Characterizing and Understanding the Performance
of Small Language Models on Edge Devices

Md Romyull Islam, Nobel Dhar, Bobin Deng, Tu N. Nguyen, Selena He, Kun Suo
Department of Computer Science, Kennesaw State University, GA, USA
Email: {mislam22, ndhar} @students.kennesaw.edu, {bdeng2, tu.nguyen, she4, ksuo} @kennesaw.edu

Abstract—In recent years, significant advancements in com-
puting power, data richness, algorithmic development, and the
growing demand for applications have catalyzed the rapid
emergence and proliferation of large language models (LLMs)
across various scenarios. Concurrently, factors such as computing
resource limitations, cost considerations, real-time application
requirements, task-specific customization, and privacy concerns
have also driven the development and deployment of small lan-
guage models (SLMs). Unlike extensively researched and widely
deployed LLMs in cloud, the performance of SLM workloads
and their resource impact on edge environments remain poorly
understood. There is a notable lack of in-depth study and
comparison regarding the advantages, constraints, performance,
and resource consumption of SLMs in various edge settings.

This paper addresses this gap by conducting a comprehensive
analysis of representative SLMs on edge platforms. Initially,
we provide a summary of contemporary edge hardware and
popular SLMs. Subsequently, we quantitatively evaluate several
widely used SLMs, including TinyLlama, Phi-3, etc., on popular
edge platforms such as Raspberry Pi, Nvidia Jetson Orin, and
Mac mini. Our findings reveal that the interaction between
different hardware and SLMs can significantly impact edge
Al workloads while introducing non-negligible overhead. Our
experiments demonstrate that variations in performance and
resource usage might constrain workload capabilities of specific
models and their feasibility on edge platforms. Therefore, users
must judiciously match appropriate hardware and models based
on the requirements and characteristics of the edge environment
to avoid performance bottlenecks and optimize the utility of edge
computing capabilities.

Index Terms—Small Language Models (SLMs), Edge comput-
ing, Performance, Resource footprint

I. INTRODUCTION

In recent years, the exponential growth of artificial intelligence
(AI) across various fields has stimulated the demand for
advanced models, particularly large language models (LLMs).
These models possess robust language understanding and gen-
eration capabilities. However, LLMs have notable shortcom-
ings. First, they cannot guarantee the accuracy and quality of
their output, often producing biased or misleading information.
Second, LLMs can be overly general, leading to inefficiencies
in understanding and responding to the nuances of industry-
specific terminology, processes, and data. Furthermore, since
LLMs operate in the cloud, they present security and privacy
concerns. Furthermore, due to their extensive computational
and power requirements, deploying large language models
such as GPT-4 or Llama 3 on edge devices such as mobile
phones or PCs is impractical. Small Language Models (SLMs)
offer a compelling solution to this problem. As it is designed

to run directly on edge devices, SLMs have recently been
increasingly gaining attention from academia and industry.

Unlike traditional LLMs, small language models are much
smaller in size and optimized for performance, enabling them
to run efficiently within limited computing, memory, and
energy-constrained environments. For example, Apple recently
launched OpenELM, which has a minimum parameter count
of only 270 million and is only 3% of Llama 3. Additionally,
using SLMs to process data locally on edge devices can sig-
nificantly reduce latency and address privacy issues compared
to sending data to the cloud for processing. Today, more com-
panies are considering deploying their own customized SLMs
on edge devices across various sectors, such as healthcare,
automotive, industrial 10T, etc. For example, companies like
Microsoft, Intel, and AMD have recently proposed enhanced
Al personal computing (Al PC), which aims to provide a
more personalized and interactive computing experience by
integrating smarter and more responsive SLM Al functions
into everyday devices. As language models transition from
expensive and resource-intensive LLMs to leaner and more
efficient SLMs, it becomes exciting and crucial to study
different SLM model performances at the edge and their
effect on the system, especially from a resource perspective.
However, we found a gap in recent research in the edge Al
field on resource footprint and performance analysis of various
SLMs or applications on different edge computing platforms,
which is essential for improving edge platforms and deploying
SLMs or related services.

In this study, we performed a detailed analysis of repre-
sentative small language models on edge, such as TinyLlama,
Phi-3, OpenELM, etc., and conducted an empirical analysis of
their performance and resource usage. As far as we know, this
paper is the first to investigate the efficiency and performance
aspects of SLMs on edges. We collected and analyzed a series
of indicators through different systems, including inference
performance, memory usage, CPU load, swap partition usage,
disk activity rate, etc. Through the above assessment, this
study aims to identify and understand the bottlenecks that
currently hinder the effective deployment of SLM in various
edge platforms. We believe our findings can help users and
developers choose the right edge platform for their workloads
and navigate the optimization of current and future SLMs.
The remainder of this article is organized as follows. §-
II introduces edge hardware and the most widely used Al
edge workloads. §-III proposes our methodology including

(a) Model Size of Large Language Models (LLM) and Cloud GPU Memory

Expected
GPT-5

GPT-«’IQ/

100000

10000

B GPT-4 7
s 4
= Flan-PaLM
= 1000
2 GPT-3 820019268
£ " H10080GB
V1003268
g 100 H200 141GB B100 192GB
s 1001668 A10080GB
£ 10 MegatronL ' A10040GB
V100 1668
g TNLG
2 1 GPT-2
= .
3 BERT / ~e-Cloud Memory
z o4 Transformer /
- ~o-Model Size (Billions of Parameters)
0.01
2016 2017 2018 2019 2020 2021 2022 2023 2024

Model Size (#Params in Billion)

(b) Model Size of Small Language Models (SLM) and Edge GPU Memory

Jetson Orin NX

16GB

Jetson Xavier NX ASUS Thinker Raspberry Pi5

Llama-3 8B
10 Raspberry Pi 4 8GB 8GB 8GB Phia
4GB 9
Raspberry Pi 3 Banana Pi M64 GeminiN :)penELM/ /Mistral-7
emini Nano-1 »—
168 Jetsiggano 8GB _ _~/ GeminiNano-2
1 Phi-1 Phi-2
0.1
—+—~Model Size (Billion Parameters) FLAME
—e-Edge Memory
0.01
2018 2019 2020 2021 2022 2023 2024

Fig. 1. Growth of Large Language Models/Small Language Models Compared to Cloud/Edge GPU Memory Capacity over the Years.

hardware, software, measurement, and data collection. §-IV
presents experimental results and analysis. §-V reviews the
related work and §-VI concludes this paper.

II. BACKGROUND & MOTIVATION

The costs associated with training and maintaining LLMs are
substantial. For instance, training a large language model such
as GPT-3 can exceed $4 million, whereas retraining the 2"¢
version of the BigScience Large Open-science Open-access
Multilingual Language Model (BLOOM), which comprises
over 176 billion parameters, may incur costs around $10
million [1]. Figure 1(a) illustrates the growth trajectory of
representative LLM sizes in relation to cloud GPU memory
capacity. While GPU memory has increased from 16GB
(P100) in 2016 to 192GB (B200), which is projected for 2025,
LLM sizes have escalated dramatically. Initial models like
“Transformer” and "GPT” in 2017 featured 500 million and
110 million parameters, respectively, evolving to "GPT-3" with
175 billion parameters in 2020, and anticipated to reach trillion
parameters with "GPT-40” by 2024. This expanding disparity
between LLM sizes and cloud GPU memory capacity under-
scores the significant challenges and elevated costs associated
with deploying these large-scale models on existing hardware.

In contrast to LLMs, small language models (SLMs) are
engineered to operate with lower computing resources, making
them well suited for low-cost edge devices with limited pro-
cessing power and memory. Currently, edge devices and SLMs
are becoming increasingly integral to the Al era. As our world
becomes more interconnected, the number of smartphones, IoT
devices, and edge devices is rapidly growing. For example,
the number of consumer devices and enterprise edge IoTs is
projected to reach more than 7.7 billion globally by 2030 [2].
SLMs facilitate efficient and seamless integration with these
devices, unlocking edge Al capabilities and enabling real-time
decision-making. Figure 1(b) illustrates the growth in edge
device memory capacity relative to SLM size from 2018 to
2024. Initially, edge devices such as Raspberry Pi 3 featured a
modest memory capacity of 1GB, which increased to 4GB in
2019 with devices like Jetson Nano. Concurrently, SLM sizes
also expanded, with models like "FLAME” starting at 0.06
billion parameters and rising to 1.1 billion parameters for ”’Phi-
1”. After 2020, both edge device memory and SLM size have
accelerated significantly. For instance, edge devices such as
Jetson Xavier NX and Banana Pi M64 have achieved 8GB, and

(a) Performance, Memory Capacity, and Power Consumption of Different Generations of Raspberry Pi

Performance (GFLOPS)
35 10000
30
25
20
15
10
5
0

Memory (MB) Power consumption (W)

CUNWROON®OD

8000
6000
4000
2000

0

il

s o © SRR SR Y N > .
& @@ S @& & e
& & & & & S & & & & & &
X & & & & O & & & & O & & & &
R L X O N R X & X R X X L N
& K S K R F K K KK & N
T T F F QT o oF o F T o F oF & &

(b) Performance, Memory Capacity, and Power Consumption of Different Generation Nvidia Edge Devices

Performance (TOPS) Memory (GB) Power Consumption (W)
300 70 16
250 60 13
200 50 10
150 40 8
30 s
100 20 4
50 10 2
0 0 0
° ° & & & e © O & & & & O © & & & &
& Q}e +{b¢\° _\(\$ +O° v\é\ &0 . a‘é .@4\0 \(\e +0‘\ &(\ & a@ _@@ _\(ﬁ +o«\
SRS) & L g O @ & i g O @
[[SAER NS v o ¥ @ v

(c) NPU Performance, Memory Bandwidth, and Relative Performance Per Watt for Apple M Series Chips

NPU Al Performance (TOPS) Memory Bandwidth (GB/s) Performance per Watt to M1

40 140 250
35
% 120 200
100

25 80 150
20
15 60 100
10 40
. 2 50
o 0 0

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Fig. 2. Performance and Specifications of Representative Edge Al Hardware.

in 2024, high-end devices like the Jetson Orin NX are expected
to reach 16GB. Simultaneously, SLMs are also experiencing
exponential growth, with models such as ”Phi-2” and ”Gemini
Nano-2” increasing in parameter count, while the smallest of
“Llama-3”, which many open-sourced edge frameworks are
built on, anticipated to reach 8 billion parameters by 2024.
For a wide variety of edge devices, we investigate the
recent changes in three representative edge hardware plat-
forms. Figure 2 illustrates that the performance and memory
capacity of edge devices have significantly improved over
time. For instance, the Raspberry Pi series has seen substantial
improvements in computing power and memory capacity from
Generation 1 to Generation 5. Similarly, Nvidia’s Jetson series
has demonstrated advancements in Al performance and mem-
ory capacity from the Nano to the AGX Orin, supporting more
demanding computing tasks and edge applications. However,
these advancements are also accompanied by higher power
consumption, indicating a trade-off between enhanced func-

TABLE I
BASIC SPECIFICATIONS OF USED EDGE DEVICES

Device Name Memory CPU Freq. CPU # Disk Size
Raspberry Pi 5B 4GB 2.4GHz 4 128GB
Jetson AGX Orin 32GB 2.2GHz 12 64GB

Mac mini 16GB 3.23GHz 8 494.38 GB

tionality and increased energy requirements. However, gains in
performance per watt suggest that these devices are becoming
more energy efficient overall. As depicted in Figure 2(c), the
NPU AI performance and memory bandwidth of Apple’s M
series chips, from M1 to M4, exhibit a significant upward
trend, with improvements in performance per watt as well.
This trend underscores advanced edge hardware to optimize
energy efficiency while enhancing performance. Specifically,
the M4 chip shows remarkable progress in Al performance,
memory bandwidth, and energy efficiency. Despite the sig-
nificant growth in SLM sizes, advancements in hardware,
such as increased memory capacity and enhanced processing
power, enable these devices to efficiently perform complex
reasoning tasks. However, as shown by the similarities be-
tween Figure 1(a) and (b), the growth in software complexity
far outpaces the improvements in hardware capabilities. It is
anticipated that in coming years, the resources required for
SLMs may catch up with and exceed the capabilities of most
edge hardware. Therefore, this study aims to quantify, analyze,
and understand the performance and resource footprint of cur-
rent small language models on representative edge hardware,
providing meaningful analysis and sheding light on guidance
for future SLM and edge platform development.

III. METHODOLOGY
A. Devices and Hardware Specification

Table I lists the edge hardware specifications used in this study,
representing the platforms on which current mainstream edge
Al applications run. The Raspberry Pi 5B offers an affordable
and powerful computing platform due to its low cost, versatil-
ity, small size, and strong community support. It is widely used
by individual users, media, small businesses, 10T, robotics,
and other fields, making it suitable for general Al tasks. As
of May 2021, the Raspberry Pi Foundation announced that
total sales of Raspberry Pi had exceeded 37 million units. In
contrast, the Nvidia Jetson AGX Orin boasts excellent memory
capacity, a multi-core CPU, a GPU acceleration unit, and
targets more demanding Al and deep learning applications.
Nvidia provides a comprehensive software ecosystem for the
Jetson platform, including the JetPack SDK, which supports
high-performance computing libraries such as CUDA, cuDNN,
and TensorRT. Currently, the Nvidia Jetson series is a highly
popular embedded Al platform, especially in scenarios requir-
ing powerful computing power and low power consumption,
such as industrial and commercial applications like robots,
drones, healthcare, and transportation. Additionally, personal
computers are also significant edge platforms due to their

TABLE II
USED LANGUAGE MODELS AND THEIR PEREMETERS

Model Name Model Size Type Tokens Trained on
TinyLlama 1.1B SLM 3T
Phi-3 mini 3.8B SLM 3.3T
OpenELM 270M SLM 1.8T
Llama3 8B LLM 15T

versatility, computing power, and flexibility. Particularly with
the advent of AI PCs, more Al applications are reaching users
through personal computer platforms. For this study, we use
a Mac mini equipped with an M1 chip and 16 GiB memory
as a representative of this type of edge device.

B. Models and Software

This research leverages a powerful open-source software
ecosystem to deploy advanced small language Al models on
edge devices. Specifically, through the Hugging Face model
repository, we accessed the latest versions of TinyLlama,
Phi-3, OpenELM-270M, and Llama3-8B models, which are
renowned for their efficiency in natural language processing
tasks. To reduce model size and speed up inference time, we
further optimized these models through quantization, enabling
deployment on memory-constrained devices. Concurrently,
we adjusted the models’ weights and activations to balance
accuracy, model size, and performance, optimizing their pa-
rameters for the limited memory capacity of edge devices. The
specifications of the models are shown in Table II. To run and
utilize these models on edge platforms, we used Llama.cpp [3]
for model inference. Llama.cpp is a C++ implementation for
running various language models, providing an efficient and
flexible way to deploy and execute these models, especially
in resource-constrained edge environments. For OpenELM,
we utilized the mlx-lm package and the MLX framework to
enable the use of language models on Apple chips. MLX is an
open-source machine learning framework developed by Apple,
designed to leverage the unique capabilities of Apple hardware
to enhance machine learning tasks.

C. Measurement and Collection

To evaluate different models running on various edge hard-
ware, we standardized the model as 4-bit and user input to
the same token request and constrained output to a fixed
number of tokens while maintaining consistent end-to-end
evaluation. This approach ensures a uniform and objective
measure of each model’s ability to generate text from given
prompts. We utilized WikiText-2 [4] benchmark to assess
model performance, focusing on metrics such as tokens per
second and perplexity [5]. Perplexity is a critical metric in
natural language processing that measures how well a proba-
bilistic model predicts a sample, with lower scores indicating
better performance in predicting word sequences. To expedite
experiments with larger models, we downsampled WikiText-2
dataset, reducing evaluation time from 26 hours to 2 hours. For
results presented in Figure 8 and 9, we used full WikiText-2
dataset; for Figure 10, we used downsampled version.

(a) TinyLlama on Raspberry Pi

(b) TinyLlama on Jetson Orin

(c) TinyLlama on Mac Mini

__ 4000 30000 | 15000 |
) —-- memfree = —— active
=z 20000 1 v e e 10000 A cached —-=- inactive
22000 —rmimm i e e e —
£ 10000 5000 | v
= T T T T T T T T T T T — e o — ————
0 . 0 . . 0 L—== —_—
0 10 20 30 0 10 19 0 10
Time(s) Time(s) Time(s)
(d) Phi-3 on Raspberry Pi (e) Phi-3 on Jetson Orin (f) Phi-3 on Mac Mini
4000 30000 | 15000
@
z 20000 { 10000
£ 2000 | e
2 e 10000 4 5000 — e e =
g e - e C
01~ 01~ 01+ - - =
0 10 20 30 40 50 60 70 0 10 20 30 40 50 0 10 20
Time(s) Time(s) Time(s)
(g) Llama-3 on Raspberry Pi (h) Llama-3 on Jetson Orin (i) Llama-3 on Mac Mini
4000 30000 | 15000 |
@
% 200001 10000 4
2 2000 /
S .
£ 10000 5000 RN
= ¢ 4 & ¢+ £ #
Ot e ot 01+ - - - .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 0 10 20 30 40

Time(s)

Time(s) Time(s)

Fig. 3. Memory Utilization of Executing TinyLlama, Phi-3, and Llama 3 on Different Edge Devices

Perplexity, defined as the exponential mean negative log-
likelihood of the sequence [6], is crucial for understanding a
model’s language capabilities. This metric helps quantify the
trade-offs between model size, computational efficiency, and
language accuracy, particularly important for small language
models (SLMs) designed for efficiency and reduced computa-
tional load. By focusing on perplexity, we gain insights into the
balance between performance and resource constraints, which
is essential for deploying models on edge devices [7]. Given
a tokenized sequence X = (xg,1,...,%:), the perplexity of
X (denoted as PPL(X)) is defined as:

1 t
PPL(X) = exp {t Zlogpo(fm | m<¢)}

where logpg(z; | x<;) represents log-likelihood of the ith
token, conditioned on the previous token z.; (i.e., all tokens
before ¢). This metric intuitively assesses the model’s ability to
predict every token in the sequence uniformly and effectively.
It is worth noting that tokenization method can significantly af-
fect computed perplexity, so it should be carefully considered
when comparing performance of different language models.
During the model executions, we leveraged the power of
Llama.cpp and MLX to ensure accurate quantization and
benchmarking of TinyLlama, Phi-3, OpenELM, and Llama
3 models, capturing detailed performance metrics on dif-
ferent edge platforms. Specifically, we used iostat, Nmon
and PyNmonAnalyzer to collect and analyze system data
on Raspberry Pi and Nvidia Jetson devices, including CPU
utilization, memory usage, swap space, disk activity, and
process switching rates. For Mac platforms, we utilized the
PSutil library and Python scripts to gather system data on
macOS. We employed the subprocess and time libraries to
track the initial input time and the time of the first output
token. Using the same method, we tracked the last token
print time to calculate the model’s latency across all devices.
This comprehensive data collection and analysis allowed us to
evaluate the performance of each model in real-world edge

scenarios. The source code and raw data in this paper is
available through https://github.com/Romyull-Islam/SLM.

IV. PERFORMANCE OBSERVATIONS AND ANALYSIS
A. Memory Utilization

Observations. As illustrated in Figure 3(a), (d), the memory
usage data for the Raspberry Pi 5 indicates that the available
memory remains above zero when running the TinyLlama and
Phi-3 models, suggesting that the Raspberry Pi can adequately
support the operation of small language models. Conversely,
the frequent exchange between active and inactive memory
observed with the Llama-3 model in Figure 3(g) indicates high
resource pressure and insufficient memory capacity. For the
Nvidia Jetson Orin, the TinyLlama and Phi-3 models show
substantial available memory, approximately 19,594 MB and
17,000 MB, respectively. Llama-3 also operates efficiently on
the Jetson Orin, demonstrating that the 32GB memory of the
Nvidia Jetson Orin can easily accommodate various small
language models and some LLMs. The Mac Mini, with a total
memory capacity of 16 GB, shows that the TinyLlama model
utilizes approximately 8,894 MB of memory, leaving 62 MB
available. Similarly, the Phi-3 model uses around 9,659 MB
of memory, also leaving 62 MB available. Llama-3’s memory
usage peaks at 10,882 MB on the Mac Mini, with only 62
MB available at its lowest point. This discrepancy might be
attributed to the differing memory management strategies of
macOS and Linux, where macOS typically maintains a buffer
to handle additional load, acting as a cache to expedite access
to recently used data or applications.

Insights. The data collected from Raspberry Pi 5 indicates
that both TinyLlama and Phi-3 exhibit significant memory
consumption. However, TinyLlama demonstrates a smaller
memory resource footprint, suggesting its greater suitability
for memory-constrained edge environments. The pronounced
memory fluctuations observed in Llama-3 underscore the
challenges faced by resource-limited edge devices in han-
dling more demanding models, leading to increased memory
swapping and consequent performance degradation. Similar

(a) TinyLlama on Raspberry Pi

(b) TinyLlama on Jetson Orin

(c) TinyLlama on Mac Mini

%)

100 - 100 -

504 504

CPU Utilization (’

1007 User

Sys
501 Wait
Idle

T T T T
0 10 20 30 0
Time(s)

(d) Phi-3 on Raspberry Pi

(e) Phi-3 on Jetson Orin

T T T
10 0 10
Time(s) Time(s)

(f) Phi-3 on Mac Mini

100 - 100 -

501 501

100

501

CPU Utilization (%)

T T T T T T T T T T
0 10 20 30 40 50 60 70 0 10
Time(s)

(g) Llama-3 on Raspberry pi

(h) Llama-3 on Jetson Orin

T T T T T T T
20 30 40 50 0 10 20

Time(s) Time(s)

(i) Llama-3 on Mac Mini

100

50 50

CPU Utilization (%)

0 0

— T T
0 10 20 30 40 50 60 70 80 90 100 0
Time(s)

T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 0 10 20 30 40

Time(s) Time(s)

Fig. 4. CPU Utilization of Executing TinyLlama, Phi-3, and Llama 3 on Different Edge Devices

observations were made for small language models in the
Nvidia Jetson Orin. However, the Nvidia Jetson Orin can also
accommodate LLMs akin to Llama-3. The memory dynamics
of the Mac Mini reveal that under moderate to heavy load con-
ditions, the substantial amount of inactive memory serves as a
fast-access resource pool. Despite minimal available memory,
the Mac Mini’s memory management is optimized for ver-
satility and sustained performance under varying conditions,
thereby enabling reliable multitasking and efficient resource
utilization. All aforementioned data underscores the necessity
for optimization strategies for memory-intensive language
models, particularly on resource-constrained platforms such as
the Raspberry Pi, to ensure efficient application performance.

B. CPU Utilization

Observations. Figure 4 reflects the CPU utilization of TinyL-
lama, Phi-3, and Llama-3 during inference on Raspberry Pi,
Nvidia Jetson Orin, and Mac Mini. The CPU utilization of
TinyLlama and Phi-3 on Raspberry Pi (Figure 4(a), 4(d))
shows that the user CPU is always high, often reaching 96-
99%, with almost no idle CPU, indicating that these small
language models completely occupy almost all CPU resources
during inference. There is significant fluctuation in Llama-3
on Raspberry Pi (Figure 4(g)). Initially, the system shows a
high CPU idle rate, but after about 50 seconds, the user CPU
increases significantly, and the I/O wait time also increases.
Notably, the user CPU peaks at around 59 seconds, indicating a
significant increase in CPU utilization. On Nvidia Jetson Orin
(Figure 4(b), (h)), TinyLlama has moderate CPU utilization,
with idle CPU close to 51%, indicating that Nvidia Jetson
Orin can effectively support TinyLlama reasoning. Phi-3 and
Llama-3 show high utilization, with user CPU peaking at 99%
with little variation. CPU utilization for TinyLlama, Phi-3, and
Llama-3 on Mac Mini (Figure 4(c), (f), (i)) is low to moderate,
with idle CPU remaining above 80%.

Insights. The high CPU utilization of TinyLlama and Phi-3
on a Raspberry Pi highlights the computational intensity of
small language models, which can push resource-constrained

edge hardware to its limits and leave less capacity for other
processes. This can cause instability or slowdowns in the sys-
tem. In comparison, the larger model Llama-3 exhibited highly
variable CPU usage on the Raspberry Pi. For instance, user
CPU utilization spiked significantly at 50 seconds, 59 seconds,
and 69 seconds, indicating that the system was struggling to
handle the workload, resulting in performance fluctuations.
Notably, the model took approximately 50 seconds to load and
generate the output, suggesting that an inappropriate pairing of
models and edge devices can lead to latency and inefficiency.
Similarly, the high disk busy rates and full memory utilization
observed on the Raspberry Pi indicate heavy resource pressure,
likely due to intense read/write operations and insufficient
RAM, resulting in frequent swapping. On the Nvidia Jetson
Orin, TinyLlama’s CPU utilization was moderate, while Phi-3
and Llama-3 were at full CPU utilization. This shows that
Jetson Orin can effectively handle smaller models like the
1.1B TinyLlama. The Mac mini’s low CPU utilization, espe-
cially with Llama-3, demonstrates that desktop platforms can
efficiently handle various SLMs and some large ones. When
answering the same question, TinyLlama had the shortest
running time, followed by Phi-3, while the larger language
model Llama-3 took significantly longer. This is due to the
more complex and detailed responses generated by the larger
models. Additionally, a horizontal comparison reveals that for
responses from the same model, more powerful edge hardware
results in shorter reply times. Therefore, when deploying
models, it is essential to consider CPU resource consumption
and running time, as these factors may affect the operation of
other applications at the edge.

C. Swap Area Utilization

Observations. As illustrated in Figure 5, when running on
the Raspberry Pi, TinyLlama consistently maintained approx-
imately 100 MB of available swap space throughout the
test. This indicates that the physical RAM was sufficient,
with minimal reliance on swap space. In contrast, Phi-3 had
254 MB of swap memory available, suggesting effective

(a) TinyLlama on Raspberry Pi

(b) TinyLlama on Jetson Orin

(c) TinyLlama on Mac Mini

20000

100 A

504 10000

—— SwapTotal
SwapFree

VM Pagin Space in MB

T T T T 1 T
0 10 20 30 0
Time(s)

(d) Phi-3 on Raspberry Pi

(e) Phi-3 on Jetson Orin

T T T
10 0 10
Time(s) Time(s)

(f) Phi-3 on Mac Mini

20000

100 -

504 10000

1000

500 1

VM- Pagin Space in MB

0 10 20 30 40 50 60 70 0 10
Time(s)

(g) Llama-3 on Raspberry Pi

20 30 40 50 0 10 20

(h) Llama-3 on Jetson Orin

Time(s) Time(s)

(i) Llama-3 on Mac Mini

20000

100 A

501 10000

1000

500 1

VM - Pagin Space in MB

— T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 0 10
Time(s)

T T T T T
20 30 40 50 60

T T T T T T T
70 80 0 10 20 30 40

Time(s) Time(s)

Fig. 5. Swap Area Utilization of Executing TinyLlama, Phi-3, and Llama 3 on Different Edge Devices

memory management despite the workload exceeding the
device’s physical memory capacity. However, Llama-3 quickly
exhausted its swap space, as corroborated by Figure 3. On
both Jetson Orin and Mac Mini, neither TinyLlama nor Phi-
3 utilized swap memory. This can be attributed to their
larger physical memory, which provided sufficient resources
to operate without depending on swap memory. Similarly,
Llama-3 did not engage swap memory on either the Jetson
Orin or Mac Mini, highlighting the capability of these devices
to handle high memory demands effectively.

Insights. Swapping is critical to maintaining computer per-
formance and system stability, especially for memory-intensive
language models deployed on edge hardware. Observations
on the Raspberry Pi suggest it is well-suited for smaller
and more lightweight language models. In contrast, the Mac
Mini and Jetson Orin do not utilize swap, demonstrating their
capability to effectively handle the demands of various models.
This reflects their suitability for deploying resource-intensive
models such as LLMs. These observations underscore the
importance of aligning model requirements with appropriate
hardware specifications to ensure optimal performance with-
out overextending system memory resources. For users, this
insight can guide optimization of models such as Phi-3 and
Llama-3 to better fit the memory constraints of less powerful
devices or to target deployments on more capable hardware.

D. Disk Busy Rate

Observations. When the language models execute on edges,
notable peaks in total disk activity are observed. As illustrated
in Figure 6, the disk busy rate for TinyLlama initially surges
to 4%, followed by a smaller peak of 3% at approximately 10
seconds, and then subsequently fluctuates around 2%. For Phi-
3, the initial peak reaches approximately 16.6%, after which it
fluctuates within 5%. Conversely, Llama-3 on the Raspberry
Pi exhibits a rapid increase to 200%, maintaining this elevated
level throughout the observation period, indicating continuous
disk activity. On the Jetson Orin, TinyLlama displays multiple
peaks, with the highest reaching approximately 5% at 15 sec-

onds. Phi-3 shows consistent smaller peaks, with the highest
at about 4% initially, and fluctuates between 1-3% for most of
the time. Llama-3 on the Jetson Orin also exhibits consistent
small peaks, predominantly around 2-4%. For TinyLlama on
the Mac Mini, disk usage remains within .02% throughout
measurement, rendering very tiny disk activities. Phi-3 and
Llama-3 shows a major spike .05% in the middle.

Insights. Upon loading the initial data into memory, the
model predominantly operates within RAM, reducing depen-
dence on disk activities. This behavior is advantageous for per-
formance, as excessive disk activity can become a bottleneck,
thereby slowing down overall processing. Both TinyLlama
and Phi-3 were observed to run without sustained high disk
activity post-initialization, suggesting that these models are
optimized for efficient memory usage over sustained disk
access. In contrast, Llama-3 on the Raspberry Pi exhibited a
rapid increase in combined disk busy rate of approximately
200% during initialization, maintaining this elevated level
throughout the observation period. This sustained high disk
usage is indicative of Llama-3 exceeding the available mem-
ory, leading to extensive memory swapping. Comparatively,
the disk busy rate on the Nvidia Jetson Orin and Mac mini
remained consistently lower and more stable, with the Mac
mini benefiting from faster disk read and write speeds. These
findings underscore the importance of disk I/O performance
when deploying language models at the edge, particularly in
scenarios where significant memory swapping is observed.

E. Latency Evaluation

Observations. In language models deployed at the edge
where real-time performance is crucial, latency significantly
affects user experience. Here, we measured two types of
latency: Time to First Token (TTFT) and full generation time.
TTFT refers to the interval between user input and the first
token output by the model. A high TTFT indicates slow
initial responsiveness of language models. Full generation time
measures the interval between user input and the complete
response output by the model. To standardize comparisons,

(a) TinyLlama on Raspberry Pi

(b) TinyLlama on Jetson Orin

(c) TinyLlama on Mac Mini

IS

0.04

A

/\ .

A

/\ ’\ """""""""""""""" —— Total Disk Activity |

0.02

N)

\J\/ (.

0.00

/\
N\

T
10

Percentage of Disk Busy
o ~

T T T T 0
0 10 20 30

Time(s)

(d) Phi-3 on Raspberry Pi

T T
10 0
Time(s)

(e) Phi-3 on Jetson Orin

Time(s)

(f) Ph-3 on Mac Mini

o

A
A

Percentage of Disk Busy
o w

N
=3
S

=
o
S

Percentage of Disk Busy

— T T
0 10 20 30 40 50 60 70 80 90 100 0
Time(s)

Time(s)

1 4 r\
0.04 1
o | M \
IINVTTTPWN I AN AMWWAM] 2
T T T T T T T T 0 T T T T T T 0.00 T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 0 10 20
Time(s) Time(s) Time(s)
(g) Llama-3 on Raspberry Pi (h) Llama-3 on Jetson Orin (i) Llama-3 on Mac Mini
“ Y \
4 \ 0.04 ‘\ _l\
J il M|
0 T T T T T T T T 0.00 T T T T T
10 20 30 40 50 60 70 80 0 10 20 30 40

Time(s)

Fig. 6. Disk Busy Rate of Executing TinyLlama, Phi-3, and Llama 3 on Different Edge Devices

(a) Time to First Token 63.2472

IS

3.1813
%3
]
=
S
1.6687
5 2
©
E 1 0.7826
0.2312 0.4893 0.4548 (3098
0.1566 -
0 — |
TinyLlama Phi-3 Llama-3
m Raspberry Pi 5 Jetson Orin m Mac Mini

(b) Total Generation Time
21886

105.5464

78.2743

42.676
35.7742

Llama-3

27.8612

20 13.9449
3.1813
0 —

TinyLlama

21.1626

Phi-3
Jetson Orin m Mac Mini

Time (Seconds)

m Raspberry Pi 5

Fig. 7. Latency Comparison among Language Models across Edges

we used the same user input and limited output length to
400 tokens. The latency comparison data for various 4-bit
quantization models on different devices is shown in Figure
7, which represents the data in a logarithmic scale for better
perception. TinyLlama consistently demonstrates impressively
low latency on different edge devices, achieving the shortest
TTFT and full generation times. Phi-3, while fast in providing
initial responses, takes considerably longer to complete the
full generation, particularly on resource-constrained devices
like the Raspberry Pi. Phi-3 takes up to four times longer
compared to TinyLlama, indicating higher computational de-
mands. In comparison, Llama-3 exhibits a very high TTFT
of 63 seconds and an unusually long total generation time
of 21,886 seconds on the Raspberry Pi 5, highlighting the
severe resource constraints of this device when handling such
models. On the more resource-rich edges like Mac Mini, both
the small language model and the optimized large language
model perform much faster, but the impact of latency on user
experience remains significant and cannot be neglected.

Insights. The performance data underscores the importance
of aligning model complexity with suitable hardware, partic-
ularly regarding latency, which is closely tied to user experi-
ence. The Raspberry Pi 5 demonstrates significant limitations
when handling complex language models such as Llama-3, as
evidenced by the extremely high TTFT and total generation
time. This indicates that most edge devices are not suitable
for deploying resource-intensive language models without

substantial optimization. In contrast, the efficient performance
of the small language model like TinyLlama on the Raspberry
Pi illustrates that models optimized for low resource consump-
tion can be effectively utilized in constrained environments.
Compared to the Raspberry Pi, both the Nvidia Jetson Orin and
the Mac Mini exhibit significant improvements in processing
all models, especially Phi-3 and Llama-3. This highlights
their capability to handle more complex models with reduced
latency. When deploying various language models in different
edge scenarios, it is crucial to balance optimal performance
and user experience by matching the model requirements with
the appropriate hardware specifications.

F. Inference Performance

Observations. For half-precission floating point format (F16)
quantization using the Wikitext dataset, TinyLlama demon-
strates superior processing speed with 22.85 tokens per second
on the Raspberry Pi 5, which increases to 40.74 tokens
per second on the Nvidia Jetson Orin and peaks at 694.69
tokens per second on the Mac Mini. Phi-3 performs well,
with 4.77 tokens per second on the Raspberry Pi, 13.31
tokens per second on the Jetson Orin, and 211.88 on the Mac
Mini. Introducing 4-bit quantization to TinyLlama shows an
improvement in processing speed on the Raspberry Pi 5 from
22.85 to 27.61 and on the Nvidia Jetson Orin 40.74 to 46.52
tokens per second. However, it decreases slightly on Mac Mini
from 694.69 to 603.94 tokens per second. This suggests that
quantization in smaller memory devices effectively reduces

(a) Tokens/Second Data for F16 Quantization
694.69 211.88

9
200 y
4074
22.85
477 1331 X
0 - — 5

TinyLlama Phi-3

(b) Perplexity Score for F16 Quantization

8.4444 8.4444 8.4444

®
© o

@

3
~
o

7.0836 7.0836 7.0907

N

Tokens/Second
3
3
I
o

m
g
Perplexity

o

g e

TinyLlama Phi-3

W Raspberry Pi 5 Nvidia Jetson Orin W Mac Mini ® Raspberry Pi 5 Nvidia Jetson Orin ™ Mac Mini

Fig. 8. Performance of TinyLlama, Phi-3 for F16 Quantization

computational overhead without substantially reducing model
performance. However, quantization may be less beneficial
for devices with sufficient computing power for this type of
operation, such as the Mac Mini. Phi-3’s performance also
reduced with 4-bit quantization on Mac Mini, with 176.83
tokens per second on the Mac Mini. But, for the Raspberry Pi
5 and Jetson Orin, it increased to 7.22 from 4.77 and 13.73
from 13.31 tokens per second on the Jetson Orin. The Figures
8 and 9 represent performance data for both F16 and 4-bit
quantized models in various environments.

Insights. TinyLlama’s significant performance leap on the
Jetson Orin indicates its ability to effectively leverage ad-
vanced hardware, highlighting its scalability and suitability
for high-end computational environments. The performance
of Phi-3 on the Jetson Orin, while improved, emphasizes a
design focus on operational efficiency over raw performance,
making it suitable for applications prioritizing consistency and
reliability, particularly in resource-constrained settings. The
consistent performance of Phi-3 on various devices highlights
its optimized efficiency in diverse operational contexts. De-
spite the differences in computing power, the stable processing
speeds across both devices showcase Phi-3’s robust design,
making it an attractive option for edge-computing applications.

The increase in tokens per second after applying 4-bit
quantization to the models emphasizes the benefits of this
technique in computational efficiency. Although there is a
slight decrease in prediction precision, as indicated by a small
increase in perplexity, the trade-off remains favorable. This
demonstrates the effectiveness of quantization strategies in
enhancing processing speeds, which is particularly beneficial
in resource-constrained environments like the Raspberry Pi 5.
However, as the M1 chip of Mac Mini is highly optimized for
floating-point operations, including F16, 4-bit quantization is
not a good option compared to its capacity.

G. Prediction Accuracy

Observations. As illustrated in Figure 8(b), for F16 quantiza-
tion using the Wikitext dataset, TinyLlama achieves a perplex-
ity score of 8.4444 across all tested devices, which indicates
that the model’s prediction accuracy is largely independent
of the hardware platform. In contrast, Phi-3 demonstrates a
perplexity of 7.0836 on both the Raspberry Pi and Jetson
Orin, and 7.0907 on the Mac Mini, highlighting its relatively
high prediction accuracy across different edge environments.
Figure 9(b) reveals that with the introduction of 4-bit quan-
tization, the perplexity of TinyLlama increases slightly to
8.7620 on the Raspberry Pi, 8.76 on the Jetson Orin, and

(b) Perplexity Score for 4 Bit Quantization

8762 8762 87438
7.4731 7.4731 5376

TinyLlama Phi-3

(a) Tokens/Second Data for 4 Bit Quantization
604.94 176.83
180 .]

2
&
~
®

@
2
Perplexity

€0 46.52
40 27.61
20 7.22
o —
TinyLlama Phi-3

13.73

o o
@ e e oo~

m RaspberryPi5 = Nvidia Jetson Orin & Mac Mini mRaspberryPi5 m Nvidia Jetson Orin ® Mac Mini

Fig. 9. Performance of TinyLlama, Phi-3 for 4-Bit Quantization

8.7438 on the Mac Mini. Similarly, Phi-3, when subjected
to 4-bit quantization, exhibits a perplexity of 7.4731 on both
the Raspberry Pi and Jetson Orin, and 7.3760 on the Mac
Mini. These findings suggest that while quantization impacts
the perplexity scores, the effect remains relatively consistent
across different hardware platforms.

Insights. The consistent perplexity scores of TinyLlama
and Phi-3 across various devices show their stable prediction
accuracy across different hardware platforms, demonstrating
the robustness and adaptability essential for models deployed
in diverse computing environments. Notably, Phi-3 exhibits a
lower perplexity, indicating superior prediction accuracy and
efficiency in processing complex language data. Under 4-
bit quantization, the perplexity of both TinyLlama and Phi-
3 increases, attributable to the loss of accuracy following
quantization, which can lead to an increased likelihood of
producing hallucinations. Despite this, our results indicate that
the prediction accuracy of small language models such as
TinyLlama and Phi-3, even with 4-bit quantization, remains
within an acceptable range. For future deployments of models
in edge scenarios, it is crucial to consider the trade-off between
performance and accuracy.

H. Comparison with Larger Language Models

Observations. In addition to examining resource footprint
and performance, we are also interested in exploring the
differences between SLMs and LLMs. Here, we compare Phi-
3, TinyLlama, and Llama-3 on various devices using modified
Wikitext-2 dataset. As illustrated in Figure 10, on Raspberry
Pi 5, TinyLlama achieves 27.22 tokens/s with a perplexity of
8.02, demonstrating its efficiency on this device. Phi-3 also
performs well, processing 7.27 tokens/s with a perplexity of
5.9147, indicating superior prediction accuracy compared to
TinyLlama. Llama-3, constrained by edge resource limitations,
shows lower performance, achieving only 3.13 tokens per
second with a perplexity of 7.8452. On Nvidia Jetson Orin,
Phi-3, TinyLlama, and Llama-3 exhibit similar performance
patterns to those observed on Raspberry Pi 5, with perplexity
remaining relatively constant but throughput improved. On the
more powerful Mac Mini, throughput of all three language
models increases significantly. For instance, TinyLlama pro-
cesses 620.96 tokens/s, while Llama-3’s performance improves
by 26 times. Notably, the perplexity of the models remains
largely unchanged across different hardware platforms.
Insights. Through our experiments, we observed a cor-
relation between throughput and prediction accuracy across
various models and edge devices combination. TinyLlama

(a) Tokens/Second with Modified Dataset

620.96
180 177.82

105.37

40 27.22 27.77

13.8
20 7.27
, I —

TinyLlama Phi-3

3.13 4.02
Llama-3

m Raspberry Pi 5 Nvidia Jetson Orin ® Mac Mini

(b) Perplexity Score with Modified Dataset

8.02 8.02 8.007

o
o o

7.8452 7.8452 7.8315

I I .&9147 H I I

TinyLlama Phi-3

Perplexity
o o ~
R S SN

o

Llama-3

m Raspberry Pi 5 Nvidia Jetson Orin ® Mac Mini

Fig. 10. Throughput and Perplexity Comparison between SLM and LLM on Different Edges

consistently demonstrates high tokens per second, underscor-
ing its robust processing efficiency across all tested edges.
This characteristic renders it well-suited for deployment in
edge scenarios where resources are limited, or rapid response
times are necessary. Additionally, the high tokens per second
achieved by TinyLlama on both the Nvidia Jetson Orin and
Mac Mini highlights its scalability and applicability in high-
end computing environments. Conversely, Phi-3’s lower per-
plexity scores across all platforms show its superior prediction
accuracy, positioning it as an ideal candidate for applications
necessitating consistent and reliable predictions, particularly
in resource-constrained environments. On the other hand,
the large language model Llama-3, despite achieving com-
mendable perplexity scores (relative to TinyLlama), demands
higher resources. It is more suited for applications where
high language accuracy is paramount, provided that adequate
computing resources are available.

1. Performance Observation and Analysis of OpenELM

Observation. In addition to TinyLlama, Phi-3, and Llama-3,
we also measured Apple’s OpenELM-270M model. Since it
cannot be run on other hardware, we measured it exclusively
on a Mac Mini. OpenELM-270M was executed using the
MLX-LM framework without any quantization. As shown in
Figure 11, the CPU usage chart predominantly indicates high
idle time, with brief spikes in user and system activities,
especially at the start. Memory usage remains stable across
all parameters (memfree, used, active, inactive). Swap usage is
negligible, with both the total swap and free swap lines nearly
at zero. Disk usage is consistently low, with no significant
fluctuations in total disk activity. These observations suggest
that no significant swap activity occurs between main memory
and disk during OpenELM inference. Initial high disk activity
due to the execution of third-party activity monitors to capture
disk information.

Insights. The high idle time in CPU utilization indicates that
the Mac Mini’s SoC effectively handles the OpenELM model
with 270 million parameters. The observed stable memory
usage, consistently low disk activity, and negligible swap usage
confirm the sufficiency of physical memory, thereby ensuring
responsive system performance. Furthermore, due to macOS’s
unique memory management and compression techniques, we
posit that OpenELM could be well-suited for edge hardware
with smaller memory capacities, such as iPhones and iPads.
With the recent release of Apple Intelligence, we anticipate

further evaluating the performance of OpenELM on other edge
hardware in future macOS and iOS systems.

V. RELATED WORK

Resource Utilization on Edges. Deploying applications on
edge devices requires careful control over resource allocation
and usage. For example, Park et al. [8] dived into the nuances
of hardware resource utilization, specifically memory and CPU
usage during distributed training of deep learning models. In
recent years, more and more scholars have begun to explore the
resource footprint of various new artificial intelligence models
on edge devices. For example, Rahman et al. [9] evaluated
the model size, latency and performance trade-offs of the
TensorFlowLite MobileBERT model in an edge computing
environment. Vucetic et al. [10] proposed how to fine-tune
the BERT model to improve the resource efficiency on edge
devices. Dhar et al. [11] explore the challenges and potential
bottlenecks that currently hinder the effective deployment
of large language models on edge devices. Different from
the above work, our work focuses on the deployment and
performance analysis of the state-of-the-art small language
models on edge platforms.

Optimizing Edge Language Models. There are two main
categories of approaches to running language models on
resource-constrained edge devices. The first category focuses
on reducing model size and complexity. For example, Liu
et al. [12] proposed removing less important weights or
neurons from the network and focusing on the effectiveness
of the pruned architecture itself. Quantization can also re-
duce the number of bits required to represent model weights
and activations, reducing memory usage and computational
load while ensuring model accuracy [13], [14]. Knowledge
distillation involves training smaller models to replicate the
behavior of larger models. For example, Jiao et al. applied this
technique to the BERT model, ultimately creating a smaller
and more efficient version called TinyBERT [15]. In addition
to various model compression techniques, another category
of approaches focuses on the edge-tailored customization for
language models. For example, Bandit-NAS [16] proposed a
method to explore and find the best architecture based on
hardware constraints, data slicing, and training duration. Liu
et al. [17] discussed Differentiable Model Scaling (DMS),
which optimizes the network width and depth in a fully
differentiable manner to achieve lower perplexity and higher
accuracy. Different from these optimizations, we provide a
comparative study and analysis of performance and resource

CPU Utilization (%) Memory (MB)

VM - Pagin Space in MB Disk Usage (TPS)

15000 A 1

1

000

100 A
User —-= memfree —— active \ —— Total Disk Activity
o . 750 0.04 -
75 Sys cached inactive
. 10000 A
Wait 500 4 —— SwapTotal
50 Idle —— - e TE—— SwapFree 0.02
25 50001 250 \\
01+ - - : - ol—FF—"""""" 01 : : : : 1 0001, ; : . r
0 2 4 6 8 0 2 4 6 8 10] 2 4 6 8 10 0 2 4 6 8
Time(s) Time(s) Time(s) Time(s)

Fig. 11. Performance Statistics and Analysis of OpenELM on Mac Mini

footprint of the latest small language models on edges, and
our work is orthogonal to these optimizations.

Performance Analysis in Custom Edge-AI Systems. With an
increasing number of edge devices running various custom Al
systems, understanding the performance of machine learning
or artificial intelligence models on these IoT and edge devices
is critical to their effective deployment. Fanariotis et al. [18]
proposed creating energy-efficient and low-latency models on
microcontroller-based systems to reduce resource overhead in
IoT applications. Shen et al. [19] proposed an autonomous
edge Al system using a large language model designed to
meet the needs of different users in a highly connected
network and physical environment. Another study evaluated
the performance of MobileBERT models transformed with
FlatBuffer on edge devices [9]. These models were fine-
tuned for reputation analysis of English tweets and achieved
significantly smaller footprints with minimal accuracy loss. In
addition, a Transformer-based speech recognition system [20]
study evaluated the inference performance of different edge
devices. These studies highlight the effectiveness of model
transformation and quantization techniques in optimizing per-
formance on resource-constrained devices. Different from the
above works, we focus more on the performance of SLM on
representative edge devices, such as Raspberry Pi and Jetson
AGX Orin. At the same time, we also explore a wider range of
computing constraints and resource footprints to gain a more
comprehensive understanding of how to effectively deploy
SLM in different edge computing environments.

VI. CONCLUSION

In this paper, we present a thorough analysis of representative
Small Language Model (SLM) workloads across different edge
devices. In particular, we conduct a comprehensive empirical
analysis of different state-of-the-art SLMs, including TinyL-
lama, Phi, OpenELM, etc., on edge devices ranging from
resource-constrained Raspberry Pi units to powerful Nvidia
Jetson Orin systems, as well as desktop edge platforms such
as Mac mini. We quantitatively evaluate the resource consump-
tion and footprint of SLMs on these diverse edge hardware.
Furthermore, we also compare the performance variations of
different SLMs on edges and provide corresponding analysis
and insights. As far as we are concerned, this is the first study
to investigate the performance and resource consumption of
small language models on edge platforms. Our analysis and
findings aim to assist users in deploying appropriate models
and workloads in their specific scenarios and provide guidance

10

for optimizing the next generation of Al workloads in the most
recent edge environments.
ACKNOWLEDGEMENT
We thank the anonymous reviewers for their suggestions and
feedback. This research was in part supported by US NSF
under Grants: CPS-2103459, SHF-2210744, CNS-2103405,
and AMPS-2229073.
REFERENCES
(1]

[2]

ChatGPT and Generative Al are Booming, but the Costs can be
Extraordinary, available: https://tinyurl.com/5e8r299b.

Number of Edge Enabled Internet of Things (IoT) Devices Worldwide
from 2020 to 2030, by Market, available: https://www.statista.com/
statistics/1259878/edge-enabled-iot-device- market-worldwide/.
Llama.cpp, available: https://github.com/ggerganov/llama.cpp.

S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

Two Minutes NLP — Perplexity Explained with Simple Probabilities,
available: https://medium.com/nlplanet/two- minutes-nlp- perplexity-
explained- with-simple-probabilities-6cdc46884584.

Perplexity of Fixed-length Models, https://huggingface.co/docs/
transformers/en/perplexity.

How LLM Quantization Impacts Model Quality, available: https:/
deci.ai/blog/how-1lm-quantization-impacts-model-quality/.

S. Park, J. Lee, and H. Kim, “Hardware resource analysis in distributed
training with edge devices,” Electronics, 2019.

M. W. U. Rahman, M. M. Abrar, H. G. Copening, S. Hariri, S. Shao,
P. Satam, and S. Salehi, “Quantized transformer language model imple-
mentations on edge devices,” arXiv preprint arXiv:2310.03971, 2023.
D. Vucetic, M. Tayaranian, M. Ziaeefard, J. J. Clark, B. H. Meyer, and
W. J. Gross, “Efficient fine-tuning of bert models on the edge,” in /[EEE
International Symposium on Circuits and Systems (ISCAS), 2022.

N. Dhar, B. Deng, D. Lo, X. Wu, L. Zhao, and K. Suo, “An empirical
analysis and resource footprint study of deploying large language models
on edge devices,” in Proceedings of ACM Southeast Conference, 2024.
Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quantization for large
language models,” in ICML, 2023.

T. Huang, T. Luo, M. Yan, J. T. Zhou, and R. S. M. Goh, “RCT: resource
constrained training for edge AL’ CoRR, 2021.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“Tinybert: Distilling BERT for natural language understanding,” CoRR,
2019.

Y. Lin, Y. Endo, J. Lee, and S. Kamijo, “Bandit-nas: Bandit sampling
and training method for neural architecture search,” Neurocomputing,
2024.

K. Liu, R. Wang, J. Gao, and K. Chen, “Differentiable model scaling
using differentiable topk,” arXiv preprint arXiv:2405.07194, 2024.

A. Fanariotis, T. Orphanoudakis, K. Kotrotsios, V. Fotopoulos,
G. Keramidas, and P. Karkazis, “Power efficient machine learning
models deployment on edge iot devices,” Sensors, 2023.

Y. Shen, J. Shao, X. Zhang, Z. Lin, H. Pan, D. Li, J. Zhang, and K. B.
Letaief, “Large language models empowered autonomous edge ai for
connected intelligence,” IEEE Communications Magazine, 2024.

S. Gondi and V. Pratap, “Performance evaluation of offline speech
recognition on edge devices,” Electronics, 2021.

[3]
[4]

[5]

[6

=

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

