Optimizing Discrete Noise Distributions for Rényi
Differential Privacy

Atefeh Gilani*, Juan Felipe Gomez*, Shahab Asoodeh?, Flavio P. Calmon®, Oliver Kosut*, Lalitha Sankar*

* School of Electrical, Computer and Energy Engineering, Arizona State University
({agilani2, okosut, Isankar} @asu.edu)
T School of Engineering and Applied Sciences, Harvard University (flavio@seas.harvard.edu)
! Department of Physics, Harvard University (juangomez@g.harvard.edu)
§ Department of Computing and Software, McMaster University (asoodehs @mcmaster.ca)

Abstract—An optimization framework is proposed to find
discrete mechanisms supported on the integers that minimize
the Rényi differential privacy subject to a cost constraint. The
optimization problem is solved using gradient descent, and
the resulting mechanisms are compared against the discrete
Gaussian mechanism. Numerical results show that the optimized
mechanisms outperform the discrete Gaussian with the same
variance, in terms of both Rényi and (¢, ¢) differential privacy.

I. INTRODUCTION

Differential privacy (DP) [1] involves applying randomized
mechanisms to queries based on sensitive data, so as to obscure
the private information contained therein. The most popular
mechanisms have been Laplacian noise [1], applied when
pure-DP is desired, or Gaussian noise [2] for approximate DP
(i.e., (¢,0)-DP). However, as shown in [3], there is reason to
believe that these mechanisms are not optimal for the large
composition setting — i.e., when many iterations of the DP
mechanisms are applied, such as when training a machine
learning model over many iterations.

In addition, it has been observed that many implementa-
tions that generate Gaussian random variables have flaws that
allow for exact reconstruction of the noise values, thereby
challenging their de facto privacy guarantees [4]. For this
reason, [5] proposed the discrete Gaussian mechanism, which
is an integer-valued probability distribution with probability
mass function (PMF) proportional to the Gaussian function.
The restriction of noise distributions used in DP to an integer
support allows for resilience against floating-point attacks
while offering a better fit for applications where queries of
interest are integer-valued (e.g., population counts in the US
Census).

We explore other discrete mechanisms, also supported on
the integers, that can achieve stronger privacy guarantees than
the discrete Gaussian for the same variance. These mecha-
nisms are derived by solving an optimization problem to find
the PMF for the noise distribution. A similar approach was
taken in [3], [6] to derive continuous distributions via an op-
timization problem based on the Kullback-Leibler divergence.
Here, we directly optimize for the Rényi DP (RDP). RDP has
the desirable properties that (i) it is a monotonic function of a
convex function of the PMF of the noise distribution, (ii) it has

good composition properties [7], and (iii) it can be transformed
into approximate DP guarantees via the moments accountant
[2]. Our main contributions are:

1) We formulate a finite-dimensional convex optimization
problem to find noise PMFs that minimize the RDP
subject to a cost constraint on the noise — typically a
second moment constraint. The form of RDP requires
that noise distribution have infinite support, so in order
to make the optimization problem finite-dimensional, we
only parameterize the PMF within a certain interval, and
assume geometric tails beyond this interval.

2) We implement gradient descent to solve this convex op-
timization problem. Our implementation is available on
GitHub [8].

3) We present numerical evidence that the optimized mecha-
nisms can indeed outperform the discrete Gaussian. Specif-
ically, we show that, for the same variance, the RDP
at the target o (the Rényi parameter) for the optimized
mechanism is strictly smaller than that of the discrete
Gaussian. We also show that when RDP is converted into
approximate-DP, the optimized mechanisms achieve better
privacy parameters.

II. PRELIMINARIES

We review some basic definitions and results from the DP
literature. In this paper, all distributions will be discrete, so
we can describe a probability measure via its probability mass
function (PMF). Given a countable alphabet X, let P(X) be
the set of PMFs with support on X. For P,Q € P(X), the
Rényi divergence of order a, for o € (0,1) U (1, 00), is

D(PQ) = —— log <Z P(x)acxx)”) 0

zeX

Let D be a set of possible datasets, and ~ be a “neighboring”
relation among elements of D. That is, for d,d € D we
write d ~ d to mean that d and d’' are neighbors, which
typically means that they differ in one entry. A mechanism
is a function M : D — P(X), which, for each d € M,
selects a PMF M, € P(X). This can be interpreted as a



conditional distribution for a random variable supported in X
given a dataset from D.

Definition 1. A mechanism M : D — P(X) is said to be
(e,0)-DP if for all A C X,

Mg(A) < e Mg (A)+6 foralld,d € D, d~d'. (2)

For a mechanism M, we also define the best € for a given §
as ep(0) = inf{e : M is (¢,0)-DP}.

Definition 2. A mechanism M : D — P(X) is said to be
(a,7)-RDP if

Do(Mg|Mg) <~ foralld,d e D, d~d.  (3)
For a mechanism M, also define the best vy for a given « as
Ym () = inf{y : M is (a,7)-RDP}. 4)

For two mechanisms M), M) each outputting a vari-
able in X, their composition M : D — P(X x X) is

Ma(wr,w2) = M (@) MP (2). 5)

Theorem 1 ([7]). For any mechanisms M(l), M and their
composition M,

m(@) < v (@) + e (@) (6)

The above is non-adaptive composition, in that each mecha-
nism works independently of the other’s output. In contrast, in
an adaptive composition, the second mechanism may depend
on the output of the first. A similar composition result holds
for the adaptive setting [7], but for brevity we omit the details.
A particular consequence of Theorem 1 is that, if the same (or
equivalent) mechanisms are composed N, times, then the RDP
is simply multiplied by N..

The moments accountant [2] provides a method to derive
(e,9) guarantees from («,y) guarantees. The most basic form
of the moments accountant is as follows.

Theorem 2 ([2]). For any mechanism M,

, log(1/0)
0) < inf — . 7
em(0) < mf yu(a) + —— ()
While improvements to the moments accountant have been
made in [9], [10], for simplicity we use only this version.
Let Z be the set of integers. The discrete Gaussian distri-
bution, denoted N7z (p,0?), for p € Z and o > 0, is the PMF
in P(Z) given by
_(@—w)?
e 202

Plo)= —T

_(y—n
Z’qEZ € 202

The discrete Gaussian mechanism, for a query function ¢ :
D — Z, is given by My = Nz(q(d),5?). The following facts
about the discrete Gaussian mechanism are shown in [5].

z €. (8)

Theorem 3. If the query function q satisfies the sensitivity
bound |q(d) — q(d")| < s for all d ~ d, then the discrete

Gaussian mechanism with parameter o satisfies
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Q

Tm(a) < o 9)

[\

g

with equality if as is an integer. In addition, the discrete
Gaussian mechanism satisfies the variance condition

Exom, [(X —q(d))?] < o (10)

I1I. OPTIMIZED DISCRETE RENYI DP MECHANISMS

In a discrete setting, our aim is to solve a problem of the
following form:
minimize max
PzeP(Z) te{-s,...,s}
subject to  E[c(Z)] < C.

Do (Pz||T,Pz) ,

(1)

Here, we use 7} to denote the shift operator, i.e., for a real-
valued function f the function 73 f is defined as (T3 f)(x) =
f(x —1t). The parameter s € N, where N is the set of positive
integers, is the sensitivity of a query, ¢ : Z — [0,00) is a
symmetric cost function, and C' € R™ is an upper bound on the
cost. To form a finite-dimensional optimization problem, we
assume Py is a distribution over the integers in the following
form:

. Pi|»
Pz (i) = { | lrm—N

DN

for i € Z,with |i| < N

, s 12)
for i € Z,with |i| > N,

where » € (0,1) and N € N. For fixed r, this dis-
tribution is parameterized by the finite-dimensional vector

b= (pOa"'va)-

Theorem 4. Fix r € (0,1) and N € N, and let c(z) = 2>
be the quadratic cost function. Within the distribution family
introduced in (12), the optimization described in (11) can be
reformulated as the optimization problem in (%).

Note that the objective in (x) is the quantity inside the log of
the Rényi divergence — thus the RDP can be easily calculated
from the optimal objective. A detailed proof is in the appendix.

IV. NUMERICAL RESULTS

In this section, we numerically compare the optimized
discrete mechanism from (%), which we henceforth refer to
as an discrete RDP mechanism, against the discrete Gaussian
mechanism. We employ (9) to obtain («,y)-RDP guarantees
of the discrete Gaussian mechanism.

We begin by noting that (9) attains equality when as is an
integer. For the experiments presented here, we meticulously
select our parameters to satisfy this constraint, i.e., as is an
integer. We use Theorem 2 to derive (e,d)-DP guarantees
from («,~)-RDP guarantees. To quantify utility, we focus
on the variance of distributions. Our results demonstrate that
discrete RDP mechanisms can outperform discrete Gaussian
mechanisms with the same variance' in terms of both (a,¥)-
RDP and (¢, d)-DP guarantees.

Figure 1: Figures 1a and 1b depict the optimal distributions
obtained by solving (%) for various parameter sets. These

'While in general, the parameter o and the standard deviation of a discrete
Gaussian need not be the same, for the range of o values we consider, they
are imperceptibly close (i.e., their difference is in the range of ~ 10~ 19),
and hence, assumed to be the same.
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plots illustrate that the optimal distributions may exhibit either
monotonic or non-monotonic behavior.

Figure 2a: This figure displays the RDP guarantees of the
discrete RDP mechanism for v = 2 optimized for different
values of sensitivity s. The ratio o/s is kept fixed for each
curve in this plot. Similar to the (a,~)-RDP guarantees of
discrete Gaussian mechanisms, the («a,)-RDP guarantees of
our mechanisms also depend almost entirely on the o/s ratio
rather than on ¢ and s individually.

Figure 2b: This figure compares the («, v)-RDP guarantees
of a discrete Gaussian mechanism with a variance of 16
(parameter 0 = 4 to very high precision) to a discrete RDP
mechanism optimized for the same variance and a range of «
values. Observe that the two achieve roughly the same perfor-
mance for « close to 1, but the RDP mechanism significantly
outperforms the discrete Gaussian for larger o.

Figure 3: Figure 3a compares (¢, = 10~%)-DP guarantees
of discrete Gaussian and RDP mechanisms across different
o/s values for 10 compositions. To accomplish this, for a
fixed o/s, we first determine the optimal o* and € for a
discrete Gaussian mechanism according to Theorem 2. Note
that if we substitute the upper bound (which is tight for integer
as) provided in Theorem 3 into Theorem 2, the resulting
expression becomes convex in a. Consequently, the optimal
« can be easily determined by setting the derivative to zero,
resulting in

2logl/d o

1
N, s D 13)

where N, is the number of compositions. Then, we opti-
mize the RDP noise for that o* and o/s to obtain (a*,~)-
guarantees and simply utilize Theorem 2 (without performing
the minimization) to translate these guarantees into (e, d)-
DP guarantees. We then use the same settings to create
the relative change plot, as shown in Figure 3b. For a

fixed o/s ratio, the percent relative change is computed as
e of discrete RDP mechanism
100 x (1 " € of discrete Gaussian mechanism) .

V. CONCLUDING REMARKS

We have presented a framework for determining the op-
timal additive-noise discrete mechanism minimizing Rényi

DP subject to a cost constraint. The resulting discrete RDP
mechanism is in general non-monotonic, and is akin to the
discrete Gaussian mechanism in that its privacy performance
primarily depends on the sensitivity and variance through the
ratio of the two quantities.

Another key take-away of our work is that the optimized dis-
crete RDP mechanism assures better privacy than the discrete
Gaussian, quantified via (i) RDP itself, and (ii) the resulting
e for a chosen 4.

The discrete Gaussian is presently the mechanism of choice
in the top-down private Census summary statistics release
algorithm [11], [12]. Our results presented here make a com-
pelling case for the discrete RDP as an alternative and we
hope to explore this further.
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Fig. 1: Figures la and 1b display the optimal distributions obtained by solving (%) for the parameter sets (s = 20,C =
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Fig. 2: Figure 2a illustrates the variation in («v = 2,~)-RDP guarantees across discrete RDP mechanisms optimized for different
s values, each with a fixed o /s ratio. Figure 2b illustrates the comparison of (v, y)-RDP guarantees between discrete Gaussian
and optimized RDP mechanisms, all with the same variance of 16, across various « values.
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Fig. 3: Figure 3a compares (e, = 10~8)-DP guarantees of discrete Gaussian and RDP mechanisms for different o /s values
with s = 1, for 10 compositions. Figure 3b illustrates the percent relative change for the same setting as Fig. 3a.
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APPENDIX

PROOF OF THEOREM 4

We have
o (Pz||TuP7) = logZPZ )Py (i —a)t
i€Z
1
= 1 o ploa

LD B (14)

i€L
where p;_q = pyr!i=9=N for i > a4+ N or i < —N +a. Let

focus on the quantity inside the logarithm:

> ey (15)
1E€EZL

min{—N,—N+a}—1 max{N,N+a}
= > P pise + >, v Py

1=—00 i=min{—N,—N+a}
00

+ DR (16)

i=max{N,N+a}+1

We have
min{—N,—N+a}—1
w Py

1=—00
min{—N,—N+a}—1
= Z (PNT_i_N)a (PNT
1=—00

min{—N,—N-{-a}—l

—i+a—N)1*04 (17)

_ erfozafiJrafN

1=—00

(18)

max{0,—a}+1

= py 7172 (19)
1—-7r

Similarly, we have

o0

>

i=max{N,N+a}+1
)
i=max{N,N+a}+1
3]
_ § eri—a—N+aa
i=max{N,N+a}+1

Ca(l—a) 7,,max{[),a}+1
1—r

a l—a
p; pi—a

(e ™) (par ™M) 0)

2n

=pN T (22)

Therefore,
min{—N,—N+a}—1 0o
> P pie + oo il
i=—00 i=max{N,N+a}+1
(23)
max{0,—a}+1 max{0,a}+1
—a)’ —a(l—a) T
=DpN ra(l ) T +pNT (1 )?’r
(24)
_ 110N7“ (Ta(lfa)+max{07fa} + Tfa(lfa)erax{O,a}) (25)
-Tr
PNT (,ra 7a(17a)+a) ifa>0
- { [1)N: (,,,a —a)—a _’_,r.fa(l a)) ifa<0 (26)
PNT (Tal o) _’_,r.aoz) ifa>0
— 1—r —
- { PNT ( —aa +r—a(1 oe)) ifa<0 (27)
— M (r\a\(l—a) n T|a|a) _ (28)
1—r
Now we simplify the middle term in (15) as follows:
max{N,N+a}
> Py iy (29)
i=min{—N,—N+a}
max{—a,0}+N
= > Pt (30)
min{—a,0}—-N
N
= > Py p)
= Pla|+j Pj
j=—N
—N-1 )
+ [py VO N pe 0 1{a #£ 0}
=—|a|-N
(€29)

N—|a| N
_ « 11—« a ala|—N 11—«
= D Py py "otV Y i)
j=-N j=N—la|+1
—N-1

> Pl Ha £ 0}

,‘a‘,

+ p}\;a’f—N(l_a)

(32)

The first equality follows from a change of variable where
1=j+a.
So, overall, the quantity inside the logarithm of Rényi diver-
gence simplifies to
T (r|a|<1fa> T r\a|a)
1—r
N—|a N
D Pl PR Y ey
j=—N :N—\a\+l
—-N-1

—i(1—
2 g
= N

,‘a‘,

l—a,—N(1-a)

+ Py T 1{a # 0}

(33)

This quantity is symmetric in a; $0, maxXqe(_s,... s} collapses
to Maxqeqo,... s} and |a| simplifies to a. Moreover, Rényi
divergence attains its minimum, which is zero, when a = 0,
so let us exclude a = 0 from the set {0, -- ,s}. So, the task



of finding the worst-case shift of Rényi divergence collapses
to the following optimization:

max PNT (T_a(lfa) + T,aoz)
a€{l,--,s} 1—7r

N—a N
D I RS N SR
j=—N j=N-—-a+1
—-N-1
—I—p}\,_aT_N(l_a) Z pgﬂ,r—J(l—a) (34)
j=—a—N

Now we simplify the normalization constraint as follows:

L=> p (35)

€L
N—-1 oo
=po+2> pi+2Y pyrt N (36)
=1 =N
N-1 2p
N
= 2 i . 37
Do + ;p + - 37

Let c(i) = i?, the cost constraint simplifies to

N-—-1 00
C>Elc(i)]=> pii®=2Y pi®+2) pyr Vi
i=1 i=N

i€z
(38)

>, —r2(N —1)2 + N2(2r — 1) —
ZTHVZQ: r( )(7“+—1)3(r ) T 39)
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