2407.07358v1 [cs.LG] 10 Jul 2024

arxiv

SGM-PINN: Sampling Graphical Models for Faster Training of
Physics-Informed Neural Networks

John Anticev
janticev@stevens.edu
Stevens Institute of Technology
Hoboken, New Jersey, USA

Wuxinlin Cheng
wcheng7@stevens.edu
Stevens Institute of Technology
Hoboken, New Jersey, USA

ABSTRACT

SGM-PINN is a graph-based importance sampling framework to
improve the training efficacy of Physics-Informed Neural Networks
(PINNS) on parameterized problems. By applying a graph decompo-
sition scheme to an undirected Probabilistic Graphical Model (PGM)
built from the training dataset, our method generates node clus-
ters encoding conditional dependence between training samples.
Biasing sampling towards more important clusters allows smaller
mini-batches and training datasets, improving training speed and
accuracy. We additionally fuse an efficient robustness metric with
residual losses to determine regions requiring additional sampling.
Experiments demonstrate the advantages of the proposed frame-
work, achieving 3x faster convergence compared to prior state-of-
the-art sampling methods.

1 INTRODUCTION

Over the past few decades, partial differential equation (PDE) solvers
have been playing important roles in numerous compute-intensive
computer-aided design (CAD) tasks, including circuit/device simu-
lations [8], chip thermal analysis [15], computational electromag-
netics (CEM) [11], computational fluid dynamics analysis (CFD)
[22]. Traditional numerical PDE solvers like finite difference meth-
ods (FDM) and finite element analysis (FEA), tackle the problem
through spatial discretization. However, finer discretization for
better simulation accuracy slows down performance due to the
super-linear complexity of existing sparse matrix solvers. These
classic PDE algorithms often require finer grids, which can be very
expensive in terms of both time and hardware resources, potentially
taking days on powerful computing clusters.

An emerging class of physics-informed neural-network (PINN)
based methods use automatic differentiation to estimate the solu-
tion of PDEs by training a neural network (NN) to minimize the
residuals of the governing equations, initial/boundary conditions,
and measurement data over a set of collocation points defined on a
domain tailored to each problem [10, 20]. These PINN-based solvers
also address problems not easily solvable by traditional methods,
such as inverse or data assimilation problems, as well as real-time
simulation problems [20, 24]. Additionally, and explored in this
study, they can simultaneously learn the solution to a problem
across parameterized geometries [10, 20]; such as varying the de-
sign, materials, or size of the fin stack of a heatsink. As a result, the
PINN-based PDE solvers can achieve orders of magnitude faster

Ali Aghdaei
aaghdael@stevens.edu
Stevens Institute of Technology
Hoboken, New Jersey, USA

Zhuo Feng
zfeng12@stevens.edu
Stevens Institute of Technology
Hoboken, New Jersey, USA

performance than conventional solvers when many variations of
a design are desired. For example, a trained parameterized PINN
may be used as an ultra-fast surrogate model for another gradient-
based optimization method which inferences the neural network
for approximate solutions across thousands of variations of a design
[25].

While PINNs have demonstrated exceptional performance across
a variety of problems related to PDE solvers, there are many cases
in which PINNSs fail to converge, or do so to a trivial or inaccurate
solution [7, 9, 23]. Although better convergence can be sometimes
be realized with higher-density point clouds and larger batch sizes,
this imposes memory constraints that tax the GPU hardware most
commonly used to accelerate deep learning workloads. This leads
to long training times that require the highest-end hardware, ulti-
mately mirroring the issues with traditional PDE solvers exhibit in
terms of scalability with model size and complexity.

Among the proposed solutions to improve the convergence and
efficiency of PINN training are residual-based adaptive refinement
(RAR) methods [16] (where additional samples are added to regions
with high PDE residuals) and importance sampling (IS) methods
[18] (where each mini-batch of samples is selected via a distribution
proportional to the loss value at each sample in a dense dataset).
These are implemented in currently available PINN solvers such
as DeepXDE [16] and Modulus Sym [10]. Both methods suffer
from high computational complexity and overhead associated with
frequently calculating the residuals for every sample in a dense set,
and can lead to poor retention of the solution on low-residual parts
of the domain as training continues [5].

To address the limitations of existing PINN-based PDE solvers,
we introduce an importance-sampling framework (SGM-PINN) to
exploit the conditional dependence among the training samples
by leveraging probabilistic graphical models (PGMs). Instead of
training a PINN model using the full set of data samples (point
cloud) during the training process that may involve millions of
stochastic gradient descent (SGD) iterations, SGM-PINN adaptively
forms smaller epochs by selecting the most representative data
samples with a graph-based importance sampling strategy. Our
preliminary results show that SGM-PINN can achieve up to 3x
faster convergence for training (parameterized) PINNs on several
large-scale PDE problems. Our contributions include:

(1) We present SGM-PINN, a scalable graph-based IS frame-
work based on spectral graph clustering, to improve PINN

training. The key component in SGM-PINN is a low-resistance-

-diameter (LRD) decomposition scheme for partitioning a
PGM (graph) into strongly coupled sample clusters that can
be used to reduce the computational overhead of estimating
the importance score across the input data.

(2) We show the proposed method allows for retaining good so-
lution quality while reducing the batch size and the number
of sample points to speed up training.

(3) We demonstrate the addition of a spectral stability metric
[4] to incorporate gradient information of the loss with
respect to input data to augment sample importance scoring,
in order to improve parameterized PINN training.

The rest of the paper is organized as follows: Section 2 provides
a brief introduction to the theoretical foundation of PINNs and IS
methods; Section 3 gives an overview of the proposed SGM-PINN
framework; Section 4 demonstrates experimental results to evaluate
the performance of SGM-PINN, and Section 5 that concludes this
work.

2 BACKGROUND
2.1 Theoretical background of PINNs.

Consider the following general form of a PDE equation under a set
of boundary condition (BC) and initial condition (IC) constraints
[10]:

Filul(x) = fi(x), Vie{l,--- ,Ng}Lx€ D

Cj[u](x):gj(x), Vjie{l,---,Nc}x €D,)

where 7; is the general differential operator, N& (N¢) denotes the
number of BCs (ICs), x is the set of independent variables defined
over a bounded continuous domain D C R¥, u(x) is the solution
to the PDE, C; is the constraint operator—such as the differential,
linear, or nonlinear terms representing the boundary and initial
conditions—and 99 is a subset of the domain boundary. Consider a
simple feed-forward fully-connected neural network with nonlinear
activation functions, where the approximate solution #(x) can be
further expressed as:

u(x,0) = Wn{pp-10¢n-—20---0d10¢p}(x) +bn, (2

where n represents the number of neural network (NN) layers,
#1(xi) = o(W;x; + by) represents the ith layer of the NN, W, €
RA%di-1 and b; € R% are the weight and bias of the I h layer, ¢f
is an input encoding layer, 8 = {W1,by,--- , Wp, b, } is the set of
the trainable parameters of the network, and o is the nonlinear
activation function. Given the approximated solution i (x, 0), we
define the following residuals for both PDE equation and boundary
(initial) condition constraints:

r (x,i(x,0)) = Fila) (%) - fi(x)

() ~ y ®
re” (xa(x,0)) = Cjla] (x) — gj(x).

In order to train the NN model, residuals can be encoded into a
constructed loss function such that #(x,) can gradually approach
the true solution u(x) through iteratively optimizing the network
parameters 6. The loss function can be represented in the following

John Anticev, Ali Aghdaei, Wuxinlin Cheng, and Zhuo Feng

form:
NT) X
£@ = [w0l (it o)l dx
i=1
Ne ‘ A ©)
3 [ol e)l dx
= Jop
where w'? and w) are the weight functions to scale the cor-

responding loss terms. The model may be trained by stochastic
gradient descent such that the model parameters are updated by:

p(t+D) _ (1) _ a(t)VQL(Q(t)) ©)

2.2 Importance Sampling for Training PINNs

Current State of the Art. Prior works have explored IS based on
the gradient of the loss with respect to the model parameters
[14, 18]:

Lemma 1. Let H®) = VQ.E(Q(t)) the gradient in Equation 5.
The convergence of SGD can be accelerated by sampling the input
variables from a distribution P that minimizes Trace(Vp [HO)),
which is accomplished when the probability P)(cf) of sampling any
given point x; at iteration i is

P o [H O (©)

Additionally, it is shown in [13] that ||H (M), ata single sample
is bounded by a linear transformation of the loss at that sample,
and a sampling distribution:

P o £(60) (7)
is consistent with Equation 6 [18].

Limitations of existing IS methods. The prior IS method works
effectively for training non-parameterized PINNs but may fail for
training parameterized PINNs. The sampling probability in (6) and
(7) only considers the gradient with respect to the neural network
parameters (6) but ignores the impact due to varying input pa-
rameters, such as the geometric variations in point clouds. Our
experiments using the prior IS method for training parameterized
PINNs shows poor generalization capability as discussed in Section
4.2.

3 THE PROPOSED SGM-PINN FRAMEWORK

3.1 Overview

The proposed SGM-PINN framework. In this work, we introduce
a novel graph-based IS framework, SGM-PINN, for improving the
speed and solution quality of the PINN training process. As shown
in Figure 1, SGM-PINN aims to improve the efficiency of each train-
ing step by (1) forming more compact epochs on the fly, and (2)
selecting more samples from within clusters that have been scored
with high importance. The process consists of four key compo-
nents: (S1) PGM estimation of the point cloud, (S2) construction of
conditionally-independent clusters of nodes via LRD decomposi-
tion, (S3) a stability estimation scheme (for parameterized PINN),
to incorporate additional gradient information with respect to vary-
ing input parameters, and (S4) batch ranking and selection for SGD

SGM-PINN

Point Cloud Adaptive Subset
(Input) Selection

——

> Graph-based

Imp. Sam.

SGD iterations
w/ subsets

1 O Selected Samples

S1. Learning PGM from $2-S4. Subset Selection by
Samples (Point Cloud) Sampling PGM
[

Figure 1: The SGM-PINN framework for training PINNSs.

iterations. The proposed sampling strategy allows focusing on the
most critical and representative data samples during each training
iteration, which immediately improves the overall training process.

Advantages of our approach. There are several potential benefits
of the proposed approach: (1) the mini-batch size for the gradient
descent algorithm can be reduced, allowing for faster iterations
without sacrificing solution quality; (2) the overall dataset size can
be reduced, allowing the same models to be run on fewer GPUs or
hardware with less available memory; (3) a small subset of samples
can be used for estimating the importance scores of the dataset,
decreasing the overhead compared to other IS techniques which
require updated gradient calculations for every sample; and (4)
the reduced overhead achieved by using the PGM to estimate the
score for multiple samples can be easily extended to a variety of
IS metrics, or combined with new metrics designed to address
additional shortcomings in PINN-based solvers, as discussed in
Sections 3.5 and 4.2.

3.2 Constructing PGMs from Point Cloud (S1)

A probabilistic graphical model (PGM) expresses probabilistic rela-
tionships between variables via links between nodes representing
the variables [3]. In traditional PDE solvers, discretization methods
operate on the principle that the solution at any given point is
influenced by its immediate neighbors, with interactions between
adjacent mesh or grid points playing a crucial role in problems
such as FEA. In the PINN examples discussed in this paper, a ran-
domized point cloud of N collocation points with M input features
X = RNXM j5 generated prior to training as described in [20].
With the assumption that nearby points will be highly corre-
lated in a relatively dense initial point cloud, we can construct a
k-nearest-neighbor (kNN) graph using the low-dimensional spa-
tial coordinates (x,y,z) of each point in the dataset to represent a
conditional relationship between points inversely proportional to
their distance. This graph, created using an existing highly-efficient
kNN algorithm [17], serves as an undirected PGM for the input data
X. At later stages in training this model can be re-built in parallel

while incorporating additional features from the output, such as
flow or temperature.

3.3 Node Clustering by LRD Decomposition (S2)

Node clustering is achieved via a low-resistance-diameter (LRD)
decomposition method that allows partitioning any given PGM
into multiple node (collocation point) clusters with bounded resis-
tance diameter 1. Since the resistance distance between two nodes
on a PGM encodes the conditional dependence between the two
corresponding data samples, LRD will guarantee that only the most
similar data samples will be grouped into the same cluster, which
thereby allows SGM-PINN to select highly-representative data sam-
ples during the training of PINNs.

DEFINITION 3.1. The effective resistance between nodes (p, q) €
|V is defined as

ff . ‘Vl (uTep q)z
RIS el 1ie, =y L9 ®)
pq = TPgT TP ; u] Lu;

where Lt denotes the Moore-Penrose pseudo-inverse of the graph
Laplacian matrix L, u; € RIVI fori = 1,..,|V| denote the unit-
length, mutually-orthogonal eigenvectors corresponding to Laplacian
eigenvalues A; fori=1,...,|V|, and ep € RIVI denotes the standard
basis vector with all zero entries except for the p-th entry being 1.
epq = ep — eq-

In [2] it is proven possible to decompose a simple graph into
multiple node clusters of effective-resistance diameter at most the
inverse of the average node degree (up to constant losses) by remov-
ing only a constant fraction of edges. This is accomplished without
significantly impacting the graph conductance (keeping the global
structure of the graph intact).

Directly computing effective resistances according to Definition
3.1 is practically infeasible for large PGMs. However, as the pro-
posed LRD method only requires approximate estimation of edge
effective resistances, we use a highly-scalable (linear time) algo-
rithm by exploiting a Krylov subspace approach, discussed in detail
in [1].

Since the proposed decomposition method has a nearly-linear
complexity, it can be efficiently applied to large-scale PGMs (graphs)
with millions of data samples (nodes). For additional performance,
we also decompose the dataset into grids and perform S1 and S2
in independent sub-processes while training continues either with
uniform sampling, or a previously calculated distribution. Speedup
is roughly linear with the number of available threads.

3.4 Stability Score for Parameterized PINNs (S3)

We use a black-box spectral method for assessing the robustness
(stability) of ML models and data, relying on graph-based manifold
representations [4], referred to here as the Inverse Stability Rating
(ISR). ISR introduces the concept of Distance Mapping Distortion
(DMD), denoted as yF (p, q) for a node pair (p, g) transformed by
a function Y = F(X), F(X) in this case being the NN a(x, 0). It
is defined as the ratio of distances between nodes p and q on the

The maximum effective-resistance distances between any two nodes within the same
graph cluster will not exceed a given threshold.

dy (p.q)
dx (p.9)°
dy (p, q) represent the distances between nodes p and g on the

input and output graphs. Intuitively, the DMD can be employed to
estimate the change in distance on the output graph (manifold) due
to a perturbation on the input graph (manifold), with the largest
yF . representing the fastest change in output with respect to
input.

output and input graphs, y¥'(p,q) £ where dx (p, q) and

LEMMA 2. The ISR is an upper bound of the best Lipschitz constant
K* on F(X) [4].

d .
srF Y Amax(LYLx) = K* = yF 0)

LEMMA 3. ISR defines the edge score between two nodes p, q, ISRF (p, q)

where V. def [01 VM, .0 \/A_r], and Ay, vy represent the firstr largest
eigenvalues and corresponding eigenvectors of L Ly as [4]:

de 3
ISR (p.q) < 1V el o (1" (p.0) (10

Then, individual sample stability can be quantified as the average
edge score among all q; of p, the set of which is denoted by Nx (p) €

V [4]:

def 1
ISRF (p) = NPl Z VARPPAE (11)

qi€Nx (p)

Each edge score acts as a surrogate for the directional derivative
between two nodes on F(X)[4], which in our application are the
NN losses, such that:

ISR” (xi) 2 [V, L(O)]: (12)

In [18] additional computational efficiency is achieved by par-
titioning nodes among a much smaller set of random "seeds"[18],
updating the loss value at each seed to calculate £(0W) and as-
signing that value to nearby samples in a piece-wise fashion before

calculating P)(cf) for each sample. In our method, we also use nearby
neighbors to adjust the probability of sampling points we did not
directly update the loss for, but we can add additional weight to clus-
ters with high ISR. As it represents quickly changing local losses,
it implies that the loss estimate for that cluster may be poor, and
potentially important points may be ignored.

3.5 Batch Ranking and Selection (S4)

Only r points in each cluster of samples are updated with the latest
losses to rank that cluster relative to others, allowing a reduced
number of passes through the NN to update P. Sampling is main-
tained with the principle in Equations 6,7 by sampling more from
clusters with losses higher than other clusters, as described in Algo-
rithm 1. There is a floor of 1 sample per cluster when determining
an epoch, so no cluster is entirely ignored in any epoch. This miti-
gates the potential for failing to refine or forgetting’ the solution
[5] in areas with relatively low scores as training continues. For
parametric examples the ISR discussed in S3 is added as an addi-
tional term to the cluster score prior to ranking, using the same
subset of samples as—and normalized with—the other PDE losses.
S3 is also performed on a background thread, so the only additional
overhead on GPU resources and overall wall time is the r x N loss
calculations every 7, iterations.

John Anticev, Ali Aghdaei, Wuxinlin Cheng, and Zhuo Feng

3.6 Algorithm Flow and Complexity

Algorithm 1 The algorithm flow of SGM-PINN

Input: Sample matrix X = RN*M of N samples with M selected features,
the ratio r of points in each cluster to sample for estimating loss. 7 is the
number of times to repeat the epoch.

Output: An epoch of mini-batches for training.

1: From X, create a kNN-graph G
2: Use the LRD Algorithm to split G into n. clusters of similar samples.
3: S « an array of the sizes of each cluster.
4: while step_count < step_target do
5: S§* «r - S; points from each cluster in S
6: Calculate the losses for S*
7: From S*, apply the ISR algorithm.
8: L « combined losses and ISR for each cluster
9: Map L to a range of proportional sampling ratios P
10: Create an epoch with of P; - S; samples from each cluster
11: while step_count%t. # 0 do
12: Shuffle and return the epoch
13: end while
14: if 7 has passed then

15: Start 1,2,3 in a background task
16: else if Speyy ready then

17: S «— Snew

18: endif

19: end while

Algorithm 1 shows the key steps in SGM-PINN. Step 1 kNN
construction using the HNSW algorithm [17] has a complexity
of O(Nlog(N)), where N is the number of nodes. Step 2 LRD
is a nearly-linear time algorithm with a runtime proportional to
the number of edges the graph G, which is determined by N X k,
O(kN). Sampling losses for importance scores are an additional
overhead cost, with the number of extra forward passes determined
by 7. X r X N for relatively frequent loss updates, as well as 7g X N
for infrequent G updates. ISR has a complexity O(N log(N)). This
gives an overall complexity of O(N log(N)) + O(kN7, + Nzg).

4 EXPERIMENTAL RESULTS

We implement the proposed SGM-PINN framework on Nvidia’s
Modulus v22.09 (previously on SIMNET v21.06) platform [10]. We
conduct extensive experiments for evaluating the performance and
efficiency of the proposed SGM-PINN framework. All tests were
run on a Xeon Gold 6244 CPU @ 3.60GHz, 1.5TB of 2933 MHz avail-
able system memory, and 1 Tesla V100 32GB GPU. Examples are
shipped with Modulus and use the default settings where applicable.
An implementation is available online at https://github.com/Feng-
Research.

Modulus also includes an importance sampling implementation
based on [18] (labeled MIS here) which we benchmark against our
method. This method assigns a sampling probability based on the
2-norm of the velocity (u,0) derivatives. For an even comparison we
reduce how often the dataset is updated to match z,. By default MIS
re-calculates sample probabilities every epoch and may perform
slower than the baseline random sampling due to loss updates
not contributing to training. We additionally only apply MIS to
the sampling of interior points, as SGM-PINN has not yet been
implemented for the boundary or initial conditions.

https://github.com/Feng-Research
https://github.com/Feng-Research

SGM-PINN

Table 1: Minimum Validation Errors and Time to Achieve for
LDC_zeroEq. T(Mp_j) is the time taken by a sampling method
in the top row to achieve Min(j) of Mg. Blanks are left where
that value was not achieved. The best and second-best results
are bolded and italicized, respectively. The diagonal (time
each took to get to its own best value) is underlined.

Label Usoo Uso00 MISs00 SGMs00
(ours)
Min(u) 0.0879 0.0480 0.0431 0.0412
Min(v) 0.1169 0.0589 0.0623 0.0573
Min(nu) 0.2173 0.1788 0.1735 0.1595
T (Ugooo_u) - 32.55 16.53 9.48
T(MISs00_u) - - 24.19 11.26
T(SGMspo_u) - - - 16.91
T (Ugo00_0) - 32.61 - 11.45
T(MISs00_0) - 3023 3529 10.25
T(SGMsoo_v)) - - - 18.18

The two example problems presented in this paper are simula-
tions related to computational fluid dynamics (CFD). The first, Lid
Driven Cavity (LDC) [19] is a well-studied benchmark example,
with the addition of a zero-equation turbulence model. Outputs
measured against OpenFOAM [12] validation data are u (x-velocity),
v (y-velocity), and v (kinematic viscosity). Further details are in Sec-
tion 4.1 The second, annular ring (AR)[19] is another 2D laminar
flow example that considers the flow from an inlet to an outlet
through a symmetrical annular ring with a parameterized inner
radius r;. Outputs are u, v, and p (pressure), with validation results
available at r;=1.0, r;=0.875, and r;=0.75. All NNs use a fully con-
nected architecture with width 512, depth 6, and SiLU[6] activation
functions. Data presented is an average of 5 runs for each example.

4.1 LDC, Non-Parametric, without S3

Experimental Setup. LDC with zero-eq turbulence, the Reynolds
number Re = 1000, and the top wall is moving at 1m/s. Usgoo
is the ’baseline’ example with uniform random sampling, batch
size f§ = 4000, and number of samples N = 16M. The remaining
methods Usgg, MIS500, SGMs00 have f = 500 and N = 8M. MIS500
and SGMsq re-calculate sample scores (z7.) every 7k iterations.
SGMsgp uses r = 15% samples per cluster and fully recalculates
clusters (zg) every 25K iterations with kNN size k = 30 and LRD
level L = 10.

As shown in Figure 2 and Table 1, SGM-PINN improves both
runtime and accuracy for the LDC example. Targeting the same
accuracy as the baseline, SGM-PINN achieves a runtime improve-
ment of 3.43X in u and a 2.85X in v. The best result is achieved
1.79% faster than the baseline’s, with a 14%, 3%, and 11% reduction
in relative error in u, v, and nu respectively compared to the base-
line. The runtime improvement in u and v compared to the built-in
importance sampling technique is 2.15X and 3.44X. Reducing the
batch size to 500 and taking the total sample count to only 500,000,
SGM-PINN achieves at least 2.5x speedup while reaching the same
accuracy across all variables compared to the baseline. It completes
2.5 million iterations in 19 hours compared to 1 million in 25 hours

0.40

—»- Uniform_500_v

0.351 === SGM-PINN_500_v
. —A~ MIS_500 v
©0.30 — Uniform_4000_v
o
o,
©'0.25
.E
@ 0.20
[5)
M
& 0.151

0.05

Wall time v (h)

Figure 2: Solution error by wall time (lower) for v in the LDC
example. Uniformsgy, SGM-PIN Nsgg, and MISsoo have batch
sizes of 500 and a total of 500,000 collocation points. The
baseline Uniformago has a batch size of 4000 and 4M total
collocation points.

by Uniformagoo. Without either MIS or SGM-PINN, reducing the
batch and dataset size with uniform sampling cuts the final solution
quality in half with no benefit to convergence speed.

4.2 Parameterized Annular Ring, with S3

Experimental Setup. Physical parameters are inlet velocity of
1.5m/s, channel width of 2m, and viscosity v = 0.1 with a parameter-
ized interior radius of r = [0.75, 1.1]. Uyggs is the 'baseline’ example
with uniform random sampling, batch size f = 4096, and num-
ber of samples N = 16 M. The remaining methods Uijo24, MIS1024,
SGMjg24, and SGM-S1924 have f = 1024 and N = 8M. (o = 7K)
for SGM and MIS. For both SGM methods k =7, L =6, r = 15%
and 7g = 60K. A key application for PINN solvers is the ability to
solve a problem across parameterized geometries [10][21]. Both
SGM-PINN and MIS have trouble with the parameterized example
compared to uniform importance sampling, as shown in Figure 3
and summary Table 2. It is observed that for parameterized training
SGM alone decreases performance (SGM-PINN in Figure 3). MIS
additionally decreases performance, although to a lesser degree.
Including the stability metric (SGM-S-PINN) in our method allows
us to maintain accuracy in u and v relative to the baseline uniform
sampling, while improving p by 12% (from 0.132 to 0.116) despite
training for half the time. The average error for v during training is
provided in Figure 3. Figure 4 visualizes the solution errors for p at
350K iterations for all methods, showing our method has the lowest
error compared to validation data while taking the least time.

5 CONCLUSION

In this work, we introduce a graph-based sampling framework for
speeding up the training of PINNs. SGM-PINN allows the impor-
tance score of multiple samples to be estimated via selection of
highly-correlated clusters within the point cloud by leveraging
PGMs. We additionally demonstrate the inclusion of a stability

Table 2: Results for Annular Ring Parameterized, averaged.
The validation value for p does not monotonically decrease
to a consistent value during training—it reaches a minimum
well before u and v are trained and then trends upward before
levelling out. Since v takes longest to converge to a minimum,
the value for p is given then.

Label Utoza Usoo6 ~ MIS1024 SGM-S1024

Min(u) 0.0289 0.0285 0.0294 0.0278

Min(v) 0.0279 0.0275 0.0278 0.0274

pat Min(v) 0.123 0.132 0.137 0.116

T(Uyo24_u) 2.20 3.23 - 2.00

T (Usgoo_u) - 3.63 - 2.00

T(MIS1024_u) 1.65 3.02 2.32 2.00

T(SGM-Ssp9_u) - - - 2.14

T (Uy024_0) 3.00 3.41 2.32 2.09

T (Ugp00_0) - 6.19 - 2.53

T(MIS1024_0) - 3.67 3.28 2.14

T(SGM-S500_v) - - - 3.00
0.0300

=& Uniform_1024 v
-4~ SGM-PINN_1024 v
-y~ SGM-S-PINN_1024_v
-k MIS_1024 v

Uniform_4096_v

0.0295 1 4

0.0290 4
|

12 relative error
o
o
N
[o3]
w

0.0280-
0.0275 fo.c = R
0.0270 ‘ : ‘ :
2 3 4 5

Wall Time (h)

Figure 3: Solution errors of v for parameterized PINN for
the AR example compared to the OpenFOAM validation data
averaged at r;=1.0,0.88, and 0.75, respectively.

score in calculating importance for improving parameterized train-
ing. Our experiments show SGM-PINN leads to a 2X-3X runtime
improvement for training PINNs related to CFD problems. Future
work will focus on further reducing the overhead for implement-
ing SGM-PINN and including importance sampling on BCs. More
complex examples can also be sensitive to the hyper-parameters k
and L, as is the performance overhead. Automatic tuning of these
parameters would be preferred. Additionally, much larger PDE
problems from more varied domains need to be tested.

6 ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation
under Grants CCF-2212370, CCF-2205572, and CCF-2021309.

John Anticev, Ali Aghdaei, Wuxinlin Cheng, and Zhuo Feng

SGM-S_1024

MIS_1024 .
"‘ b ||
y
——

U_4096

Figure 4: Visualized absolute errors for p at r;=1.0

REFERENCES

[1] Ali Aghdaei and Zhuo Feng. 2022. HyperEF: Spectral Hypergraph Coarsening by
Effective-Resistance Clustering. In Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design. 1-9.

[2] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. 2018.
Graph Clustering using Effective Resistance. In 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

[3] Christopher M. Bishop. 2023. Graphical Models. MTM.

[4] Wuxinlin Cheng, Chenhui Deng, Zhiqiang Zhao, Yaohui Cai, Zhiru Zhang, and
Zhuo Feng. 2021. SPADE: A Spectral Method for Black-Box Adversarial Robust-
ness Evaluation. In Proceedings of the 38th International Conference on Machine
Learning (ICML), Vol. 139. PMLR, 1814-1824. https://proceedings.mlr.press/
v139/cheng2la.html

[5] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. 2023. Miti-
gating propagation failures in physics-informed neural networks using retain-
resample-release (r3) sampling. In Proceedings of the 40th International Conference
on Machine Learning (, Honolulu, Hawaii, USA,) (ICML’23). JMLR.org, Article
288, 39 pages.

[6] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning. Neural
Networks 107 (2018), 3-11. https://doi.org/10.1016/j.neunet.2017.12.012 Special
issue on deep reinforcement learning.

[7] Salah A Faroughi, Nikhil Pawar, Celio Fernandes, Maziar Raissi, Subasish
Das, Nima K. Kalantari, and Seyed Kourosh Mahjour. 2023. Physics-Guided,
Physics-Informed, and Physics-Encoded Neural Networks in Scientific Comput-
ing. arXiv:2211.07377 [cs.LG]

[8] Wolfgang Fichtner, Donald] Rose, and Randolph E Bank. 1983. Semiconductor
device simulation. SIAM 7. Sci. Statist. Comput. 4, 3 (1983), 391-415.

[9] Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su,
and Jun Zhu. 2023. Physics-Informed Machine Learning: A Survey on Problems,
Methods and Applications. arXiv:2211.08064 [cs.LG]

[10] Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Sub-
ramaniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon,
and Sanjay Choudhry. 2021. NVIDIA SimNet*: An Al-Accelerated Multi-Physics
Simulation Framework. In International Conference on Computational Science.
Springer, 447-461.

[11] Umran S Inan and Robert A Marshall. 2011. Numerical electromagnetics: the
FDTD method. Cambridge University Press.

[12] Hrvoje Jasak. 2009. OpenFOAM: Open source CFD in research and industry.
International Journal of Naval Architecture and Ocean Engineering 1, 2 (2009),
89-94. https://doi.org/10.2478/JNAOE-2013-0011

[13] Angelos Katharopoulos and Francois Fleuret. 2017. Biased Importance Sampling
for Deep Neural Network Training. CoRR abs/1706.00043 (2017). arXiv:1706.00043
http://arxiv.org/abs/1706.00043

[14] Angelos Katharopoulos and Francois Fleuret. 2018. Not All Samples Are Created
Equal: Deep Learning with Importance Sampling. In International Conference on
Machine Learning. https://api.semanticscholar.org/CorpusID:3663876

[15] Peng Li, Lawrence T Pileggi, Mehdi Asheghi, and Rajit Chandra. 2004. Efficient
full-chip thermal modeling and analysis. In IEEE/ACM International Conference
on Computer Aided Design, 2004. ICCAD-2004. IEEE, 319-326.

https://proceedings.mlr.press/v139/cheng21a.html
https://proceedings.mlr.press/v139/cheng21a.html
https://doi.org/10.1016/j.neunet.2017.12.012
https://arxiv.org/abs/2211.07377
https://arxiv.org/abs/2211.08064
https://doi.org/10.2478/IJNAOE-2013-0011
https://arxiv.org/abs/1706.00043
http://arxiv.org/abs/1706.00043
https://api.semanticscholar.org/CorpusID:3663876

SGM-PINN

[16]

[17]

[18]

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. 2021. DeepXDE:
A Deep Learning Library for Solving Differential Equations. SIAM Rev. 63, 1 (jan
2021), 208-228. https://doi.org/10.1137/19m1274067

Yury A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence (2018).

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. 2021.
Efficient training of physics-informed neural networks via importance sampling.
Computer-Aided Civil and Infrastructure Engineering 36, 8 (apr 2021), 962-977.

https://doi.org/10.1111/mice.12685

Nvidia 2022. Modulus User Guide (22.09 ed.). Nvidia. Sections: Introductory
Example, Zero Equation Turbulence, Importance Sampling.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J. Comput. Phys. 378

[21

[22

[23

[24

]

]

]

(2019), 686-707.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. 2020. Surrogate model-
ing for fluid flows based on physics-constrained deep learning without simulation
data. Computer Methods in Applied Mechanics and Engineering 361 (apr 2020),
112732. https://doi.org/10.1016/j.cma.2019.112732

Jiyuan Tu, Guan Heng Yeoh, and Chaoqun Liu. 2018. Computational fluid dy-
namics: a practical approach. Butterworth-Heinemann.

Sifan Wang, Xinling Yu, and Paris Perdikaris. 2022. When and why PINNs fail to
train: A neural tangent kernel perspective. J. Comput. Phys. 449 (2022), 110768.
https://doi.org/10.1016/j.jcp.2021.110768

Kailai Xu and Eric Darve. 2019. The Neural Network Approach to Inverse
Problems in Differential Equations. arXiv:1901.07758 [math.NA]

Tianju Xue, Alex Beatson, Sigrid Adriaenssens, and Ryan Adams. 2020. Amortized
finite element analysis for fast PDE-constrained optimization. In International
Conference on Machine Learning. PMLR, 10638-10647.

https://doi.org/10.1137/19m1274067
https://doi.org/10.1111/mice.12685
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.jcp.2021.110768
https://arxiv.org/abs/1901.07758

	Abstract
	1 Introduction
	2 Background
	2.1 Theoretical background of PINNs.
	2.2 Importance Sampling for Training PINNs

	3 The Proposed SGM-PINN Framework
	3.1 Overview
	3.2 Constructing PGMs from Point Cloud (S1)
	3.3 Node Clustering by LRD Decomposition (S2)
	3.4 Stability Score for Parameterized PINNs (S3)
	3.5 Batch Ranking and Selection (S4)
	3.6 Algorithm Flow and Complexity

	4 Experimental Results
	4.1 LDC, Non-Parametric, without S3
	4.2 Parameterized Annular Ring, with S3

	5 Conclusion
	6 Acknowledgment
	References

