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Abstract—This work presents inGRASS, a novel algorithm de-
signed for incremental spectral sparsification of large undirected
graphs. The proposed inGRASS algorithm is highly scalable and
parallel-friendly, having a nearly-linear time complexity for the
setup phase and the ability to update the spectral sparsifier in
O(logN) time for each incremental change made to the original
graph with N nodes. A key component in the setup phase
of inGRASS is a multilevel resistance embedding framework
introduced for efficiently identifying spectrally-critical edges
and effectively detecting redundant ones, which is achieved
by decomposing the initial sparsifier into many node clusters
with bounded effective-resistance diameters leveraging a low-
resistance-diameter decomposition (LRD) scheme. The update
phase of inGRASS exploits low-dimensional node embedding
vectors for efficiently estimating the importance and uniqueness
of each newly added edge. As demonstrated through extensive
experiments, inGRASS achieves up to over 200× speedups while
retaining comparable solution quality in incremental spectral
sparsification of graphs obtained from various datasets, such as
circuit simulations, finite element analysis, and social networks.

I. INTRODUCTION

The graph-based analysis is a crucial technique that finds
extensive application in various electronic design automa-
tion (EDA) problems like logic synthesis and verification,
layout optimization, static timing analysis (STA), network
partitioning/decomposition, circuit modeling, and simulation.
For instance, spectrally-sparsified graphs allow for accelerating
circuit simulations, performing vectorless integrity verification
of power grids, and analyzing worst-case on-chip temperature
distributions.

In recent years, mathematics and theoretical computer
science (TCS) researchers have extensively studied various
research problems related to simplifying large graphs using
spectral graph theory [1]–[3]. Specifically, recent research on
spectral graph sparsification allows for the construction of
much sparser subgraphs that can preserve important graph
spectral (structural) properties like the first few eigenval-
ues and eigenvectors of the graph Laplacian. These find-
ings have already led to the development of numerical and
graph algorithms that can solve large sparse matrices and
partial differential equations (PDEs) in nearly-linear time, as
well as enable graph-based semi-supervised learning (SSL),
computing the stationary distributions of Markov chains and
personalized PageRank vectors, spectral graph partitioning
and data clustering, max flow and multi-commodity flow of

Fig. 1. The proposed inGRASS algorithm for incremental spectral sparsifi-
cation. Given the initial input graph G(0) and its sparsifier H(0), inGRASS
constructs the updated sparsifiers H(1), H(2), · · · with newly added edges.

undirected graphs, and nearly-linear time circuit simulation
and verification algorithms [2], [4]–[6].

However, there still remain grand challenges when adopting
spectral sparsification algorithms to real-world EDA appli-
cations: existing spectral sparsification methods can not ef-
ficiently update the sparsified graph when only incremental
changes are made to the original input graph [5], [7]–[10]. For
example, when a power grid network has been updated with a
few additional metal wires connected to the system, traditional
spectral sparsification methods (e.g. GRASS [7], feGRASS
[8]) must recompute the sparsifier from scratch, imposing a
significant overhead during the chip optimization procedure.
While dynamic algorithms for spectral graph sparsification
have been recently studied to handle streaming edge inser-
tions/deletions [11], [12], it remains unclear if such theoretical
results would allow for practically efficient implementations.

To address the aforementioned limitations, this work
presents a highly-efficient algorithmic framework (inGRASS)
for incremental spectral graph sparsification (as shown in Fig.
1). A key component of inGRASS is an efficient effective-
resistance embedding scheme in the setup phase, which lever-
ages low-resistance-diameter (LRD) decomposition to parti-
tion the original sparsifier into multiple node clusters with
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bounded resistance diameters. We show that by exploiting
a multilevel LRD decomposition procedure, each node can
be represented by a low-dimensional embedding vector that
allows for extremely fast estimation of effective-resistance
distances between any two nodes in the sparsifier. Motivated
by recent spectral perturbation-based spectral sparsification
methods [5], [7], [9] that prune each off-tree edge candidate
based on its spectral distortions (defined as the product of
the edge weight and effective resistance in the sparsifier), in
the incremental update phase inGRASS handles each newly
added edge by checking its spectral distortion that can be
quickly estimated based on the proposed resistance embedding
scheme, which allows for identifying the most spectrally-
critical edges while filtering out non-critical ones in the current
sparsifier. Compared with re-running spectral sparsification
algorithms from scratch, inGRASS has a much lower com-
putational complexity for incremental edge insertions: for
a weighted undirected graph with O(N) nodes, the setup
phase of inGRASS enjoys nearly-linear O(N logN) time
complexity as prior methods, while each incremental update
of the sparsified graph can be accomplished in O(logN) time.
The key contribution of this work is summarized below:

1) We propose an incremental spectral graph sparsification
(inGRASS) algorithm for efficiently updating sparsified
graphs considering newly added edges.

2) A key component of inGRASS is an effective-resistance
embedding scheme that leverages multilevel LRD de-
composition and allows for extremely fast effective-
resistance calculations critical to spectral distortion anal-
ysis of each new edge inserted into the original graph.

3) Our extensive experiment results on real-world VLSI
designs show that inGRASS is over 200× faster than
running state-of-the-art spectral sparsification algorithms
from scratch while achieving comparable solution qual-
ity (condition number, graph density, etc).

An implementation of our algorithm and the code for
reproducing our experimental results are available online at
https://github.com/Feng-Research/inGRASS.

The rest of the paper is organized as follows. In Section II,
we provide a background introduction to the basic concepts
related to spectral graph sparsification. In section III, we intro-
duce the technical details of inGRASS as well as its algorithm
flow and complexity. In Section IV, we demonstrate extensive
experimental results to evaluate the performance of inGRASS
using a variety of real-world VLSI design benchmarks, which
is followed by the conclusion of this work in Section V.

II. BACKGROUND

A. Spectral Graph Theory

In a weighted undirected graph G = (V,E,w), V (|V | =
N ) and E denote the sets of vertices and edges, w is a
positive weight function, and wi,j denotes the weight of the
edge between vertices i and j, or w(e) for edge e ∈ E.
The N × N adjacency matrix A is symmetric (A(i, j) =
A(j, i)) and positive semi-definite (x⊤Ax ≥ 0 for any real
vector x ∈ RN×1). The Laplacian matrix LG is defined as
LG := D − A, where D is the degree matrix. Eigenvalues

and eigenvectors of LG reveal properties related to the graph
structure, such as the number of connected components and
node connectivity. The Laplacian quadratic form, x⊤LGx, is
utilized in spectral graph theory to assess properties like graph
cuts, clustering, and conductance, serving as an analytical tool
for characterizing the Laplacian matrix LG and the associated
graph structure. It is also suggested that the spectral similarity
between two graphs G and H can be measured using the
following inequality [13]:

x⊤LGx

ϵ
≤ x⊤LHx ≤ ϵx⊤LGx, (1)

where LG and LH are the Laplacian matrices of G and H ,
respectively. Similarly, a smaller relative condition number
κ(LG, LH) implies a higher degree of spectral similarity
between G and H .

B. Spectral Graph Decomposition
Lemma 2.1: Spectral sparsification of an undirected graph

G = (V,E,w), with its Laplacian denoted by LG, can be
achieved by leveraging a short-cycle decomposition algorithm.
This algorithm produces a sparsified graph H = (V,E′, w′),
where E′ << E, with its Laplacian denoted by LH , such that
for all real vectors x ∈ RV , the approximation x⊤LGx ≈
x⊤LHx holds [14].

Building upon Lemma 2.1, the graph sparsification algo-
rithm combines short-cycle decomposition with low-stretch
spanning trees (LSSTs) [15] to construct a sparsified graph
that preserves the spectral properties of the original graph [14].

Furthermore, a similar spectral graph sparsification method
is proposed in [9], which decomposes the graph into multiple
sets of disjoint cycles using a multilevel spectral graph coars-
ening framework. By constructing a hierarchy of contracted
graphs, the method identifies and adds spectrally-critical edges
to the initial graph sparsifier.

C. Effective Resistance
For a weighted, undirected graph G = (V,E,w) with

|V | = N , the effective resistance between nodes (p, q) ∈ V
plays a crucial role in various graph analysis tasks including
spectral sparsification algorithms [13]. The effective resistance
distances can be accurately computed using the equation:

Reff (p, q) =
N∑
i=2

(u⊤
i bpq)

2

λi
, (2)

where bp ∈ RV denote the standard basis vector with all zero
entries except for the p-th entry being 1, and q-th entry being
−1 (bpq = bp − bq). ui ∈ RV for i = 1, ..., |V | denote the
unit-length, mutually-orthogonal eigenvectors corresponding
to Laplacian eigenvalues λi for i = 1, ..., |V .

III. INGRASS: INCREMENTAL GRAPH SPARSIFICATION

In this section, we introduce inGRASS, an incremental
graph spectral sparsification method in response to a stream
of edge insertions, achieving nearly-linear time complexity.
The key strength of inGRASS lies in its ability to rapidly
identify spectrally-critical edges within the stream without the
need for recomputing the edge importance metric for each new

https://github.com/Feng-Research/inGRASS


arrival. This feature significantly reduces the computational
complexity of the algorithm, making inGRASS outperform
existing graph sparsification and incremental edge update
methods.

A. Overview of inGRASS Algorithm
The proposed inGRASS algorithm constructs a sparse data

structure to enable fast estimation of the spectral distortion
and spectral similarity of newly introduced edges. It consists
of two primary phases: setup phase and update phase.

a) Setup Phase: This is a one-time operation that equips
the inGRASS algorithm to iteratively update the initial graph
sparsifier H upon receiving streams of newly introduced edges
in different iterations. In this phase, each node in the initial
graph sparsifier H(0) is assigned a logN -dimensional em-
bedding vector by leveraging low-resistance-diameter (LRD)
decomposition. A sparse data structure is then created that
provides an efficient estimate of the resistance distance among
different pair of nodes in the initial graph sparsifier H(0).

b) Update Phase: Computing O(logN) node embedding
vectors in the previous phase enables efficient spectral distor-
tion estimation for newly added edges, identifying spectrally-
critical edges. Subsequently, spectral similarity estimation is
employed to enhance sparsification performance by selectively
filtering edges with minimal impact on graph spectral proper-
ties. The determination of the filtering level is based on the
target relative condition number and can be adjusted to achieve
various degrees of spectral similarity between graph G and
graph H .

Combining these setup and update phases, inGRASS
presents an efficient approach for incremental graph spectral
sparsification, outperforming the existing methods.

B. The Setup Phase of inGRASS
1) Scalable Estimation of Effective Resistances: To address

the computational complexity associated with directly comput-
ing eigenvalues and eigenvectors required for estimating edge
effective resistances, we introduce a scalable algorithm that
approximates the eigenvectors of the graph Laplacian matrix
using the Krylov subspace.

Let AN×N denote the adjacency matrix of a graph, its
Krylov subspace Km(A, x) is a vector space spanned
by the vectors computed through power iterations
x,Ax,A2x, . . . , Am−1x [16]. By enforcing orthogonality
among the above vectors in the Krylov subspace, we can
compute a new set of mutually-orthogonal vectors of unit
lengths for approximating the original Laplacian eigenvectors
in (2), which are denoted as ũ1, ũ2, . . ., ũm. To estimate the
effective resistance between two nodes p and q, we leverage
the approximated eigenvectors of the Laplacian matrix LG

constructed through the above Krylov subspace. Using (2) we
obtain an estimation of each edge’s effective resistance:

Reff (p, q) ≈
m∑
i=1

(ũ⊤
i bpq)

2

ũ⊤
i LGũi

, (3)

where ũi represents the approximated eigenvector correspond-
ing to the i-th eigenvalue of LG, and m is the order of the
Krylov subspace.

2) Multilevel Resistance Embedding : We utilize a mul-
tilevel low-resistance-diameter (LRD) decomposition frame-
work for embedding nodes of the initial graph sparsifier H(0)

into an O(logN)-dimensional space [17]. The embedding
process iteratively follows these steps: (S1) efficiently estimate
the effective resistance of edges using (3); (S2) contract
edges starting from low-resistance-diameter clusters (cluster
diameters are initialized to 0 for all nodes in the first level);
(S3) replace a contracted edge with a supernode and adjust
the resistance diameter of the clusters accordingly.

3) Multilevel Sparse Data Structure: Leveraging the
O(logN)-dimensional node embedding vectors obtained in
the previous step, we construct a specialized sparse data
structure for efficient access to the node clustering indices at
different levels. This facilitates efficient storage and retrieval
of cluster connectivity information, enabling the identification
of spectrally-critical and spectrally-unique edges among the
newly added edges. The sparse data structure is promptly
updated upon the addition of a newly introduced edge to the
graph sparsifier.

Fig. 2 illustrates the computation of node embedding vectors
through multilevel LRD decomposition of the initial graph
sparsifier. Increasing the diameter thresholds, as shown in the
figure, leads to larger cluster sizes progressing from left to
right. This allows for estimating the upper bound of effective
resistance between any two nodes based on the level where
they share the same cluster index. For instance, nodes 5 and
9, with different cluster indices at levels (a), (b), and (c), share
the same cluster index at level (d). Their resistance distance
is bounded by the resistance diameter of cluster 2 at level (d).

C. The Update Phase of inGRASS

1) Spectral Distortion Estimation: It has been demonstrated
that inserting a new edge with a large spectral distortion
1 to graph sparsifier will significantly increase its first few
Laplacian eigenvalues [7], [9].

Lemma 3.1: Let H = (V,E′, w′), where w′ : E′ → R+,
denote the sparsified weighted graph of G, and LH denote its
Laplacian matrix. The i-th Laplacian eigenvalue perturbation
due to δLH = w′

p,qbpqb
⊤
pq can be computed as:

δλi = w′
p,q(u

⊤
i bpq)

2, (4)

where ui represents the eigenvector corresponding to the i-th
eigenvalue λi of the Laplacian matrix LH .

Lemma 3.2: Construct a weighted eigensubspace matrix UK

for K-dimensional spectral graph embedding using the first K
Laplacian eigenvectors and eigenvalues as follows:

UK =

[
u2√
λ2

, ...,
uK√
λK

]
, (5)

then the spectral distortion of the new edge ep,q will become
the total K-eigenvalue perturbation ∆K when K → N [9]:

∆K =
K∑
i=2

δλi

λi
= wp,q∥U⊤

Kbpq∥22 ≈ wp,qR(p, q). (6)

1The spectral distortion of an edge is defined as the product of its edge
weight and the effective resistance between its two end nodes [7], [9].



Node 5 -> Cluster 3
Node 9 -> Cluster 6

Node 5 -> Cluster 3
Node 9 -> Cluster 2

Node 5 -> Cluster 3
Node 9 -> Cluster 2

Node 5 -> Cluster 2
Node 9 -> Cluster 2

LRD LRD LRD

Fig. 2. A 4-level resistance embedding of the initial graph sparsifier achieved through the proposed LRD decomposition. Since the embedding vectors for
nodes 5 and 9 are [3, 3, 3, 2]⊤ and [6, 2, 2, 2]⊤, the effective-resistance distance between them is bounded by the resistance diameter of cluster 2 shown in
(d).

Fig. 3. (a) The original graph featuring three newly introduced edges
highlighted in red. (b) The edge included into the graph sparsifier, marked in
red, alongside the edges with adjusted weights, denoted in blue.

The equation (6) proves that a higher spectral distortion
∆K can be achieved by including edges with higher effective
resistance R(p, q) and higher edge weight wp,q . Our algorithm
efficiently estimates the effective resistance of the newly
introduced edges, leveraging the node embedding information
obtained from the setup phase. This enables sorting the newly
introduced edges according to their estimated spectral distor-
tion that leads to including the spectrally-critical edges to the
graph sparsifier.

2) Spectral Similarity Estimation: The inGRASS algorithm
applies an edge filtering process to exclude a newly added edge
if there is already an existing edge in the graph sparsifier with
a similar spectral distortion. This filtering process minimizes
the introduction of additional edges while still influencing
the spectral distortion. The algorithm selects a filtering level
(L) from the levels computed during the LRD decomposition
phase with respect to a target condition number. For a target
condition number κ(LG, LH) = C, the filtering level (L) is
chosen with the maximum number of nodes in a cluster equal
to C

2 . This threshold bounds the maximum spectral distortion
among nodes within clusters (equivalent to the shortest path
among the nodes within each cluster) to achieve the desired
condition number. For a newly introduced edge, inGRASS
only includes the edge if there is no existing edge in the

graph sparsifier connecting the clusters to which those two
nodes belong in the specified filtering level (L). In the event
of an existing edge connecting the clusters of those nodes in
the filtering level (L), the newly introduced edge is discarded,
and the weight of the existing edge is adjusted by adding the
weight of the newly added edge to it. Moreover, if the newly
introduced edge connects two nodes within the same cluster
in the filtering level (L), the edge is discarded and its weight
is proportionally distributed among the edges connecting the
nodes within that cluster.

Fig. 3 illustrates the proposed edge filtering process em-
ployed by the inGRASS algorithm to select spectrally-critical
and unique edges that will significantly impact the global
structure of the sparsified graph. Let’s consider three newly
added edges to the original graph: e1 = (2, 11), e2 = (7, 13),
and e3 = (10, 14), as depicted in Fig. 3 (a), the algorithm
determines the filtering level, denoted as L = (b) in Fig. 2,
to achieve a desired condition number of κ(LG, LH) = 8.
Starting with e1 = (2, 11), the algorithm integrates it into the
existing edge e = (1, 2) between clusters 2 and 11, adjusting
the weight accordingly. For e2 = (7, 13), both nodes 7 and 13
share a cluster, leading to the exclusion of e2 = (7, 13) and
a proportional increase in weights of related edges. Finally,
e3 = (10, 14) is added as no existing edge connects the
clusters of nodes 10 and 14 in the filtering level L = (b).

D. The Algorithm Flow and Complexity Analysis

The complete flow of the inGRASS algorithm is described
in Algorithm 1 to efficiently update the graph sparsifier H(0) =
(V,E′, w′) with |V | = N after adding a set of weighted edges
to the original graph G(0) to reach the target condition number
κ(LG, LH) = C.

The complexity analysis of the inGRASS algorithm is split
into two phases:

• In the setup phase, the O(logN)-level multilevel low-
resistance-diameter (LRD) decomposition is applied to
compute node cluster indices, resulting in a complexity
of O(N logN).

• In the update phase, the complexity arises from calculat-
ing the spectral distortion and checking spectral similarity



Algorithm 1 inGRASS algorithm flow
Input: H(0) = (V,E′) where |V | = N , a set of newly introduced
edges to G(0), a target condition number κ(LG, LH) = C.
Output: The updated graph sparsifier H .

1: Setup Phase 1: Effective resistance estimation using (3).
2: Setup Phase 2: Node embeddings via LRD decomposition.
3: Setup Phase 3: O(logN)-level sparse data structure.
4: Update Phase 1: Spectral distortion estimation of new edges.
5: Update Phase 2: Spectral similarity estimation according to C.
6: Return H .

TABLE I
GRASS TIME VS INGRASS SETUP TIME.

Test Cases |V | |E| GRASS (s) Setup (s)
G3 circuit 1.5E+6 3.0E+6 18.7 s 13.7 s
G2 circuit 1.5E+5 2.9E+5 0.75 s 0.9 s
fe 4elt2 1.1E+4 3.3E+4 0.053 s 0.06 s
fe ocean 1.4E+5 4.1E+5 1.12 s 1.01 s
fe sphere 1.6E+4 4.9E+4 0.08 s 0.17 s

delaunay n18 2.6E+5 6.5E+5 2.2 s 1.9 s
delaunay n19 5.2E+5 1.6E+6 6.2 s 4 s
delaunay n20 1.0E+6 3.1E+6 14.1 s 9.5 s
delaunay n21 2.1E+6 6.3E+6 28.5 s 19 s
delaunay n22 4.2E+6 1.3E+7 62 s 38.6 s

M6 3.5E+6 1.1E+7 83 s 45 s
333SP 3.7E+6 1.1E+7 84 s 46 s
AS365 3.8E+6 1.1E+7 84 s 48 s

NACA15 1.0E+6 3.1E+6 13.8 s 8 s

of newly added edges using the O(logN)-dimensional
node embedding vectors from the setup phase, with a
complexity of O(logN) for each new edge in the original
graph.

IV. EXPERIMENTAL RESULTS

This section presents the results of a diverse range of ex-
periments conducted to assess the performance and efficiency
of the proposed incremental graph spectral sparsification algo-
rithm (inGRASS). The test cases were selected from a wide
array of matrices commonly utilized in circuit simulation,
and finite element analysis applications 2. All experiments
were conducted on a Linux Ubuntu system with 1 terabyte
of RAM and a 3.6 GHz 64-core CPU. The state-of-the-art
spectral sparsification tool GRASS [7] 3 has been used as
the benchmark to evaluate the performance and scalability of
inGRASS.

Table I provides a runtime comparison between GRASS
and inGRASS setup times (measured in seconds) for various
test cases. The runtime for the setup phase of inGRASS is
mainly due to the LRD decomposition step for computing
resistance embeddings for the initial graph sparsifier H(0).
Note that this step is a one-time task, which can be leveraged
for many subsequent update iterations involving streaming
edge modifications. We observe that the inGRASS setup time
is even faster than the GRASS time for most test cases as
shown in Table I, where |V | (|E|) denotes the number of nodes
(edges) in the original graph G(0), respectively.

2https://sparse.tamu.edu/
3https://sites.google.com/mtu.edu/zhuofeng-graphspar/home

A. inGRASS for Incremental Spectral Sparsification
Table II presents a thorough comparison of our incremen-

tal graph spectral sparsification algorithm, inGRASS, with
GRASS and Random methods through 10-iterative updates.
The density (D), defined as D := |E|

|V | , shows the density of
the initial graph sparsifier H(0) and its density when all newly
introduced edges are included. This emphasizes the importance
of incremental spectral sparsification to prevent a substantial
increase in graph sparsifier density. We maintain an initial
density of D = 10% for consistency. The relative condition
number κ(LG, LH) measures the spectral similarity between
the original graph G and the updated graph sparsifier H .
A smaller relative condition number indicates higher spectral
similarity. The column related to κ(LG, LH) indicates how the
condition number between G(0) and H(0) is perturbed when
newly added edges are excluded from H(0), providing insights
into edge generation. Columns ”GRASS-D,” ”inGRASS-D,”
and ”Random-D” compare graph sparsifier density for a target
condition number using each method. The target condition
number is set to match the initial condition number be-
tween G(0) and H(0). For instance, the target condition num-
ber for ”G3 circuit” is set to κ(LG(0) , LH(0)) = 88. Notably,
inGRASS achieves the target condition number comparably to
GRASS and significantly outperforms Random, accompanied
by a runtime speedup exceeding GRASS−T

inGRASS−T = 200× across
all test cases through 10-iterative updates.

B. Robustness of the inGRASS Algorithm
The performance of our incremental graph spectral sparsi-

fication algorithm, inGRASS, is studied for the ”G2 circuit”
dataset over different initial graph sparsifier densities. In Table
III, the labeled column ”Density (D)” shows an initial density
range of 6.5% to 12.7%, with the graph sparsifier density set
to 32% when all edges are included. The κ(LG, LH) column
indicates the perturbation in the condition number between
the original graph G(0) and the initial graph sparsifier H(0)

when no newly added edges are included. The target condition
number is set to the initial value (e.g. 56 for D = 12.7%). Both
”GRASS-D” and ”inGRASS-D” denote the graph sparsifier
density for the same target condition number, with inGRASS
showing comparable results to GRASS across various initial
densities.

C. Runtime Scalability of inGRASS
Fig. 4 illustrates the runtime scalability of inGRASS com-

pared with GRASS on a logarithmic scale for various test
cases. It is demonstrated that inGRASS is faster than GRASS
by over 200× during 10-iterative updates. The runtime of
inGRASS is also shown by adding the one-time setup time to
provide a more comprehensive insight into the overall runtime
of inGRASS compared with GRASS.

V. CONCLUSION

This work presents inGRASS, a highly scalable and
parallel-friendly algorithm for incremental spectral sparsifi-
cation of large undirected graphs. The algorithm leverages
a low-resistance-diameter decomposition (LRD) scheme to
decompose the sparsifier into small clusters with bounded



TABLE II
COMPARISON OF INCREMENTAL GRAPH SPECTRAL SPARSIFICATION OUTCOMES THROUGH 10-ITERATIVE UPDATES USING GRASS, INGRASS, AND

RANDOM METHODS.

Test Cases Density (D) κ(LG, LH) GRASS-D inGRASS-D Random-D GRASS-T inGRASS-T GRASS−T
inGRASS−T

G3 circuit 10.0% → 34% 88 → 353 11.6% 11.7% 23.0% 196 s 1.7 s 115 ×
G2 circuit 9.0% → 32% 72 → 283 11.0% 11.4% 25.7% 7.8 s 0.11 s 71 ×
fe 4elt2 10.0% → 39% 95 → 330 10.0% 10.1% 36.0% 0.56 s 0.008 s 70 ×
fe ocean 9.8% → 50% 210 → 468 9.6% 11.5% 30.3% 11.8 s 0.13 s 91 ×
fe sphere 10.5% → 41% 123 → 1103 8.2% 10.5% 34.9% 0.84 s 0.009 s 93 ×

delaunay n18 10.5% → 35% 113 → 336 11.7% 11.6% 30.5% 23.1 s 0.19 s 122 ×
delaunay n19 10.6% → 35% 122 → 406 11.9% 11.8% 29.7% 65.1 s 0.41 s 159 ×
delaunay n20 10.5% → 35% 126 → 418 11.7% 11.7% 30.2% 148 s 0.9 s 164 ×
delaunay n21 10.0% → 35% 151 → 428 11.0% 10.9% 29.5% 299 s 2.1 s 142 ×
delaunay n22 10.3% → 34% 150 → 491 10.7% 10.7% 30.7% 651 s 4.3 s 151 ×

M6 9.8% → 34% 172 → 817 10.2% 11.2% 29.3% 871 s 4 s 218 ×
333SP 9.7% → 34% 180 → 897 9.5% 11.0% 29.4% 882 s 4.2 s 210 ×
AS365 10.1% → 34% 157 → 1876 10.4% 12.7% 31.1% 885 s 4.5 s 197 ×

NACA15 10.4% → 34% 152 → 585 10.4% 11.5% 29.3% 145 s 1 s 145 ×

TABLE III
GRASS VS INGRASS DENSITIES ACROSS DIFFERENT INITIAL DENSITIES

IN THE GRAPH SPARSIFIER (“G2 CIRCUIT” TEST CASE).

Density (D) κ(LG, LH) GRASS-D inGRASS-D
12.7% → 32% 56 → 190 13.1% 14.8%
11.8% → 32% 66 → 196 12.0% 13.8%
9.0% → 32% 72 → 283 11.0% 11.4%
7.6% → 32% 87 → 373 8.6% 8.8%
6.6% → 32% 103 → 432 7.7% 7.9%

Fig. 4. Runtime scalability comparison between GRASS and inGRASS.

effective-resistance diameters. A multilevel resistance em-
bedding framework is introduced for efficiently identifying
spectrally-critical edges as well as detecting redundant ones.
The proposed inGRASS achieves state-of-the-art results for
incremental spectral sparsification of various networks derived
from circuit simulations, finite element analysis, and social
networks.
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