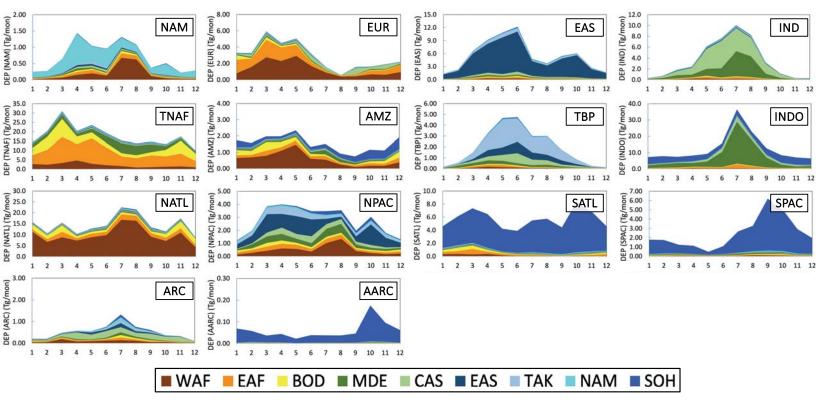


Figure	10.
--------	-----




Figure	12.
--------	-----


Figure	13.		
--------	-----	--	--

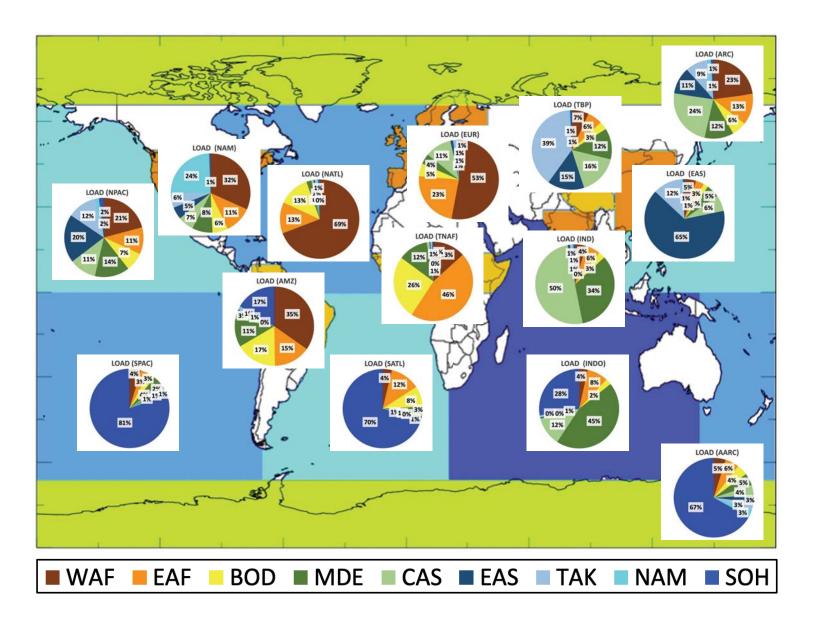


Figure	14.		
--------	-----	--	--

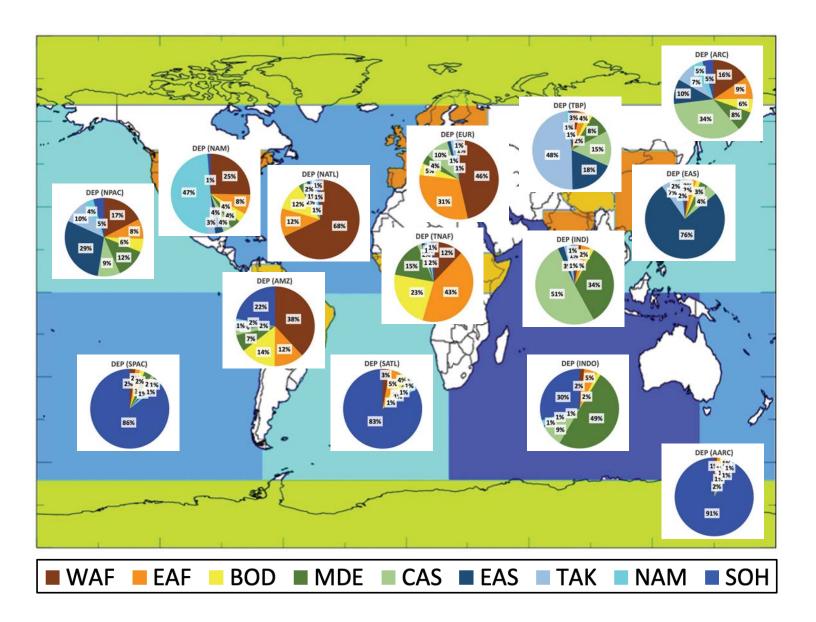


Figure :	15.
----------	-----

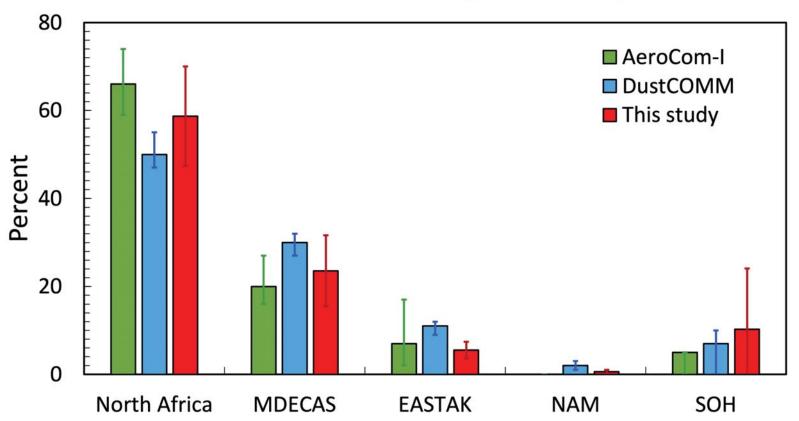


Figure	17.
--------	-----

Figure 1	l 8 .
----------	--------------

Contribution of sources to global loading

