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Abstract—Biological networks are dynamic structures. They

continuously evolve by rewiring their interactions. These rewirings

happen at different rates for different cells, and the rates can

change over time, yet we can only observe the cell at a limited

number of stages of their evolution. In this paper, we consider

the problem of determining evolutionary trajectories of dynamic

biological networks. We develop a novel algorithm DANTE (De-

termining Adaptation trajectories in biological Networks Through

Evolutionary mapping), which maps multiple cellular network

evolution patterns in accordance with the greatest possible sim-

ilarity. We evaluate our method on protein-protein interaction

(PPI) networks using a mouse model with evolutionary patterns

caused by chronic myeloid leukemia (CML) and compare it to four

alternative strategies. Our experimental results demonstrate that

DANTE outperforms competing methods in terms of trajectory

similarity, and the advantages of DANTE over competing methods

grow when network trajectories are incomplete.

Index Terms—dynamic networks, rewiring interactions, net-

work evolution trajectory

I. INTRODUCTION

Cellular systems governed by complex networks continu-
ously evolve by rewiring the interactions among molecules.
Genetic and epigenetic mutations [20], response to external
stimulants [24], and variations in DNA replication timing [7],
[21] are among the reasons behind this change. The average
human undergoes roughly 6.7 trillion genetic mutations per
day, with each of their 37 trillion cells undergoing about
1700 mutations after 25 years [16]. In addtıon to thıs, circa-
dian rhythm, particularly disruptions to it, can cause periodic
changes to cellular structure [34], aging leads to a slow, steady
change in cellular structure [26], and epigenetic mutations
cause temporary changes that impact cellular structure during
the time it remains in effect [19].

The evolution rates of cellular systems are complex and
variable, both across individuals as well as across tissues within
the same individual. There are many reasons behind such
variability. For instance, while the genetic makeup of every
human body is 99.9 percent identical, the 0.1 percent variation
leads to hundreds of millions of variant sequences. The average
human genome has more than 2000 structural variations [5].
Such variation can result in a substantial difference in the
progression of a disease and the response to a drug treatment
[22], [27], [28], [42]. A patient’s response to a drug can vary
wildly depending on their genetic makeup, with genetic factors
accounting for up to 95 percent of patient variability [6].
External factors, such as tobacco, sun light, and drugs, further
contribute to the variation in the rewiring rates of interactions

per organism, per cell, and even over time [33]. Thus, how fast
the network topology evolves varies from person to person, cell
to cell, and time period to time period.

One major gap in personalized medicine and cell engineering
is that most studies focus on the target state of the cell and
ignore the trajectory of changes the underlying topology of
the cellular interactions go through to achieve the final cell
state. For instance, when the same drug is administered on
different patients, the response to that drug can be extremely
diverse to the extent that a dose to one patient may be lethal,
while that same dose may be too little to elicit even the
desired effect on another patient [36]. The reasons for this huge
variation can be explained by observing the trajectory through
which the cells’ interaction network evolves in response to the
external stimulant, as the intermediate states of the cell may
contribute to the outcome. Even if the sequence of changes for
two patients in response to the same drug are identical, the
variations in the speed at which these changes take place may
affect the response time to that drug [35]. Therefore, finding
out how the cellular networks evolve as well as the speed
at which they continue to evolve is of utmost importance for
understanding and manipulating cellular functions.

Monitoring the evolution of a cell state continuously is not
feasible, as it requires obtaining tissue samples for each time
point at which a cell is observed in wet-lab experiments. The
availability of tissue samples is limited due to often requiring
invasive procedures to collect samples from patients [18]. Addi-
tionally, the cost of processing each tissue sample is high, since
it necessitates human expertise, wet-lab resources, and time to
process the samples [14]. For instance, the cost of RNAseq
experiments for one sample exceeds $500-$2,000 using 30-50
million reads per sample. Given these practical limitations in
data collection, the current way to monitor the evolutionary tra-
jectory of the cell state after it is manipulated is to measure gene
characteristics at specific time points, leading to a time series of
observed interaction patterns. For instance, weekly monitoring
of cancer cells after administering apoptosis-inducing drugs can
partially reveal alterations in cancer and normal cells [25]. Yet
our knowledge about the evolutionary trajectory of individual
patients remains incomplete, as different patients may respond
to the same drug at different rates, and thus, the time lapse
between two consecutively measured time points may yield
significantly more rewiring of interactions for one patient than
another [35].
Our contributions. In this paper, we consider the problem



of determining evolutionary trajectories of dynamic biological
networks. Mathematically, we formulate this as a new vari-
ant of the dynamic network alignment problem where given
biological networks may have missing data. Here, the missing
data refers to the time points where different dynamic networks
exhibit different trajectories in their evolution. We develop the
novel algorithm DANTE (Determining Adaptation trajectories
in biological Networks Through Evolutionary mapping), which
maps multiple cellular network evolution patterns in accordance
with the greatest possible similarity. DANTE is capable of
both interpolating between two observed network topologies
and extrapolating before the first and after the last observed
network topology. DANTE considers each sample’s genetic
mapping as a three-dimensional structure, where the first and
second dimensions correspond to specific genes and the third
dimension corresponds to time. A filled cell corresponds to
an interaction between two different genes at a specific time
point. We evaluate our method on protein-protein interaction
(PPI) networks using a mouse model with evolutionary patterns
caused by chronic myeloid leukemia (CML) and compare it to
four alternative strategies. Our experimental results demonstrate
that DANTE outperforms competing methods in terms of tra-
jectory similarity, and the gap between DANTE and competing
methods grows in favor of DANTE when the network trajec-
tories are incomplete. We also observe up to 77.7% success in
locating and positioning the missing network positions when
we randomly remove networks in the given network sequences.
These results suggest that DANTE has great potential to
advance our understanding of evolving systems and build more
accurate generative machine learning models to construct the
evolution of the wiring of dynamic networks.

The rest of the paper is organized as follows. Section II
presents the key studies and gaps in the literature. Section III
presents our DANTE algorithm. Section IV experimentally
evaluates our methods. We conclude with a brief summary in
Section V.

II. RELATED WORKS AND GAPS IN LITERATURE

The problem of identifying the evolutionary trajectories of
biological network topologies is associated with two orthogonal
challenges, namely data imputation and network alignment.
Below, we summarize the previous literature on these two fields
and why they alone are not sufficient to address the problem
considered in this paper.

A. Data imputation

The purpose of data imputation is to train on the already-
existing data to predict any missing data. This problem has
been considered for estimating interactions among molecules
in the literature. Wang et al. developed a method using
similarity-regularized matrix factorization to predict anticancer
drug responses on cell lines [23]. Suphavilai et al. utilized
a recommender system to predict cancer drug responses for
unseen cell-lines and patients [40]. More recently developed
methods to impute drug-interaction use manifold learning [1],
3D-Fiber-based Tensors [8], and the distribution of missing
drug-drug interactions [9]. Chen et al provides a comprehensive
survey on data imputation for drug response prediction [10].

Prediction of edges is another subset of data imputation. We
categorize edge prediction methods based on the information
used. These methods may rely on local similarity, global sim-
ilarity, node attributes, correlation information, identifying the
most influential node, and machine learning/AI. Shalforoushan
and Jalali developed an edge prediction method that utilizes
Bayesian Networks [39]. Aouay et al. introduced a feature-
based prediction method that used supervised learning [3]. Yan
and Gregory developed a method that relied on a mixture of
local and global similarity measures, which they referred to as
a node’s ”community”, to find missing edges [45]. A survey of
these edge prediction models can be found in [30].

Although data imputation methods may be effective for
estimating data characteristics at certain states, it requires prior
knowledge of the state of both the training data and the data to
be estimated. However, as we explain later in detail, this prior
knowledge is missing for the problem we consider in this paper,
as the topology of each network may be evolving at different
and varying rates over time. This makes using the existing
data imputation methods ineffective for estimating evolutionary
trajectories, for the trajectory itself is needed to estimate the
network topology.

B. Network alignment
The network alignment problem aims to find a mapping

between the nodes of given input networks. We consider the
existing studies on this problem in three categories: pairwise
alignment, multiple alignment, and dynamic alignment. Pair-
wise alignment assumes that only two networks are aligned,
and these two networks are static (i.e., their topologies do not
change over time). GRAAL [29], GHOST [31], SPINAL [2],
and PINALOG [32] are a few examples to the algorithms in this
category. A comparative survey of these methods are available
at Clark et al. [13]. Multiple alignment generalizes this to more
than two networks, while still maintaining the assumption that
the input networks are static. MultiMAGNA++, which is a
multiple alignment extension of the pairwise MAGNA, [44] and
CrossMNA, which can operate without any additional attribute
information, [11] are two examples of such. The problem of
aligning dynamic networks considers the case when the given
networks are not static; they evolve over time. Thus, each
system considered is actually an ordered sequence of networks.
There are two variants of these methods. The first one updates
the alignment of the network as they evolve. The second one
finds an aggregated best alignment, which is invariant, although
the input networks change. DynaMAGNA++ [43], GoT-WAVE
[4], Tempo++ [17], and Twadn [46] are just a few examples
of dynamic alignment algorithms. We refer the readers to the
survey by Cinaglia and Cannataro for a detailed overview of
the methods in this category [12].

All the literature discussed above focuses on the mapping
of the molecules of the input networks under varying mapping
models. While each of the listed dynamic network alignment
algorithms have their benefits and drawbacks, none of them
are tailored towards finding evolutionary trajectories. They
assume either that the input networks are static or, even if they
evolve, that the evolutionary trajectories are already known and
focus on aligning network topologies under this assumption.
This assumption, however, is very strong, as different cellular



systems react to changes at varying speeds and thus, it is not
possible to have this information a priori.

III. DANTE ALGORITHM

A. Terminology & problem definition

We model each PPI network as a graph denoted with
G = (V,E), where each protein corresponds to a node in
set V and each interaction between a pair of proteins is
an edge in set E. Consider a dynamic cellular system with
an evolving network topology, which is observed at t time
points with the ith time point being before the (i + 1)th
time point for all 0 < i < t. We denote the topology of the
observed network at the ith time point with Gi = (Vi, Ei).
Without losing generality, we assume that the set of nodes
remain unchanged over time, and thus simplify our notation
to Gi = (V,Ei). This assumption holds by setting V =

S
i Vi.

Thus, we represent an evolving network observed with t time
points as S = [G1, G2,· · · , Gt]. Consider a collection of k
evolving cellular systems, each leading to a sequence of graph
topologies as described above, with the jth system observed at
tj time points (tj is a positive integer). We represent networks
of these k systems as

S1 = [G1,1, G1,2,· · · , G1,t1 ],

S2 = [G2,1, G2,2,· · · , G2,t2 ],

· · ·
Sk = [Gk,1, Gk,2,· · · , Gk,tk ]

(1)

with Gj,i = (V,Ej,i). Notice that the notation we use above
is powerful, as it does not impose any limit to the number of
time points. Additionally, it does not make assumptions on the
time lapse between consecutive time points. That is, for a given
evolving network, the time lapse between the ith and (i+1)th
time points may be different than that between the i0th and
(i0 + 1)th time points for i 6= i0. Furthermore, our notation
does not assume that the time point of the observed network of
two different evolving networks (i.e., Gj,i and Gj0,i for j 6= j0)
corresponds to the same evolutionary time for the two systems.
It merely denotes that they are the ith observed time point in
chronological order in their corresponding systems.

The alignment of the trajectories of a collection of evolving
networks aims to find a mapping of the observed time points of
these network sequences. Let us denote a mapping of the time
points in sequences Sj1 and Sj2 with a partial bijective function
 j1,j2() : {1, 2,· · · , tj1} ! {1, 2,· · · , tj2} [ {?}. Here, the
symbol ? represents NULL, and we use it when the observed
time point in the sequence of networks Sj1 cannot be found
in the sequence Sj2 . We say that any two observed graphs in
the given collection of evolving networks can be aligned with
one another so long as they satisfy all of the following three
conditions:
1) The two graphs belong to different sequences. Meaning, we

cannot align a network instance from an evolving system
from another instance from the same system.

2) A graph is not aligned to more than one graph from the
same sequence. That is, 8i 6= i0,  j1,j2(i) 6=  j1,j2(i

0) other
than the NULL mapping  j1,j2(i) =?.

Fig. 1: Illustration of the violations of the three alignment conditions. Each
black circle represents a network instance of an evolving system observed at a
specific time point. The time progresses from left to right (i.e., the black circle
on the right denotes a network instance which is observed later in time). The
line connecting two networks indicates that those two networks are aligned with
each other. (a) Aligned graphs belong to the same evolving network at different
time points. (b) A graph in the second sequence is aligned to more than one
graph in the first sequence. (c) The second graph in the second sequence is
aligned with a graph in the first sequence at a time point before that of the
first graph in the same sequence, and thus the mappings cross each other.

3) The mapping between graph pairs do not cross over each
other. That is, 8i < i0,  j1,j2(i) >  j1,j2(i

0) is not a legal
alignment.

Figure 1 illustrates these three conditions.
Given a collection of k evolving networks S1, S2,· · · , Sk, we

say that a collection of mappings  j1,j2(), 1  j1 6= j2  k is
an alignment of the trajectories of these k evolving networks
if they satisfy the following two properties.
• Reflexivity: If  j1,j2(i) 6=?, then  j2,j1( j1,j2(i)) = i.
• Transitivity: If  j1,j2(i) = i0 6=?, we have 8j3 2
{1, 2,· · · , k}� {j1, j2},  j1,j3(i) =  j2,j3(i

0).
Now we are ready to define the trajectory alignment problem
considered in this paper.
Definition: Trajectory Alignment Problem (TAP). Assume
that we are given a collection of k evolving networks
S1, S2,· · · , Sk. Let us denote an arbitrary graph in any of
these evolving networks with G. Given a similarity function
'() : (G [ {?}) ⇥ (G [ {?}) ! [0 : 1] between two graphs
(observed or not observed), TAP seeks to find the alignment
 j1,j2(), 1  j1 6= j2  k, which maximizes the total pairwise
similarity score

1

Alignment length

X

1j1<j2k

X

i

'(Gj1,i, Gj2, j1,j2 (i)
).

In the definition of TAP above, we use a similarity function
notation '(). We elaborate on the computation of this function
in Section III-B as it is a part of the algorithm which computes
the alignment. Notice that TAP is different than the classic
network alignment problem in the literature, which aims to
map the nodes of two or more networks. This is because
TAP assumes that the aligned networks model the interactions
among the same molecules, and thus the set of nodes in
the corresponding graphs are identical throughout different
time points as well as dynamic systems. Therefore, identical
nodes map to each other regardless of the time point. What is
challenging here is to map the time points at which their wiring
of interactions are most similar.



We develop a dynamic programming (DP) solution to TAP.
We call our algorithm DANTE (Determining Adaptation trajec-
tories in biological Networks Through Evolutionary mapping).
In the following, we first explain DANTE when the number of
input network sequences is two (k = 2). We then generalize it
to arbitrary number of dynamic networks.

B. Alignment of a pair of network trajectories
Assume that we are given two sequences of graphs S1

and S2 as input. Also assume that these sequences consist
of t1 and t2 networks, respectively. Consider the mapping
functions  1,2() : {1, 2,· · · , t1} ! {1, 2,· · · , t2} [ {?} and
 2,1() : {1, 2,· · · , t2}! {1, 2,· · · , t1}[{?}, which satisfy the
three conditions for legal alignment and the reflexivity property
described in Section III-A.

DANTE computes a DP matrix D, which has t1+1 rows and
t2+1 columns. We number the rows and columns of this matrix
with indices in {0, 1,· · · , t1} and {0, 1,· · · , t2}, respectively.
The entry of this matrix at row i1 and column i2, denoted with
D[i1, i2], contains the similarity score of the alignment of the
first i1 networks of S1 with the first i2 networks of S2 when
they are optimally aligned.

Algorithm 1 presents the pseudo-code for DANTE. We start
by initializing the first column (lines 1-3) and the first row (lines
4-6) of the matrix D. An entry D[0, i2] corresponds to the case
when the first network in S1 is aligned with the (i2 + 1)th
network in S2. In other words, the evolution trajectory of the
dynamic system observed in S1 is similar to that in S2 only
after the i2 observed time points of S2. In that case, since we
do not have any observed network topologies from S1 with
a trajectory similar to S2 during the first i2 observed time
points of S2, we compute how similar the two systems are
at i2 unobserved time points of S1 prior to the first observed
time point of S1 as the expected similarity between them.
We call this process extrapolation. We detail the extrapolation
procedure later in this section. Similarly, an entry D[i1, 0]
corresponds to the case when the first network in S2 is aligned
with the (i1+1)th network in S1, and thus the trajectory of S1

is late as compared to S2. In this case, we extrapolate the i1
unobserved points of S2 prior to the first observed time point
of S2.

In order to find the value of any given cell D[i1, i2], DANTE
considers three options and selects the one with the highest
score (lines 9-12).
• Option 1. Align G1,i1 with G2,i2 . This option computes
D[i1, i2] as the sum of the diagonal entry D[i1 � 1, i2 � 1]
and the similarity between graphs G1,i1 , G2,i2 .

• Option 2. Align G1,i1 with an unobserved network topology
in the other evolving system between time points i2 � 1
and i2. We label this unobserved network topology an
interpolation between G2,i2�1 and G2,i2 . We elaborate on
how DANTE computes the similarity between an observed
network topology and an interpolated network later in this
section. It is possible that more than one network in S1 (i.e.,
a 2 {1, 2,· · · , i1} networks; G1,i1�(a�1), G1,i1�(a�1), · · ·,
G1,i1 ) is aligned with the interpolated networks between
G2,i2�1 and G2,i2 . To account for all of these possibili-
ties, for each a 2 {1, 2,· · · , i1}, we compute the sum of
D[i1�a, i2�1] and the expected similarity between networks

Algorithm 1: Dynamic Alignment Algorithm
Input: S1, S2;

1 for i2  1 to t2 do

2 D[0, i2] start extrapolation for S2;
3 end

4 for i1  1 to t1 do

5 D[i1, 0] start extrapolation for S1;
6 end

7 for i1  1 to t1 do

8 for i2  1 to t2 do

9 R max of all interpolations for i1 � 1;
10 C  max of all interpolations for i2 � 1;
11 A '(G1,i1�1, G2,i2�1);
12 D[i1, i2] '(G1,i1 , G2,i2) + max{A,R,C};
13 end

14 end

15 for i1  0 to t1 do

16 maxR end extrapolation for first sequence;
17 end

18 for i2  0 to t2 do

19 maxC  end extrapolation for second sequence;
20 end

21 Return  max{R,C,D[t1, t2]}

G1,i1�(a�1), G1,i1�(a�2), · · ·, G1,i1 and the a interpolated
networks between G2,i2�1 and G2,i2 . We then choose the
largest score among the a cases.

• Option 3. Align G2,i2 with an unobserved network topology
in the other evolving system between time points i1 � 1
and i1. This is the dual scenario to Option 2 above. Here,
we do interpolation on S1 instead of S2. Thus, for each
a 2 {1, 2,· · · , i2}, we compute the sum of D[i1 � 1, i2 � a]
and the expected similarity between networks G2,i2�(a�1),
G2,i2�(a�2), · · ·, G2,i2 and the a interpolated networks
between G1,i1�1 and G1,i1 . We then pick the largest score
among the a cases.

Once we reach the final entry of the DP matrix, D[t1, t2],
we encounter two more cases, which are the dual scenarios
of the extrapolation we perform for the first row and column
of the DP matrix. This time, we align a suffix of graphs in one
evolving network with extrapolated graphs at the end of the
other evolving network (lines 15-20).
• Case 1. Extrapolate tail of S2. For each a 2 {1, 2,· · · , t1},

we compute the sum of D[t1 � a, t2] and the expected
similarity between the last a observed networks G1,t1�(a�1),
G1,t1�(a�2), · · ·, G1,t1 and a extrapolated networks after
G2,t2 . We then pick the largest score among the a cases.

• Case 2. Extrapolate tail of S1. For each a 2 {1, 2,· · · , t1},
we compute the sum of D[t1, t2 � a] and the expected
similarity between networks G2,t2�(a�1), G2,t2�(a�2), · · ·,
G2,t2 and a extrapolated networks after G1,t1 . We then pick
the largest score among the a cases.

We report the largest value of the two cases above and D[t1, t2]
as the final result (line 21). Figure 2 illustrates the concept of
interpolation and extrapolation.
Similarity between two observed networks. Next, we explain
how DANTE computes the similarity between two observed



network topologies G1,i1 = (V,E1,i1) and G2,i2 = (V,E2,i2),
namely '(G1,i1 , G2,i2). Let us denote the number of edges
shared by both graphs, |E1,i1 \ E2,i2 | as the number of true
positives (TP), the number of edges missing from both graphs�|V |

2

�
� |E1,i1\E2,i2 | as the number of true negatives (TN), the

number of edges listed only in the first graph |E1,i1 � E2,i2 |
as the number of false positives (FP), and the number of edges
missing only in the first graph |E2,i2 � E1,i1 | as the number
of false negatives (FN). Most biological networks are sparse.
As a consequence, edges are not distributed evenly to these
four categories; we expect the value of TN to be significantly
larger than the other three. To calculate the similarity between
two graphs while avoiding the bias introduced from the skewed
distribution arising from the sparseness of networks, we com-
pute the similarity between the two networks as follows,

'(G1,i1 , G2,i2) =
1

2
(

TP

TP + FN
+

TN

TN + FP
). (2)

The first term computes the fraction of the edges in G1,i1 ,
which are also in G2,i2 . The second term computes the fraction
of the edges not in G1,i1 , which are also not in G2,i2 . These
two terms are also known as positive and negative accuracy,
respectively. Our similarity function thus computes the average
of the positive and negative similarities between the two net-
works. This formula is also known as the balanced accuracy
(BA).

Next we discuss the two crucial steps of DANTE, namely
interpolation and extrapolation. These two steps compute the
expected similarity between a subsequence of a observed
network states in one evolving system, with a subsequence of
a unobserved network topologies in the other evolving system.
If the unobserved network instances are between two observed
networks, we call it interpolation. If they are before the first
or after the last observed network, we call it extrapolation.
Before we explain how DANTE computes interpolation and
extrapolation, we present two important notes:

1) For unobserved network topologies, we do not predict a
specific network topology. We instead compute the expected
similarity as the average similarity for all possible network
topologies which can be observed at a particular time point
during the evolution of the given network.

2) We compute the set of possible network topologies based
on the evolution trend of that evolving system at the ob-
served time points before/after the estimated unobserved
time points, depending on whether it is interpolation or
extrapolation.

Interpolation. Without losing generality, assume that, for some
j and i1, the subsequence of j observed networks from S1,
namely G1,i1+1, G1,i1+2, · · ·, G1,i1+j , are aligned with j
interpolated (i.e., unobserved) networks in S2. Again, without
losing generality, assume that this interpolation is performed
between the two observed networks G2,i2 and G2,i2+1.

As the network topology evolves from G2,i2 to G2,i2+1,
with j interpolated networks in between, some edges must
be inserted and others removed to obtain each interpolated
network. For each r 2 {1, 2,· · · , j}, let us denote the set of
edges in the rth interpolated network among the j interpolated
networks with Er. To simplify our notation, let us also define
E0 = E2,i2 . We would like to compute the expected similarity

(a) Dilemma (b) Dilemma Resolution

Fig. 2: Illustration of the dilemma that arises from aligning networks and the
dilemma’s resolution. Black circles represent network instances of an evolving
system observed at specific time points, with time progressing from left to right.
Two networks aligned with each other is illustrated with a line connecting the
two. (a) This alignment possibility creates a dilemma where network G2,2 has
no possible network alignment without violating one of the three conditions.
Network G1,3 is similarly isolated. (b) Our resolution to the dilemma, we
create an interpolated network (the blue diamond/square) between G1,1 and
G1,2, then align it with the formerly-isolated G2,2. Similarly, we create an
extrapolated network (the red triangle) after G2,3 and align it with G1,3.

between G1,i1+r and the rth interpolated network using the
formulation in Equation 2, that is Exp['(G1,i1+r, (V,Er))].

During the evolution of the network from G2,i2 to G2,i2+1,
the set of edges in the network change from E0 to E2,i2+1.
The edges in E0\E2,i2+1 and those in (V ⇥V )�{(u, u)|u 2
V }�(E0\E2,i2+1) correspond to the edges which are existing
and absent in both the initial and final network topologies
respectively. Under the mild assumption that the evolution of
the wiring of a network happens with the smallest possible
set of mutations in the network topology, we do not change
the present/absent status of these edges during the network’s
trajectory, as the initial and the final network topologies are
already identical for these edges. On the other hand, the
edges in E0 � E2,i2+1 are removed from, and the edges
in E2,i2+1 � E0 are inserted into, the initial network G2,i2
where the evolution begins. At any intermediate stage of the
interpolation, say Er (the rth step out of j interpolation steps), a
fraction of the edges in E2,i2+1�E0 are included and a fraction
of the edges in E0�E2,i2+1 are excluded. The expected value
of the total number of edge insertions and deletions from E0

to Er is thus
r

j
(|E2,i2+1 � E0|+ |E0 � E2,i2+1|) (3)

Next, we formulate the distribution of these rewirings to
obtain Er into two sets: those removed from and those inserted
into E0.
• We denote the number of edges removed from E0, but not
E1,i1+r with random variable x1 = |(E0�E2,r)�E1,i1+r|.

• We denote the number of edges removed from both E0 and
E1,i1+r with random variable x2 = |(E0�E2,r)\E1,i1+r|.

• We denote the number of edges inserted from both E2,i2+1

and E1,i1+r with random variable x3 = |(E2,r � E0) \
E1,i1+r|

• We denote the number of edges inserted from E1,i1+r, but
not from E2,i2+1 and with random variable x4 = |(E2,r �
E0)� E1,i1+r|.

Figure 3a illustrates these random variables and their associa-
tion with the three edge sets.



Let us return to Equation 2. In order to compute
Exp['(G1,i1+r, (V,Er))], the four relevant terms are TP , TN ,
FP , and FN . We first focus on the first term: TP

TP+FN . TP
is the number of edges shared by the interpolated graph and
G1,i1+r. As Figure 3a illustrates, there are three edge subsets
where we observe these edges. Thus TP = (|E0 \ E2,i2+1 \
E1,i1+r|) + (|(E0 \ e1,i1+r) � E2,i2+1| � x2) + (x3). Here,
each parenthesis shows the number of edges in one of the
regions. Note that |E0 \E2,i2+1 \G1,i1+r|+ |(E0 \G1,i1+r)|
is constant, allowing us to replace it with a simple constant
denoted with a. This reduces the equation to TP = a�x2+x3.
The denominator TP + FN is simply the number of edges in
E1,i1+r, and thus TP +FN = |E1,i1+r| is a constant as well.
We denote this constant with b. Therefore, the first term of
'(G1,i1+r, (V,Er)) reduces to

TP

TP + FN
=

a� x2 + x3

b
(4)

Next, we focus on the second term in Equation 2, TF
TF+FP .

TF is the number of edges missing from both the interpolated
graph and G1,i1+r. Once again, Figure 3a illustrates that there
are three regions where this occurs. This leads to the rather
lengthy expression TF =

�|V |
2

�
� |E0 [ E2,i2+1 [ E1,i1+r| +

|E2,i2+1�E0�E1,i1+r|�x4+x1. Since
�|V |

2

�
�|E0[E2,i2+1[

G1,i1+r|+|E2,i2+1�E0�E1,i1+r| is a constant, we denote this
constant with c, reducing the expression to c�x4+x1. Because
TF + FP is the number of edges missing from E1,i1+r, we
compute it as

�|V |
2

�
� |E1,i1+r—. Once again, this is a constant,

so denote it with d.

TN

TN + FP
=

c� x4 + x1

d
(5)

With both fractions in Equation 2 addressed, we compute
the similarity between G1,i1+r and the interpolated network
(V,Er) as

'(G1,i1 , (V,Er)) =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

=
1

2
(
a� x2 + x3

b
+

c� x4 + x1

d
)

(6)

Equation 6 consists of four constants and four variables.
Notice that the sum of the random variables x1+x2+x3+x4

denotes the total number of edges inserted or deleted up to
the rth interpolated network. While the specific edges to be
added or removed is randomly determined, the number of edges
chosen is predetermined. In other words, x1+x2+x3+x4 = k,
where k is a constant (the value of k is provided in Equation 3).
By substituting x4 with k�x1�x2�x3, we eliminate x4 from
Equation 6.

To improve the accuracy of the prediction, rather than using
one random interpolation, we instead calculate the expected
interpolated graph by finding the average of all possible interpo-
lated graphs. This can be done by calculating the expected val-
ues of Exp[x1] =

TN⇥r
j , Exp[x2] =

FN⇥r
j , Exp[x3] =

TP⇥r
j ,

and Exp[x4] =
FP⇥r

j . From this, we are able to reach our final
similarity score equation, which is derived in Equation 7 as
Exp['(G1,i1+r, (V,Er))] =

= Exp[
1

2
(

TP

TP + FN
+

TN

TN + FP
)]

=
1

2
Exp[(

a� x2 + x3

b
+

c� x4 + x1

d
)]

=
1

2
Exp[(

a� x2 + x3

b
+

c� k + 2x1 + x3 + x2

d
)]

=
a+ Exp[x2 � x3]

2b
+

c� k + 2Exp[x1 + x2 + x3]

2d

(7)

Extrapolation. We describe extrapolation at the end of a
sequence of networks below. Extrapolation at the beginning of
the sequence is symmetric to this description. Without losing
generality, assume that for some j and e1, the subsequence
of j observed networks from S1, namely G1,e1+1, G1,e1+2,
· · ·, G1,e1+j , are aligned with j extrapolated (i.e., unobserved)
networks in S2, with e1 + j = t1. Again, without losing
generality, assume that this extrapolation is performed after
the final network G2,t2 . Calculation of all extrapolated graphs
begins with G1,e1+1, then proceeds in an iterative manner
until we reach G1,e1+j . As such, this paper will discuss
in detail only G1,e1+1, which relies on three graphs for its
derivation: G1,e1�1, G1,e1 , and G2,t2 . Figure 3b shows a visual
representation of this as a Venn diagram. All edges fall into one
of the eight regions, which are labeled x1, x2, ..., x8.

Consider the separate Venn diagram for graphs G1,e1 ,
G1,e1+1, and the extrapolated G2,t2+1. Such a Venn diagram
also has eight regions, which can be labelled y1, y2, ..., y8
in the same manner as its x counterpart. Since the number
of potential edges is constant,

P8
i=1 xi =

P8
i=1 yi. Unlike

with xi, we cannot directly determine the values of yi due
to the extrapolated graph G2,t2+1. However, note that x1, x2,
x6, and x7 all contain edges within E2,t2 , while x3, x4, x5,
and x8 all contain edges excluding it (within

�|V |
2

�
� E2,t2 ).

Additionally, note that, excluding E2,t2 , x6 and x5 consist
only of edges in G1,e1�1, x2 and x3 consist only of edges
in G1,e1 , x1 and x4 consist only of edges in both, and x7 and
x8 consist only of edges in neither. From there, we assume
that the proportions x1

x4
= y1

y4
, x2

x3
= y2

y3
, x6

x5
= y6

y5
, and

x7
x8

= y7

y8
hold. In other words, the rate of change in each region

of the possible distribution of edges inserted and removed
during the evolution remains proportional, allowing for an
average approximation of the extrapolated graph G2,t2+1 using
the expression, 1

2 (
y1+y2

y1+y2+y6+y7 + y5+y8
y3+y4+y5+y8 ), which is a

variation of Equation 2. This method can be applied recursively
for additional extrapolated graphs after the last graph in a
sequence, and can be reversed for extrapolated graphs before
the first graph in a sequence.

C. Alignment of more than two network trajectories
The process described in the above section is sufficient

for handling two sequences of graphs. To handle cases with
more than two sequences of graphs in polynomial time, we
turn to a strategy called star alignment. Under star alignment,
we pick one of the input network sequences as the “center”.
Then, we align the center sequence independently with all
other sequences of graphs using the algorithm described in
Section III-B. We identify the mapping among all other pairs of
sequences from the transitivity rule described in Section III-A.
Figure 4 illustrates this on a small example. We repeat this



(a) Interpolation Venn Diagram (b) Extrapolation Venn Diagram

Fig. 3: Venn diagrams for interpolation and extrapolation. Each circle in the
Venn diagrams represents the set of edges belonging to an observed network.
(a) The interpolation Venn diagram contains a white oval, which represents
the edges in the interpolated (i.e., unobserved) graph. This set encompasses
the entire region shared by E0 and E2,i2+1 and does not touch any area not
encompassed by at least one of the two networks/circles. The variables x1, x2,
x3, and x4 each represent the one region they are within. The constants a, b,
c, and d represent one or more regions, with each constant touching all regions
they encompass. (b) The extrapolation Venn diagram consists of eight regions,
labeled in the form of xi, where i is an integer. Four of these regions are
within the E2,t2 circle and correlate with four corresponding regions outside
the circle. The proportions between the corresponding regions (i.e. x1

x4
) are

used to generate the edges of the extrapolated graphs.

Fig. 4: Illustration of the alignment of three network sequences. The black
circles denote the observed (i.e., input) networks. The network sequence in the
middle is the center of the star alignment. The sequences on the top and bottom
are independently aligned with the middle sequence. The blue diamonds and
the red triangles denote interpolated and extrapolated networks, respectively.

process by choosing each input sequence as the center, and
pick the alignment with the highest similarity score.

IV. EXPERIMENTAL EVALUATION

Transcription data. In order to model an evolving sequence
of networks, we use transcription data obtained from mice
from the Gene Expression Omnibus (GEO) Series GSE244990
[15]. This dataset contains transcription values for a total of 20
mice, all of which have chronic myeloid leukemia (CML). We
consider these mice in five categories as follows:
1) (Control) 3 mice receive tetracycline (Tet-on/Control) for 18

weeks. We call this the control group.
2) (CML) 6 mice do not receive tetracycline (Tet-off/CML). We

name this the CML group.
3) (Tet-Off-On) 4 mice only receive tetracycline after six weeks

(Tet-Off-On) to simulate the scenario for successful treat-
ment after six weeks. We call this group Tet-Off-On.

4) (TKI) 7 mice receive nilotinib, a tyrosine kinase inhibitor
(TKI), after six weeks for four weeks to simulate a treatment
window. We name this group TKI.

5) (All) We refer to all 20 mice combined as All.

Fig. 5: Summary of the network data. Each row corresponds to a mouse in
one of the four groups. Each column is a time point measured in weeks, from
week 0 to 18. Highlighted entries show the time point at which an observation
is available for the corresponding mice. The block of white cells at the tail end
of a mouse indicates that the mouse has perished.

The dataset contains the transcription values for each mouse
obtained weekly for up to 18 weeks, assuming they did not
perish first, creating a maximum of 19 graphs per mouse (week
0 + 18 weeks of observation). Figure 5 summarizes the dataset.
Network data. We use the PPI network of mice from the
STRING database [41]. This database contains interactions
between proteins based on several evidences, including co-
expression, gene fusion, and text mining. Depending on the
evidences supporting each interaction, it reports a confidence
value in the [0 : 1] interval with higher values indicating
stronger evidence. We use two orthogonal criteria to filter the
interactions in this network. The first factor is the confidence
level as reported in the STRING database. We use 0.7 and 0.9
as minimum confidence cutoffs to obtain PPI networks at two
different stringency levels. The second factor is the minimum
transcription level, which quantifies the current level of activity
for a specific gene. For each mouse and time point combination,
we filter all PPI interactions where the transcription levels of the
two genes encoding those two interacting proteins are below the
minimum transcription cutoff value. We use two transcription
cutoff values in our experiments, namely 30 and 50, to test two
levels of stringency for gene activity levels. In total, we have 20
evolving network sequences, with each network observed at up
to 19 time points, for four stringency levels of interactions and
gene activity levels. With a minimum confidence cutoff of 0.9
and a minimum transcription level of 50, there are an average
of 595 nodes and 8278 edges per network sequence. After
decreasing the confidence cutoff to 0.7, the average number
of edges increases to 11339. With a confidence of 0.9 and
a transcription level of 30, there are an average average of
970 nodes and 10772 edges per network sequence. With a
confidence of 0.7, this increases to 16601 edges.
Competing methods. We compare our algorithm to four other
methods. The first method aligns the first observed networks
of all sequences with one another, then the second networks,



in this order without any interpolation. If a sequence runs out
of networks before the others, it pads it using extrapolation.
We call this method Extrapol End. The second method is dual
to the first one. It starts aligning the sequences of networks
starting from the last observed time points and pads each
sequence via extrapolation before the first observed time point
if needed. We call this strategy Extrapol Start. The third
method, called Extrapol Both allows for extrapolation from
either end of the sequences (i.e., before the first observed
network as well as after the last observed network) to occur
with equal chances. The fourth method uses the Dynamic
Time Warping (DTW) algorithm [37], [38]. DTW stretches the
sequences of networks to match the time points by duplicating
observed networks if needed. By doing this, DTW imitates
the interpolation/extrapolation strategy of DANTE. The funda-
mental difference is DTW duplicates observed networks, while
DANTE computes the expected similarity across all possible
intermediate graph topologies based on the trajectory of the
network it is aligned with. Note that the DTW algorithm works
for only pairs of sequences. In order to use it for multiple
sequences, we use the same strategy we developed for DANTE
in Section III-C.

A. Evaluation of the similarity of the evolutionary trajectory
In our first experiment, we evaluate how well each algorithm

aligns the evolutionary trajectories of dynamic networks. We
use DANTE and each of the four other competing methods
to align the entire sequences of networks for the mice in five
groups (Control, CML, Tet-Off-On, TKI, and All). Here, the
first four groups represent homogeneous sets of mice with same
treatment. The final group models the case when we have a
heterogeneous set of evolving patterns. For each group, we
build the dynamic network for the two transcription cutoffs
30 and 50 and the two interaction confidence cutoff values 0.7
and 0.9, leading to a total of 80 evolving networks (20 mice
⇥ 4 cutoff combinations), with each network observed at up to
19 time points.

For each mouse group and cutoff combination, we run
DANTE and the four competing methods and report the simi-
larity score for the aligned trajectory. Thus, we have a total 100
alignment results (5 mice groups ⇥ 4 cutoff combinations ⇥ 5
methods). Figure 6 presents the results. Our results demonstrate
that in all test cases, DANTE consistently outperforms the
three methods Extrapol End, Extrapol Start, and Extrapol Both.
DANTE performs better than DTW in 60% of cases and
performs equally well in 30% of cases. DTW was marginally
better than DANTE in only two experiments. Particularly
for the two homogeneous groups Control and TKI, and the
heterogeneous group All, the gap in accuracy was noticeably
high in favor of DANTE. This suggests that our method is
highly preferable when the evolution trajectories are highly
variable. We observe that the accuracy of all methods increase
as we increase the stringency of the interactions (i.e., for higher
interaction confidence cutoff). Similarly, the accuracy is also
higher for higher stringency for transcription values.

B. Impact of missing trajectories
This experiment evaluates the effects of missing networks on

the alignment of network trajectories. To do that, we remove

(a) (b)

(c) (d)

Fig. 6: Similarity of the trajectory mapping obtained by DANTE and
four competing methods for five mice groups. (a) Transcription cutoff = 30,
interaction confidence cutoff = 0.7. (b) Transcription cutoff = 30, interaction
confidence cutoff = 0.9. (a) Transcription cutoff = 50, interaction confidence
cutoff = 0.7. (a) Transcription cutoff = 50, interaction confidence cutoff = 0.9.

a randomly selected subset of � observed networks from the
input dataset. We test this for each value of � 2 {1, 2, 3, 4, 5}
as follows. We randomly select a dynamic network Sj =
[Gj,1, Gj,2,· · · , Gj,tj ]. We then randomly select a network Gj,i

from this list and remove it from Sj . We repeat this � times.
Thus the discarded networks can be from any sequence and
at any time point. In order to eliminate any bias introduced,
for each �, we repeat this process five times to create five
such datasets. We set the minimum transcription cutoff as
50 and minimum interaction confidence to 0.9 (i.e., stringent
thresholds) in favor of the competing methods, as their per-
formances were improving for stringent thresholds. We have
a total of 125 datasets (5 mice groups ⇥ 5 � values ⇥ 5
repetitions). We test the top three methods from the previous
experiment, Extrapol Both, DTW, and DANTE, as Extrapol
End and Extrapol Start yield significantly inferior similarity
values in all experiments. We report the average value for each
method and � combination. In total, we perform 375 alignments
(3 methods ⇥ 125 datasets).
Similarity of trajectories. Figure 7 shows the similarity value
obtained by aligning the trajectories using DANTE and the top
two competing methods. Our results demonstrate that DANTE
finds the trajectory alignment with the highest similarity score
in the vast majority of test cases. Extrapol Both consistently has
the least similarity in all the experiments. DANTE outperforms
DTW in 72% of cases and performs equally well in 20% of
cases. Particularly, for the two homogeneous datasets (Control
and CML groups) and the heterogeneous All group, DANTE



yields significantly better similarity scores for all values of �.
Another important observation following from our results is
that DANTE is robust to missing data. For all datasets, as the
number of artificially removed networks from the trajectory
(i.e., �) increases, DANTE yields the same similarity, whereas
Extrapol Both reports fluctuating values and DTW suffers
slowly decaying similarity values in three datasets (see All,
TKI, and CML datasets).
Accuracy of identifying missing networks. The previous
experiment demonstrates that even after removing a subset of
network instances from the input network sequences, DANTE
can still align the sequences with high similarity. However,
that alone is insufficient to determine if DANTE is capable of
revealing the networks which were removed. In this experiment,
we evaluate how well DANTE can locate the positions of the
missing weeks, which is the ultimate goal of this study.

Assume that for two sequences Sj1 and Sj2 , their align-
ment maps the network Gj1,i1 to the network Gj2,i2 (i.e.,
'j1,j2(i1) = i2). Assume that Gj2,i2 is removed along with
some other networks. Let us denote the mapping function we
compute after removal of these networks with '0(). We say
that DANTE correctly identifies the position of the artificially
removed network Gj2,i2 , if the alignment interpolates a network
between the immediately before and immediately after the
available time points to the deleted network and maps that
interpolated network to Gj1,i1 . Mathematically, the mapping
function '0() for the alignment of the input sequences after re-
moval of networks satisfy both of the following two conditions:
i) Let Gj2,i2�a be the rightmost network in S2 which is not

deleted for a > 0. Similarly, let Gj2,i2+b be the leftmost
network in S2 which is not deleted for b > 0. That is Gj2,i2
is between Gj2,i2�a and Gj2,i2+b. Then for '0

j2,j1(i2�a) <
i1 and '0

j2,j1(i2 + b) > i1.
ii) '0

j1,j2(i1) =?.
If DANTE maps Gj1,i1 to the time point directly before or

after the missing time point in S2 (i.e., off by one time point),
we consider this to be a partial success. We treat any other
mapping as a failure. To eliminate any bias by random network
deletions, we repeat the experiment 30 times for each dataset
and each � value, each time removing � randomly selected
networks from the dataset and report the average. Figure 8
presents the results.

Our results demonstrate that DANTE can locate the missing
network locations and also map them to the correct time points
in other evolving networks in up to 37% of the cases. DANTE
achieves a partial success rate of up to 61.1%, and a combined
success rate of up to 77.7%. On average, DANTE perfectly
predicts the missing week more than 20% of the time and
partially predicts the missing week more than 30% of the time,
giving us a combined success rate average of nearly 51%. We
observe the highest success in DANTE results for the four
homogeneous mice groups, particularly for the Control and
CML groups. This indicates that common stress conditions are
more likely to help in recovering missing interaction patterns.
The number of sequences (mice) in the group does not appear
to affect the accuracy of our results. This, however, needs to
be tested further as the number of mice in total is not large.
As the number of missing networks increases, the combined
accuracy tends to drop. This is not surprising, as larger pieces

of the trajectory are missing as we remove more networks from
the dataset.

V. CONCLUSION

Cellular systems continuously evolve, and as a result, the
topology of interactions among molecules changes through
rewiring. However, we only observe a limited number of these
networks, usually at arbitrary points in their evolution. In this
paper, we developed our novel algorithm DANTE, which aligns
the evolution trajectories of multiple sequences of biological
networks. In doing so, DANTE identifies the similarities among
these evolution patterns. We evaluated our method on protein-
protein interaction (PPI) networks using a mouse model with
evolutionary patterns caused by chronic myeloid leukemia
(CML). Our experimental results demonstrated that DANTE
outperformed four competing methods in terms of the trajectory
similarity when the network trajectories are incomplete, and
acihieved high success in locating and positioning the missing
network positions. These results suggest that DANTE has great
potential to advance our understanding of evolving systems
and build more accurate generative machine learning models
to construct the evolution of the wiring of dynamic networks.
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