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ABSTRACT
This paper introduces the award-winning deep learning (DL) li-

brary called LibAUC for implementing state-of-the-art algorithms

towards optimizing a family of risk functions named X-risks. X-risks
refer to a family of compositional functions in which the loss func-

tion of each data point is defined in a way that contrasts the data

point with a large number of others. They have broad applications

in AI for solving classical and emerging problems, including but

not limited to classification for imbalanced data (CID), learning to

rank (LTR), and contrastive learning of representations (CLR). The

motivation of developing LibAUC is to address the convergence

issues of existing libraries for solving these problems. In particular,

existing libraries may not converge or require very large mini-batch

sizes in order to attain good performance for these problems, due

to the usage of the standard mini-batch technique in the empirical

risk minimization (ERM) framework. Our library is for deep X-risk
optimization (DXO) that has achieved great success in solving a va-

riety of tasks for CID, LTR and CLR. The contributions of this paper

include: (1) It introduces a new mini-batch based pipeline for imple-

menting DXO algorithms, which differs from existing DL pipeline in

the design of controlled data samplers and dynamic mini-batch losses;
(2) It provides extensive benchmarking experiments for ablation

studies and comparison with existing libraries. The LibAUC library

features scalable performance for millions of items to be contrasted,

faster and better convergence than existing libraries for optimizing

X-risks, seamless PyTorch deployment and versatile APIs for vari-

ous loss optimization. Our library is available to the open source

community at https://github.com/Optimization-AI/LibAUC, to fa-

cilitate further academic research and industrial applications.
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1 INTRODUCTION
Deep learning (DL) platforms such as TensorFlow [1] and Py-

Torch [36] have dramatically reduced the efforts of developers

and researchers for implementing different DL methods without

worrying about low-level computations (e.g., automatic differen-

tiation, tensor operations, etc). Based on these platforms, plenty

of DL libraries have been developed for different purposes, which

can be organized into different categories including (i) supporting

specific tasks [15, 35], e.g., TF-Ranking for LTR [35], VISSL for

self-supervised learning (SSL) [15], (ii) supporting specific data,

e.g., DGL and DIG for graphs [31, 55]; (iii) supporting specific mod-

els [13, 58, 59], e.g., Transformers for transformer models [59].

However, it has been observed that these existing platforms and

libraries have encountered some unique challenges when solving

some classical and emerging problems in AI, including classifica-

tion for imbalanced data (CID), learning to rank (LTR), contrastive

learning of representations (CLR). In particular, prior works have

observed that large mini-batch sizes are necessary to attain good

performance for these problems [4, 5, 7, 37, 43, 46], which restricts

the capabilities of these AI models in the real-world. The reason for

this issue is two-fold. First, the standard empirical risk minimization

(ERM) framework, which serves as the foundation of the standard

mini-batch based methods, does not provide a good abstraction for

many non-decomposable objectives in ML and ignores their inher-

ent complexities. Second, all existing DL libraries are developed

based on the standard mini-batch based technique for ERM, which

updates model parameters based on the gradient of a mini-batch

loss as an approximation for the objective on the whole data set.

To address the first issue, a novel learning paradigm named deep

X-risk optimization (DXO) was recently introduced [60], which

provides a unified framework to abstract the optimization of many

compositional loss functions, including surrogate losses for AUROC,

AUPRC/AP, and partial AUROC that are suitable for CID [39, 64, 65],

surrogate losses for NDCG, top-𝐾 NDCG, and listwise losses that

are used in LTR [41], and global contrastive losses for CLR [63]. To

address the second issue, the LibAUC library implemented state-of-

the-art algorithms for optimizing a variety of X-risks arising in CID,

LTR and CLR. It has been used bymany projects [8, 10, 19, 23, 45, 57]

and achieved great success in solving real-world problems, e.g.,
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the 1st Place at the Stanford CheXpert Competition [64] and MIT

AICures Challenge [56]. Hence, it deserves in-depth discussions

about the design principles and unique features to facilitate future

research and development for DXO.

This paper aims to present the underlying design principles

of the LibAUC library and provide a comprehensive study of the

library regarding its unique features of design and superior perfor-

mance compared to existing libraries. The unique design features

of the LibAUC library include (i) dynamic mini-batch losses, which
are designed for computing the stochastic gradients of X-risks by

automatic differentiation to ensure the convergence; (ii) controlled
data samplers, which differ from standard random data samplers

in that the ratio of the number of positive data to the number of

negative data can be controlled and tuned to boost the performance.

The superiority of the LibAUC library lies in: (i) it is scalable to

millions of items to be ranked or contrasted with respect to an

anchor data; (ii) it is robust to small mini-batch sizes due to that all

implemented algorithms have theoretical convergence guarantee

regardless of mini-batch sizes; and (iii) it converges faster and to

better solutions than existing libraries for optimizing a variety of

compositional losses/measures suitable for CID, LTR and CLR.

To the best of our knowledge, LibAUC is the first DL library that

provides easy-to-use APIs for optimizing a wide range of X-risks.

Our main contributions for this work are summarized as follows:

• We propose a novel DL pipeline to support efficient imple-

mentation of DXO algorithms, and provide implementation

details of two unique features of our pipeline, namely dy-

namic mini-batch losses and controlled data samplers.

• We present extensive empirical studies to demonstrate the

effectiveness of the unique features of the LibAUC library,

and the superior performance of LibAUC compared to exist-

ing DL libraries/approaches for solving the three tasks, i.e.,

CID, LTR and CLR.

2 DEEP X-RISK OPTIMIZATION (DXO)
This section provides necessary background about DXO. We refer

readers to [60] for more discussions about theoretical guarantees.

2.1 A Brief History
The min-max optimization for deep AUROC maximization was

studied in several earlier works [32, 64]. Later, deep AUPRC/AP

maximization was proposed by Qi et al. [39], which formulates

the problem as a novel class of finite-sum coupled compositional

optimization (FCCO) problem. The algorithm design and analysis

for FCCOwere improved in subsequent works [26, 50, 51]. Recently,

the FCCO techniques were used for partial AUC maximization [65],

NDCG and top-𝐾 NDCG optimization [41], and stochastic opti-

mization of global contrastive losses with a small batch size [63].

More recently, Yang et al. [60] proposed the X-risk optimization

framework, which aims to provide a unified venue for studying

the optimization of different X-risks. The difference between this

work and these previous works is that we aim to provide a technical

justification for the library design towards implementing DXO al-

gorithms for practical usage, and comprehensive studies of unique

features and superiority of LibAUC over existing DL libraries.

2.2 Notations
For CID, let S = {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} denote a set of training

data, where x𝑖 ∈ X ⊂ R𝑑𝑖𝑛 denotes the input feature vector and

𝑦𝑖 ∈ {1,−1} denotes the corresponding label. Let S+ = {x𝑖 : 𝑦𝑖 = 1}
contain 𝑛+ positive examples and S− = {x𝑖 : 𝑦𝑖 = −1} contain
𝑛− negative examples. Denote by ℎw (x) : X → R a parametric

predictive function (e.g., a deep neural network) with a parameter

w ∈ R𝑑 . We use Ex∼S = 1

|S |
∑
x∈S interchangeably below.

For LTR, let Q denote a set of 𝑁 queries. For a query 𝑞 ∈ Q, let

S𝑞 = {x𝑞
𝑖
, 𝑖 = 1, . . . , 𝑁𝑞} denote a set of 𝑁𝑞 items (e.g., documents,

movies) to be ranked. For each x𝑞
𝑖
∈ S𝑞 , let 𝑦𝑞𝑖 ∈ R+ denote its

relevance score, which measures the relevance between query𝑞 and

item x𝑞
𝑖
. Let S+

𝑞 ⊆ S𝑞 denote a set of 𝑁 +
𝑞 (positive) items relevant

to 𝑞, whose relevance scores are non-zero. Let S = {(𝑞, x𝑞
𝑖
), 𝑞 ∈

Q, x𝑞
𝑖
∈ S+

𝑞 } denote all relevant query-item (Q-I) pairs. Denote by

ℎw (x;𝑞) : X×Q → R a parametric predictive function that outputs

a predicted relevance score for x with respect to 𝑞.

ForCLR, letS = {x1, . . . , x𝑛} denote a set of anchor data, and let
S−
𝑖

denote a set containing all negative samples with respect to x𝑖 .
For unimodal SSL,S−

𝑖
can be constructed by applying different data

augmentations to all data excluding x𝑖 . For bimodal SSL, S−
𝑖
can

be constructed by including the different view of all data excluding

x𝑖 . The goal of representation learning is to learn a feature encoder

network ℎw (·) ∈ R𝑑o parameterized by a vector w ∈ R𝑑 that

outputs an encoded feature vector for an input data .

2.3 The X-Risk Optimization Framework
We use the following definition of X-risks given by [60].

Definition 1. ([60]) X-risks refer to a family of compositional
measures in which the loss function of each data point is defined in
a way that contrasts the data point with a large number of others.
Mathematically, X-risk optimization can be cast into the following
abstract optimization problem:

min

w∈R𝑑
𝐹 (w) = 1

|S|
∑︁

z𝑖 ∈S
𝑓𝑖 (𝑔(w; z𝑖 ,S𝑖 )), (1)

where 𝑔 : R𝑑 ↦→ R is a mapping, 𝑓𝑖 : R ↦→ R is a simple deterministic
function, S = {z1, . . . , z𝑚} denotes a target set of data points, and S𝑖
denotes a reference set of data points dependent or independent of z𝑖 .

The most common form of 𝑔(w; z,S) is the following:

𝑔(w; z𝑖 ,S𝑖 ) =
1

|S𝑖 |
∑︁

z𝑗 ∈S𝑖

ℓ (w; z𝑖 , z𝑗 ),

where ℓ (w; z𝑖 , z𝑗 ) = ℓ (ℎw (z𝑖 ), ℎw (z𝑗 )) is a pairwise loss.
As a result, manyDXOproblemswill be formulated as FCCO [50]:

min

w

1

|S|
∑︁

z𝑖 ∈S
𝑓𝑖

(
1

|S𝑖 |
∑︁

z𝑗 ∈S𝑖

ℓ (ℎw (z𝑖 ), ℎw (z𝑗 ))
)
. (2)

The FCCO problem is subtly different from the traditional stochastic

compositional optimization [52] due to the coupling of a pair of

data in the inner function. Almost all X-risks considered in this

paper, including AUROC, AUPRC/AP, pAUC, NDCG, top-𝐾 NDCG,

listwise CE loss, GCL, can be formulated as FCCO or its variants.

Besides the common formulation above, in the development of

LibAUC library two other optimization problems are also used,

including the min-max optimization and multi-block bilevel opti-

mization. The min-max formulation is used to formulate a family of

2
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Figure 1: Mappings of X-risks to optimization problems.
surrogate losses of AUROC, and themulti-block bilevel optimization

is useful for formulating ranking performance measures defined

only on top-𝐾 items in the ranked list, including top-𝐾 NDCG,

precision at a certain recall level, etc. In summary, we present a

mapping of different X-risks to different optimization problems in

Figure 1, which is a simplified one from [60].

2.4 X-risks in LibAUC
Below, we discuss how different X-risks are formulated for devel-

oping their optimization algorithms in the LibAUC library.

Area Under the ROC Curve (AUROC). Two formulations

have been considered for AUROC maximization in the literature. A

standard formulation is the pairwise loss minimization [61]:

min

w∈R𝑑
Ex𝑖 ∈S+Ex𝑗 ∈S− ℓ (ℎw (x𝑗 ) − ℎw (x𝑖 )),

where ℓ (·) is a surrogate loss. Another formulation is following

the min-max optimization [32, 64]:

min

w,𝑎,𝑏
max

𝛼∈Ω
Ex𝑖∼S+ [(ℎw (x𝑖 ) − 𝑎)2] + Ex𝑗∼S− [(ℎw (x𝑗 ) − 𝑏)2]

+ 𝛼 (Ex𝑗∼S− [ℎw (x𝑗 )] − Ex𝑖∼S+ [ℎw (x𝑖 )] + 𝑐) −
𝛼2

2

,

where 𝑐 > 0 is a margin parameter and Ω ⊂ R. In LibAUC, we
have implemented an efficient algorithm (PESG) for optimizing the

above min-max AUC margin (AUCM) loss with Ω = R+ [64]. The

comparison between optimizing the pairwise loss formulation and

the min-max formulation can be found in [67].

Partial Area Under ROC Curve (pAUC) is defined as area

under the ROCCurvewith a restriction on the range of false positive

rate (FPR) and/or true positive rate (TPR). For simplicity, we only

consider pAUC with FPR restricted to be less than 𝛽 ∈ (0, 1]. Let
S↓ [𝑘1, 𝑘2] ⊂ S be the subset of examples whose rank in terms of

their prediction scores in the descending order are in the range of

[𝑘1, 𝑘2], where 𝑘1 ≤ 𝑘2. Then, optimizing pAUC with FPR≤ 𝛽 can

be cast into:

min

w

1

𝑛+

1

𝑘

∑︁
x𝑖 ∈S+

∑︁
x𝑗 ∈S↓

− [1,𝑘 ]
ℓ (ℎw (x𝑗 ) − ℎw (x𝑖 )),

where 𝑘 = ⌊𝑛−𝛽⌋. To tackle challenge of handling S↓
− [1, 𝑘] for data

selection, we consider the following FCCO formulation [65]:

min

w

1

𝑛+

∑︁
x𝑖 ∈S+

𝜆 logEx𝑗 ∈S− exp(
ℓ (ℎw (x𝑗 ) − ℎw (x𝑖 ))

𝜆
), (3)

where 𝜆 > 0 is a temperature parameter that plays a similar role

of 𝑘 . Let 𝑔(w; x𝑖 ,S−) = E𝑥 𝑗 ∈S− exp(ℓ (ℎw (x𝑗 ) − ℎw (x𝑖 ))/𝜆) and
𝑓𝑖 (𝑔) = 𝜆 log(𝑔). Then (3) is a special case of FCCO. In LibAUC,
we have implemented SOPAs for optimizing the above objective of

one-way pAUC with FPR≤ 𝛽 and SOTAs for optimizing a similarly

formed surrogate loss of two-way pAUC with FRP≤ 𝛽 and TPR≥ 𝛼
as proposed in [65].

Area Under Precision-Recall Curve (AUPRC) is an aggre-

gated measure of precision of the model at all recall levels. A non-

parametric estimator of AUPRC is Average Precision (AP) [3]:

AP =
1

𝑛+

∑︁
x𝑖 ∈S+

∑
x𝑗 ∈S+

I(ℎw (x𝑗 ) ≥ ℎw (x𝑖 ))∑
x𝑗 ∈S

I(ℎw (x𝑗 ) ≥ ℎw (x𝑖 ))
.

By using a differentiable surrogate loss ℓ (ℎw (x𝑗 ) −ℎw (x𝑖 )) in place

of I(ℎw (x𝑗 ) ≥ ℎw (x𝑖 )), we consider the following FCCO formula-

tion for AP maximization:

min

w

1

𝑛+

∑︁
x𝑖 ∈S+

𝑓 (𝑔1 (w; x𝑖 ,S+), 𝑔2 (w; x𝑖 ,S)),

where 𝑔1 (w; x𝑖 ,S+) =
∑
x𝑗 ∈S+ ℓ (ℎw (x𝑗 ) − ℎw (x𝑖 )), 𝑔2 (w; x𝑖 ,S) =∑

x𝑗 ∈S ℓ (ℎw (x𝑗 ) − ℎw (x𝑖 )), and 𝑓 (𝑔1, 𝑔2) = −𝑔1𝑔2 . In LibAUC, we
implemented the SOAP algorithm with a momentum SGD or Adam-

style update [39], which is a special case of SOX analyzed in [50].

Normalized Discounted Cumulative Gain (NDCG) is a rank-
ing performance metric for LTR tasks. The averaged NDCG over

all queries can be expressed by

1

𝑁

∑︁
𝑞∈Q

1

𝑍𝑞

∑︁
x𝑞
𝑖
∈S+

𝑞

2
𝑦
𝑞

𝑖 − 1

log
2
(𝑟 (w; x𝑞

𝑖
,S𝑞) + 1)

,

where 𝑟 (w; x,S𝑞) =
∑
x′∈S𝑞

I(ℎw (x′, 𝑞) − ℎw (x, 𝑞) ≥ 0) denotes
the rank of x in the set S𝑞 respect to 𝑞, and 𝑍𝑞 is the DCG score of

a perfect ranking of items in S𝑞 , which can be pre-computed. For

optimization, the rank function 𝑟 (w; x𝑞
𝑖
,S𝑞) is replaced by a differ-

entiable surrogate loss, e.g., 𝑔(w; x𝑖 ,S𝑞) =
∑
x′∈S𝑞

ℓ (ℎw (x′, 𝑞) −
ℎw (x, 𝑞)). Hence, NDCG optimization is formulated as FCCO. In
LibAUC, we implemented the SONG algorithm with a momen-

tum or Adam-style update for NDCG optimization [41], which is a

special case of SOX analyzed in [50].

Top-𝐾 NDCG only computes the corresponding score for those

that are ranked in the top-𝐾 positions. We follow [41] to formulate

top-𝐾 NDCG optimization as a multi-block bilevel optimization:

min

w
− 1

𝑁

𝑁∑︁
𝑞=1

1

𝑍𝐾𝑞

∑︁
x𝑞
𝑖
∈S+

𝑞

𝜎 (ℎ𝑞 (x𝑞𝑖 ;w) − 𝜆𝑞 (w)) (2𝑦
𝑞

𝑖 − 1)
log

2
(𝑔(w; x𝑞

𝑖
,S𝑞) + 1)

,

𝜆𝑞 (w) = argmin

𝜆
𝐿(𝜆,w;𝐾,S𝑞),∀𝑞 ∈ Q,

where 𝜎 (·) is a sigmoid function, 𝑍𝐾𝑞 is the top-𝐾 DCG score of a

perfect ranking of items, and 𝜆𝑞 (w) is an approximation of the (𝐾 +
1)-th largest score of data in the set S𝑞 . The detailed formulation

of lower-level problem 𝐿 can be found in [41]. In LibAUC, we
implemented the K-SONG algorithm with a momentum or Adam-

style update for top-𝐾 NDCG optimization [41].

Listwise CE loss is defined by a cross-entropy loss between

two probabilities of list of scores similar to ListNet in [6]:

min

w
−

∑︁
𝑞

∑︁
x𝑞
𝑖
∈S𝑞

𝑃 (𝑦𝑞
𝑖
) log

exp(ℎw (x𝑞
𝑖
;𝑞)∑

x∈S𝑞
exp(ℎw (x𝑞

𝑖
;𝑞))

, (4)

where 𝑃 (𝑦𝑞
𝑖
) ∝ 𝑦𝑞

𝑖
denotes a probability for a relevance score 𝑦

𝑞

𝑖
to

be the top one. (4) is a special case of FCCO by setting𝑔(w; x𝑞
𝑖
,S𝑞) =

3
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Figure 2: The pipeline of LibAUC modules. Highlighted blocks denote the unique modules of the LibAUC library.

Ex∈S𝑞
exp(ℎw (x;𝑞) − ℎw (x𝑞

𝑖
;𝑞)) and 𝑓𝑞,𝑖 (𝑔) = 𝑃 (𝑦𝑞

𝑖
) log(𝑔). In

LibAUC, we implemented an optimization algorithm, similar to

SONG, for optimizing listwise CE loss.

Global Contrastive Losses (GCL) are the global variants of
contrastive losses used for unimodal and bimodal SSL. For unimodal

SSL, GCL can be formulated as:

min

w
Ex𝑖 ,x+𝑖

𝜏 logEx𝑗∼S−
𝑖
exp

(
ℎw (x𝑖 )⊤ℎw (x𝑗 ) − ℎw (x𝑖 )⊤ℎw (x+

𝑖
)

𝜏

)
,

where 𝜏 > 0 is a temperature parameter and x+
𝑖
denotes a positive

data of x𝑖 . Different from [7, 42], GCL use all possible negative

samples S−
𝑖

for each anchor data instead of mini-batch samples

B [63], which helps address the large-batch training challenge

in [7]. In LibAUC, we implemented an optimization algorithm

called SogCLR[63] for optimizing both unimodal/bimodal GCL.

As of June 4, 2023, the LibAUC library has been downloaded

36,000 times.We also implemented two additional algorithms namely

MIDAM for solving multi-instance deep AUROCmaximization [66]

and iSogCLR [40] for optimizing GCL with individualized tempera-

ture parameters, which are not studied in this paper.

3 LIBRARY DESIGN OF LIBAUC
The pipeline of training a DL model in the LibAUC library is shown

in Figure 2, which consists of five modules, namely Dataset, Data
Sampler, Model, Mini-batch Loss, and Optimizer. The Dataset
module allows us to get a training sample which includes its input

and output. The Data Sampler module provides tools to sample a

mini-batch of examples for training at each iteration. The Model
module allows us to define different deep models. The Mini-batch
Lossmodule defines a loss function on the selected mini-batch data

for backpropagation. The Optimizer module implements methods

for updating themodel parameter given the computed gradient from

backpropagation. While the Dataset, Model, and Optimizer
modules are similar to those in existing libraries, the key differ-

ences lie in the Mini-batch Loss and Data Sampler modules.

The Mini-batch Lossmodule in LibAUC is referred to as Dynamic
Mini-batch Loss, which uses dynamically updated variables to

adjust the mini-batch loss. The dynamic variables will be defined

in the dynamic mini-batch loss, which can be evaluated by forward

propagation. In contrast, we refer to the Mini-batch Lossmodule

in existing libraries as Static Mini-batch Loss, which only uses

the sampled data to define a min-batch loss in the same way of

the objective but on mini-batch data. TheData Sampler module in

LibAUC is referred to as Controled Data Sampler, which differ

from standard random data samplers in that the ratio of the number

of positive data to the number of negative data can be controlled

and tuned to boost the performance. Next, we provide more details

of these two and other modules.

3.1 Dynamic Mini-batch Loss
We first present the stochastic gradient estimator of the objec-

tive function, which directly motivates our design of Dynamic
Mini-batch Loss module.

For simplicity of exposure, we will mainly use the FCCO problem

of pAUC optimization (3) to demonstrate the core ideas of the library

design. The designs of other algorithms follow in a similar manner.

The key challenge is to estimate the gradient using a mini-batch

of samples. To motivate the stochastic gradient estimator, we first

consider the full gradient given by

∇𝐹 (w) = Ex∈S+∇𝑓 (𝑔(w; x𝑖 ,S−))
(
Ex𝑗 ∈S−∇ exp(ℓ (w; x𝑖 , x𝑗 )/𝜆)

)
.

To estimate the full gradient, the outer average over all data in S+
can be estimated by sampling a mini-batch of data B1 ⊂ S+. Simi-

larly, the average over x𝑗 ∈ S− in parentheses can be also estimated

by sampling a mini-batch of data B2 ⊂ S− . A technical issue arises

when estimating𝑔(w; x𝑖 ,S−) inside 𝑓 . A naivemini-batch approach

is to simply estimate 𝑔(w; x𝑖 , 𝑆−) by using a mini-batch of data

in B2 ⊂ S− , i.e., 𝑔(w; x𝑖 ,B2) = 1

| B2 |
∑
x𝑗 ∈B2

exp(ℓ (w; x𝑖 , x𝑗 )/𝜆).
However, the problem is that the resulting estimator∇𝑓 (𝑔(w; x𝑖 ,B2))
is biased due to that 𝑓 is a non-linear function, whose estimation er-

ror will depend on the batch size |B2 |. As a result, the algorithmwill

not converge unless the batch size |B2 | is very large. To address this
issue, a moving average estimator is used to estimate 𝑔(w𝑡 ; x𝑖 ,S−)
at the 𝑡-th iteration [39, 41, 50, 63, 65], which is updated for sampled

data x𝑖 ∈ B𝑡
1
according to:

u𝑡+1𝑖 = (1 − 𝛾)u𝑡𝑖 + 𝛾𝑔(w𝑡 ; x𝑖 ,B
𝑡
2
)

= (1 − 𝛾)u𝑡𝑖 + 𝛾
1

|B𝑡
2
|

∑︁
x𝑗 ∈B𝑡

2

exp(ℓ (ℎw𝑡
(x𝑗 ) − ℎw𝑡

(x𝑖 ))/𝜆),

where 𝛾 ∈ (0, 1) is a hyper-parameter. It has been proved that the

averaged estimation error of u𝑡+1
𝑖

for 𝑔(w𝑡 ; x𝑖 ,S−) is diminishing

in the long run. With the moving average estimators, the gradient

of the objective function is estimated by
1
:

𝐺𝑡 = Ex𝑖 ∈B𝑡
1

∇𝑓 (u𝑡+1𝑖 )∇𝑔𝑖 (w𝑡 ; x𝑖 ,B𝑡2)

= Ex𝑖 ∈B𝑡
1
,x𝑗 ∈B𝑡

2

∇𝑓 (u𝑡+1𝑖 )∇w exp(ℓ (ℎw𝑡
(x𝑗 ) − ℎw𝑡

(x𝑖 ))/𝜆) .
The key steps of SOPAs for optimizing pAUC loss are in Algo-

rithm 1 [65]. To facilitate the implementation of computing the

gradient estimator 𝐺𝑡 , we design a dynamic mini-batch loss. The

motivation of this design is to enable us to simply use the auto-

matic differentiation of PyTorch or TensorFlow for calculating the

gradient estimator 𝐺𝑡 . In particular, on PyTorch we aim to define a

loss such that we can directly call loss.backward() to compute

𝐺𝑡 . To this end, we define a dynamic variable 𝑝𝑖 = ∇𝑓 (u𝑡+1
𝑖

) for
x𝑖 ∈ B𝑡

1
and then define a dynamic mini-batch loss as loss =

1
For theoretical analysis u𝑡+1

𝑖
is replaced by u𝑡

𝑖
in [50, 65]
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Algorithm 1: SOPAs for solving pAUCLoss.

1 for 𝑡 = 0, . . . ,𝑇 do
2 Draw two subsets B𝑡

1
⊂ S+ and B𝑡

2
⊂ S−

3 for 𝑖 ∈ B𝑡
1
do

4 u𝑡+1
𝑖

= (1 − 𝛾)u𝑡
𝑖
+ 𝛾𝑔𝑖 (w𝑡 ; x𝑖 ,B𝑡

2
)

5 𝑝𝑡
𝑖
= ∇𝑓 (u𝑡+1

𝑖
) = 𝜆/u𝑡+1

𝑖

6 end
7 Compute the gradient estimator 𝐺𝑡 by

1

| B𝑡
1
|
∑
x𝑖 ∈B𝑡

1

1

| B𝑡
2
|
∑
x𝑗 ∈B𝑡

2

𝑝𝑡
𝑖
∇w exp(ℓ (ℎw𝑡

(x𝑖 ), ℎw𝑡
(x𝑗 ))/𝜆)

8 Update the model parameter by an optimizer

9 end

Algorithm 2: High-level pseudocode for SOPAs.

1 def pAUCLoss(**kwargs): # dynamic mini-batch loss
2 sur_loss = surrogate_loss(neg_logits - pos_logits)
3 exp_loss = torch.exp(sur_loss/Lambda)
4 u[index] = (1 - gamma)*u[index] + gamma*(exp_loss.mean(1))
5 p = (exp_loss/u[index]).detach()
6 loss = torch.mean(p * sur_loss)
7 return loss
8
9 # optimization

10 for data, targets, index in dataloader:
11 logits = model(data)
12 loss = pAUCLoss(logits, targets, index)
13 optimizer.zero_grad()
14 loss.backward()

15 optimizer.step()

Figure 3: Left: SOPAs for optimizing pAUC; Right: its pseudo code using automatic differentiation of a dynamic mini-batch loss.
The corresponding parts of the algorithm and pseudocode are highlighted in the same color.

1

| B𝑡
1
|
∑
x𝑖 ∈B𝑡

1

1

| B𝑡
2
|
∑
x𝑗 ∈B𝑡

2

𝑝𝑖 exp(ℓ (ℎw𝑡
(x𝑗 ) − ℎw𝑡

(x𝑖 ))/𝜆). How-
ever, since 𝑝𝑖 depends on u𝑡+1𝑖

that is computed based onw𝑡 , directly
calling loss.backward() for this loss may cause extra differentia-

tion of 𝑝𝑖 in term ofw𝑡 . To avoid this, we apply the detach operator

p.detach() to separate each 𝑝𝑖 from the computational graph by

returning a new tensor that does not require a gradient. The high-

level pseudo code of defining and using the dynamic mini-batch loss

for pAUC is given in Algorithm 2, where we use a variable change to

define the loss, i.e., 𝑝𝑖 = ∇𝑓 (u𝑡+1
𝑖

) exp(ℓ (ℎw𝑡
(x𝑗 ) − ℎw𝑡

(x𝑖 ))/𝜆)/𝜆.
Below, we give another example of code snippet to implement

the dynamic mini-batch contrastive loss for optimizing GCL.

def GCLoss (** kwargs)
""" Defines dynamic mini -batch loss for GCL."""
# logits: pairwise similarities , labels: pairwise one
-hot labels , B: batch size
neg_logits = exp(logits/tau) * (1-labels)
u = (1-gamma) * u[index] \

+ gamma * sum(neg_logits , dim=1) /(2(B-1))
p = (neg_logits/u).detach ()
sum_neg_logits = sum(p * logits , dim=1) /(2(B-1))
normalized_logits = logits - sum_neg_logits
loss = -sum(labels * normalized_logits , dim=1)
return loss.mean()

3.2 Controlled Data Sampler
Unlike traditional ERM, DXO requires sampling to estimate the

outer average and the inner average. In the example of pAUC opti-

mization by SOPAs, we need to sample two mini-batches B𝑡
1
⊂ S+

and B𝑡
2
⊂ S− at each iteration 𝑡 . We notice that this is common

for optimizing areas under curves and ranking measures. For some

losses/measures (e.g., AUPRC/AP, NDCG, top-𝐾 NDCG, Listwise

CE), both sampled positive and negative samples will be used for

estimating the inner functions. According to our theoretical analy-

sis [50], balancing the mini-batch size for outer average and that

for the inner average could be beneficial for accelerating conver-

gence. Hence, we design a new Data Sampler module to ensure

that both positive and negative samples will be sampled and the

proportion of positive samples in the mini-batch can be controlled

by a hyper-parameter.

For CID problems, we introduce DualSampler, which takes as in-
put hyper-parameters such as batch_size and sampling_rate, to

Figure 4: Illustration of DualSampler for an imbalanced
dataset with 4 positives • and 9 negatives •.
generate the customizedmini-batch samples, where sampling_rate
controls the number of positive samples in the mini-batch accord-

ing to the formula # positives = batch_size*sampling_rate.
For LTR problems, we introduce TriSampler, which has hyper-

parameters sampled_tasks to control the number of sampled queries

for backpropogation, batch_size_per_task to adjust mini-batch

size for each query, and sampling_rate_per_task to control the

ratio of positives in each mini-batch per query. The TriSampler
can be also used for multi-label classification problems with many

labels such that sampling labels becomes necessary, which makes

the library extendable for our future work. To improve the sam-

pling speed, we have implemented an index-based approach that

eliminates the need for computationally intensive operations such

as concatenation and append. Figure 4 shows an example of

DualSampler for constructing mini-batch data with even positive

and negative samples on an imbalanced dataset with 4 positives and

9 negatives. We maintain two lists of indices for the positive data

and negative data, respectively. At the beginning, we shuffle the

two lists and then take the first 4 positives and 4 negatives to form

a mini batch. Once the positive list is used up, we only reshuffle

the positive list and take 4 shuffled positives to pair with next 4

negatives in the negative list as a mini-batch. Once the negative list

is used up (an “epoch" is done), we re-shuffle both lists and repeat

the same process as above. For TriSampler, the main difference is

that we first randomly select some queries/labels before sampling

the positive and negative data for each query/label. The following

code snippet shows how to define DualSampler and TriSampler.
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from libauc.sampler import DualSampler , TriSampler
dualsampler = DualSampler(trainSet ,

batch_size =32,
sampling_rate =0.1)

trisampler = TriSampler(trainSet ,
batch_size_per_task =32,
sampled_tasks =5,
sampling_rate_per_task =0.1)

3.3 Optimizer
With a calculated gradient estimator, the updating rule for the

model parameter of different algorithms for DXO follow simi-

larly as (momentum) SGD or Adam [41, 50, 63–65, 67]. Hence,

the optimizer.step() is essentially the same as that in existing

libraries. In addition to our built-in optimizer, users can also uti-

lize other popular optimizers from the PyTorch/TensorFlow library,

such as Adagrad, AdamW, RMSprop, and RAdam [12, 30, 33, 48].

Hence, we provide an optimizer wrapper that allows users to ex-

tend and choose appropriate optimizers. For the naming of the

optimizer wrapper, we use the name of optimization algorithms

corresponding to each specific X-risk for better code readability. An

example of the optimizer wrapper for pAUC optimization is given

below, where mode=‘adam’ allows user to use Adam-style update.

Another mode is ‘SGD’, which takes a momentum parameter as an

argument to use the momentum SGD update.

#An example of optimizer wrapper.
from libauc.optimizers import SOPAs
optimizer = SOPAs(model.parameters (), lr=0.1, mode='adam'

, weight_decay =1e-4)

3.4 Other Modules
In addition, we provide useful functionalities in other modules, in-

cluding libauc.datasets, libauc.models, and libauc.metrics,
to help users improve their productivity. The libauc.datasets
module provides pre-processing functions for several widely-used

datasets, including CIFAR [28], CheXpert [25], and MovieLens [17],

allowing users to easily adapt these datasets for use with LibAUC
in benchmarking experiments. It is important to note that the def-

inition of the Dataset class is slightly different from that in ex-

isting libraries. An example is given below, where __getitem__
returns a triplet that consists of input data, its label and its cor-

responding index in the dataset, where the index is returned for

accommodating DXO algorithms for updating the u𝑡+1
𝑖

estimators.

The libauc.models module offers a range of pre-defined models

for various tasks, including ResNet[18] and DenseNet[22] for clas-
sification and NeuMF [20] for recommendation. libauc.metrics
module offers evaluation wrappers based on scikit-learn for var-
ious metrics, such as AUC, AP, pAUC, and NDCG@K. Moreover, it

provides an all-in-one wrapper (shown below) to evaluate multiple

metrics simultaneously to improve the production efficiency.

class ImageDataset(torch.utils.data.Dataset):
"""An example of Dataset class """
def __init__(self , inputs , targets):

self.inputs = inputs
self.targets = targets

def __len__(self):
return len(self.inputs)

def __getitem__(self , index):
data = self.inputs[index]
target = self.targets[index]
return data , target , index

Table 1: The list of losses, corresponding samplers and opti-
mizer wrappers in libauc. For a complete list, please refer to
the documentation of LibAUC.

Loss Function Data Sampler Optimizer Wrapper

Reference

libauc.losses libauc.sampler libauc.optimizers

AUCMLoss DualSampler PESG [64]

APLoss DualSampler SOAP [39]

pAUCLoss(‘1w’) DualSampler SOPAs [65]

pAUCLoss(‘2w’) DualSampler SOTAs [65]

NDCGLoss TriSampler SONG [41]

NDCGLoss(topk=5) TriSampler SONG [41]

ListwiseCELoss TriSampler SONG [41]

GCLoss(‘unimodal’) RandomSampler SogCLR [63]

GCLoss(‘bimodal’) RandomSampler SogCLR [63]

#An evaluator wrapper
from libauc.metrics import evaluator
scores = evaluator(pred ,true ,metrics =['auc','ap','pauc'])

3.5 Deployment
Before ending this section, we present a list of different losses,

their corresponding data samplers and optimizer wrappers of the

LibAUC library in Table 1. Finally, we present an example below

of building the pipeline for optimizing pAUC using our designed

modules.

#A high -level training pipeline for optimizing pAUC.
from libauc.losses import pAUCLoss
from libauc.optimizers import SOPAs
from libauc.sampler import DualSampler
from torch.utils.data import Dataloader
...
dataset = ImageDataset(images , labels)
sampler = DualSampler(dataset ,sampling_rate =0.1)
dataloader = DataLoader(dataset , sampler , shuffle=False)
Loss = pAUCLoss('1w') # one -way pAUC loss
optimizer = SOPAs()
...
for data , targets , index in dataloader:

logits = model(data)
loss = Loss(logits , targets , index)
optimizer.zero_grad ()
loss.backward ()
optimizer.step()

4 EXPERIMENTS
In this section, we provide extensive experiments on three tasks CID,

LTR and CLR. Although individual algorithms have been studied

in their original papers for individual tasks, our empirical studies

serves as complement to prior studies in that (i) ablation studies

of the two unique features for all three tasks provide coherent

insights of the library for optimizing different X-risks; (ii) compar-

ison with an existing optimization-oriented library TFCO [9, 34]

for optimizing AUPRC is conducted; (iii) a larger scale dataset is

used for LTR, and re-implementation of our algorithms for LTR

is done on TensorFlow for fair comparison with the TF-Ranking

library [35]; (iv) evaluation of different DXO algorithms based on

different areas under the curves is performed exhibiting useful

insights for practical use; (v) larger image-text datasets are used

for evaluating SogCLR for bimodal SSL. Another difference from

prior works [39, 41, 64, 65] is that all experiments for CID and

LTR are conducted in an end-to-end training fashion without using

a pretraining strategy. However, we did observe the pretraining

generally helps improve performance (cf. the Appendix).
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Table 2: Results on three classification tasks. Best results are marked in bold and second-best results are marked in underline.

Methods

CIFAR10 (imratio=1%) CheXpert (imratio=24.54%) OGB-HIV (imratio=1.76%)
AUROC AP pAUC (fpr<0.3) AUROC AP pAUC (fpr<0.3) AUROC AP pAUC (fpr<0.3)

CE 0.687±0.008 0.681±0.005 0.619±0.003 0.853±0.006 0.687±0.012 0.769±0.011 0.765±0.002 0.250±0.013 0.721±0.004

Focal 0.678±0.006 0.671±0.009 0.610±0.007 0.879±0.004 0.737±0.010 0.800±0.006 0.758±0.004 0.241±0.009 0.722±0.003

PESG 0.712±0.009 0.706±0.011 0.639±0.009 0.890±0.002 0.759±0.009 0.820±0.003 0.805±0.009 0.199±0.009 0.745±0.007

SOAP 0.711±0.027 0.717±0.016 0. 648±0.013 0.875±0.048 0.757±0.074 0.813±0.059 0.709±0.008 0.293±0.004 0.699±0.001

SOPAs 0.717±0.005 0.713±0.002 0.645±0.003 0.894±0.003 0.767±0.008 0.823+0.006 0.786±0.007 0.249±0.019 0.747±0.004

4.1 Classification for Imbalanced Data
We choose three datasets from different domains, namely CIFAR10 -

a natural image dataset [28], CheXpert - amedical image dataset [25]

and OGB-HIV - a molecular graph dataset [21]. For CIFAR10, we

follow the original paper [64] to construct an imbalanced training

set with a positive sample ratio (referred as imratio) of 1%. For
evaluation, we sample 5% data from training set as validation set

and re-train the model using full training set after selecting the

parameters and finally report the performance on testing set with

balanced positive and negative classes. For CheXpert, we follow the

original work [64] by conducting experiments on 5 selected diseases,

i.e., Cardiomegaly (imratio=12.2%), Edema (imratio=32.2%), Con-
solidation (imratio=6.8%), Atelectasis (imratio=31.2%), Pleural
Effusion (imratio=40.3%), with an average of imratio of 24.54%.
We use the downsized 224 × 224 frontal images only for training.

Due to the unavailability of testing set, we report the averaged

results of 5 tasks on the official validation set. For OGB-HIV, the

dataset has an imratio of 1.76% and we use official train/valid/test

split for experiments and report the final performance on testing set.

For each setting, we repeat experiments three times using different

random seeds and report the final results in mean±std.
For modeling, we use ResNet20, DenseNet121, and DeepGCN [18,

22, 29] for the three datasets, respectively. We consider optimizing

three losses, namely AUCMLoss, APLoss, pAUCLoss by using PESG,

SOAP, SOPAs, respectively. For the latter two, we use the pairwise

squared hinge loss with amargin parameter in their definition. Thus,

all losses have a margin parameter, which is tuned in [0.1, 0.3, 0.5,

0.7, 0.9, 1.0]. For APLoss and pAUCLoss, we tune themoving average

estimator parameter 𝛾 in the same range. For pAUCLoss, we also
tune the temperature parameter in [0.1, 1.0, 10.0]. For DualSampler,
we tune sampling_rate in [0.1, 0.3, 0.5]. For baselines, we compare

two popular loss functions used in the literature, i.e., CE loss and
Focal loss. For Focal loss, we tune 𝛼 in [1,2,5] and 𝛾 in [0.25, 0.5,

0.75]. For optimization, we use themomentum SGD optimizer for all

methods with a default momentum parameter 0.9 and tuned initial

learning rate in [0.1, 0.05, 0.01]. We decay learning rate by 10 times

at 50% and 75% of total training iterations. For CIFAR10, we run all

methods using a batch size of 128 for 100 epochs. For CheXpert, we

train models using a batch size of 32 for 2 epochs. For OGB-HIV, we

train models using a batch size of 512 for 100 epochs. To evaluate

the performance, we adopt three different metrics, i.e., AUROC, AP,

and pAUC (FPR<0.3). We select the best configuration based on the

performance metric to be optimized, e.g., using AUROC for model

selection of AUCMLoss. The results are summarized in the Table 2.

We have several interesting observations. Firstly, directly opti-

mizing performance metrics leads to better performance compared

to baseline methods based on ERM framework. For example, PESG,

Figure 5: Comparison of TFCO and LibAUC.

SOAP, and SOPAs outperform CE and Focal Loss by a large mar-

gin in all datasets. This is consistent with prior works. Secondly,

optimizing a specific metric does not necessarily has the best perfor-

mance for other metrics. For example, on OGB-HIV dataset PESG

has the highest AUROC but the lowest AP score, while SOAP has

the highest AP score but lowest AUROC and pAUC, and SOPAs has

the highest pAUC score. This confirms the importance of choosing

appropriate methods in LibAUC for corresponding metrics. Thirdly,

on CheXpert, it seems that optimizing pAUC is more beneficial

than optimizing full AUROC. SOPAs achieves better performance

than PESG and SOAP in all three metrics.

Comparison with the TFCO library. We compare LibAUC

(SOAP) with TFCO [9, 34] for optimizing AP. We run both methods

using batch size of 128 for 100 epochs with Adam optimizer and

learning rate of 1e-3 and weight decay of 1e-4 on constructed CI-

FAR10 with imratio={1%,2%}. We plot the learning curves on

training and testing sets in Figure 5. The results indicate that

LibAUC consistently performs better than TFCO.

4.2 Learning to Rank
We evaluate LibAUC on a LTR task for movie recommendation. The

goal is to rank movies for users according to their potential interests

of watching based on their historical ratings of movies. We compare

the LibAUC library for optimizing ListwiseCELoss, NDCGLoss and
top-𝐾 NDCG loss denoted by NDCGLoss(K) against the TF-Ranking
library [35] for optimizing ApproxNDCG, GumbelNDCG, ListMLE, on
two large-scale movie datasets MovieLens20M and MovieLens25M

from MovieLens website [17]. MovieLens20M contains 20 millions

movie ratings from 138,493 users and MovieLens25M contains 25

millions movie ratings from 162,541 users. Each user has at least 20

rated movies. Different from [41], we re-implement the SONG and

K-SONG (its practical version) on TensorFlow for optimizing the

three losses for a fair comparison of running time with TF-Ranking

since it is implemented in TensorFlow. To construct training/val-

idation/testing set, we first sort the ratings based on timestamp

for each user from oldest to newest. Then, we put 5 most recent

ratings in testing set, and the next 5 most recent items in validation

set. For training, at each iteration we randomly sample 256 users,

and for each user sample 5 positive items from the remaining rated

movies and 300 negatives from all unrated movies. For computing

validation and testing performance, we sample 1000 negative items

from the movie list similar to [41].
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Loss

MovieLen20M MovieLen25M

NDCG@5 NDCG@20 NDCG@5 NDCG@20

ListMLE (TF-Ranking) 0.2841±0.0007 0.3968±0.0004 0.3771±0.0003 0.4902±0.0003

ApproxNDCG (TF-Ranking) 0.3113±0.0001 0.4362±0.0001 0.3960±0.0003 0.5237±0.0001

GumbelNDCG (TF-Ranking) 0.3179±0.0003 0.4444±0.0001 0.4022±0.0002 0.5285±0.0013

ListwiseCE (LibAUC) 0.3225±0.0005 0.4493±0.0003 0.4104±0.0001 0.5369±0.0001

NDCGLoss(K) (LibAUC) 0.3325±0.0020 0.4497±0.0037 0.4115±0.0008 0.5249±0.0021

NDCGLoss (LibAUC) 0.3476±0.0001 0.4769±0.0003 0.4357±0.0005 0.5614±0.0003

Figure 6: Left: Results on MovieLens datasets. Right: Comparison of training time for LibAUC and TF-Ranking.

For modeling, we use NeuMF [20] as backbone network for all

methods. We use the Adam optimizer [27] for all methods with an

initial learning rate of 0.001 and weight decay of 1e-7 for 120 epochs

by following similar settings in [41]. During training, we decrease

learning rate at 50% and 75% of total iterations by 10 times. For

evaluation, we compute and compare NDCG@5 and NDCG@20

for all methods. For NDCGLoss, NDCGLoss(K) and ListwiseCELoss,
we tune moving average estimator parameter 𝛾 in range of [0.1, 0.3,

0.5, 0.7, 0.9, 1.0]. For NDCGLoss(K), we tune 𝐾 in [50, 100, 300]. We

repeat the experiments three times using different random seeds

and report the final results in mean±std. To measure the training

efficiency, we conduct the experiments on a NVIDIA V100 GPU

and compute the average training times over 10 epochs.

As shown in the Figure 6 (left), LibAUC achieves better perfor-

mance on both datasets. It is worth mentioning that the results of

all methods we reported are generally worse than those reported

in [41], likely due to different negative items being used for evalu-

ation. In addition, optimizing NDCGLoss(𝐾) is not as competitive

as optimizing NDCGLoss, which is because that we did not use the

pretraining strategy used in [41]. In Appendix, we show that using

pretraining is helpful for boosting the performance of optimizing

NDCGLoss(𝐾). The runtime comparison, where we report the aver-

age runtime in seconds per epoch, is shown in Figure 6 (right). The

results show that our implementation of LibAUC on TensorFlow

is even faster than three methods in TF-Ranking. It is interesting

to note that LibAUC for optimizing ListwiseCE loss is 1.6× faster

than TF-Ranking for optimizing GumbelLoss yet has better perfor-

mance.

4.3 Contrastive Learning of Representations
In this section, we demonstrate the effectiveness of LibAUC (Sog-

CLR) for optimizing GCLoss on both uimodal and bimodal SSL tasks.

For unimodal SSL, we use two scales of the ImageNet dataset: a

small subset of ImageNet with 100 randomly selected classes (about

128k images) denoted as ImageNet-100, and the full version of Ima-

geNet (about 1.2 million images) denoted as ImageNet-1000 [11].

For bimodal SSL, we use MS-COCO and CC3M [16, 47] for ex-

periments. MS-COCO is a large-scale image recognition dataset

containing over 118,000 images and 80 object categories, and each

image is associated with 5 captions describing the objects and their

interactions in the image. CC3M is a large-scale image captioning

dataset that contains almost 3 million image-caption pairs. For eval-

uation, we compare the feature quality of pretrained encoder on

ImageNet-1000 validation set, which consists of 50,000 images that

belong to 1000 classes. For unimodal SSL, we conduct linear evalu-

ation by fine-tuning a new classifier in a supervised fashion after

pretraining. For bimodal SSL, we conduct zero-shot evaluation by

computing similarity scores between the embeddings of the prompt

Table 3: Results for Self-Supervised Learning. Numbers are
denoted in %. SogCLR [63] is re-implemented in PyTorch.

Dataset Scale Modality

Acc@1 Acc@5

SimCLR

CLIP

SogCLR

SimCLR

CLIP

SogCLR

ImageNet100 0.13M Image 78.1 80.3 94.9 95.5
ImageNet1000 1.2M Image 66.5 69.0 87.5 89.2
MS-COCO 0.12M Image-Text 4.6 5.0 12.2 12.5
CC3M 3M Image-Text 19.7 21.4 39.3 41.3

text and images. Due to the high training cost, we only run each

experiment once. It is worth noting that the two bimodal datasets

were not used in [63].

For unimodal SSL, we follow the same settings in SimCLR [7].

We use ResNet-50 with a two-layer non-linear head with a hidden

size of 128. We use LARS optimizer [62] with an initial learning

rate of 0.075 ×
√
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 and weight decay of 1e-6. We use a

cosine decay strategy to decrease learning rate. We use a batch size

of 256 to train ImageNet-1000 for 800 epochs and ImageNet-100

for 400 epochs with a 10-epoch warm-up. For linear evaluation, we

train the classifier for additional 90 epochs using the momentum

SGD optimizer with no weight decay. For bimodal SSL, we use a

transformer [44, 49] as the text encoder (cf appendix for structure

parameters) and ResNet-50 as the image encoder [42]. Similarly, we

use LARS optimizer with the same learning rate strategy and weight

decay.We use a batch size of 256 for 30 epochs, with a 3-epochwarm-

up. For zero-shot evaluation, we compute the accuracy based on the

cosine similarities between image embeddings and text embeddings

using 80 different prompt templates similar to [42]. Note that we

randomly sample one out of five text captions to construct text-

image pair for pretraining on MS-COCO. We compare SogCLR with

SimCLR for unimodal SSL and with CLIP for bimodal SSL tasks.

For SogCLR, we tune 𝛾 in [0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0] and tune

temperature 𝜏 in [0.07, 0.1]. All experiments are run on 4-GPU

(NVIDIA A40) machines. The results are summarized in Table 3.

The results demonstrate that SogCLR outperforms SimCLR and

CLIP for optimizing mini-batch contrastive losses in both tasks. In

particular, SogCLR improves 2.2%, 2.9% over SimCLR on ImageNet

datasets, and improves 0.5%, 1.6% over CLIP on two bimodal datasets.

It is notable that the pretraining for ImageNet lasts up to 800 epochs,

while the pretraining on the two bimodal datasets is only performed

for 30 epochs due to limited computational resources. According to

theorems in [63], the optimization error of SogCLR will diminish as

the training epochs increase. We expect that SogCLR exhibit have

larger improvements over CLIP with longer epochs.

4.4 Ablation Studies
In this section, we present more ablation studies to demonstrate

the effectiveness of our design and superiority of our library.
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Table 4: The 𝛾 < 1 is better.
Method Dataset 𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.7 𝛾 = 0.9 𝛾 = 1.0

SOAP OGB-HIV 0.2745 0.2906 0.2881 0.2930 0.2904 0.2864

SOPAs OGB-HIV 0.6404 0.7414 0.7413 0.7467 0.7337 0.7383

SONG MovieLens 0.3476 0.3431 0.3384 0.3339 0.3308 0.3290

SogCLR ImageNet100 0.8018 0.7956 0.8032 0.7974 0.7994 0.7956

SogCLR CC3M 0.2138 0.2029 0.1931 0.1873 0.1825 0.1778

Table 5: Tuning the sampling rate is beneficial for AUCMLoss.
Dataset imratio sr=original sr=10% sr=30% sr=50%

CIFAR10 1% 0.7071 0.7124 0.7087 0.7110

Cardiomegaly 12.2% 0.8469 0.8515 0.8566 0.8378

Edema 32.2% 0.9341 0.9366 0.9420 0.9337

Consolidation 6.8% 0.8888 0.9096 0.8832 0.8636

Atelectasis 31.9% 0.8231 0.8269 0.8330 0.8353
Pleural Effusion 40.3% 0.9265 0.9258 0.9249 0.9311

OGB-HIV 1.8% 0.7642 0.8054 0.7786 0.7752

Table 6: Tuning the sampling rate is beneficial for NDCGLoss
on MovieLens20M.

Pos/Neg 1 5 10 100 300 500 1000

1 0.1315 0.1617 0.1725 0.1972 0.2039 0.2067 0.2078

5 0.1609 0.2289 0.2608 0.3354 0.3480 0.3509 0.3522
10 0.1568 0.2083 0.2374 0.3260 0.3417 0.3472 0.3506

4.4.1 Effectiveness of Dynamic Mini-batch Losses. To verify the

effectiveness of the dynamic mini-batch losses, we compare them

with conventional static mini-batch losses. To this end, we focus on

SOAP, SOPAs, SONG and SogCLR, and compare their performance

with different values of𝛾 in our framework. When setting𝛾 = 1, our

algorithms will degrade into their conventional mini-batch versions.

We directly use the best hyper-parameters tuned in Section 4.1, 4.2

except for 𝛾 , which is tuned from 0.1 to 1.0. The performance is

evaluated using AP (SOAP), pAUC (SOPAs), NDCG@5 (SONG), and

Top-1 Accuracy (SogCLR), respectively. The final results of this

comparison are summarized in Table 4. Overall, we find that all

methods achieve the best performance when 𝛾 is less than 1.

4.4.2 Effectiveness of Data Sampler. We vary the positive sam-

pling rate (denoted as sr) in the DualSampler for CID by opti-

mizing AUCMLoss, and in the TriSampler for LTR by optimizing

NDCGLoss. For CID, we use three datasets: CIFAR10 (1%), CheX-

pert, and OGB-HIV, and tune sr={original, 10%, 30%, 50%}, where
sr=original means that we simply use the random data sampler

without any control. Other hyper-parameters are fixed to those

found as in Section 4.1. The results are evaluated in AUROC and

summarized in Table 5. For LTR, we use MovieLens20M dataset.

We fix the number of sampled queries (i.e., users) to 256 in each

mini-batch and vary the number of positive and negative items,

which are tuned in {1, 5, 10} and {1, 5, 10, 100, 300, 500, 1000}, re-

spectively. We fix 𝛾 = 0.1 and train the model for 120 epochs with

the same learning rate, weight decay and learning rate decaying

strategies as in section 4.2. The results are evaluated in NDCG@5

and are shown in Table 6. Both results demonstrate that tuning the

positive sampling rate is beneficial for performance improvement.

The results reveal that DualSampler largely boosts the perfor-

mance for AUCMLoss on CIFAR10 and OGB-HIV when sampling

rate (sr) is set to 10%. It is interesting to note that balancing the data
(sr=50%) did not necessarily improve performance on three cases.

However, generally speaking using a sampling ratio higher than the

original imbalance ratio is useful. For LTR with TriSampler, we ob-
serve a dramatic performance increase when increasing the number

Figure 7: Impact of batch size.

Figure 8: Convergence curves of LibAUC algorithms.
of positive samples from 1 to 10, and the number of negative sam-

ples from 1 to 300. However, when further increasing the number

of negatives from 300 to 1000, the improvement is saturated.

4.4.3 The Impact of Batch Size. We study the impact of the batch

sizes on our methods (SOAP, SOPAs, SONG, SogCLR) using dy-

namic mini-batch losses and that using static mini-batch losses

(i.e., 𝛾 = 1). We follow the same experiment settings as in previous

section and only vary the batch size. For each batch size, we tune

𝛾 correspondingly as theories indicate its best value depends on

batch size. For SogCLR, we train ResNet50 on ImageNet1000 for

800 epochs using batch sizes in {8192, 2048, 512, 128}. For SOAP
and SOPAs, we train ResNet20 on OGB-HIV for 100 epochs using

batch sizes in {512, 256, 128, 64}. For SONG, we train NeuMF for

120 epochs on MovieLens20M using batch sizes in {256, 128, 64, 32}.
The results are shown in Figure 7, which demonstrates our design

is more robust to the mini-batch size.

4.4.4 Convergence Speed. Finally, we compare the convergence

curves of selected algorithms on the OGB-HIV, MovieLens20M, and

ImageNet100 datasets. We use the tuned parameters from previous

sections to plot the convergence curves on the testing sets. The

results are illustrated in Figure 8. In terms of classification, it is ob-

served that PESG, and SOPAs converge much faster than optimizing

CE and Focal loss. For MovieLens20M dataset, we find that SONG

has fastest convergence speed compared to all other methods, and

K-SONG (without pretraining) is faster than the other baselines

but slower than SONG. In the case of SSL, we observe that SogCLR

and SimCLR achieve similar performance at the beginning stage,

however, SogCLR gradually outperforms SimCLR as the training

time goes longer.

5 CONCLUSION & FUTUREWORKS
In this paper, we have introduced LibAUC, a deep learning library

for X-risk optimization. We presented the design principles of

LibAUC and conducted extensive experiments to verify the design

principles. Our experiments demonstrate that the LibAUC library

is superior to existing libraries/approaches for solving a variety of

tasks including classification for imbalanced data, learning to rank,

and contrastive learning of representations. Finally, we note that

our current implementation of the LibAUC library is by no means

exhaustive. In the future, we plan to implement more algorithms

for more X-risks, including performance at the top, such as recall

at top-𝐾 positions, precision at a certain recall level, etc.
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A APPENDIX
A.1 Pretraining Strategy
We compare the performance of pretraining v.s. random initializa-

tion strategy onMovieLens (20M, 25M) with K-SONG and CheXpert

with PESG, SOAP, SOPAs, respectively. For K-SONG, we pretrain

model using ListwiseCELoss for 30 epochs using learning rate

of 0.001 with adam optimizer. Then, we re-initialize last layer and

re-train models for 120 epochs by using the tuned parameters in

section 4.2. For PESG, SOAP, SOPAs, we use CrossEntropyLoss
to pretrain model on CheXpert in multi-label (5 classes) setting for

1 epoch using learning rate of 0.001 with adam optimizer. Then,

we re-initialize last layer and re-train models for 2 epochs using

the tuned parameters in Section 4.1 for each individual task. We

report average scores of five selected diseases in AUC, AP, pAUC.

We present the final results in Figure 9. Overall, we can see pre-

training boosts the performance of K-SONG by a large margin on

two datasets. For CheXpert, we also observe that pretraining can

effectively improve the performance on different metrics.

Figure 9: Performance comparison of pretraining v.s. random
initialization strategies.

A.2 Relationship between X-Risk Measures
AUROC is a special case of one-way pAUC and two-way pAUC.

One-way pAUC with FPR in a range (0, 𝛼) is a special case of

two-way pAUC. Top Push is a special case of one-way pAUC and

p-norm push. AP is a non-parametric estimator of AUPRC. MAP

and NDCG are similar in the sense that they are functions of ranks.

Top-K MAP, Top-K NDCG, Recall@K (R@K), Precision@K (P@K),

pAUC+Precision@K (pAp@K), Precision@Recall (P@R) are similar

in the sense that they all involve the computation of K-th largest

scores in a set. Listwise losses, supervised contrastive losses, and

self-supervised contrastive losses are similar in the sense that they

all involve the sum of log-sum term. The above relationships are

summarized in Figure 10.

Figure 10: Relationships between different X-risks [60].

A.3 Relationship with Stochastic Compositional
Optimization Algorithms

The considered family of problems has a subtle difference from the

conventional two level compositional optimization problems stud-

ied in the literature (e.g., [53, 54]), though they are closely related.

In traditional two-level compositional optimization, the objective is

given by E𝜉 𝑓𝜉 (E𝜁𝑔𝜁 (w)), where the inner random function 𝑔𝜁 (w)
does not depend on the outer random variable 𝜉 . Our problem is

given by
1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 (𝑔𝑖 (w)), where 𝑔𝑖 (w) = 1

|S𝑖 |
∑
z𝑗 ∈S𝑖

ℓ (w, z𝑖 , z𝑗 ),
which can be written as E𝑖∼[𝑛] [𝑓𝑖 (Ez𝑗∼S𝑖

ℓ (w, z𝑖 , z𝑗 ))]. We can see

that the key difference between our problem and the conventional

two-level compositional optimization problem is that the inner

random function ℓ (w, z𝑖 , z𝑗 ) in our objective not only depends

on the inner random variable z𝑗 but also depends on the outer

random variable z𝑖 . As a result, we cannot simply apply existing

algorithms to solving our problems. Instead, we need to maintain

and update estimators for all 𝑔𝑖 (w) = Ez𝑗∼S𝑖
ℓ (w, z𝑖 , z𝑗 ) in a ran-

dom block-wise fashion. Our algorithms were inspired by existing

works (e.g., [14, 53, 54]), with a key difference in that the moving

average estimators for𝑔𝑖 (w) are updated only if z𝑖 is in the sampled

mini-batch.

A.4 Model Configurations
For the bimodal pretraining experiments in Section 4.3, we imple-

ment a small version of CLIP model in PyTorch following the open-

source codebase [24]. The model consists of a modified Transformer

and ResNet50 [42, 44, 49]. The hyperparameters used for building

the model are summarized in Table 7. For the imbalanced classifi-

cation on OGB-HIV in Section 4.1, we use DeepGCN model [29],

which takes inspiration from the concepts of CNNs, e.g., residual

connections. We adapt the DeepGCN codebase on OGB-HIV to our

experiments, and the hyperparameters used for building the model

are summarized in Table 8.

Table 7: Configuration for CLIP model [42].

Hyperparameter Value

embed_dim 1024

image_resolution 224×224
vision_layers [3,4,6,3]

vision_width 32

vision_patch_size null

context_length 77

vocab_size 49408

transformer_width 512

transformer_heads 8

transformer_layers 12

Table 8: Configuration for DeepGCN model [29].

Hyperparameter Value

num_layers 3

embed_dim 256

block res+

gcn_aggr max

dropout 0.5

temperature 1.0

norm batch
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A.5 Additional Experiments
We run additional experiments to compare our implemented al-

gorithms with two state-of-the-art baselines: (1) NeuralNDCG for

LTR [38], which optimizes NDCGby approximating non-continuous

sorting operators based on NeuralSort for LRT tasks, and (2) VICReg
for CLR tasks [2], which is based on optimizing invariance, variance,

and covariance terms for self-supervised learning of representa-

tions.

For VICReg, we pretrain ResNet-50 with a 2-layer non-linear

head with a hidden size of 128 on ImageNet100. We follow the

same training parameters as stated in Section 4.3. In particular, we

pretrain the model for 400 epochs with a batch size of 256, initial

learning rate of 0.075 ×
√
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 , cosine learning rate decay

strategy and weight decay of 1e-6. For linear evaluation, we train

the classifier for additional 90 epochs using the momentum SGD op-

timizer with no weight decay. For NeuralNDCG, we train the NeuMF

model on MovieLens20M and MovieLens25M datasets. We follow

the same training parameters as stated in Section 4.2. In particular,

we use the Adam optimizer to train the models with a weight decay

of 1e-7 for 120 epochs with the learning rate tuned in the range

of [0.001, 0.0005]. For evaluation, we conduct experiments using

three different seeds and report the average results in mean±std

for NDCG@5 and NDCG@20. The final results for the above two

experiments are summarized in Table 9 and Table 10.

Table 9: Comparisons for SSL task on ImageNet100 dataset.

Acc@1 Acc@5

VICReg 74.3 92.8

SogCLR 80.3 95.5

Table 10: Comparisons for LTR task on MovieLens datasets.

Dataset Methods NDCG@5 NDCG@20

MovieLen20M

NeuralNDCG 0.3181±0.0007 0.4424±0.0007

NDCGLoss (LibAUC) 0.3419±0.0004 0.4709±0.0001

MovieLen25M

NeuralNDCG 0.4059±0.0005 0.5322±0.0006

NDCGLoss (LibAUC) 0.4295±0.0003 0.5566±0.0005
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