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Abstract—Energy efficiency has become a top priority for
NextG networks, driven by the need to reduce costs, com-
ply with regulations, and mitigate the environmental impact
of telecommunications infrastructure. LoRaWAN (Long Range
Wide Area Network) plays a significant role in NextG networks
due to its unique features involving low power consumption, cost-
effectiveness, and broader coverage. As technology advances,
there is an exponential rise in network traffic, resulting in
increased interference within networks and reduced coverage. By
strategically positioning gateways, network operators can ensure
that the network meets the requirements of various applications
and environmental conditions while managing deployment costs
effectively. This paper presents two algorithms to improve
the gateway placement strategy in LoRaWAN. The First uses
the analysis of the connected components (CC-Place), and the
second is based on Simulated annealing (SA-Place). We show
that these approaches are energy-efficient for denser networks
and those with broader coverage. Moreover, our results also
show that our proposed algorithms make these networks more
reliable by reducing the collision probabilities. We compare
these algorithms with Graph-based gateway placement in [1]
and intelligent, fuzzy C-Means (FCM) cluster-based algorithm
in [2]. We evaluate the number of gateways each algorithm uses
and their collision probabilities. We show that our algorithms
propose fewer gateways, thus lowering the initial network cost.

Index Terms—LoRaWAN, Gateway Placement, Energy effi-
ciency, Connected Component Analysis, Simulated Annealing,
Reliability.

I. INTRODUCTION

LORAWAN (Long Range Wide Area Network) technol-
ogy has gained significant traction in various IoT appli-

cations due to its long-range communication capabilities and
low power consumption. LoRa is used widely in IoT owing
to its low power consumption attribute. LoRa uses a chirp
spread spectrum, making it robust to interference. LoRaWAN
plays a crucial role in next-gen networks by providing low-
power, long-range connectivity for IoT devices, supporting
diverse applications, and enabling cost-effective and scalable
network deployments. Its unique features make it well-suited
for various use cases and contribute to next-gen networks’
overall success and growth. LoRaWAN gateways (GW) are
used to extend the range of LoRaWAN networks, which are

designed to have a long-range capability. The Deployment of
the GW which serve as communication hubs in LoRaWAN
networks, is crucial for ensuring network coverage, reliability,
and scalability.

Gateway placement is important for extending the coverage
range of LoRaWAN networks. Since LoRaWAN operates in
unlicensed spectrum bands, the number and placement of
gateways significantly affect the network’s coverage area. By
strategically deploying gateways in optimal locations, cover-
age can be maximized, ensuring that sensor nodes located
in remote or inaccessible areas can effectively communicate
with the network. In dense urban environments or areas with
a high concentration of devices, collisions can occur due
to overlapping transmissions, leading to degraded network
performance. Proper gateway placement helps alleviate this
issue by ensuring that nearby gateways adequately serve
nodes, reducing the likelihood of collisions and improving
overall network capacity. Furthermore, energy efficiency is
critical in LoRaWAN deployments, especially for battery-
operated sensor nodes. Suboptimal gateway placement can
increase energy consumption among nodes due to longer
communication distances or inefficient routing paths. Energy
consumption can be reduced by strategically placing gate-
ways to minimize communication distances and optimize
routing paths, thereby extending the sensor nodes’ battery
life and enhancing the network’s sustainability. The optimal
gateway placement in LoRaWAN networks is essential for
maximizing coverage, minimizing collisions, and improving
energy efficiency. This paper underscores the importance of
considering various factors, including coverage requirements,
network density, and energy constraints when designing and
deploying LoRaWAN gateways to ensure the reliable and
efficient operation of IoT applications.

This paper proposes a gateway placement algorithm for
LoRaWAN, which finds an optimal number of gateways
and their location coordinates. This placement reduces the
number of gateways to be installed, reduces capital expen-
diture (CAPEX), and reduces the number of collisions. This



helps reduce the power consumed to retransmit the packets
and increases the network’s reliability. The solutions involve
finding an appropriate number of clusters and placing the
GWs in the clusters. All the devices in the given cluster
can access the GW and vice versa. We have two solutions:
The first is a heuristic approach using Connected Compo-
nents Analysis Placement (CC-Place), and the second uses
a machine learning-based Simulated Annealing [3] technique
based Placement (SA-Place). We also compare the existing
state-of-the-art algorithms in [1], [2].

The rest of the paper is organized as follows: Section II
describes the detailed study and analysis of the LoRAWAN
gateway placement problem. Section III describes a model
of the network under consideration, and we formulate the
problem to solve, followed by the CC-Place algorithm and
SA-Place in section IV. Analysis of results is discussed in
section V followed by conclusion in VI.

II. RELATED WORK

We studied various existing approaches to find optimal
gateways and their locations. Graph-based gateway placement
for better performance in LoRaWAN deployments [1], where
a graph is created, and distances are found. The nodes with
the highest centrality are chosen as a gateway, and choosing
continues until the coverage is achieved using the shortest path
algorithm. This paper presents a graph-based gateway place-
ment approach to reduce collision probability and increase
reliability in LoRaWAN deployments. It reduces the required
number of gateways by up to 40% and collision probability by
up to 70%. LoRaWAN gateway placement model for dynamic
IoT scenarios (DPLACE) in [4] computes the number of
LoRaWAN gateways based on the gap statistics method. A
heuristic algorithm for gateway location selection in large-
scale LoRa networks is proposed in [5].

Optimal gateway placement based on fuzzy C-Means for
low power wide area networks in [2]. It considers the gap
statistics method to find the number of LoRa gateway. The
paper proposes an optimal LoRa gateway placement algorithm
called PLACE, which reduces CAPEX and OPEX by 36%
compared to grid and random placement methods. Reference
[6] has four clustering algorithms that were used to deploy The
network GWs are K-Means; its three versions are Minibatch
K-Means, Bisecting K-Means, and Fuzzy c-Means (FCM). As
robust gateway placement for scalable LoRaWAN [7] gateway
positions for a LoRaWAN as a GEOMETRIC SET COVER
problem where the sensors are points that need to be covered,
and the gateways are unit disks whose radius equals the send-
ing range of a gateway. It optimizes by converting into integer
linear programming. An ILP solution for VORONOI COVER
minimizes the number of chosen gateways. Methodology for
LoRa gateway placement based on bio-inspired algorithms
for a smart campus in a wooded area [8] uses evolutionary
particle swarm optimization of gateways using integer linear
programming.

In [6], the paper proposes a strategy for planning Lo-
RaWAN gateways’ (GWs) number and location in smart
agriculture. It compares the performance of four clustering
algorithms and suggests the optimal number of GWs for
different scenarios. It considers clustering-based placement
of LoRaWAN GWs and other solutions will have different
results. The efficacy of Particle Swarm Optimization (PSO)
for gateway placement in LoRaWAN networks is investigated
in [9]. It proposes a modified PSO approach incorporating
gateway distancing measures to achieve optimal locations
for gateways. A comparative study of gateway positioning
strategies in a LoRaWAN network is done in [10], but it does
not provide a specific answer to the question about LoRaWAN
gateway placement. Reference [8] proposes an empirical and
statistical methodology using Evolutionary Particle Swarm
Optimization (EPSO) to optimize the placement of LoRa
gateways in a smart campus area. Another reference, [11], dis-
cusses the optimization of multiple gateway location selection
in LoRaWAN networks, but it does not provide specific details
on the placement of LoRaWAN gateways. The LINGO model-
ing program is used to test the model, and the findings suggest
that six gateways at optimal locations can provide signal
coverage for all end nodes and effectively manage the capacity
of the LoRaWAN gateway. The paper proposes a mathematical
model to optimize the selection of multiple gateway locations
for LoRaWAN networks, considering factors such as the
spatial distribution of clients, radio signal propagation, and
the capacity of the gateways. The discussion of finding a
sufficient number of sink nodes (gateways) for connectivity in
a systematic grid distribution of outdoor sensor nodes in [12].
The study analyzes the performance of LoRa shadowed radio
links operating in urban and semi-urban centers, incorporating
an examination of node grid distributions and a determination
of optimal sink node placements. The optimal placement of
IoT gateways at the University of Zululand’s main campus, but
it does not specifically mention LoRaWAN gateway placement
in [13]. Chosen gateway placement methods improve network
performance. Results show that they are better than random
placement for optimizing gateway placement in IoT networks.

We identified some challenges in existing work based on the
above literature survey. Most of the papers present clustering-
based solutions. They are not immune to noisy data and
outliers, but in the case of networks, even the outlier sensor
should be connected to achieve total coverage. Moreover,
energy efficiency in LoRaWAN has not been discussed. In
[6], they discuss energy efficiency due to higher interference,
and collision is shown here. However, they don’t consider
other transmission parameters, which are also responsible for
differences in power consumption. Our proposed approach
compares collision probabilities of state-of-the-art techniques
and spread factor allocations. Also, we present evaluations of
the number of gateways used; this gives an idea about the
initial installation cost for network operators. Spread factor
allocation and energy efficiency are also discussed.



Fig. 1: LoRa Network with sensors connected to gateways. If
sensors are out of gateway range, then they are disconnected
from the entire system (e.g., the red color sensors).

III. SYSTEM MODEL

LoRaWAN is a star of star networks with N sensors, as
shown in Fig. 1. Each sensor is connected to a LoRaWAN
gateway. There are M gateways that are placed to cover all
sensors in the network. The GW are further connected to the
backhaul network. All GW can connect sensor in distance of
R. All sensor within the gateway range of R can connect to
it. Any sensor that is out of the gateway’s range will not be
able to connect to the network unless it is within the range
of another gateway. During the uplink process, when sensors
send data to the gateway, the data packet is retransmitted if
there are collisions, thus increasing the power consumption.
Network Operators (NO) aim to design the network with full
coverage lower power consumption. The gateway placement
problem is finding the minimum number of gateways and
their appropriate locations to achieve full coverage. We aim to
optimize the solution to this problem by using the minimum
number of gateways to achieve total coverage and lower
the collision probabilities. Additionally, locations where the
gateways are installed are crucial. Signals that are modulated
with a higher spreading factor are less prone to errors and can
travel longer distances than signals with a lower spreading
factor. Therefore, sensors located closer to the gateways do
not require higher spreading factors. Thus, the appropriate
gateway placement helps lower the energy consumption.

IV. PROPOSED SOLUTION

To find the minimum number of gateways and their loca-
tions, we propose two solutions: first, a heuristic algorithm
based on connected component analysis (CCA), and second
uses, a simulated annealing algorithm (SA).

A. Connected Component Analysis based Gateway
Placement(CC-Place)

The gateway placement algorithm based on Connected
Component Analysis (CC-Place) in Algorithm 1 can be vi-
sualized as in Fig. 2. The network with sensors forms the
vertices V of a graph G. Gateways that we intend to place
have a predefined range of R, and only the sensors in that
range can connect to it. If the distance between two sensors

(a) Graph showing the sen-
sors in the network.

(b) Connected components
formed from the graph.

(c) Clustering and centroid
detection of CC.

(d) Gateway Placement at
the centroids.

Fig. 2: Comparison of the number of gateways and collision
probability during S1 using CC-Place and Shortest Path-based
Gateway placement [1] with their SF distributions.

d(m,n) is less than or equal to the 2*R, an edge emn exists
in the set E. Since the path loss of the signal directly relates
to the distance traveled by the signal, signal strength is highly
correlated to the distance. Hence, we have considered the
distance a measure of the neighborhood. Fig. 2a shows a
connected graph with all possible edges and all sensors as
the vertices in our network. Next, we find connected clusters
as described and shown in the second section (Fig. 2b).
The function on line 11 (connectedComponentAnalysis())
generates components.

Algorithm 1 Connected Component Analysis for Gateway
Placement (CC-Place)

1: V ← Sensor Locations.
2: E ← generateEdges(R)
3: CC ← connectedComponentAnalysis(V,E,R)
4: for c gets CC do
5: X ← CC[:0]
6: Y ← CC[:1]
7: centroidsX.append(sum(X)/len(X))
8: centroidsY.append(sum(Y )/len(Y ))
9: print(centroidsX[-1], centroidsY[-1])

10: end for
11: func: connectedComponentAnalysis(V,E,R):
12: visited ← []
13: cc ← []
14: for v ← range(count(V)) do
15: if visited[v] then
16: component ← []
17: cc.append(DFS(component, v, visited))
18: return cc
19: end if
20: end for
21: return component
22: return True;

It uses a depth-first search (DFS) algorithm to traverse the



vertices internally. Additionally, we check that the component
size is not greater than MaxSensors to ensure that the
number of sensors in the cluster is within the load capacity
that the GW can handle. We also check whether the sensor is
within the range of the gateway, assuming that the gateway
is placed at the cluster’s centroid. When adding a new sensor
to a component, it should be connected to all other sensors,
meaning that it should be at most 2*R apart from all sensors.
Once the components are selected, they form a cluster of
sensors sharing the same gateway. The next task is to find
the optimal location of the gateway. We choose to place the
gateway at the centroid of the component (Fig. 2c). The final
location of gateways looks like shown in Fig. 2d. The next
step is spread factor allocation to each sensor. This parameter
allocation further controls the signal transmission, data rate,
and collision probability. Thus, it affects the energy efficiency
of the network transmission. Spread factor allocation is done
in a heuristic approach as described in [1].

B. Simulated Annealing based Gateway Placement (SA-
Place)

Algorithm 2 Simulated Annealing for Gateway Placement
(SA-Place)

1: curr centers ← initial random clusters
2: curr labels ← cluster allocations to all data points based on

current centers
3: current max dist ← maximum distance (point, current centers)
4: max iterations ← num
5: for iter ← max iterations do
6: neigh sol ← curr solution(add/remove cluster)
7: neigh labels ← cluster allocations to all data points based

on neigh sol
8: neigh max dist← maximum distance (point, neigh centers)
9: delta dist = neigh max dist - curr max dist

10: if if delta distance < 0 or rand() < math.exp(-delta dist /
current temp) then

11: curr (centers,labels,max dist) ← neigh (centers, la-
bels,max dist)

12: if current max dist < best max dist then
13: curr (centers,max dist) ← best (centers, max dist)
14: end if
15: update curr temp
16: end if
17: if best max dist ≤ max dist threshold then break
18: end if
19: end forreturn , best centers, best max dist

The simulated annealing process is a versatile optimization
technique that can be applied to a wide range of problems
where finding the global optimum is difficult due to the
presence of multiple local optima or complex search spaces.
We use it to find an optimal number of gateways and their
locations. The main aim is to minimize the maximum distance
distance between data points and cluster centers. This can
be learnt in continuous manner and find cluster centers and
updating them in each iteration to perform minimization.
Details of the SA algorithm are mentioned in Algorithm 2.
It is performed as follows:

1) Initialize SA algorithm using parameters such as initial
temperature (1.0), cooling rate (0.95), max iterations
(10,000).

2) Initialize the clusters using random numbers and create
labels for all data based on the cluster centers. Find the
max cluster distances based on currently selected ones.

3) Initialize the best solution as the current clusters.
4) Iteratively learn the new clusters as follows:

• Intermediate or neighboring clusters are created
by randomly adding or deleting one cluster from
the current cluster set and finding the maximum
distance for each point with new cluster centers.

• If newly generated new clusters are nearer to data
points, replace the current clusters with these new
clusters and discard the previous ones.

• If they are nearest to any current clusters, label them
as the best ones.

• This update takes place with acceptance probability.
It calculates the probability of accepting a worse
solution (neighbor solution) based on the criterion.
This probability is used in simulated annealing to
determine whether to accept or reject the neighbor
solution. The algorithm agrees with the worse solu-
tion if the likelihood is greater than a random num-
ber between 0 and 1. The algorithm avoids getting
stuck in suboptimal solutions by accepting moves
that increase the objective function value, especially
at high temperatures. The algorithm becomes less
likely to receive worse solutions as the temperature
decreases, leading it toward convergence.

V. PERFORMANCE EVALUATION

We evaluate the performance of our algorithms using the
dataset from Würzburg, Germany, which comprises 10,000
sensors as described in [7]. Our evaluation is conducted in
two scenarios, as discussed below. Performance evaluation is
carried out for two scenarios,

1) Scenario S1: We studied what should be the optimal
distance between gateways and sensors because if they
are larger, then larger SFs are required, which in turn
causes a higher collision probability as ToA for each
message increases.

2) Scenario S2: We increase the number of sensors and
evaluate the collision probabilities and gateway counts
selected by both algorithms.

We have compared the results of these scenarios using our CC-
Place and SA-Place algorithms with a Graph-based shortest
path algorithm [1], and clustering algorithm using Fuzzy
C-Means [2]. Implementation can be found in [14]. We
extracted results for the number of GWs with their exact
locations in Fuzzy C- Means (FCM) using the implementation
mentioned in [15]. The collision probability and SF allocation
are performed using the implementation in [1].



500 1000 1500 2000 2500

Distance(m)

4

6

8

10

12

14

16

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty
 (

%
)

CC-Place

SA-Place

Fuzzy C Means

Graph

(a) Collision Probability Evaluation

500 1000 1500 2000 2500

Distance (m)

0

10

20

30

40

50

N
u
m

b
e
r 

o
f 
G

a
te

w
a
y
s

CC-Place

SA-Place

Fuzzy C Means

Graph

(b) Number of Gateways Evaluation

SF7 SF8 SF9 SF10 SF11 SF12

Spread Factors

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
D

e
v
ic

e
s
 A

llo
c
a
ti
o
n
 (

%
)

CC-Place

SA-Place

Fuzzy C Means

Graph

(c) SF Distribution Evaluation

Fig. 3: Comparison of the number of gateways, collision probability, and spread factor distribution for varying distance thresholds
between the sensors and the gateways from 300m to 2,580m. The maximum number of connections to the gateway is kept
constant at 300 sensors per gateway.
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(c) SF Distribution Evaluation

Fig. 4: Comparison of the number of gateways, collision probability, and spread factor distribution for varying thresholds of
the number of sensors per gateway. The maximum range the gateway can transmit to is kept constant at 800m.

A. Scenario S1: Evaluation of network for increasing the
maximum allowed distance between sensors and gateways.

We evaluated the results for Scenario S1 in Fig. 3. It shows
a comparative analysis for finding an optimal number of gate-
ways and locations for increasing the distance between sensors
and gateways using the CC-Place, SA-Place, FCM, and graph-
based shortest path algorithms. The predicted gateways should
be able to transmit up to given distances. All sensors are part
of at least one gateway’s scope.

Fig. 3a shows the collisions that take place in the network
when the number of gateways and their locations are predicted
by algorithms in Fig. 3b for increasing the maximum distance
of sensors from the gateways that they can serve. We observe
that the FCM algorithm predicts fewer gateways for a given
distance from sensors than other algorithms. But, it faces
higher collisions when compared to CC-Place and SA-Place.
This is because the gateways are sparse for FCM. Most of
the sensors can connect to one GW. However, since the GW
count increases, sensors can be connected to more than one
gateway for CC-Place and SA-Place. Thus, it increases the
spectral availability and reduces collisions. For the Graph

algo., the gateway count and the collision probabilities are
higher because the gateway location chosen is one among the
sensors. This may not always be the optimal location, when
the sensor is an outlier and farther than all other sensors; this
makes it farther from the gateway than CC-Place, where the
location chosen is a centroid of the sensor group in the cluster.

Fig. 3c shows spread factor distribution in sensors based
on distances from the gateway. This allocation is mainly
dependent on the distance. The lower the distance between
the and the gateway, the lower the spread factor is allocated.
In CC-Place and SA-Place, the average distance between the
gateway is lower than in FCM and graph-based algorithms.
The gateway locations control spread factor distribution. The
more optimally placed the gateway, the lower the spread
factors allocated. Thus, we observe that SA-Place and CC-
Place have more sensors allocated to SF7. However, if the
sensor is beyond a distance that the signal with SF7 cannot
reach, it becomes essential to allocate SFs with values greater
than SF7. Lower SF sends more chirps per second, allowing
faster data encoding. Higher SF means fewer chirps per
second, leading to less data encoded. Higher SF requires more



transmission time (airtime) when sending the same amount of
data. Longer airtime means the modem consumes more energy
[16]. We observe that lower spread factors are allocated to
sensors in a CC-Place-based and SA-Place algorithm-based
network as compared to the Shortest path and FCM. This
lowers the energy consumption due to gateway placement
using our proposed algorithms. Thus, we can safely say that
energy efficiency is paramount for the network with gateways
that can connect to farther sensors. Cc-place and SA-Place
algorithms should be considered for GW placement.

B. Scenario S2: Performance evaluation of network for in-
creasing the maximum allowed sensors per gateway.

The evaluation results for scenario S2 are shown in Fig. 4.
It shows how the collisions are affected (Fig. 4a) when the
number of GWs is predicted using each algorithm. We show
the predicted number of GWs for increasing the number of
sensors served per gateway in Fig. 4b. Thus, the algorithms
place GW to serve sensors that are not more than the specified
threshold. We observe the improvement as fewer GWs are
predicted in SA-Place and CC-Place than in the graph-based
algorithm. FCM proposes the lowest gateways to serve the
sensors in the network. This implies that more sensors per
gateway are served, increasing collisions. This is observed in
Fig. 4a. SA-Place assigns more gateways than FCM but main-
tains lower collision probabilities. This is because the number
of sensors assigned to each gateway is lower than the FCM.
The CC-Place shows improved collision probability compared
to FCM, but the number of gateways is comparable to FCM
and is the lowest among all algorithms under consideration.
This improvement is also observed due to the location of
gateways, which the algorithm predicts. Thus, for scenarios
with a dense network with each GW serving more sensors,
the SA-Place algorithm should be used for GW placement
if collision probability is the primary concern. However, if
CAPEX is to be lowered by reducing the number of GW, then
the CC-Place algorithm proves more useful. Moreover, spread
factor distribution in Fig. 4c shows that gateways are placed
optimally for denser networks using CC-Place and SA-Place
by more sensors using lower spread factors. Since a higher
number of sensors transmit using lower spread factors, the
overall energy consumption of the network is reduced.

VI. CONCLUSION

Gateway placement is essential in the network design step.
The algorithms help assign and place GW in appropriate
locations based on the network requirements and characteris-
tics. This paper proposes the connected component analysis-
based (CC-Place) and simulated annealing-based (SA-Place)
algorithms to find the optimal number of gateways and loca-
tions in the network. We compare our work with the existing
heuristic graph-based approach in [1] and the clustering-based
fuzzy c-means algorithm in [2]. We evaluate GW placements
for the networks in two scenarios: Based on the strength of
GW signals to farther distances and for dense networks when

the GW needs to support the load from more sensors. We
show that our proposed algorithms are energy efficient in
transmitting farther distances. They control the GW count as
well as the number of collisions. Similarly, we also show that
SA-Place is a reliable solution for denser networks, as it has
lower collision probabilities, and the CC-Place algorithm can
lower the initial network setup cost by installing a reduce GW.
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