
Meta-colored compacted de Bruijn graphs

Giulio Ermanno Pibiri1,2[0000−0003−0724−7092], Jason Fan3[0000−0001−7617−4814],
and Rob Patro3[0000−0001−8463−1675]

1 DAIS, Ca’ Foscari University of Venice, Venice, Italy
2 ISTI-CNR, Pisa, Italy

3 Department of Computer Science, University of Maryland, College Park, MD
20440, USA

Abstract. The colored compacted de Bruijn graph (c-dBG) has become
a fundamental tool used across several areas of genomics and pange-
nomics. For example, it has been widely adopted by methods that per-
form read mapping or alignment, abundance estimation, and subsequent
downstream analyses. These applications essentially regard the c-dBG
as a map from k-mers to the set of references in which they appear. The
c-dBG data structure should retrieve this set — the color of the k-mer
— efficiently for any given k-mer, while using little memory. To aid re-
trieval, the colors are stored explicitly in the data structure and take
considerable space for large reference collections, even when compressed.
Reducing the space of the colors is therefore of utmost importance for
large-scale sequence indexing.
We describe the meta-colored compacted de Bruijn graph (Mac-dBG)
— a new colored de Bruijn graph data structure where colors are rep-
resented holistically, i.e., taking into account their redundancy across
the whole collection being indexed, rather than individually as atomic
integer lists. This allows the factorization and compression of common
sub-patterns across colors. While optimizing the space of our data struc-
ture is NP-hard, we propose a simple heuristic algorithm that yields
practically good solutions. Results show that the Mac-dBG data struc-
ture improves substantially over the best previous space/time trade-off,
by providing remarkably better compression effectiveness for the same
(or better) query efficiency. This improved space/time trade-off is robust
across different datasets and query workloads.

Code availability. A C++17 implementation of the Mac-dBG is publicly
available on GitHub at: https://github.com/jermp/fulgor.

1 Introduction

The colored compacted de Bruijn graph (c-dBG) has become a fundamental
tool used across several areas of genomics and pangenomics. For example, it
has been widely adopted by methods that perform read mapping or alignment,
specifically with respect to RNA-seq and metagenomic identification and abun-
dance estimation [21,8,33,3,32,23,4,34]; among methods that perform homology
assessment and mapping of genomes [26,27]; for a variety of different tasks in

2 Pibiri, Fan, and Patro

pangenome analysis [9,24,10,20,22], and for storage and compression of genomic
data [31]. In most of these applications, a key requirement of the underlying
representation of the c-dBG is to be able to determine — with efficiency being
critical — the set of references in which an individual k-mer appears. These
motivations bring us to the following problem formulation.

Problem 1 (Colored k-mer indexing). Let R = {R1, . . . , RN} be a collection of
references. Each reference Ri is a string over the DNA alphabet Σ = {A,C,G,T}.
We want to build a data structure (referred to as the index in the following) that
allows us to retrieve the set Color(x) = {i|x ∈ Ri} as efficiently as possible for
any k-mer x ∈ Σ

k. If the k-mer x does not occur in any reference, we say that
Color(x) = ∅. Hereafter, we simply refer to the set Color(x) as the color of
the k-mer x.

Of particular importance for biological analysis is the case where R is a
pangenome. Roughly speaking, a pangenome is a (large) set of genomes in a par-
ticular population, species or closely-related phylogenetic group. Pangenomes
have revolutionized DNA analysis by providing a more comprehensive under-
standing of genetic diversity within a species [25,5]. Unlike traditional refer-
ence genomes, which represent a single individual or a small set of individuals,
pangenomes incorporate genetic information from multiple individuals within a
species or group. This approach is particularly valuable because it captures a
wide range of genetic variations, including rare and unique sequences that may
be absent from any particular reference genome.

Contributions. The goal of this paper is to propose a solution to Problem 1
focusing on the specific, important, application scenario whereR is a pangenome.
(We note, however, that the approaches described herein are general, and we
expect them to work well on any corpus of highly-related genomes, whether or
not they formally constitute a pangenome.) To best exploit the properties of
Problem 1, we capitalize on recent indexing development for c-dBGs [13]. The
result is the meta-colored compacted de Bruijn graph (Mac-dBG) — a new data
structure where colors are represented holistically, i.e., taking into account their
redundancy across the whole collection being indexed, rather than individually
as atomic integer lists.

After covering preliminary concepts in Section 2, we describe the Mac-dBG
in Section 3.1 and 3.2. We present the underlying NP-hard optimization prob-
lem in Section 3.3 and discuss a simple framework for constructing the Mac-dBG
in Section 3.4. Section 4 presents experimental results to demonstrate that the
Mac-dBG remarkably improves the best previous space/time trade-off in the
literature. In fact, it essentially combines the space effectiveness of the most
compact solutions with the query efficiency of the fastest solutions, at the ex-
pense of a slower construction algorithm. We conclude in Section 5.

A C++17 implementation of the Mac-dBG is available at: https://github.
com/jermp/fulgor.

Mac-dBGs 3

2 Preliminaries: modular indexing of colored compacted

de Bruijn graphs

In this section we provide some background information to better understand
the design principles of the solution we propose in Section 3.

In principle, Problem 1 could be solved using a classic data structure from
Information Retrieval — the inverted index [30]. In the context of this problem,
the indexed documents are the references {R1, . . . , RN} in the collection R and
the terms of the inverted index are all distinct k-mers of R. Using the notation
from Problem 1, it follows that Color(x) is the inverted list of the term x. Let
L denote the inverted index for R. The inverted index L explicitly stores the
ordered set Color(x) for each k-mer x ∈ R. The goal is to implement the map
x → Color(x) as efficiently as possible in terms of both memory usage and
query time. To this end, all the distinct k-mers of R are stored in an associative
dictionary data structure D. Suppose we have n distinct k-mers in R. These
k-mers are stored losslessly in D. To implement the map x → Color(x), D is
required to support the operation Lookup(x), which returns ⊥ if k-mer x is not
found in the dictionary or a unique integer identifier in [n] = {1, . . . , n} if x is
found. Problem 1 can then be solved using these two data structures — D and
L — thanks to the interplay between Lookup(x) and Color(x): logically, the
index stores the sets {Color(x)}x∈R in some compressed form, sorted by the
value of Lookup(x).

To exploit at best the potential of this modular decomposition into D and
L, it is essential to rely on the specific properties of Problem 1. For example, we
know that consecutive k-mers share (k − 1)-length overlaps; also, k-mers that
co-occur in the same set of references have the same color. A useful, standard,
formalism that captures these properties is the so-called colored (compacted) de
Bruijn graph (c-dBG).

Let K be the set of all the distinct k-mers of R. The node-centric de Bruijn
graph (dBG) of R is a directed graph G(K, E) whose nodes are the k-mers in
K. There is an edge (u, v) ∈ E if the (k−1)-length suffix of u equals the (k−1)-
length prefix of v. Note that the edge set E is implicitly defined by the set of
nodes, and can therefore be omitted from subsequent definitions. We refer to
k-mers and nodes in a dBG interchangeably. Likewise, a path in a dBG spells
the string obtained by concatenating together all the k-mers along the path,
without repeating the shared (k− 1)-length overlaps. In particular, unary paths
(i.e., non-branching) can be collapsed into single nodes spelling strings that are
referred to as unitigs. Let U = {u1, . . . , um} be the set of unitigs of the graph.
The dBG arising from this compaction step is called the compacted dBG, and
indicated with G(U).

The colored compacted dBG (c-dBG) is obtained by logically annotating
each k-mer x with its color, Color(x). While different conventions have been
adopted in the literature, here we assume that only non-branching paths with
nodes having the same color are collapsed into unitigs. The unitigs of the c-dBG
we consider in this work have the following key properties.

4 Pibiri, Fan, and Patro

(a) c-dBG

!6

!7

!1

!2

!3

!4

!5

D

L

!8

!9

!10

!1

!2

!3

!4

!5

!6

= [3,4,5,9,10,11,13,15]

= [2,3,15]

= [1,3,5,7,9,10,11]

= [1,3,5,7,9,11,13]

= [1,3,6,7,9,11,12,13,14,16]

= [6,8]

!7

!8

= [1,3,8,11,12,13,14,16]

= [12,16]

(b) state-of-the-art index layout

ACCG

CGAACG

CGCTCG

CGGAT

ATTAT

CGTCCG

CAT

ATGGA

GACA GAGTT

AGCG

CGCTCG

CGAACG

CGTCCG

CGGAT

ATTAT

CAT

GAGTT

ATAGA

GACA

Fig. 1: In panel (a), an example colored compacted de Bruijn graph (c-dBG)
for k = 3. (In the figure, a k-mer and its reverse complement are considered as
different k-mer for ease of illustration. In practice, these are considered identical.)
The unitigs of the graph are colored according to the set of references they appear
in. In panel (b), we schematically illustrate the state-of-the-art index layout
(the Fulgor index [13]) assuming the c-dBG was built for N = 16 references,
highlighting the modular composition of a k-mer dictionary, D, and an inverted
index, L. Note that unitigs are stored in D in color order, hence allowing a very
efficient mapping of k-mers to their distinct colors.

1. Unitigs spell references in R. Each distinct k-mer of R appears once, as sub-
string of some unitig of the c-dBG. By construction, each reference Ri ∈ R
can be spelled out by some tiling of the unitigs — an ordered sequence of
unitig occurrences that, when glued together (accounting for (k-1)-symbol
overlap and orientation), spell Ri [12]. Joining together k-mers into unit-
igs reduces their storage requirements and accelerates looking up k-mers in
consecutive order [28].

2. Unitigs are monochromatic. The k-mers belonging to the same unitig ui all
have the same color. We write x ∈ ui to indicate that k-mer x is a sub-string
of the unitig ui. Thus, we shall use Color(ui) to denote the color of each
k-mer x ∈ ui.

3. Unitigs co-occur. Distinct unitigs often have the same color, i.e., they co-
occur in the same set of references, because they derive from conserved se-
quences in indexed references that are longer than the unitigs themselves.
We indicate with z the number of distinct colors C = {C1, . . . , Cz}. Note that
z ≤ m and that, in practice, there are almost always many more unitigs than
there are distinct colors.

Fig. 1a illustrates an example c-dBG with these properties. In the following, we
refer to a compacted c-dBG as G(U , C).

Mac-dBGs 5

State of the art. To the best of our knowledge, the only solution that exploits
all three properties is the recently-introduced Fulgor index [13], which we now
review since it is the basis of our development in Section 3.

The solution implemented by Fulgor is to first map k-mers to unitigs using
the dictionary D, and then succinctly map unitigs to their colors. The colors
C = {C1, . . . , Cz} themselves are stored in compressed form in an inverted in-
dex L. By composing these mappings, Fulgor obtains an efficient map directly
from k-mers to their associated colors (see also Fig. 1b). The composition is
made possible by leveraging the order-preserving property of its dictionary data
structure — SSHash [28,29] — which explicitly stores the set of unitigs in any
desired order. This property has some important implications. First, looking
up consecutive k-mers is cache-efficient since unitigs are stored contiguously in
memory as sequences of 2-bit characters. Second, if k-mer x occurs in unitig ui,
the Lookup(x) operation of SSHash can efficiently determine the unitig iden-
tifier i, allowing to map k-mers to unitigs. Third, if unitigs are sorted in color
order, so that unitigs having the same color are consecutive, then mapping a
unitig to its color can be implemented in as little as 1+ o(1) bits per unitig and
in constant time via a Rank query.

3 Meta-colored compacted de Bruijn graphs

When indexing large pangenomes, the space taken by the (compressed) colors
dominates the whole index space [13,16,2]. Efforts toward improving the mem-
ory usage of c-dBGs should therefore be spent in devising better compression
algorithms for the colors. In this work, we focus on exploiting the following cru-
cial property that can enable substantially better compression effectiveness: The
genomes in a pangenome are very similar which, in turn, implies that the colors
are also very similar (albeit distinct).

By “similar” colors we mean that they share many (potentially, very long)
identical integer sub-sequences. This property is not exploited if each color Ci

is compressed individually from the other colors. For example, if Ci shares a
long sub-sequence with Cj , this sub-sequence is actually represented twice in
the index, which wastes space. This example is instrumentally simple; yet, it
suggests that the identification of such common sub-sequences across a large
collection, as well as the design of an effective compression mechanism for these
patterns, is not easy. A further complicating matter is that the example clearly
generalizes to more than two sub-sequences, hence increasing with pangenome
redundancy and aggravating the memory usage of an index that encodes them
redundantly in each color.

To address this issue, we describe here the meta-colored compacted de Bruijn
graph, or Mac-dBG. In the Mac-dBG, a color is represented as a sequence of
references to sub-sequences that are shared with potentially many other colors.
We refer to these references as meta colors. These common sub-sequences, which
we call partial colors, are encoded once, rather than a number of times equal to
the number of colors in which they appear. This allows reducing the required

6 Pibiri, Fan, and Patro

space for the index while incurring low query overhead when partial colors are
sufficiently long. Indeed, we demonstrate experimentally in Section 4 that the
Mac-dBG substantially improves over the space/time trade-off of a traditional
c-dBG data structure.

Another key strength of this representation via meta/partial colors is its
generality: it applies to any c-dBG data structure arising from the composition
of D and L to readily improve its space and query time.

3.1 Definition

Let G(U , C) be the c-dBG built from the reference collection R = {R1, . . . , RN}.
We recall from Section 2 that we indicate with C = {C1, . . . , Cz} the set of
distinct colors of G. Let N = {N1, . . . ,Nr} be a partition of [N] = {1, . . . , N}
for some r ≥ 1, i.e., Ni '= ∅ for all i, Ni ∩Nj = ∅ for all (i, j) such that i '= j,
and ∪Ni = [N]. Let an order between the elements of each Ni = {ei,j} be fixed
(for example, by sorting the elements in increasing order). Any N induces a

permutation π : [N] → [N], defined as π(ei,j) := j+Bi−1 where Bi =
∑i

t=1 |Nt|
for i > 0 and B0 = 0, for i = 1, . . . , r and j = 1, . . . , |Ni|. We assume from
now on that the N reference identifiers and the colors in C have been permuted
according to π. After the permutation, N determines a partition of R into r

disjoint sets:

R1 = {Ri|0 = B0 < i ≤ B1}, . . . ,Rr = {Ri|Br−1 < i ≤ Br = N}.

Definition 1 (Partial colors). Let Pi be the set

Pi =
{

{x−Bi−1|x ∈ Ct ∩ {Bi−1 + 1, Bi−1 + 2, . . . , Bi − 1, Bi}} | ∀Ct ∈ C
}

,

for i = 1, . . . , r. The elements {Pij} of the set Pi are the partial colors induced
by the partition Ni. We indicate with P = {P1, . . . ,Pr} the set of all partial
color sets.

In words, Pi is the set obtained by considering the distinct colors only for
the references in the i-th partition Ri by noting that — by construction — they
comprise integers x such that Bi−1 < x ≤ Bi.

The idea is that the set P = {P1, . . . ,Pr} form a dictionary of sub-sequences
(the partial colors) that spell the original colors C = {C1, . . . , Cz}. Let us now
formally define this spelling.

Definition 2 (Meta colors). Let Ct ∈ C be a color. A meta color is an
integer pair (i, j) indicating the sub-list L := Ct[b . . . b + |Pij |] if there exists
0 < b ≤ |Ct|− |Pij | such that L[l] = Pij [l] +Bi−1, for l = 1, . . . , |Pij |. It follows
that Ct can be modeled as a list Mt of at most r meta colors. We indicate with
M = {M1, . . . ,Mz} the set of all meta color lists.

Mac-dBGs 7

Given G(U , C), the Mac-dBG is the graph G(U ,N ,π,P,M) where the set
of nodes, U , is the same as that of G but the colors C are represented with the
partial colors P and the meta colors M.

The Mac-dBG permits to encode the colors in C into smaller space compared
to the original c-dBG and without compromising the efficiency of the Color(x)
query, for the following reasons.

1. If Np =
∑r

i=1 |Pi| is the total number of partial color sets, then each meta
color (i, j) can be indicated with just log2(Np) bits. Potentially long sub-
lists, shared between several color lists, are therefore encoded once in P and
only referenced with log2(Np) bits instead of redundantly replicating their
representation.

2. Each partial color Pij can be encoded more succinctly because the permuta-
tion π guarantees that it only comprises integers lower-bounded by Bi−1+1
and upper-bounded by Bi. Hence only log2(Bi − Bi−1) bits per integer are
sufficient.

3. The total number of integers in P is at most that in the original C, i.e.,
∑r

i=1

∑|Pi|
j=1 |Pij | ≤

∑z

t=1 |Ct| because partial colors are encoded once. In
practice, P is expected to contain a much smaller number of integers than
C.

4. It is efficient to recover the original color Ct from the meta color list Mt:
for each meta color (i, j) ∈ Mt, sum Bi−1 back to each decoded integer of
Pij . Hence, we decode strictly increasing integers. This is, again, a direct
consequence of having permuted the reference identifiers with π. Observe
that, in principle, the representation of the colors with meta/partial colors
could be described without any permutation π — however, one would sac-
rifice space (for the reason 2. above) and query time since decoding a color
list from meta colors would eventually need to sort the decoded integers.
In conclusion, permuting the reference identifiers with π is an extra degree
of freedom that we can exploit to improve index space and preserve query
efficiency, noting that the correctness of the index is not compromised when
reference identifiers are re-assigned globally.

Example 1. Let us consider the z = 8 colors from Fig. 1b, for N = 16. Let r = 4
andN1 = {1, 12, 13, 14, 16},N2 = {3, 5, 9},N3 = {7, 11},N4 = {2, 4, 6, 8, 10, 15},
assuming we use the natural order between the integers to determine an order
between the elements of each Ni. Thus, we have B1 = 5, B2 = 8, B3 = 10, and
B4 = 16. The induced permutation π can be visualized by concatenating the
sets Ni from i = 1 to 4 and assigning “new” identifiers, from 1 to N , in this
concatenated order:

{ 1 12 13 14 16 }{ 3 5 9 }{ 7 11 }{ 2 4 6 8 10 15 }
new identifiers → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

which results in π(1) = 1, π(12) = 2, π(13) = 3, etc., that is

π = [1, 11, 6, 12, 7, 13, 9, 14, 8, 15, 10, 2, 3, 4, 16, 5].

8 Pibiri, Fan, and Patro

LD

= [(1,1),(2,1),(3,1),(4,1)]

= [(2,2),(4,2)]

= [(1,2),(2,1),(3,2),(4,3)]

= [(1,3),(2,1),(3,2)]

= [(1,4),(2,3),(3,2),(4,4)]

= [(4,5)]

= [(1,4),(2,2),(3,1),(4,6)]

= [(1,5)]

!1

!2

!3

!4

!5

!6

!7

!8

!1,1

!1,2

!1,3

!1,4

!1,5

= [3]

= [1]

= [1,3]

= [1,2,3,4,5]

= [2,5]

!2,1

!2,2

!2,3

= [1,2,3]

= [1]

= [1,3]

!4,1

!4,2

!4,3

!4,4

!4,5

!4,6

= [2,5,6]

= [1,6]

= [5]

= [3]

= [3,4]

= [4]

!3,1

!3,2

= [2]

= [1,2]

PM

!6

!7

!1

!2

!3

!4

!5

!8

!9

!10

AGCG

CGCTCG

CGAACG

CGTCCG

CGGAT

ATTAT

CAT

GAGTT

ATAGA

GACA

Fig. 2: Mac-dBG layout discussed in Example 1 for the colors of the c-dBG from
Fig. 1. Note that the partial color P1,4 = [1, 2, 3, 4, 5] shared between C5 and C7

is now represented once as a direct consequence of partitioning, and indicated
with the pair (1, 4) instead of replicating the five integers it contains in both C5

and C7. The same consideration applies to other shared sub-sequences.

Now we apply the permutation π to each color, obtaining the following permuted
colors (vertical bars represent the partial color boundaries B1, . . . , B4).

C1 = [3|6, 7, 8|10|12, 15, 16] C2 = [6|11, 16]

C3 = [1|6, 7, 8|9, 10|15] C4 = [1, 3|6, 7, 8|9, 10]

C5 = [1, 2, 3, 4, 5|6, 8|9, 10|13] C6 = [13, 14]

C7 = [1, 2, 3, 4, 5|6|10|14] C8 = [2, 5]

For example, color C1, that before was [3, 4, 5, 9, 10, 11, 13, 15] (see Fig. 1b),
now is [π(3),π(4),π(5),π(9),π(10),π(11),π(13),π(15)] = [6, 12, 7, 8, 15, 10, 3, 16]
or [3, 6, 7, 8, 10, 12, 15, 16] once sorted. The partial colors are the distinct sub-
sequences in each partition of the permuted colors. For example, P1 is the set
of the distinct sub-sequences in partition 1, i.e., those comprising the integers
x such that 0 < x ≤ B1 = 5. Hence, we have five distinct partial colors in
partition 1, and these are [3], [1], [1, 3], [1, 2, 3, 4, 5], and [2, 5]. Importantly, note
that from the integers in partial colors from partition i > 1 we can subtract the
lower bound Bi−1. For example, from the integers in the partial color [6, 7, 8]
from C1 in partition 2 we can subtract B1 = 5, hence obtaining [1, 2, 3]. Overall,
we thus obtain that P comprises four partial color sets, as shown in Fig. 2. The
figure also shows the rendering of the colors C = {C1, . . . , C8} via meta color
lists, i.e., how each color can be spelled by a proper concatenation of partial
colors.

3.2 Data structures used and two-level intersection algorithm

Given a Mac-dBGG(U ,N ,π,P,M), a concrete implementation includes a repre-
sentation for U , P, andM (plus also the sorted arrayB[1..r] = [0, B1, . . . , Br−1]).

Mac-dBGs 9

The Mac-dBG is not bound to any specific compression scheme nor any spe-
cific dictionary data structure, allowing one to obtain a spectrum of different
space/time trade-offs depending on choices made. In this paper, we made the
following choices: (1) we use the SSHash data structure [28,29] to represent the
set of unitigs U ; (2) we adopt the same compression methods as used in Ful-
gor [13] to compress the partial colors and the same mechanism to map unitigs
to their colors (using a binary vector of length m, equipped with ranking capa-
bilities); (3) we represent each meta color list as a list of log2(Np)-bit integers.

Very importantly, note that choices (1) and (2) directly imply that our Mac-
dBG implementation fully exploits the key unitig properties described in Sec-
tion 2 as Fulgor does.

The Mac-dBG opens the possibility to achieve even faster query times than a
traditional c-dBG, due to the manner in which the partitions factorize the space
of references, if a two-level intersection algorithm is employed for pseudoalign-
ment. There are several pseudoalignment algorithms (see [13, Section 4] for an
overview) that standard c-dBG data structures directly support; here we focus
on the full intersection algorithm. Given a query string Q, we consider it as a set
of k-mers. Let K(Q) = {x ∈ Q|Color(x) '= ∅}. The full intersection method
computes the intersection between the colors of all the k-mers in K(Q). Our two-
level intersection algorithm is as follows. First, only meta colors are intersected
(thus, without any need to access the partial colors) to determine the partitions
in common to all colors being intersected. Then only the common partitions are
considered. Two cases can happen for each partition. (1) The meta color is the
same for all colors: in this case, the result of the intersection is implicit and it suf-
fices to decode the partial color indicated by the meta color. (2) The meta color
is not the same, hence we have to compute the intersection between different
partial colors. This optimization is beneficial when the colors being intersected
have very few partitions in common, or when they have identical meta colors.

3.3 The optimization problem

As evident from its definition, the effectiveness of a Mac-dBG crucially depends
on the choice of the partition N and upon the order of the references within each
partition as given by the permutation π. There is, in fact, an evident friction
between the encoding costs of the partial and meta colors. Let Nm and Np =
∑r

i=1 |Pi| be the number of meta and partial colors, respectively. Since each
meta color can be indicated with log2(Np) bits, meta colors cost Nm log2(Np)
bits overall. Instead, let Cost(Pij ,π) be the encoding cost (in bits) of the partial
color Pij according to some function Cost. On one hand, we would like to select
a large value of r so that Np diminishes since each color is partitioned into
several, small, partial colors, thereby increasing the chances that each partition
has many repeated sub-sequences. This will help in reducing the encoding cost

for the partial colors, i.e., the quantity
∑r

i=1

∑|Pi|
j=1 Cost(Pij ,π). On the other

hand, a large value of r will yield longer meta color lists, i.e., increase Nm. This,
in turn, could erode the benefit of encoding shared patterns and would require
more time to decode each meta color list.

10 Pibiri, Fan, and Patro

We can therefore formalize the following optimization problem that we call
minimum-cost partition arrangement (MPA).

Problem 2 (Minimum-cost partition arrangement). Let G(U , C) be the com-
pacted c-dBG built from the reference collection R = {R1, . . . , RN}. Determine
the partition N = {N1, . . . ,Nr} of [N] = {1, . . . , N} for some r ≥ 1 and per-

mutation π : [N] → [N] such that Nm log2(Np) +
∑r

i=1

∑|Pi|
j=1 Cost(Pij ,π) is

minimum.

Depending upon the chosen encoding, smaller values of Cost(Pij ,π) may
be obtained when the gaps between subsequent reference identifiers are mini-
mized. Finding the permutation π that minimizes the gaps between the identi-
fiers over all partial colors is an instance of the bipartite minimum logarithmic
arrangement problem (BIMLOGA) as introduced by Dhulipala et al. [11] for the
purpose of minimizing the cost of delta-encoded lists in inverted indexes. The
BIMLOGA problem is NP-hard [11]. We note that BIMLOGA is a special case
of MPA: that for r = 1 (one partition only) and Cost(Pij ,π) being the log2
of the gaps between consecutive integers. It follows that also MPA is NP-hard
under these constraints. This result immediately suggests that it is unlikely that
polynomial-time algorithms exist for solving the MPA problem.

3.4 The SCPO framework

In this section we propose a construction algorithm for the Mac-dBG. The algo-
rithm is an heuristic for the MPA optimization problem defined in the previous
section (Problem 2), and it is based on the intuition that similar references
should be grouped together in the same partition so as to increase the likeli-
ness of having a smaller number of longer shared sub-sequences. The algorithm
therefore consists in the following four steps: (1) Sketching, (2) Clustering, (3)
Partitioning, and (4) Ordering (SCPO).

1. Sketching. We argue that a reasonable way of assessing the similarity be-
tween two references is determining the number of unitigs that they have in
common. Recall from Property 1 (Section 2) that each reference Ri ∈ R can be
spelled by a proper concatenation (a “tiling”) of the unitigs of the underlying
compacted dBG. If these unitigs are assigned unique identifiers by SSHash, it
follows that each Ri can be seen as a list of unitig identifiers. The idea is that
these integer lists are much shorter and take less space than the actual DNA
references. To reduce the space of a list even further, we compute a sketch of the
list based on the fact that if two sketches are similar, then the original lists are
similar as well.

2. Clustering. The sketches are fed as input of a clustering algorithm.

3. Partitioning. Once the clustering is done, each input reference Ri is labeled
with the cluster label of the corresponding sketch so that the partition of R into
R1, . . . ,Rr is uniquely determined.

Mac-dBGs 11

4. Ordering. Finally, one may order the references in each Ri to determine a
permutation π that yields a better compression for the partial colors Pi. In fact,
while the goal of clustering and partitioning is to factor out repeated sub-patterns
within the colors, the goal of the ordering step is to assign nearby identifiers to
references that tend to co-occur within the partial colors (as already mentioned
in Section 3.3).

Specific framework instance. In this work, we use the following specific in-
stance of this framework. We build hyper-log-log [14] sketches of W = 210 bytes
each. As clustering algorithm, we use a divisive K-means approach that does not
need an a-priori number of clusters to be supplied as input. At the beginning
of the algorithm, the whole input forms a single cluster that is recursively split
into two clusters until the mean squared error (MSE) between the sketches in
the cluster and the cluster’s centroid is not below a prescribed threshold (which
we fix to 10% of the MSE at the start of the algorithm). Let r be the number of
found clusters. The complexity of the algorithm depends on the topology of the
binary tree representing the hierarchy of splits performed. In the worst case, the
topology is completely unbalanced and the complexity is O(WNr); in the best
case, the topology is perfectly balanced instead, for a cost of O(WN log r). Note
that the worst-case bound is very pessimistic because, in practice, the formed
clusters tend to be reasonably well-balanced in size.

In the current version of the work, we did not perform any ordering of the
references within each cluster. We leave the investigation of this opportunity as
future work.

4 Experiments

This section presents the results of experiments conducted to assess the perfor-
mance of the Mac-dBG. We fixed the k-mer length to k = 31. All experiments
were run on a machine equipped with Intel Xeon Platinum 8276L CPUs (clocked
at 2.20GHz), 500 GB of RAM, and running Linux 4.15.0.

Datasets. We build Mac-dBGs with the proposed SCPO framework on the
following pangenomes: 3,682 E. Coli (EC) genomes from NCBI [1]; different
collections of S. Enterica (SE) genomes (from 5,000 up to 150,000 genomes)
from the collection by Blackwell et al. [7]. Additionally, we also include a much
more diverse collection of 30,691 genomes assembled from human gut samples
(GB), originally published by Hiseni et al. [15].

Other evaluated tools. We compare the Mac-dBG against the following in-
dexes: Fulgor [13], Themisto [2], MetaGraph [17,18,19], and COBS [6]. Links
to the corresponding software libraries can be found in the References. We use
the C++ implementations from the respective authors. All software was compiled
with gcc 11.1.0.

We provide some details on the tested tools. Both Themisto and COBS
were built under default parameters as suggested by the authors, that is: op-
tion -d 20 for Themisto which enables the sampling of k-mer colors in the

12 Pibiri, Fan, and Patro

Table 1: Index space in GB, broken down by space required for indexing the k-
mers in the dBG (SSHash for both Fulgor and Mac-dBG, SBWT for Themisto,
and BOSS for MetaGraph) and data structures required to encode colors and
map k-mers to colors.

Genomes
Mac-dBG Fulgor Themisto MetaGraph COBS

dBG Colors Total dBG Colors Total dBG Colors Total dBG Colors Total Total

EC 3,682 0.29 0.52 0.81 0.29 1.36 1.65 0.22 1.85 2.08 0.10 0.23 0.33 7.53

SE

5,000 0.16 0.16 0.32 0.16 0.59 0.75 0.14 1.29 1.43 0.07 0.19 0.26 9.11
10,000 0.35 0.33 0.68 0.35 1.66 2.01 0.32 3.50 3.81 0.13 0.38 0.51 18.68
50,000 1.26 2.14 3.40 1.26 17.03 18.30 1.07 32.42 33.48 0.36 1.95 2.31 88.61
100,000 1.72 3.83 5.55 1.72 40.70 42.44 1.35 75.94 77.28 0.45 3.50 3.95 173.58
150,000 2.03 5.37 7.40 2.03 68.60 70.66 1.58 125.16 126.74 — — — 265.49

GB 30,691 21.31 7.85 29.16 21.31 15.45 36.85 18.33 30.88 49.21 5.23 4.77 10.00 21.23

SBWT for better space effectiveness; in COBS, we have shards of at most 1024
references where each Bloom filter has a false positive rate of 0.3 and one hash
function. MetaGraph indexes were built with the relaxed row-diff BRWT data
structure [18] using a workflow available at https://github.com/theJasonFan/
metagraph-workflows that we wrote with the input of the MetaGraph authors.

Index size. Table 1 reports the total on disk index size for all of the methods
evaluated. Compared to the most recent indexes, Fulgor and Themisto, that
where previously shown to achieve the most desirable space/time trade-offs, Mac-
dBG substantially improves on the space (and, as we shall see next, without any
negative impact on query time). In fact, the only index smaller on disk than
Mac-dBG is MetaGraph in the relaxed row-diff BRWT configuration — at least
in the cases where we were able to construct the latter within the construction
resource constraints. However, unlike the other indexes evaluated, the on disk
index size MetaGraph is not representative of the working memory required for
query when using the (recommended and default) batch mode query.

The COBS index, despite being approximate, is consistently and considerably
larger than all of the other (exact) indexes, except for the the Gut bacteria
collection (GB). The differing behavior on GB likely derives from the fact that the
diversity of that data cause the exact indexes to spend a considerable fraction of
their total size on the representation of the k-mer dictionary itself (e.g., 18−21.3
GB). However COBS, by design, eliminates this component of the index entirely.

Finally we observe that, as the number of references grow in the SE datasets,
the already-large savings of Mac-dBG become even more prominent. For exam-
ple Mac-dBG is 43% of the size of Fulgor (2.34× smaller) for SE 5,000, but is
only 10% of the size of Fulgor (9.55× smaller) for SE 150,000. As the size of
the collection grows, and more repetitive sub-patterns in the collection of col-
ors appears, the Mac-dBG index is able to better capture and eliminate this
redundancy.

Mac-dBGs 13

Table 2: Total query time (elapsed time) and memory used during query (max.
RSS) as reported by /usr/bin/time -v, using 16 processing threads. The read-
mapping output is written to /dev/null for this experiment. We also report
the mapping rate in percentage (fraction of mapped read over the total number
of queried reads). The query algorithm used here is full-intersection. The “B”
query mode of MetaGraph corresponds to the batch mode (with default batch
size); the “NB” corresponds to the non-batch query mode instead. In red font
we highlight the workloads exceeding the available memory (> 500 GB).

Genomes Rate
Mac-dBG Fulgor Themisto MetaG.-B MetaG.-NB COBS

mm:ss GB mm:ss GB h:mm:ss GB mm:ss GB h:mm:ss GB h:mm:ss GB

EC 3,682 98.99 2:40 0.85 2:10 1.68 0:03:40 2.46 22:00 30.44 1:05:41 0.40 0:45:11 34.93

SE

5,000 89.49 1:16 0.37 1:16 0.82 0:03:50 1.82 14:14 36.54 0:20:32 0.33 0:38:34 41.93
10,000 89.71 2:45 0.75 2:26 2.11 0:07:35 4.16 28:15 92.18 0:43:40 0.61 1:01:14 84.20
50,000 91.25 14:00 3.65 19:15 18.53 0:42:02 33.14 — — 4:30:03 2.72 3:54:18 408.82
100,000 91.41 26:48 6.29 27:30 42.78 1:22:00 75.93 — — 9:40:06 4.82 8:07:29 522.56
150,000 91.52 41:30 8.51 42:30 70.55 2:00:13 124.27 — — — — 7:47:14 522.63

GB 30,691 92.91 01:03 28.51 01:10 30.02 0:01:20 48.47 28:55 15.86 0:22:05 9.91 0:34:45 225.57

Query efficiency. Table 2 reports the query times of the indexes, performing
full-intersection pseudoalignment (see Alg. 1 from [13]), on a high-hit workload.
The queried reads consist of all FASTQ records in the first read file of the
following accessions: SRR1928200 for EC, SRR801268 for SE, and ERR321482

for GB. These files contain several million reads each. Timings are relative to a
second run of each experiment, where the indexes are loaded from the disk cache
(which benefits the larger indexes more than the smaller ones).

Consistent with previously reported results [13], we find that among existing
indexes, Fulgor provides the fastest queries. As expected, Mac-dBG does not
not sacrifice query efficiency compared to Fulgor. After Mac-dBG and Fulgor,
we note that Themisto is the next fastest index, followed by MetaGraph in batch
query mode. The query speeds of COBS and of MetaGraph when not executed
in batch mode are much lower than that of the other indexes, in some cases
being (more than) an order of magnitude slower.

Critically, it is not the case with all indexes evaluated here that the size of
the index on disk is a good proxy for the memory required to actually query the
index. Specifically, for MetaGraph, when used in batch query mode (“B”), the
required memory can exceed the on-disk index size by up to 2 orders of mag-
nitude, and in several tests this resulted in the exhaustion of available memory
and an inability to complete the queries under the tested configuration. On the
other hand, Fulgor, Themisto, Mac-dBG and MetaGraph when not executed in
batch mode (“NB”) require only a small constant amount of working memory
beyond the size of the index present on disk.

Mac-dBGs 15

References

1. Alanko, J.N.: 3682 E. Coli assemblies from NCBI (2022), https://zenodo.org/
records/6577997

2. Alanko, J.N., Vuohtoniemi, J., Mäklin, T., Puglisi, S.J.: Themisto: a scalable col-
ored k-mer index for sensitive pseudoalignment against hundreds of thousands
of bacterial genomes. Bioinformatics 39(Supplement 1), i260–i269 (Jun 2023),
https://github.com/algbio/themisto

3. Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics 34(13), i169–i177
(2018)

4. Almodaresi, F., Zakeri, M., Patro, R.: PuffAligner: a fast, efficient and accurate
aligner based on the pufferfish index. Bioinformatics 37(22), 4048–4055 (Jun 2021)

5. Baier, U., Beller, T., Ohlebusch, E.: Graphical pan-genome analysis with com-
pressed suffix trees and the burrows–wheeler transform. Bioinformatics 32(4), 497–
504 (2016)

6. Bingmann, T., Bradley, P., Gauger, F., Iqbal, Z.: Cobs: a compact bit-sliced sig-
nature index. In: International Symposium on String Processing and Information
Retrieval. pp. 285–303. Springer (2019), https://github.com/bingmann/cobs

7. Blackwell, G.A., Hunt, M., Malone, K.M., Lima, L., Horesh, G., Alako, B.T.F.,
Thomson, N.R., Iqbal, Z.: Exploring bacterial diversity via a curated and search-
able snapshot of archived DNA sequences. PLOS Biology 19(11), 1–16 (11 2021),
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k

8. Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic rna-
seq quantification. Nature biotechnology 34(5), 525–527 (2016)

9. Cleary, A., Ramaraj, T., Kahanda, I., Mudge, J., Mumey, B.: Exploring Frequented
Regions in Pan-Genomic Graphs. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics 16(5), 1424–1435 (Sep 2019)

10. Dede, K., Ohlebusch, E.: Dynamic construction of pan-genome subgraphs. Open
Computer Science 10(1), 82–96 (Apr 2020)

11. Dhulipala, L., Kabiljo, I., Karrer, B., Ottaviano, G., Pupyrev, S., Shalita, A.:
Compressing graphs and indexes with recursive graph bisection. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 1535–1544 (2016)

12. Fan, J., Khan, J., Pibiri, G.E., Patro, R.: Spectrum preserving tilings enable sparse
and modular reference indexing. In: Research in Computational Molecular Biology.
pp. 21–40 (2023)

13. Fan, J., Singh, N.P., Khan, J., Pibiri, G.E., Patro, R.: Fulgor: A Fast and Compact
k-mer Index for Large-Scale Matching and Color Queries. In: 23rd International
Workshop on Algorithms in Bioinformatics (WABI 2023). pp. 18:1–18:21 (2023),
https://github.com/jermp/fulgor

14. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of
a near-optimal cardinality estimation algorithm. In: Discrete Mathematics and
Theoretical Computer Science. pp. 137–156. Discrete Mathematics and Theoretical
Computer Science (2007)

15. Hiseni, P., Rudi, K., Wilson, R.C., Hegge, F.T., Snipen, L.: HumGut: a comprehen-
sive human gut prokaryotic genomes collection filtered by metagenome data. Mi-
crobiome 9(1), 1–12 (2021), https://arken.nmbu.no/~larssn/humgut/index.htm

16. Holley, G., Melsted, P.: Bifrost: highly parallel construction and indexing of colored
and compacted de Bruijn graphs. Genome biology 21(1), 1–20 (2020)

16 Pibiri, Fan, and Patro

17. Karasikov, M., Mustafa, H., Danciu, D., Barber, C., Zimmermann, M., Rätsch, G.,
Kahles, A.: Metagraph: Indexing and analysing nucleotide archives at petabase-
scale. BioRxiv pp. 2020–10 (2020)

18. Karasikov, M., Mustafa, H., Joudaki, A., Javadzadeh-no, S., Rätsch, G., Kahles,
A.: Sparse Binary Relation Representations for Genome Graph Annotation. Jour-
nal of Computational Biology 27(4), 626–639 (Apr 2020), https://github.com/
ratschlab/metagraph

19. Karasikov, M., Mustafa, H., Rätsch, G., Kahles, A.: Lossless indexing with counting
de bruijn graphs. Genome Research 32(9), 1754–1764 (2022)

20. Lees, J.A., Mai, T.T., Galardini, M., Wheeler, N.E., Horsfield, S.T., Parkhill, J.,
Corander, J.: Improved Prediction of Bacterial Genotype-Phenotype Associations
Using Interpretable Pangenome-Spanning Regressions. mBio 11(4) (Aug 2020)

21. Liu, B., Guo, H., Brudno, M., Wang, Y.: deBGA: read alignment with de bruijn
graph-based seed and extension. Bioinformatics 32(21), 3224–3232 (Jul 2016)

22. Luhmann, N., Holley, G., Achtman, M.: BlastFrost: fast querying of 100, 000s of
bacterial genomes in bifrost graphs. Genome Biology 22(1) (Jan 2021)

23. Mäklin, T., Kallonen, T., David, S., Boinett, C.J., Pascoe, B., Méric, G., Aanensen,
D.M., Feil, E.J., Baker, S., Parkhill, J., et al.: High-resolution sweep metagenomics
using fast probabilistic inference [version 1; peer review: 1 approved, 1 approved
with reservations]. Wellcome open research 5(14) (2021)

24. Manuweera, B., Mudge, J., Kahanda, I., Mumey, B., Ramaraj, T., Cleary, A.:
Pangenome-Wide Association Studies with Frequented Regions. In: Proceedings of
the 10th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics. ACM (Sep 2019)

25. Marcus, S., Lee, H., Schatz, M.C.: Splitmem: a graphical algorithm for pan-genome
analysis with suffix skips. Bioinformatics 30(24), 3476–3483 (2014)

26. Minkin, I., Medvedev, P.: Scalable multiple whole-genome alignment and locally
collinear block construction with SibeliaZ. Nature Communications 11(1) (Dec
2020)

27. Minkin, I., Medvedev, P.: Scalable pairwise whole-genome homology mapping of
long genomes with BubbZ. iScience 23(6), 101224 (Jun 2020)

28. Pibiri, G.E.: Sparse and skew hashing of k-mers. Bioinformatics 38(Supplement 1),
i185–i194 (06 2022)

29. Pibiri, G.E.: On weighted k-mer dictionaries. Algorithms for Molecular Biology
18(3) (2023)

30. Pibiri, G.E., Venturini, R.: Techniques for inverted index compression. ACM Com-
puting Surveys (CSUR) 53(6), 125:1–125:36 (2021)

31. Rahman, A., Dufresne, Y., Medvedev, P.: Compression Algorithm for Colored de
Bruijn Graphs. In: 23rd International Workshop on Algorithms in Bioinformatics
(WABI 2023). pp. 17:1–17:14 (2023)

32. Reppell, M., Novembre, J.: Using pseudoalignment and base quality to accurately
quantify microbial community composition. PLOS Computational Biology 14(4),
1–23 (04 2018)

33. Schaeffer, L., Pimentel, H., Bray, N., Melsted, P., Pachter, L.: Pseudoalignment for
metagenomic read assignment. Bioinformatics 33(14), 2082–2088 (02 2017)

34. Skoufos, G., Almodaresi, F., Zakeri, M., Paulson, J.N., Patro, R., Hatzigeorgiou,
A.G., Vlachos, I.S.: AGAMEMNON: an accurate metaGenomics and MEtatran-
scriptoMics quaNtificatiON analysis suite. Genome Biology 23(1) (Jan 2022)

