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Visualizing and characterizing the diffusion of single nanoparticles in various chemical and biological environments enables us to
infer the underlying material properties of the environment. The advent of liquid phase transmission electron microscopy
(LPTEM) has introduced a novel avenue for high spatial and temporal resolution single particle tracking at the nanoscale, enab-
ling us to investigate diffusion dynamics at a scale inaccessible before [1-4]. Understanding and interpreting the underlying physics
of single nanoparticle trajectories has traditionally been approached with canonical statistical methods such as time-averaged
mean squared displacement. However, these methods fail on single short trajectories, especially the ones with non-gaussian
and non-ergodic characteristics — common features of LPTEM trajectories. These challenges have led to a body of computational
research on classifying short single particle trajectories into classes of anomalous diffusion and determining their anomalous dif-
fusion exponents (a) using supervised machine learning and deep learning models that are trained on simulated trajectories with
known a [5-7]. This problem has also been handled with unsupervised deep learning approaches to learn the properties of simu-
lated trajectories of known diffusion classes but without labels of physical parameters like a [8, 9]. However, experimental data
from single particle tracking experiments remains a largely unknown mixture of different anomalous diffusion classes with un-
known diffusion parameters, making it difficult to classify them into ideal stochastic models. Furthermore, learning the dynamics
of real experimental nanoparticle trajectories is a crucial step in advancing electron microscopy into the space of fully automated
workflows.

Here, we have leveraged the generative power of Al models to learn the physics of real trajectories obtained from LPTEM mov-
ies and generate synthetic single particle trajectories. To this end, we have developed a generative physics-informed transformer-
based variational autoencoder that is trained on a large data set of experimental trajectories, mixed with some simulated trajec-
tories, of gold nanorods from LPTEM experiments. LPTEM experiments were carried out with gold nanorods dispersed in water
on a Tecnai F30 TEM with an accelerating voltage of 200 kV using a Poseiden LPTEM holder. The movies were collected using
the Gatan Oneview camera and processed using a thresholding-based algorithm to extract the coordinates of the gold nanorods at
each movie frame. Using the powerful self-attention mechanism of transformers that has shown remarkable results in learning the
underlying correlations in sequence-based data, this model learns the time-dependent dynamics of the experimental trajectories in
its continuous latent space representation based on statistical/physical properties. We demonstrate that our model can separate
trajectories into different diffusion classes and recognize the differences in their statistical properties. More importantly, our mod-
el can be used as a black-box simulator for generating synthetic single-particle trajectories from LPTEM. The latter is an extremely
useful feature in that it generates an unlimited number of trajectories for downstream tasks, e.g., in developing an Al-based work-
flow for automating in situ electron microscopy experiments.
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