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Abstract

Federated learning faces challenges due to the heterogeneity in data volumes and
distributions at different clients, which can compromise model generalization ability
to various distributions. Existing approaches to address this issue based on group
distributionally robust optimization (GDRO) often lead to high communication
and sample complexity. To this end, this work introduces algorithms tailored for
communication-efficient Federated Group Distributionally Robust Optimization
(FGDRO). Our contributions are threefold: Firstly, we introduce the FGDRO-CVaR
algorithm, which optimizes the average top-K losses while reducing communication
complexity to O(1/€*), where € denotes the desired precision level. Secondly, our
FGDRO-KL algorithm is crafted to optimize KL regularized FGDRO, cutting
communication complexity to O(1/€3). Lastly, we propose FGDRO-KL-Adam
to to utilize Adam-type local updates in FGDRO-KL, which not only maintains
a communication cost of O(1/€3) but also shows potential to surpass SGD-type
local steps in practical applications. The effectiveness of our algorithms has
been demonstrated on a variety of real-world tasks, including natural language
processing and computer vision.

1 Introduction

Federated learning enables effective model training without the need to share raw data [37, 45]. It
is essential in contexts where data privacy and ownership are paramount, such as in inter-hospital
collaborations [51] and mobile device networks [20]. However, clients often have data of varying
volumes and distinct distributions, which poses notable challenges in maintaining generalization
behavior [47, 26]. Generalization here refers to the model’s ability to perform consistently across
different data distributions, including those that has not been previously encountered.

In this study, we tackle the issue using federated group distributionally robust optimization (FGDRO),
formulated as follows:

N
min F(w) := max »_pili(w) — Ap(p). (1)
1=1

w PEAN

Here, w denotes a machine learning model, and NNV represents the number of clients. For each client 4,
D, represents its local data distribution, and ¢;(w) = E,.p,¢(w;z) represents the loss calculated
from that local distribution. Ay denotes a N-dimensional simplex, which constrains Zl p; = 1. The
vector p = [p1, ..., Pn] comprises the weights assigned to each of the NV clients. The function ¢(p)
acts as a regularization term, with A > 0 being an adjustable parameter. This framework aims to
assign higher weights to machines with greater losses while discouraging substantial deviations of
these weights from a specified distribution.
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Our study concentrates on two particular forms of the regularization term ¢. The first adopts the
Conditional Value at Risk (CVaR) constraint, defined as ¢(p) = Ijo 1,k (p). In this scenario, ¢(p)
is set to 0 if each weight p; falls within the range of [0, 1/K], and is infinite otherwise. With this
constraint, the optimization process is specifically focused on minimizing the average losses of the
K clients experiencing the highest losses. The second form involves the Kullback-Leibler (KL)
divergence, expressed as ¢(p) = Zf\il p: log(Np;). This version of ¢ penalizes deviations of the
weight distribution p from a uniform distribution. Fundamentally, when ¢(p) is strongly convex, as
in the case of KL divergence, F'(w) can enjoy a smoothness property, while non-strongly convex
¢(p) would result in non-smooth F'(w) [6].

Table 1: Comparison of communication cost and sample complexity on each machine to achieve
e-stationary point or near to e-stationary point, where e-stationary point has a (sub-)gradient
|OF (w)||* < €2. NDP-SONT denotes the naive deployment of the SONT algorithm [22] in a
federated environment, communicating in all iterations.

FGDRO with a CVaR constraint | FGDRO with a KL regularization

Communication Sample Communication Sample
Complexity Complexity Complexity Complexity
DRFA ) ) ) )
(1] O (4z) O () O () O ()
DR-DSGD

[29] - - 0 ( %3 ) 0 ( %6 )
Y| o) 0(%) 0(%) 0 (%)
This Work o (%) 0(%) 0(%) O (%)

Previous research addressing these optimization problems in federated learning has struggled with
high communication and sample complexity issues, which are basically due to inefficient updates
of p on local machines. For example, Deng et al. [11] examined a particular case of the general
formula (1) using a CVaR constraint with K = 1, and developed an algorithm for KL regularization
as well. They update p only in global communication rounds, while local steps only optimize the
local loss function using stochastic gradient descent (SGD). To achieve a e-stationary point or a point
near to an e-stationary point, where an e-stationary point has a (sub)gradient |0F (w)||? < €2, their
methods required a communication cost of O(1/¢'?) and a sample complexity of O(1/€'®) on each
client. For FGDRO with KL regularization, [29] achieves a communication cost of O(1/¢?), but it
requires the use of large data batches in local update steps in order to get good approximation for the
surrogate of p, resulting in a total sample complexity of O(1/€%) per machine.

To overcome these limitations, this paper presents specialized algorithms FGDRO-CVaR and FGDRO-
KL for FGDRO with CVaR constraint and KL regularization, respectively. Instead of dealing with the
constrained primal-dual formulation in (1), we consider their equivalent forms with a compositional
structure that get rid of the high-dimensional constrained variable p. We summarize the complexity
results in Table 1.

For FGDRO with CVaR constraint, the equivalent compositional form is a non-smooth two-level
compositional function with one auxiliary variable s, which works as a threshold. Only machines
whose local losses are greater than s are supposed to contribute to updating the model. In this way,
we can simply update the constraint-free scalar variable s locally in each client and average s in
communication rounds. However, we do have to deal with non-smooth compositional optimization
problems. Our first algorithm overcomes this challenge and achieves a communication cost of
O(1/€*) and a sample complexity of O(1/€%) on each machine.

For FGDRO with KL regularization, the equivalent compositional form is a smooth three-level
compositional function. In this case, the weights for the clients depend on both local loss functions
and global loss functions. We use moving average estimators of these statistics and update the
estimators locally. In communication rounds, in addition to averaging the model w, the machines
will average the estimator of the global loss function. We have reduced the communication cost and
the computation cost compared to [29].



To further enhance our approach, we have developed an adaptive algorithm for solving FGDRO
with KL regularization, named FGDRO-KL-Adam. Stochastic adaptive methods apply variable step
sizes for each coordinate based on historical gradient information, often yielding better results than
non-adaptive techniques, as evidenced by a wealth of research [13, 35, 46, 63]. In federated learning,
while Reddi et al. [54] have developed a federated adaptive algorithm and shown its effectiveness in
various tasks. However, it limits adaptive steps to global updates on the server, with local updates
relying on standard SGD, which may lead to suboptimal results. Moreover, their method is primarily
designed for Empirical Risk Minimization (ERM) and is not applicable to address compositional
optimization problems. Our FGDRO-KL-Adam update models locally using Adam type updates,
and the first-order momentum and second momentum are updated locally and then averaged in
communication rounds.

In summary, our paper contributes in three main areas. First, our FGDRO-CVaR algorithm greatly
reduces both communication costs and sample complexity for FGDRO with CvaR constraint problems.
Second, our FGDRO-KL algorithm achieves a better sample complexity while maintaining the same
communication costs as the existing results. Third, our FGDRO-KL-Adam integrates adaptive step
sizes with Adam-type updates, which has the potential to surpass the performance of conventional
SGD-based approaches. Extensive testing on diverse real-world datasets has shown that our approach
achieves superior performance while substantially reducing communication overhead.

2 Related Work

Federated learning has gained significant attention due to its potential to train machine learning
models using data from various sources while ensuring data privacy [37, 45, 51]. Two central
challenges to this field are communication cost and client heterogeneity, which have been extensively
explored in the literature [57, 70, 71, 67, 56, 33, 58, 2, 30, 62, 4, 32, 34, 65, 64, 33, 18]. This section
will dive into the body of literature that focuses on these specific challenges.

Non-IID Clients in Federated Learning (FL) One of the key challenges in Federated Learning
(FL) is managing client heterogeneity, particularly the issue of non-IID (nonindependently and
identically distributed) data across client networks. Efforts to overcome the negative implications of
data diversity have led to the development of model personalization techniques [44, 10, 41, 74, 42,
40, 69, 19, 38]. However, these approaches face challenges when dealing with data from unseen or
unidentifiable groups. For a comprehensive examination of the challenges and strategies concerning
non-IID clients in federated learning, the readers are directed to [26].

Federated Group Distributionally Robust Optimization Since Group Distributionally Robust
Optimization has shown effectivenss in addressing non-iid data in centralized setting [14, 48, 12, 52],
previous research has investigated Federated Group Distributionally Robust Optimization (FGDRO)
to address the challenges posed by non-IID clients in federated settings [47, 11]. The DRFA algorithm
[11] focuses on a specific instance of (2), applying a CVaR constraint on p with K = 1. It samples
machines based on updated probabilities to allow local updates, reducing the need for communication,
with these probabilities managed by a central server. However, this approach results in significant
communication costs of O(1/¢'?) and sample complexity of O(1/¢'%) per machine to achieve an
e-stationary point. Recent developments in [22] introduced algorithms for handling Group DRO with
a CVaR constraint in centralized settings, but adapting these to federated learning entails substantial
communication overheads of O(1/¢%). Moreover, [72] introduced the SCAFF-PD algorithm, which
is only applicable in convex scenarios and requires the use of the complete dataset in each training
round. Regarding KL regularization, [29] achieved a communication cost of O(1/¢3), but required
the use of large data batches, resulting in a total sample complexity of O(1/¢%) per machine.

Federated Adaptive Algorithm Stochastic adaptive methods for minimization in non-convex
stochastic optimization have garnered significant interest in recent years [13, 35, 46, 63, 39, 76, 59,
7,43, 24, 16, 73]. These methods, known for assigning unique step sizes to each coordinate, often
outperform their non-adaptive counterparts. In federated learning, Reddi et al. [54] have advanced the
field with an adaptive algorithm. However, their methodology predominantly applies adaptive steps
at the global server level, with local updates still dependent on SGD. This could lead to suboptimal
performance. Furthermore, their approach was tailored for Empirical Risk Minimization (ERM)
problems and could not be applied for problems considered in this work.



3 Preliminaries

A function f is C-Lipschitz if f(x) — f(y) < C||x — y||. A differentiable function f is L-smooth
if |[Vf(x)-Vfy)l <Llx—-y (x) denotes the gradient. For a non-differentiable
function f, its subdifferential 0 f(x) is defined as a set of all subgradients as 9f(x) = {v|f(y) >
f(x)+ (v,y —x) + o(ly —x|))} asy — x. When the context is clear, we also overload the
notation 0 f (x) to denote one subgradient from the subdifferential set. We use V f(x; z) or f(x; z)
to represent an unbiased estimator of gradient or subgradient with a randomly drawn sample z.
Additionally, a function f is p-weakly convex if f(x) > f(y) + (0f(y),y —x) — &lly — x||*.

For a smooth function f(x), X is an e-stationary point if ||V f(x)||?> < €2. For non-smooth functions,
X is an e-stationary point if ||dist(0,0f(x))||* < €2, where dist(x,S) = minges||x — x'||2
measures the distance between a point x and a set S. For non-smooth functions, since it is usually
difficult or even impossible to find an e-stationary point, we instead seek an e-near stationary point.

Definition 3.1. x is an e-near stationary point of f(-) if 3x’ such that ||x — x'||]2 < e and

dist(0,0f(x')) <e

4 FGDRO-CVaR

In this section, we present our algorithm designed to tackle Federated Group Distributionally Robust
Optimization (FGDRO) with a CVaR constraint. This problem poses substantial challenges due to
the complexity of both CVaR and simplex constraints. Typically, during local updates, individual
machines do not have access to adequate information to appropriately adjust the weight vector p.
Prior approaches, such as the one proposed by [11], mitigate this issue by updating p during global
communication rounds, but results in slower convergence rates. To this end, we reformulate the
problem into an equivalent two-level compositional optimization problem without constraints:

K
mlnmlnF (w,s) = Zf gi(w Ns. )

where f(-) = ()4 and g;(w) = E,p,f(w,2z) isa local loss and s is intended to serve as a threshold
value. With s = arg miny % Zf\; flgi(w) —s")+ IA(, ', only the K clients with the highest losses
will have losses greater than s [S0, 75]. During the training phase, K clients with the highest losses
are expected to predominantly influence the optimization process.

The formulation (2) replaces the constrained high-dimensional vector p with a single unconstrained
scalar variable s. However, this adjustment introduces new challenges due to the compositional
structure and the non-smooth nature of the outer function f. As a result, it is biased to estimate
subgradient 0 f(g;(w) — s)Vg;(w) using a batch of samples. To mitigate this, it is common practice
to design an accurate estimate of g;(w) [23, 22, 60, 61, 31]. Here we use a moving average u:

uzt*( 61) 7.t 1+61( w3 zt) (3)

And then the estimators for sub-gradient of w and s, namely m, v are computed using w. It is notable
that for s, it is updated locally using local data and averaged between clients in communication
rounds. It will converge alongside w to an e-near stationaty point. This is a fundamental reason why
our method achieves a lower communication complexity compared to [11], as the latter can only
update the weight variables at the server node in the communication rounds.

We present the formalization of our FGDRO-CVaR method in Algorithm 1. Next, we show the
convergence results of FGDRO-CVaR . We make the following assumptions regarding problem (2).
Assumption 4.1. (1) Vi and Vz € D;, {(-, z) is Cy-Lipschitz and Lg-smooth. (2) E,cp, || V{(w;z) —
Vgi(w)lI* < o E (wiz) — gi(w)||* < 0.

Remark. The first assumption about Lipschitz continuity and smoothness of g; is standard in
compositional optimization [22, 60, 61]. The second assumption of bounded variance is also common.

The behavior of the estimator « is examined through the followm% lemma.
Lemma 4.2. Under Assumption 4.1, by setting ) = O (1/(R)3/?), 1 = O(1/R), I = O(R),
Algorithm I ensures that

Euf, — ()1 < (1= BOEluf -y — (W) + 26830 + 38" 1°CF + o

5 _ _
S Clwi —wi .



Algorithm 1 FGDRO-CVaR
1: Initialization: w', 5' =0, U?,t =0,
2: forr=1,...,Rdo
3 wig=W, s =38 uj,= uS}l

4. fort=1,...1do
5: Each machine samples data z ,

. T — T T -
6: Wi = (1- Bl)ui,t—l + Blg(wi,t—lvzi,t)

. roo_ r r K T T r
ik vpy = —0f(uj, —si, 1)+ §.and sp, = si, | — v,

. T — r T ' T ‘s J— r T
8: m;, = 8f(ui,t - Si,tfl)vg(wi,tflv Zi,t)’ and Wit = Wi 1 —Thihy,
9: end for

1 L 1 L
. =r+1 _ 1 r or+1 _ 1 r
10: w 7NZWM,$ —stiJ
i=1 i=1
11: end for

N ’
12: Output: W = 3 > W} ,,, where 7 and ' are sampled from [1, R] and [1, I], respectively.
i=1

The convergence result of FGDRO-CVaR is given in the following theorem.

Theorem 4.3. Under Assumption 4.1, by setting n = O (1/(R)3/?), B1 = O (1/R), I = O(R) and
p = 2Lg, the Algorithm I ensures that for the output (W, 5), there exists (W', s') that

dist(0, F(w',))|* < 1/p([% — w'|3 + 1|5 — s'[3) < O ( pr) : 4)
Remark. The analysis has utilized Moreau envelop to address the nonsmooth issue [49, 9]. To
achieve an e-near stationary point of F'(-), we need to set R = O(1/¢*) and I = O(1/€*), and thus
the sample complexity on each machine is RI = O(1/¢®). The total sample complexity of O(n/€%)
by [22] is achieved by the STORM estimator [8] which incurs additional memory and computational
costs due to the requirement of computing gradients using two models at each iteration. Without the
STORM estimator, [22] would exhibit a total sample complexity of O(n/€%). When deployed in a
federated setting, the complexity for each machine would be O(1/¢®), aligning with our results and
demonstrating that our approach achieves a linear speed-up in terms of number of machines.

S FGDRO-KL

In this section, we present our FGDRO-KL algorithm for solving problem (1) with a KL regularization.
Unlike the CVaR constraints that focus on the top K clients, KL regularization takes into account all
clients, assigning them varying weights. Additionally, FGDRO with KL regularization is smooth,
and strongly concave with respect to p. Nevertheless, it is subject to the simplex constraint on p. To
address this, we use an equivalent form derived from the KKT conditions, as referenced in [52, 29]:

N
min F(w) = Mog(y 3 exp(Eqwp, {(w:7)/ ). )
i=1

This formulation eliminates the constrained vector p, and F'(w) is smooth since KL regularization
is strongly concave [6]. However, this formulation has a three-level composition structure and
thus, using a batch of data in a three-level composition can result in biased gradient estimation.
Furthermore, the gradients on one machine are depend on other machines.

N

Specifically, we denote g;(w) = exp(E,ep,f(w;z)/A) and g(w) = & > g;(w), with £(w; D;) =
i=1

E,cp,¢(w;z), then, the gradient of F'(w) in (5) is given by:

VF(wW) = — f: 9) Gy (w: Dy) )
N = g(w) T



It is crucial to recognize that the gradient for machine i, i.e., V4(w; D;), is scaled by g;(w)/g(w).
This scaling indicates that machines experiencing larger loss functions exert more influence over the
training process. To mitigate the biased gradient estimation, we approximate g;(w) and g(w) based
on moving average estimators v and v. On each machine U Serves as a moving average estimator
for the local loss function ¢(w; D;), with exp(ul /) providing a local approximation of gi(W).
u is updated and maintained locally without need for averaging during communication rounds. v
estimates the global statistic g(w), and is updated locally but averaged during global communication
rounds. Subsequently, a moving average estimator of the gradient, denoted as m is constructed using
u and v. For specific update rules, please refer to Algorithm 2.

For analysis, we make the following assumptions regarding problem (1) with a KL regularization:
Assumption 5.1. (1) Vi and Vz € D,;, ¢;(-,z;) is Cy-Lipschitz and Lg-smooth. (2)

E,ep, |V(w;z) — VIwW; D;)||? < 02, Epep, ||[€(w;2) — £(w; D;)||* < 0. (3) f is Cy-Lipschitz
and Ly-smooth. (4) Vi and Vz € D;, 0 < £(-;z) < Cy, £(-;z) is C,-Lipschitz and L,-smooth.

The behavior of the v and v estimators can be bounded similar to the previous section and are shown
in Appendix B. The estimator m for gradient can be bounded as

Lemma 5.2. Under Assumption 5.1, with proper constants C1 and G, by setting n = O (\/%)

B1=0 (\/%) the Algorithm 2 ensures that

Bs

Imi = VEw)|? < (1= ) mi_y = VFw_)” + BsC7 0T Z luf -y — £(W_y; D3)J?

i=1

+ B3C10F — g(Wi)|12 + 30| VE(wy_y)||? + p3C3 % ﬁ + 2B CL L PGP

Algorithm 2 FGDRO-KL

I: Initialization: w', u? ;, o', m!

2: forr=1,...,Rdo

3 Wip=w,mj,=m" u,= uf_}l, Vig =17
4 fort=1,....1do

5: Each machine samples data z ,

6

7

8

T

Uiy = (1-51)u (R 51@("/"&—1?4‘,1‘,)’ and v, = (1- /82>U£t—1 + b2 eXP(U;‘,t/)‘)
hf,t = exp(ul f)vg( Wit—152;, t) and m:,t:(l_ﬂ?))m;tfl + /B3h£t

‘. J— ’l‘
: Wit = Wz‘,t—1 nmz,t
9: end for

N N N
. —r+1 _ 1 T ~r+1 _ 1 " —r+1 _ 1 r
10 w —NZ%W“,U Nzl vj 1, and m _N_Zjlm“
1= = 1=
11: end for

12: Output: w = % wf:t,, where ’ and ¢’ are sampled from [1, R] and [1, I], respectively.

1M

The precisions of the u, v, m estimators depend on each other. The idea is to get E||uj , —£(W{; D;)||?,
E|or — g(wh)]? — VE(w})||? and E|[VF(W)||? jointly converge, and then we finally have
the following theorem to guarantee the convergence:

Theorem 5.3. Under Assumption 5.1, by setting n = O ( ) 1 =0 < ) I = RY3,

Algorithm 2 ensures that

1
BIVF@I <0 (7). )

Remark. To achieve an e-stationary point, i.e., | VF(W)||? < €2, we need to set R = O(1/€3), I =
O(1/€),n = O(e?) and 3; = O(€?). Compared to [29], our approach maintains a communication
complexity of O(1/¢€3), but significantly reduces the sample complexity on each machine from



Algorithm 3 FGDRO-KL-Adam

1: Initialization: w', uf ;, o', m', @'

2. forr=1,..., Rdo

3 wly=w'.ml,=m"q/,=q,ul,=u ;" andv],=0"

4. fort=1,...,Ido

5: Each machine samples data z; ,

6: Uiy = (1= pB1)u ujq T+ Blg(wftfﬁ zzr,t)’ and vj, = (1- 62)”5,1571 + B2 eXP(U:,t/)‘)
exr)(ul )

E h;t: *W( zf 15 1t>

8: zt_(l /83) m;, 1+ﬁ3h1t’andqzt_(1 64)(1” 1 + Ba(h] )

9: Wi, =W, 11 o t+T

10:  end for

= 1 _ lN —~r+1 __ 1N r ~r+1 1N m’ r+1 1N r
11: w't szlwf’l,ﬂ szlvi’l,m :NE:l m] ; and q :N2qi’l
1= 1= = 1=
12: end for

N ’
13: Output: W = 3 > Wy ,,, where 7 and #' are sampled from [1, R] and [1, I], respectively.
i=1

O(1/€5) from O(1/€*), requiring only a batch size of O(1) rather than a large batch size of O(1/€?).
Our results match the communication and sample complexity in [17], which tackles a simpler two-
level compositional problem and achieved sample complexity of O(1/€*) per machine. Considering
that the sample complexity for a two-level compositional problem in a centralized setting would be
O(n/e*) [60], our approach realizes a linear speed-up proportional to the number of machines.

6 FGDRO-KL-Adam

In this section, we introduce an adaptive algorithm, FGDRO-KL-Adam, to address the problem (5)
with KL regularization, as detailed in Algorithm 3. This algorithm incorporates Adam-type updates
at local steps, which have been shown to outperform SGD in centralized settings. While previous
studies [54] in federated settings have implemented Adam-type updates at the global step but retained
SGD for local updates, which may be sub-optimal.

Similar to Algorithm 2, u and v are used to estimate the local loss and the global function g(w),
respectively. The variables h and m are updated in a manner consistent with Algorithm 2. Under
Assumption 5.1, the behavior of the u, v, m estimators is addressed as previously discussed.

The primary distinction in Algorithm 3 lies in its adaptlve updates for the local model w7 ,. Here,
m serves a role akin to the first-order momentum in Adam, and we introduce q; ; to estimate the
second-order momentum:

q;,t =(1- 54)m;t71 + ﬂ4h;,t' @
Subsequently, the local models are updated adaptively using the formula:
WZFWft_l—ni, ©)
' ' q, +7

where both the square root and division are performed element-wise.

A key step in the analysis is to address the coordinate-wise update, as in the following lemma.
Lemma 6.1. Using L-smooth of F, for some proper constants C' and G, by setting n = O (\/%),
B1=0 (\/%), we have

— T = T n =T 5 n
F(wy) < F(w;_q) + ;HVF(Wt—O —mj ,|*+ ;530 T_HHVF(Wf DIZ (10)

Finally, we show that FGDRO-KL-Adam has same convergence rate as FGDRO-KL.



Theorem 6.2. Under Assumption 5.1, by setting of n = O (\/%) b1 =0 (\/%) and I = R'/3,
Algorithm 3 achieves:

BIVF@) <0 (735 ) an

Remark. To achieve an e-stationary point, i.e., | VF(W)||? < €2, we just need to set R = O(1/€3),
I=0(1/¢),n=0O(e?) and 1 = O(e?). The communication and sample complexities are the same
as in Theorem 5.3. Our analysis, following the framework in [16], requires |, /qut + 7 to be both
upper and lower bounded. It is achieved by the upper bound assumption and choice of 7, ensuring
T <, /q;.”,26 + 7 < G 4+ 7, which is utilized similarly in [54]. However, Guo et al. [16] did not cover
the federated learning scenario or the compositional problems. It is important to note that we have
not developed an Adam-type variant for FGDRO-CVaR. This is due to the need for accurate gradient
estimation in the analysis of Adam-type updates, which is achieved using the moving estimator m.
But in CVaR variant, the nonsmooth nature renders a moving average for subgradient 9 F(w) not
provably accurate.

7 Experiments

Datasets and Neural Networks We use Pile [15], CivilComments [5], Camelyonl7 [1], iWild-
Cam?2020 [3], and Poverty [68]. For Pile, we preprocess it as [66], for the others, we use the
preprocessed version by [36]. Data statistics are summarized in the Appendix E.

The Pile data set is a large language data set. We use the uncopyrighted version [28] which has
17 domains, and each domain is allocated to one machines. We use the GPT2 model [53] as
implemented by [27] with 12 hidden layers, 12 attention heads, and 768 embeddings and hidden
states. We measure the performance using worst log-perplexity and average log-perplexity of
testing groups. CivilComments is a toxicity classification of the online comment task in diversified
demographic identities. We train on four groups based on the presence of *Black’ and toxicity labels,
deploying each on a separate machine, and use the DistilBERT base-uncased model [55] to predict
toxicity. We measure the performance using worst group accuracy and average accuracy of testing
groups. Camelyon17 focuses on tumor detection from lymph node images [1], with data from five
hospitals split into training (3), validation (1), and testing (1) sets. Training uses three machines, each
processing data from one hospital, using DenseNet-121 [25]. The iWildCam2020 dataset consists of
wildlife images from various camera traps [3], the dataset is split into training, validation, and testing
segments. We use ResNet50 [21] across all datasets and measure performance via Macro F1 score.
The Poverty dataset contains geographic data aimed at predicting regional poverty levels [68]. We
use ResNet50 [21] for our models and evaluate performance using both the Pearson correlation on
the worst-performing region and the average across regions.

Table 2: Experiments on Natural Language Task. PPL is abbrevation of perplexity.

Datasets Pile CivilComments

Metric Worst Log-PPL. | Average Log-PPL Worst Acc Average Acc
FedAvg 8.085(£0.0012) | 6.785 (£0.0020) | 0.6415 (£0.0007) | 0.7635 (£0.0012)
FedAdam 7.242 (£0.0048) | 6.479 (£0.0037) | 0.6567 (£0.0023) | 0.7664 (£0.0020)
DRFA 8.014 (£0.0053) | 6.702 (£0.0062) | 0.6327 (£0.0019) | 0.7413 (£0.0022)
DR-DSGD 8.023 (£0.0033) | 6.693 (£0.0030) | 0.6272 (£0.0006) | 0.7523 (£0.0011)
FGDRO-CVaR 8.145 (£0.0039) | 6.907 (£0.0046) | 0.6693 (+0.0015) | 0.7571 (+0.0012)
FGDRO-KL 7.932 (£0.0048) | 6.664 (+0.0051) | 0.6921 (£0.0016) | 0.7734 (£0.0020)
FGDRO-KL-Adam | 3.608 (£0.0052) | 2.653 (£0.0040) | 0.6628 (£0.0007) | 0.7614 (£0.0005)

Baselines

We compare our algorithms FGDRO-CVaR, FGDRO-KL, and FGDRO-KL-Adam with

four baselines: FedAvg [45], FedAdam [54], DRFA[11], and DR-DSGD [29].

We tune the initial step size in [le-4, le-3, le-2, le-1]. All algorithms set the communication
interval I = 32 unless otherwise specified. The local mini-batch sizes are set to 32. Experiments
are run for 20K local iterations except for Pile, which runs for 200K iterations. The /5 parameters of



Table 3: Experiments on Image Classification Task

Datasets Camelyon17 iWildCam2020 PovertyMap
Metric Acc Macro F1 Worst Pearson Average Pearson
FedAvg 0.8723 (£0.0074) | 0.4964 (£0.0125) | 0.7301 (£0.0064) | 0.7782 (£0.0077)
FedAdam 0.9493 (£0.0122) | 0.3570 (£0.0203) | 0.7294 (£0.0058) | 0.8273 (£0.0041)
DRFA 0.8301 (£0.0174) | 0.4200 (£0.0149) | 0.7071(£0.0026) | 0.7665 (£0.0023)
DR-DSGD 0.9270 (£0.0095) | 0.3157 (£0.0227) | 0.7155 (£0.0063) | 0.7770 (£0.0059)
FGDRO-CVaR 0.8667 (£0.0110) | 0.5080 (£0.0174) | 0.7443 (£0.0052) | 0.7977 (£0.0051)
FGDRO-KL 0.9243 (£0.0129) | 0.5201 (£0.0239) | 0.7254 (£0.0066) | 0.7829 (£0.0062)
FGDRO-KL-Adam | 0.9399 (£0.0154) | 0.4489(%0.0205) | 0.7827 (£0.0071) | 0.8225 (£0.0060)

FGDRO-KL and FGDRO-KL-Adam are tuned in [0.01, 0.1, 0.2, 0.5]. For each algorithm, we repeat
the experiments 3 times with different random seeds and report the averaged performance. Following
[66], our FGDRO algorithms for Pile initially train for 20K iterations to obtain domain weights,
which are then fixed during subsequent training phases.

Results We report the experimental results for natural language processing in Table 2 and those for
computer vision in Table 3. We can see that our methods outperform the baselines in most tasks. Our
approaches improve worst-case performance without hurting average case performance. Furthermore,
FGDRO-KL-Adam has demonstrated superior performance compared to FGDRO-KL in most cases.

Ablation Studies Here we present some ablation study to examine some aspects of our algorithm
design. First, in Figure 1(a), we vary the communication interval I in experiments on the Camelyon
dataset. We can see that both our FGDRO-CVaR and FGDRO-KL-Adam algorithms can tolerate
skipping a large number of communications without degrading the performance.

To demonstrate the effect of the local adaptive updates. We develop a LocalAdam algorithm (see
Appendix D), which optimizes ERM using our design of using Adam steps in local updates. The
results are plotted in Figure 1(b). We can see that the LocalAdam algorithm outperforms FedAdam,
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Figure 1: Ablation Experiments

8 Conclusions

Our algorithm provides a significant advantage in addressing federated group distributionally robust
optimization while maintaining low communication and computational complexity. Furthermore,
incorporating local adaptive steps has the potential to accelerate the training process beyond the
capabilities of traditional approaches that employ SGD in local steps. Various experiments on natural
lanugage processing and computer vision have confirmed our theoretical results and underscored the
effectiveness of our algorithms. It remains to develop a provable adaptive algorithm for FGDRO-
CVaR, which is currently absent due to the non-smoothness and compositional problem structure.

9 Impact Statements

This paper is meant to advance the field of federated machine learning. We do not see noticeable
negative impact.




References

[1] P. Bandi, O. Geessink, Q. Manson, M. Van Dijk, M. Balkenhol, M. Hermsen, B. E. Bejnordi,
B. Lee, K. Paeng, A. Zhong, et al. From detection of individual metastases to classification of
lymph node status at the patient level: the camelyon17 challenge. IEEE transactions on medical
imaging, 38(2):550-560, 2018.

[2] D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with
quantization, sparsification and local computations. Advances in Neural Information Processing
Systems, 32, 2019.

[3] S. Beery, A. Agarwal, E. Cole, and V. Birodkar. The iwildcam 2021 competition dataset. arXiv
preprint arXiv:2105.03494, 2021.

[4] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed
optimisation for non-convex problems. In International Conference on Machine Learning,
pages 560-569. PMLR, 2018.

[5] D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. Nuanced metrics for measuring
unintended bias with real data for text classification. In Companion proceedings of the 2019
world wide web conference, pages 491-500, 2019.

[6] S.P.Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[7] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. Closing the generalization gap of
adaptive gradient methods in training deep neural networks. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence (IJCAI), pages 3267-3275, 2020.

[8] A.Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex sgd. Advances
in neural information processing systems, 32, 2019.

[9] D.Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
SIAM Journal on Optimization, 29(1):207-239, 2019.

[10] Y. Deng, M. M. Kamani, and M. Mahdavi. Adaptive personalized federated learning. arXiv
preprint arXiv:2003.13461, 2020.

[11] Y. Deng, M. M. Kamani, and M. Mahdavi. Distributionally robust federated averaging. Advances
in neural information processing systems, 33:15111-15122, 2020.

[12] J. Duchi and H. Namkoong. Variance-based regularization with convex objectives. Journal of
Machine Learning Research, 20(68):1-55, 2019.

[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

[14] Y. Fan, S. Lyu, Y. Ying, and B. Hu. Learning with average top-k loss. Advances in neural
information processing systems, 30, 2017.

[15] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[16] Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. A novel convergence analysis for algorithms of the
adam family and beyond. arXiv preprint arXiv:2104.14840, 2021.

[17] Z. Guo, R. Jin, J. Luo, and T. Yang. Fedxl: provable federated learning for deep x-risk
optimization. In International Conference on Machine Learning, pages 11934—11966. PMLR,
2023.

[18] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Local sgd with periodic
averaging: Tighter analysis and adaptive synchronization. Advances in Neural Information
Processing Systems, 32, 2019.

10



[19] F. Hanzely, S. Hanzely, S. Horvath, and P. Richtdrik. Lower bounds and optimal algorithms
for personalized federated learning. Advances in Neural Information Processing Systems, 33:
2304-2315, 2020.

[20] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner, C. Kid-
don, and D. Ramage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

[22] Q. Hu, D. Zhu, and T. Yang. Non-smooth weakly-convex finite-sum coupled compositional
optimization. arXiv preprint arXiv:2310.03234, 2023.

[23] Y. Hu, S. Zhang, X. Chen, and N. He. Biased stochastic gradient descent for conditional
stochastic optimization. arXiv preprint arXiv:2002.10790, 2020.

[24] F. Huang, J. Li, and H. Huang. Super-adam: Faster and universal framework of adaptive
gradients. arXiv preprint arXiv:2106.08208, 2021.

[25] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 47004708, 2017.

[26] W. Huang, M. Ye, Z. Shi, G. Wan, H. Li, B. Du, and Q. Yang. Federated learning for
generalization, robustness, fairness: A survey and benchmark. arXiv preprint arXiv:2311.06750,
2023.

[27] Huggingface. Open ai gpt2 by huggingface, howpublished = https://huggingface.co/
docs/transformers/model_doc/gpt2,,.

[28] Huggingface. pile-uncopyrighted, howpublished = https://huggingface.co/datasets/
monology/pile-uncopyrighted,, .

[29] C. B. Issaid, A. Elgabli, and M. Bennis. Dr-dsgd: A distributionally robust decentralized
learning algorithm over graphs. arXiv preprint arXiv:2208.13810, 2022.

[30] P.Jiang and G. Agrawal. A linear speedup analysis of distributed deep learning with sparse and
quantized communication. Advances in Neural Information Processing Systems, 31, 2018.

[31] W. Jiang, G. Li, Y. Wang, L. Zhang, and T. Yang. Multi-block-single-probe variance reduced
estimator for coupled compositional optimization. In NeurIPS, 2022.

[32] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1-2):1-210, 2021.

[33] S.P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic
controlled averaging for federated learning. In International Conference on Machine Learning,
pages 5132-5143. PMLR, 2020.

[34] A. Khaled, K. Mishchenko, and P. Richtédrik. Tighter theory for local sgd on identical and
heterogeneous data. In International Conference on Artificial Intelligence and Statistics, pages
4519-4529. PMLR, 2020.

[35] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

[36] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Ya-
sunaga, R. L. Phillips, I. Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In
International Conference on Machine Learning, pages 5637-5664. PMLR, 2021.

11


https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/datasets/monology/pile-uncopyrighted
https://huggingface.co/datasets/monology/pile-uncopyrighted
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

[37] J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtérik. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

[38] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through
personalization. In International Conference on Machine Learning, pages 6357-6368. PMLR,
2021.

[39] X.LiandF. Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes.
In The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), pages
983-992, 2019.

[40] Z. Li, H. Zhao, B. Li, and Y. Chi. Soteriafl: A unified framework for private federated learning
with communication compression. Advances in Neural Information Processing Systems, 35:
4285-4300, 2022.

[41] P. P. Liang, T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent, R. Salakhutdinov, and L.-P.
Morency. Think locally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523, 2020.

[42] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang. Multi-center federated learning:
clients clustering for better personalization. World Wide Web, 26(1):481-500, 2023.

[43] L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient methods with dynamic bound of
learning rate. In 7th International Conference on Learning Representations (ICLR), 2019.

[44] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh. Three approaches for personalization with
applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

[45] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273-1282. PMLR, 2017.

[46] H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an
adaptive adversary. In Proceedings of the 17th Annual Conference on Learning Theory (COLT),
pages 109-123, 2004.

[47] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. In International Conference
on Machine Learning, pages 4615-4625. PMLR, 2019.

[48] H. Namkoong and J. C. Duchi. Stochastic gradient methods for distributionally robust optimiza-
tion with f-divergences. Advances in neural information processing systems, 29, 2016.

[49] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical programming,
140(1):125-161, 2013.

[50] W. Ogryczak and A. Tamir. Minimizing the sum of the k largest functions in linear time.
Information Processing Letters, 85(3):117-122, 2003.

[51] S. Pati, U. Baid, B. Edwards, M. Sheller, S.-H. Wang, G. A. Reina, P. Foley, A. Gruzdev,
D. Karkada, C. Davatzikos, et al. Federated learning enables big data for rare cancer boundary
detection. Nature communications, 13(1):7346, 2022.

[52] Q. Qi, Z. Guo, Y. Xu, R. Jin, and T. Yang. An online method for a class of distributionally
robust optimization with non-convex objectives. Advances in Neural Information Processing
Systems, 34:10067-10080, 2021.

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[54] S.Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Kone¢ny, S. Kumar, and H. B. McMahan.
Adaptive federated optimization. arXiv preprint arXiv:2003.00295, 2020.

[55] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

12



[56] V. Smith, S. Forte, M. Chenxin, M. Taka¢, M. 1. Jordan, and M. Jaggi. Cocoa: A general
framework for communication-efficient distributed optimization. Journal of Machine Learning
Research, 18:230, 2018.

[57] S. U. Stich. Local sgd converges fast and communicates little. In International Conference on
Learning Representations, 2018.

[58] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. Advances in Neural
Information Processing Systems, 31, 2018.

[59] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine
learning. University of Toronto, Technical Report, 2012.

[60] B. Wang and T. Yang. Finite-sum coupled compositional stochastic optimization: Theory and
applications. arXiv preprint arXiv:2202.12396, 2022.

[61] M. Wang, E. X. Fang, and H. Liu. Stochastic compositional gradient descent: algorithms for
minimizing compositions of expected-value functions. Math. Program., 161(1-2):419-449,
2017.

[62] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient
distributed optimization. Advances in Neural Information Processing Systems, 31, 2018.

[63] R. Ward, X. Wu, and L. Bottou. AdaGrad stepsizes: Sharp convergence over nonconvex
landscapes. In Proceedings of the 36th International Conference on Machine Learning (ICML),
pages 6677-6686, 2019.

[64] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan, O. Shamir, and N. Srebro.
Is local sgd better than minibatch sgd? In International Conference on Machine Learning,
pages 10334-10343. PMLR, 2020.

[65] B. E. Woodworth, K. K. Patel, and N. Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281-6292, 2020.

[66] S. M. Xie, H. Pham, X. Dong, N. Du, H. Liu, Y. Lu, P. Liang, Q. V. Le, T. Ma, and A. W.
Yu. Doremi: Optimizing data mixtures speeds up language model pretraining. arXiv preprint
arXiv:2305.10429, 2023.

[67] T. Yang. Trading computation for communication: Distributed stochastic dual coordinate ascent.
Advances in Neural Information Processing Systems, 26, 2013.

[68] C. Yeh, A. Perez, A. Driscoll, G. Azzari, Z. Tang, D. Lobell, S. Ermon, and M. Burke. Using
publicly available satellite imagery and deep learning to understand economic well-being in
africa. Nature communications, 11(1):2583, 2020.

[69] K. Yi, L. Condat, and P. Richtérik. Explicit personalization and local training: Double commu-
nication acceleration in federated learning. arXiv preprint arXiv:2305.13170, 2023.

[70] H. Yu,R.Jin, and S. Yang. On the linear speedup analysis of communication efficient momentum
sgd for distributed non-convex optimization. In International Conference on Machine Learning,
pages 7184-7193. PMLR, 2019.

[71] H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communica-
tion: Demystifying why model averaging works for deep learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 5693-5700, 2019.

[72] Y. Yu, S. P. Karimireddy, Y. Ma, and M. 1. Jordan. Scaff-pd: Communication efficient fair and
robust federated learning. arXiv preprint arXiv:2307.13381, 2023.

[73] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. J. Reddi, S. Kumar, and S. Sra. Why adam
beats sgd for attention models. 2019.

[74] M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez. Personalized federated learning
with first order model optimization. arXiv preprint arXiv:2012.08565, 2020.

13



[75] D. Zhu, G. Li, B. Wang, X. Wu, and T. Yang. When auc meets dro: Optimizing partial auc for
deep learning with non-convex convergence guarantee. In International Conference on Machine
Learning, pages 27548-27573. PMLR, 2022.

[76] F. Zou and L. Shen. On the convergence of adagrad with momentum for training deep neural
networks. arXiv preprint arXiv:1808.03408, 2(3):5, 2018.

A Analysis of FGDRO-CVaR

For non-smooth functions, since it is usually difficult or even impossible to find an e-stationary point,
we are interested in finding an e-near stationary point. Following a common technique for finding
an e-near stationary point for weakly convex function, we use the Moreau envelope of a general
non-smooth p-weakly-convex F'(x) [9], defined as

. P
Yayp(x) = H)l(l,n[F(X/) + §||X/ —x]%].

By the properties of Moreau envelop [49, 9], we have that if p = 2p, then 1) /5(-) is smooth and an
e-stationary point of 9 /;(-) is an e-near stationary point of F(-).

Since F(w, s) is non-smooth, we investigate its Moreau envelop, which is
. p
V(1/p) (W 8) = min[F(w', ') + S([w' = w]* + 15" = s]*)].

A.1 Proof of Lemma 4.2
Proof. By updating rule, we have

Bl — @I = |10 = B+ b1, — (WD)

< 51 T / T T — 7 2 2 — T — 7 2

<E| |1+ 9 (1 — 51)u¢,t71 + B (Wi,tflﬂ zi,t) —gi(wi_ )|+ (1 + E)Engi(wt) — gi(wy_q)[I*

(12)

where

E|(1 = Bu)uiy o+ Brl(wi, 1,25,) — gi(Wy )|
< BN = B)(uf 1 — gi(Wi 1)) + (6w, 2],) — (Wi 1)) + Pr(l(w],y,2],) — (W, 2,))|?
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e
(13)
where the last equality uses E; 1 [((W}_;, 2] ;) — gi(W;_;)] = 0.
Since f(-,z) and g(-,z) are Lipschitz and smooth, we know ||m] || < CZ. We also have
LA ¢
1w = wi* = (W = n5 YD miy) (W —n) mi,)
i=1¢/=1 t=1
LA t (14
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Therefore,
Elluj, — g:(Wi)[I> < (1 = B)E[|uf,_; — gi(wi_1)|?
+2620’2+4ﬁ 02”77" — 2 1 3 T (ool 2
1 107wy — Wi, "+ ( +61)||gz(wt) gi(wi_1)ll (15)

3 _ _
- Collwi — Wi, |?

< (1= BUE|uf,—y — gi(Wi_1)|* + 2870° + 4510 I*Cy + 3

A.2 Proof of Theorem 4.3

Proof. Since f(-) is 1-Lipschitz, convex and monitonically nondecreasing, while ¢(-,z) is C,-
Lipschitz and L,-smooth, we know that F'(w, s) is pp := L,-weakly convex by

flg(w),s) > f(g(w'),s") +(0y(f(g(W'),5")), g(W) — g(W')) + (V4 (f(g(W),s")),s — 5")
L
> flo(w'),8) + (Vy(flg(w'), s) V(W) w — ') — ZE|lw — w'||?
+ <Vg(f(g(wl)v S/))’ s — S/>v
(16)

where the first inequality uses the convexity of f(-), and the second inequality uses that 9f(-) >=0
and the L -smoothness of g(-).
With p = max2pp, 1, we define

— 7T =T . p =T sr
Vo) (W 57) = min [F(w', ) + £ ([w' = w2+ |15 = 57 ()

and

(W7, 57) = ang min [F(w', ) + £(Iw' = Wi | + |5 = 5 ). (18)
then we have the following [9],

ar T 1 =T T
Wy = wils + 157 = 5711% = B”vw(l/ﬁ)(wtast)“z' (19)

Then
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where we used |m{,[|> < C2. Denote ] = + > Ouf(ul,, s, )VUWS, j:2],), 0] =
i=1
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lected the same in m; , and v; ;, respectively. Thus,

o L
+ 0 = WP+ 1 = )
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Since f is convex, 0, f > 0 and g; is p, := L4-weakly convex, we have
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Noting 0, f < 1, (22) yields
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=N Z@ fuiysi1)Vgi(Wi_1), Wiy —Wi_y) + N Zan(ui,tvsi,tfl)(Stfl — Sii1)
i=1

N

S% [f(gz(VAV{ 1) Ci 1) — f(U;'n,w it— 1) — Ouf(u; Uity S zt—l)[gi(wg—l) _U;t]] +%||VAVI—1 —WI—1H2
= (23)

Putting (21) and (23) together, we obtain

El1/5(wi, 57)]

< Bl o (W, 51-) LIy — w24 PPty — 5yl + g — g2+ 2 jiof — o)

N
N 1 o7 ar r r r r =7 r
+ /”7203 + Py ZE [f(gi(wt—l)v 8i_1) = fuisssis—1) = Ouf (Ui siy1)]gi(Wi_q1) — ug,]
i=1
Pojar o
+ 2 - WP
I n _ M0y v .
:E[wl/ﬁ(wt—last—l)+7 Wi_1 *Wr—leJF ||5t 17 8p— 1H2+7”mt *mt”zJF Hvt s || ]
N
A 272 L1 AT ar — T r — T r r r
+ o Cy + PN ZE F(gi(Wi_1),80-1) — f(9i(Wi_1), 87 4—1) + [(9i(Wi_1), 87 1) — f(ui 487 4-1)
i=1

—r r Pg 1o T
= Ouf(ui sy 1)gi(Wi_q) —ui ] + EgHWtfl —wy |
(24)
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Since f(gi(w), 5) is pr-weakly convex in w, s, f(gi(w), ) + 5 (W — Wi_||* + ||s — 57_*) is
p — pr-strongly convex in w, s. Therefore, we get

R N A [ N P >
< (% =)Wy =i 1P+ 1187, — 32t—1||2) + gHszr,t—l — 57417
< B Wi = Wil 1180 = Sl + (0 o)l es = 1P
Thus,
Elyy5(W, 1)
< g F,51o0) + LIy — w2 PPy — s+ g — g2+ o — o)

+ P77202 + UPN Z [ 9i(Wi_1),81_1) — f(gi(Wi_1),87 1) + F(gi(Wi_1), 80 4-1) — f(ui s 8i4-1)

OS5t ) (W) — ul] + "gw:_l—w:_m]

_ ~ np . _ ~ . _ o r
S%/ﬁ(Wl"_uSI_lH?IIW?_l—W7-_1||2+ ||$t 1— 85— 1||2+ || T—m§||2+*llv§—v3§||2

2

) CPF , .
+ i Co + np(- = P IWi_y = Wi 1P + 135721 = 511 1”) + 0p(p + pr) Z I87e-1 = 51— ll?

2
~ 1 = T A el el 2
+ Upcfﬁ Z 19:(Wi_1) = ui [l + nppgllWi_y — Wi_4|
(26)
It follows that
E[¢1/5(Wi,57)]
e ST p,\ A AT — 7 INd —r
< P1p(Wiig,501) — an(”Wt—l —wi P+ 18 =5 0?)
R ! _ , np NP |1 r _
+P7720§+UPCfNZH9i(Wt—1) —ul+ < Hmt 17 t—1||2+7||vt—1 — o4 |?
_ _r n — 7 =T A
< 1/’1/;3(Wt—1a 5,1) — Z”le/ﬁ(wt—lv 53—1)”2 + pn20g2

J| . . np
+17C 5z Y Nlgi(Wi ) = | + 0’ I*CF.

27)

R I

1

EZZEHV@ZHM Wi_1,85_ 1)||2§
r=1t=1

(28)

1/11/5(‘7"6»56) 2 Japehgel 272,42
PptWo %) | psez L :E S Ellg, - I
URI C + NRI e ||g Wt 1 ul t” + n C
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Hence, taking telescoping sum over Lemma 4.2 sum we have

1 R I N
v 2 2 D Ellud, oy — gi(wi )

r=1t=1 i=1 (29)
1 - 2 2722 2
< E i 2 I .
< G 2o Bl — g (RN + 20002 47120 + e
Thus,
1 L 1
E 2 E (W, 3> <0 —= I
19055 = 7 3 ST EIVt: I <O (g +0+ gy + VB4l + )
(30)
With
(W, 8) = arg min[F(w', ') + E(|w' = w[* + |ls' = 3]}, G31)
We also have that |[w — W|* + [|§ — 5| = p[[Vii,5(Ww,3)|%, |dist(0,0F(w,8))* <
V41 5(W, 5)[|* [9]. We can conclude by setting parameters as in the theorem. O
B Analysis of FGDRO-KL
B.1 Lemmas
The behavior of u, which is an estimator of Vg;(w)’s, is given in the following lemma.
Lemma B.1. Under Assumption 5.1, with some constant G, by setting n = O (\/%), 51 =
O <\/%) Algorithm 2 ensures that
Eluf, — £(%;;Dy)|)* < (1 —51)||ult L= U D))
2
+ 6817 PCPG? + Bo” + 5—05||m; = VEW)|? + - CHIVEWD)IP,
1 1
The behavior of v, which is an estimator of & >, g;(w), is given in the following lemma.
Lemma B.2. Under Assumption 5.1, with some constant C1, by setting n = O (\/%) b1 =
O (ﬁ) Algorithm 2 ensures that
Elo; — LLJ(V%)H2 (1= B2)Elo]_y — g(wi_y)|I?
(32)

3 _ _
—CoE[[wi — w4 %

+302— chEHULt Uw: DI + o
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B.2 Proof of Lemma B.1

Proof. Denoting W} = % W ,, we have

1M

Elluj, — €W D)|I* = EIl(1 = B)uf, 1 + Brb(wi,_yi27,) — (WD)

= El[(1 = B)(uiy—1 = UWi_1; Di)) + Br(b(wi 13 274) = LWy Di)) + (L(Wi_y; Di) — £(wy;

t

<E (1 + 621) 11 = Br)(uf oy — U(Wi_13Dy)) + Br(b(Wh 1525 ,) — U(Wi_y3 D))
+E <1+§1 (T3 D) — 67 D)2
< (14 ) 10— 001 — AT 15D + 1 () — D)
+ BLE(W] 1 D3) — E(w)_;Dy))|? + %
2 (1 GBI~ B0~ D) U 25D K P

CElwiy —wil?

+ BIENO(W ,_1325,) — 6wy, 15 Dy)|1* +

P

CPE[wi_, — wi|?

3
o3

Dy))|?

2
< (14 2) a-sPEI - aw DR+ (142 ) BB D) - AW D)

3 — T — T
+ 5%02 + EC?E”Wtfl - Wy ||2

(v)

2
2
<(1+3) 0= mPBI L - oD+ (14 2 ) 20 PR
3 — T —
+ Bio% + ECZQEH"Vt—l —wi|?

< (1= B0E(uf ) — UWi_1; D) + 681m° I*C}G* + Bio”

6772 =T =T 6772 =T
“-CiE|m; ~ VE())| + - CPE|VF ()|
(33)

where (a) holds due to the fact that E;_[¢(w] ;2] ) — £(w] ;;D;)] = 0, and (b) is due to the
Cy-Lipschitz of £(-), ||mzr,tH2 < G? < exp(Cy)Cy and sz,t—l Wi ? < ng,t—l - W+
W = wi_ 12 < 272122, 0

19



B.3 Proof of Lemma B.2

Proof. We have

1 N
157 = g(W)I* = [1(1 = B2)v;_ + Py > exp(uf,/A) = g(w))|?
i=1

2

N
~[a- st - atwi i+ 2 (}VZexpwat/A) g(wz_n) — glw]) + 9(w]_1)

§< 5;) (1= B2)(v)_1 — g(Wi_1)) +ﬂz< Zexp ui /N — g(wy >>
# (1 ) tatwt) — gt P

2

2
ﬁ 2 =7 — T i — T
<(1+%2) a- s - oo+ (1 FOICHEIARIIAY
3
+ —C2||w) — wi_,|?
2 caw - i
1 3
< (1= Bk — oW1 + 38 3 Callu — v DI + O3t — Wi
1=1
(34)
where C7 = exp(Cy/)). O

B.4 Proof of Lemma 5.2

Proof. Here we analyze the m, which is the moving average estimator of the gradient,

1 1 ?

|m§VF(W§)||2H(lﬂs)mi_1+ﬂsszr o0, VW, i 28,) — V()

=1

N
< - B mis VPOV A D el AT o)~ VP

2
+ VF(w;_,) — VF(w;})
ﬁ?) — 1 al 1 r r r —
< (14 2) |- smi s - VP + (g 3 o esplul VWL st - VF
i=1 it

)
2
+ (1 + Bs) IVE(W, ) — VF(w})||?,
(35)
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where

(4) = Hlﬂgxmtl VE(W]_,)

+53<

1L 1
(u zt/)‘)vg(wat—ﬂzzt) - NZ po

i—=1 Lt

eXP(“:,t—l/)‘)Vg(W;,t—ﬂ Z;,t))

zl’t

1 76Xp< Wi p— I/A)ve( Wit—1>% zt NZ*GXP( it— I/A)ve( Wit— 17D)>

Di) [N V(Wi 17@))

+ 3(]1/'2;1}”6)(1)( Ui t— 1//\)V€( Wit— 1’ NZ

LA 1L 1
03 | 57 D 7 eD(E(W] 1 D) [N VW, 1,D>—N2Mexp<e<w:1;Dz->/A>W<w;1;Dz->>
i=1 bt i=1 1
1 L1 ’
+ 65 | 7 22 7 PTG D)/ N VT3 D) = VF<V‘VI—1>> :
=1
< (1+@3 (1~ B3)(m}_y — VE(W]_1))

v exp(ug 1 /AN)VUW,_132;,) NZ exp 1/ A VUw 17D)>
t 7

N
1 1
+ P (szr exp(ug 1 /A)VEW ;15D NZ D) /N)VUWT,_ 1,@))
i=1 bt
1L 1 N
+ B <NZUT exp(£(Wi_1; Di) [A)VE(wi,_1; D Z@T exp(£(W}_y; Z-)/)\)Vf(v‘v{l;l)i)>
i=1 5t =1 ¢
1 L1 2
+ B3 (N;U{exp(é(w:_l, )/ NVEUWi_;D;) — VF(wy, )> ,
2 1L 1 2
1 2 — r T g
1+ )8 N;% exp(ul /N VUWE ;2 ,) NZ o exp(ul oy JNVEW! izl s
(36)
which is followed by

= (1+2) H(l ~ By)(mi_, — VE(W]_)

+ﬂ3(NZ )Ve(Wi—1;D NZ r
+5 ( Z

eXP Wt'—l; Di)/)\)vg(wzt—l; Dz))

s

exp(l(Wi_1;Ds) /N VWS —1;Ds) — NZ—exp U Wi_1; D)/ N)VE(Wy— 1,D)>
it Uy

2

El

T 5y (}Vz;{exp(aw:h /AW, 13 D,) - VF(w] >>

(Nz

zllt

2

exp(ug—1/A) VW 1327 ) NZ

zllt

eXp zt I/A)VE( Wit— 17D)>

2

NZ €xXp ult/A VZ(WM 1,z,, NZ

17,t

eXp ult I/A)vg(wlt lvzzt)

)

lzt

€))
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which leads to
[m; — VF(w})l®

2
< <1+63)

(1= Bs)(mi_; = VF(w;_,))

N
1 1 o
+ B3 (N;MQXP Ug ¢— /A VE(w) Wit— 1:Di) — N¢=1 v;’t exp(£(w;_1; D;) /N VE(w m 1,D)>
1 X1 1 X1
+ 3 (N iﬂanP(Z(W:—la )/)‘)Vé( Wit— 1,D)N;v{exp(é(wf_l;Di)/)\)VE(Wf_l;Di)>

1L 1 2
+ B3 (N‘ — exp({(Wi_;Di) /A VAW, _1;Di) = VE(W;_)

N

N
53 2 n2 1 1 1 1
1 — 7 MVUwWE,_ 2 ) — — AN/ D;
+(1+ 2) 3 N;Uz‘rt exp(ul,tfl/) (Wl,tflvzz,t) N;Uzr,t exp(u; Uj gt — 1/ ) VEe(w; Wit—15 i)
2
*ﬁg NZ —exp(ul /N TUWE 157 NZ (Wl oy JNVEWT , 152])

n <1 n 2) IVF(wi_,) — VF(w])|?
B3

(38)
Then it follows that

2
g~ PwI? < (14 ) (1 )i - RGP

8 1

1
o P 1 VAW i D NZ

Di)[MVUW; 15 Di)

Wi Di)/NVEUWi_1;D;)

N
8 1 1 _r
+7§ NZ - exp(l(wi_1;D;) /A VE(w] Wi t— D Z

©)

1L 1
+ —p3 NZ;{GXP(E(W:—D )/ NVUW] D) — VF(W)_y)
N

N, eXP( zt—l/A)Vg( Wit—1) zt NZ

i1 [NVEW ;15 Ds)

t—1/)\)vg(wir,t—1§ er,t)

(U;‘:t/)‘)vg( it—1) zt NZ

i=1 7,t
2
i (1 T 5) IVEW]_,) - VE@)|? ®.

(39)
We address each term as follows. (I) can be bounded as

- lgﬁg

al 2
1 1 B
N;U;,t ( zt I/A)Vg( zt la NZ B )/)\)Ve( zt 1,D) ]
1 N
< Pag D CiCT |l — LWy D)
=1
(40)
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@) can be bounded as

2
; 1 1
E |86 NZ (U1 D) N VWD) = 0 D = exp(U(w] Di) [NV Ew] i D)
Vi i=1 1
2
1 1 _
<E 16,63 NZ (nglv )/)‘ Vﬁ( Wit 17D)_NZ T eXp(f(Wt, )/)\)VZ( Wi t— 17D)
i=1 it
1 X1 1K1 ’
+E 1683 NZ — exp(£(wi; D) /N V(W 179)—NZ:6XP(€( D;)/NVUw,_1;Di)
o1 Vit im Ut
N
< 1683C7CTE|wi_y — I||2+1653 Z FCHIlvi, — oI
1 Y ]
< 1685CFCIN*G? + 1683+ Z 7t v, — o7
- @1
) can be bounded as
Ny 2
E 853 Nzﬁj UWi_1; D) /N VU] wi_1;Di) = VE(w;_,)
peiky
141 . -1 .
=K 1663 N;%exp(f(wtflv /)‘ Vﬂ( zt 1’ ; Wtr— eXp (Wtfh )/)‘>V€( zt 17D)
AR | JREAR |
—HE{lGB — —exp({(wi_1;D;)/N)VUw;;_1;D; exp(l(wWi_1;D;)/NVL(wT; D; ]
1|7 2 iy PR DAV )N;(Wt) (6w} D) /N VW] D)
< 32B3CFCF o7 — g(W)II? + 3285 CFCE Wiy — Will* + BsCT L7 | Wiy — Wi |2
< 32B3C7C7 0] — g(Wi)||* 4 3283CFCin° G? + BsCT Lin*I*G.
(42)
@) can be bounded as
11 ’
?%E Ni:1 vir,t exp(u?,tfl//\)vg( i,t— 13 zt NZ zt 1//\)V€ zt I’D)
1 & 1 11 ’
:Bi’% 2 E r exp( zt 1/)‘)v£( zt 1:% zt) Nz r exp( zt 1//\)v£( zt I’D)
i=1 Vit =1 Vit
2
<pc?L
=~ /6301 N

(43)

as machines are independent conditioned on iteration ¢ — 1.
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®) can be bounded as

N N 2

1 1 T T T ]' ]' T ' T
& O expul JNVUWEyizly) = 5> explul, /N VAW, yiz))

i=1 bt i=1 &t

E [863

|

N
1 T ‘s T s . T 2
< E[853N Z 022 Hexp(uut/)‘)Vé(Wi,tfl;Zi,t) - eXp(“i,tfl/)\)vg(Wmfﬁ Zi,t)” }

i=1
1

<E [853]\] Z L5012||u;,t - U:,t—1||2]
i=1

< 8B5L;CIC3A:,
(44)

where the first inequality uses v, > 1 as £(-) > 0.
F(w)is Lp := CyLg 4 C?Ls-smooth. With n < f33/(3L%), © can be bounded as
2 — T s — T
(1+ 2 ) IV~ TEWDIP < 3L wi - wi P
3 —r
= —LEn?|mg|?

Ps (45)
<nllm; —mj_, +mj_, - VF(w;_,)+ VF(w;_,)|?

< 3nlmi — @i |2 + 3nlly_y — VE(W)|* + 30| VE(w] )|
< 30B3GP + 3nlmi_y — VF(W_)|I* + 30l VF(%_,)|?

Thus,
Hﬁlr, F(W))|? < (1= Bs)|lm}_, — VF(W]_,)||? + 883 L;C;C3 3

+ B3+ ZCZCHHUM = AWy D)

1 ro_ o 46
+16530§c%n2G2+1653ﬁzcch||vi,ﬁvt I? o

+3283CCF oy — g(w)II” + 3285 CFCEn* G? + BsCT Ly I° G?

2
o . . .
+ B30T + 3nB3G? + 3nllmi_y — VE(W_)|* + 30| VE(wi_)||*.

We conclude the proof by setting the parameters as in the Lemma. O

Proof of Theorem 5.3. Using Lemma 5.2, with 8, = O(f33), we have

R _ _
1 5 — _ E|m{ — VF(w{ 2 - 02
Izz;z@mg_lvmwganzso( i =~ VECOI 1 agree + 30, %
r=1t=1
ZEIquo VE ()] + ZZnEIIVF wi_1)|* + Bio? ).
RRUV r=1t=1
47)
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Using Lp-smooth of F', we have
=T = T = T T (& T = T Lp = T = 2
F(wy) < F(Wi_q) + VE(W_1) (W, —W;_1) + THW:& —wi_q|l

— — —r LF
< F(wi_y) —nVFE(w;_,) 'mj + —n°G”

2
7 =T AT =7 =T L
= F(w}_y) = nVE(W] 1) (m] = VF(W]_,) + VE(W] 1)) + 5 7°G? )
=T =T =T 2T =T L
= F(Wi_y) =0 VE(Wi_ )P = nVF(w}_) T (m] ~ VF(W]_))) + 5 0°G*
= LTI L
< F(Wj1) = SIIVE(W]_)|? + Jlm; = VE(w; ) + 5 n’G?

< F(wi_ )**IIVF( DI+ *IIﬁII*VF(WI))IFJrnzLFGQ-

Therefore,

1 R I
B(IVF@)I) =2 | 7 2 3 IVF)IP

1
O( RI+,810 + B3I*G* +nLr G2>
(49)

We conclude the proof by setting the parameters as the theorem.

C Analysis of FGDRO-KL-Adam

Proof of Theorem 6.2. Lemma B.1, Lemma B.2 and Lemma 5.2 still hold. Specifically, denoting
N

=r _ 1 =T
Wi = > W, we have
i=1

Ellui, — (% D)

2
< (U Bl — (WD + 680 OGR4 B + - Collmf — VR (50

772 2
+ LG VEW)
1

where () holds due to the fact that E; 1 [/(w] ;2] ;) — €(w] ;; D;)] = 0.

And we have

. _ 3 -
o7 — g(wi)I? < (1= Ba)|[oi_y — g(Wi_y) H2‘|'3/82 ZCHIUM Uw; Dy)||” + - Co l|wi — wi_y ||

B2
(51
where Cy = exp(Cp/)).
Moreover, we have
R I _ _
E|lm; — VE(wD)||? . o2
o 20 I - VR )||2§0( i =~ VECOI 1 agree + 30, %
Z]Elluzo VF(wo)l* + ZZUEHVF wi)|I?+Bio? ).
RKN r=1t=1
(52)
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Using Lp-smooth of F', we have
F(w}) < F(Wi_y)+ VF(W;_) (W] —w}_) + 5 [|[wj —w;_,|

=T =T -~ - L T
< F(Wi_y) = VE(Wi_,)" (i omy) + 5[l o my |

. _ ., L 5 . 1, —
F(w;_y) *H\/ﬁ (VF(wi_y) ;)||2_*||\/77tOVF(Wt71)||2+§||772Omt||2_§||m°mt‘|2
2 2
o e . n°L/m° —n/(G+T), _,
< Pw]) + LIV ) = g P = e R P+ T O D e
—r n —r - 2 —r =72 2
<F LvF - - - F
< F(wisy) + ZIVE(W_y) —mi, || +T||mt_1 my || — (G+ )IIV (wi_y)ll
o n . _ n
SF(Wt_1)+;HVF(Wt_1)—mt_1||2+;6§ (G+ )IIVF( _)IP
(53)
Therefore,
1 A 1
722 IVEW!_)|? <O<W+B102+B§IQG2+77LG2>. (54)
=1t=1

We conclude the proof by setting the parameters as the theorem.

D LocalAdam Algorithm

In this section, we present Algorithm 4, which uses Adam type updates in local steps to solve an
ERM problem.

Algorithm 4 LocalAdam
1

1: Initialization: w!, m?, (_11
:forr=1,...,Rdo
WO—W mj,=m", q;,=q"
for t = 1,...,1 do

2

3

4

5: Each machine samples data z; ,
6 hi, = Vi(wi,_ 1v z;,)

7 m;t:(l_ﬁﬂ 1t 1"’63}1 t’qzt_(l 54)qzt 1+ Ba(hj )
8

9

‘. p—
Wit = W -n T t+T
end for
+1 _ 1 N +1 1 X 41 1 X
. by ' o J— 7" ~T p— T
10: w Ni:lwi,l’m =~ ) m; ; and q —Naqi,l
— i= 1=

11: end for

E Statistics of Datasets

Statistics of the datasets used are summarized in Table 4.

F Running Time

Running time is reported in Tabel 5. Each algorithm was run on a high performance cluster where
each machine uses a NVIDIA A100 GPU.
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Table 4: Number of data for each split, with the number of domains in the brackets.

Train Validation Test
Pile 192,912,246 (17) | 193,105 (17) | 193,105 (17)
Civilcomments 269,038 (4) 45,180 (16) | 133,782 (16)
PovertyMap 9,792 (13) 3,936 (5) 3,968 (5)
1WildsCam 129,809 (243) 7,314 (243) 8,154 (243)
Camelyon 302,436 (3) 34,904 (1) 85,054 (1)

Table 5: Average running time of federated algorithms. We report running (in hours) for each
algorithm to finish (200K iterations for Pile data and 20K for others).

Pile | CivilComments | Camelyonl7 | iWildCam2020 | PovertyMap
FedAvg 29.77 3.05 4.59 12.90 1.77
FedAdam 35.39 3.13 6.01 12.91 3.22
DRFA 34.12 3.27 4.94 12.95 2.25
DR-DSGD 25.26 4.01 6.26 13.02 4.71
FGDRO-CVAR 34.07 4.03 7.19 13.01 5.02
FGDRO-KL 34.92 3.65 7.23 14.57 542
FGDRO-KL-Adam | 35.98 3.80 7.54 14.82 5.50
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction are accurate summary of the paper and well
supported by other sections of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 8.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

28



Justification: Assumptions are discussed in Section 3,4,5,6. Theorems are presented in
Section 4,5,6. Proofs are shown in details in Appendix A, B, C.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The setting and parameter tuning scope are discussed in Section 7.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: All used data are publicly available. Code will be released later.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are shown in Section 7.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments are repeated for multiple times with different random seed, and
error bars are reported in experimental results in Section 7.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computing resource and time of execution are reported in Appendix F.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts have been discussed in Section 9
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not release any new data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets we use are all publicly available and properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: No new assets are introduced in this paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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