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A B S T R A C T

Background and Objective: Understanding the genetic components of Alzheimer’s disease (AD)
via transcriptome analysis often necessitates the use of invasive methods. This work focuses on
overcoming the di�culties associated with the invasive process of collecting brain tissue samples
in order to measure and investigate the transcriptome behavior of AD.
Methods: Our approach called IDEEA (Information Di�usion model for integrating gene Expression
and EEG data in identifying Alzheimer’s disease markers) involves systematically linking two
di�erent but complementary modalities: transcriptomics and EEG data. We preprocess these two
data types by calculating the spectral and transcriptional sample distances, over 11 brain regions
encompassing 6 distinct frequency bands. Subsequently, we employ a genetic algorithm approach
to integrate the distinct features of the preprocessed data.
Results: Our experimental results show that IDEEA converges rapidly to local optima gene subsets, in
fewer than 250 iterations. Our algorithm identifies novel genes along with genes that have previously
been linked to AD. It is also capable of detecting genes with transcription patterns specific to individual
EEG bands as well as those with common patterns among bands. Particularly the experiments in the
alpha2 (10-13 Hz) frequency range yields a notable number of AD-associated genes with a p-value
of 0.05. We evaluated various aspects of our approach, including the genetic algorithm performance
and band-pair association.
Conclusions: Our approach reveals AD-relevant genes with transcription patterns inferred from EEG
alone, across various frequency bands, avoiding the risky brain tissue collection process. This is a
significant advancement toward the early identification of AD using non-invasive EEG recordings.

1. Introduction

Alzheimer’s Disease (AD) is the most prevalent form
of dementia, where patients gradually become unable to
properly control their actions, lose the ability to react to
their surroundings, interact, and carry on a conversation. The
complex disease process begins earlier than its symptoms
appear. At this time, most treatments may not be very e�ec-
tive. Hence, currently, there is no cure, and the treatments are
merely used to help reduce the symptoms [3]. As reported
by the World Health Organization, there are currently 55
million people with dementia worldwide, and AD accounts
for at least 60 % of the cases. Every year about 10 million
new cases will be added to this number [1]. Due to the
increase in life expectancy, this overload is expected to
increase over time, and have significant social, economic,
and health system e�ects [5, 2]. Early diagnosis is of utmost
importance to address the challenges imposed by AD.

The neurobiological process underlying AD is signifi-
cantly impacted by variations in gene expression and reg-
ulation [9]. A multitude of transcriptomics studies have
been carried out to elucidate this mechanism [27, 4, 18].
To date, 101 independent genomic variants across 81 loci
have been identified [6]. There is a continuous e�ort to
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discover additional genes associated with the disease and
AD-related pathways. However, our understanding of AD
is hampered by the fact that the disease a�ects many brain
regions, including the hippocampus, cerebellum, and frontal
cortex, and that each region has di�erent transcriptomics
abnormalities [32, 20, 17]. Existing in vitro studies so far
yield a dismal track record of success when they are applied
in clinical studies of AD. This high failure rate has been
partially attributed to the extrapolation of encouraging find-
ings from animal models that only partially reflect human
AD pathology [14]. Lack of physiologically relevant in
vitro models that accurately represent the patient’s genome
in the target cell type and lack of knowledge of expression
levels of the target genes in corresponding brain regions
has been another major obstacle to our understanding of
the molecular pathways behind AD [7]. The majority of
the information we have on the genetic risk factors for AD
comes from the analysis of blood samples, yet the genome
is translated and transcribed di�erently in di�erent organs in
response to various transcription factors, metabolic signals,
and environmental factors resulting in the inadequacy of
blood samples to provide a complete picture of the mech-
anism [23]. The brain tissue samples from both a�ected
and una�ected individuals are solely needed in order to
conduct a thorough and comprehensive analysis of the gene
transcriptional activity of the disease. This is however not
possible with existing technologies as it requires invasive
techniques to gather these samples.
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The distribution of disease across the brain and regional
susceptibility to neurodegeneration may be influenced by
spatial patterns of gene expression [8]. One way to quantify
these patterns using non-invasive techniques is to study
anatomical changes in both the entire brain and its particular
regions. One of these techniques is the electroencephalo-
gram (EEG), a mostly noninvasive test that detects aberrant
brain activity in specific brain regions by detecting electrical
signals produced by the brain using tiny sensors attached to
the scalp. EEG measures changes in the brain signals that
indicate unusual neuronal activity in various stages of AD
as a time series [24]. A reduction in the complexity of EEG
signals and changes in EEG synchrony leading to modifica-
tions in EEG recordings can be used for AD diagnosis [21].
Nonetheless making use of EEG data in AD is still a work
in progress. The development of computational methods and
programming tools has greatly aided our knowledge of the
disease mechanism and the discovery of various genetic
biomarkers [15]. For instance, Chedid and co-workers de-
veloped a fully automated EEG assessment process to detect
AD in clinical settings [13]. Wu and colleagues developed
a federated model to discover transcriptome and genetic
impacts on brain sMRI measures in AD [40]. In another
work by Sadegh Zadeh and colleagues, EEG data was used
in a machine learning context to classify two and three-class
configurations of AD and healthy control groups [33]. To
the best of our knowledge, within the scope of Alzheimer’s
Disease research, no study has integrated transcriptomics
and EEG data to date.
Our contributions. In this study, we address the chal-
lenges arising from the fact that gathering brain tissue sam-
ples to study the transcriptome behavior during the de-
velopment of Alzheimer’s disease is an invasive proce-
dure and has a high risk of mortality. To do that, we de-
velop an algorithm which systematically associates two dis-
tinct yet complementary modalities, namely transcriptomics
and EEG data, thereby allowing us to observe EEG pat-
terns via non-invasive, cheap, and fast data collection tech-
niques and use these measurements as a surrogate from
transcription patterns of AD genes. Our solution, named
IDEEA (Information Di�usion model for integrating gene
Expression and EEG data in identifying Alzheimers disease
markers), leverages a genetic algorithm strategy. It identifies
a subset of genes of a given size, for which the di�eren-
tial transcription values between AD and healthy patients
correlate with the di�erential EEG measurements for each
EEG frequency band. By doing that, it reveals the set of AD-
related genes whose transcription patterns can be estimated
via EEG measurements alone for di�erent frequency bands.
Our method solves this problem by starting with a population
of initial randomly generated subsets of genes. It then itera-
tively generates better gene subsets, by creating new gene
subsets from the existing gene subsets through crossover,
selection, and mutation operations. Our experimental results
demonstrate that IDEEA converges quickly to local optima
gene subsets in less than 250 iterations. It can find genes
which are already verified as AD-associated in di�erent

studies among other novel genes as well. Finally, our results
suggest that it can also find the genes whose transcription
patterns are unique to EEG bands as well as those which
are common across di�erent bands. In summary, this study
takes an important step toward early diagnosis of AD via
non-invasive EEG measurements.

2. Methods

Here, we describe our algorithm, named IDEEA (Infor-
mation Di�usion model for integrating gene Expression and
EEG data in identifying Alzheimer’s disease markers). Our
algorithm employs a machine learning strategy to integrate
transcription and EEG data from AD patients and healthy
controls, and builds a model which rely only on EEG mea-
surements to estimate anomalies on transcription values of
AD patients. Figure 1 presents an overview of our IDEEA
algorithm and Table 1 lists the variables and definitions used
in our study. We elaborate on di�erent steps of this algorithm
from Section 2.1 to 2.4.

2.1. EEG preprocessing

We use a dataset containing resting state EEG recordings
of 65 samples [28]. Among these, 36 are diagnosed as AD
and the remaining 29 are in the healthy control (CN) group.
We utilize the power spectral density (PSD) to help us
compare the frequency domain characteristics of EEG sig-
nals of AD and CN groups, potentially revealing significant
biomarkers for AD. We consider the EEG signals of each
sample in six frequency bands: delta (�, 0.5-4 Hz), theta (✓,
4-8 Hz), alpha1 (↵1, 8-10 Hz), alpha2 (↵2, 10-13 Hz), beta
(�, 13-30 Hz), and gamma (� , 30-45 Hz), represented by the
set ⌦ = {�, ✓, ↵1, ↵2, �, �}. For any given band  À ⌦,
we denote its corresponding frequency range with the set
B = {B

�
,B

✓
,B

↵1,B↵2,B� ,B�}.
To estimate the PSD of each sample across di�erent fre-

quency bands, we employ the Welch’s method [39]. Welch’s
method reduces the variance of the estimated PSD by aver-
aging multiple periodograms over a sequence of overlapping
windows on the given PSD. This mitigates the e�ects of
noise and provides a smoother spectrum.

Let us denote the continuous EEG signal as a function
of time t, represented by e(t). We split this signal into over-
lapping segments by sliding a window of length of five sec-
onds. Windowing provides smooth edges in the segments,
reducing spectral leakage during the time-to-frequency do-
main conversion. Let us denote the mth segment with e

m
(t).

For each segment e
m
(t), we apply the windowing function

w(t) using the Hadamard product to obtain the windowed
segment w(t) ˝ e

m
(t). We then slide the window by half of

the window size to get the next segment e
m+1(t). This allows

subsequent segments to share half of their data points. After
windowing, we transform each segment into the frequency
domain using the Fast Fourier Transform (FFT). Let us
denote the number of frequency components as n. We denote
the resulting vector with íF = [F1,F2,… ,F

n
]. ≈k, k À

{1, 2,… , n},F
k

corresponds to a discrete frequency value
in Hertz (Hz) within the specified range of 0.5 f F

k
f 45

Ozelbas et al.: Preprint submitted to Elsevier Page 2 of 15



IDEEA: Information diffusion model for data integration

Figure 1: The flowchart depicts a parallel approach to analyze Alzheimer’s Disease (AD) and control (CN) samples using
transcriptomics and EEG datasets. On the top row, gene expression matrices from the tissue samples in GSE84442 Dataset
are displayed, producing hypothetical samples of AD and CN across 11 brain regions. The variations in the hypothetical samples
are quantified using Euclidean distance to indicate transcriptional differences. The bottom section shows the analysis of raw EEG
signals from 19 electrodes divided into six distinct frequency bands. The Power Spectral Density (PSD) vector representations are
derived and used to generate hypothetical samples reflecting spectral differences between AD and CN. An example of mapping
of electrodes (F3, F4, F7, F8, Fz) to Prefrontal Cortex region by taking the mean is also shown at the end of the flowchart.

Hz. We denote the amplitude of the EEG signal at frequency
F
k

for the mth segment with X
m
(F
k
). More specifically:

X
m
(F
k
) = FFT{w(t) ˝ e

m
(t)} (1)

Each sample in our dataset has EEG measurements col-
lected over a set of electrodes. For sample a and electrode b,
we represent the FFT of the EEG sequence corresponding to
the kth frequency component as X

a,b
(F
k
). We compute the

power of each discrete frequency component of the FFT as
X

a,b
(F
k
)2.

Let us denote the total duration of the given signal with
T , and the total number of discrete frequencies in band  , as
determined by the FFT, with N

 
. The sum of these power

values, averaged over the total duration, returns the PSD
vector íP . Mathematically, we derive íP for the bth electrode
of ath sample for band  as:

íP
a,b, 

= 1
T

N …
kÀB 

ÛÛXa,b
(F
k
)ÛÛ2 (2)

The resulting PSD vectors provide a detailed and power-
ful representation of the EEG as it shows the power distribu-
tion within each frequency band for every electrode location
and each sample.

For each sample, we apply the L2 normalization on vec-
tor íP

a,b, 
individually for each frequency band and electrode.

This ensures that the sum of squares of the normalized PSD
components across a band spectrum equals one. We perform
this L2 normalization for íP

a,b, 
, over the frequency index k.

Thus, for the ath sample and bth electrode, we compute the
L2 norm over N

 
frequency points of band  as:
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Table 1
Definition of variables used in the study

Variable Definition
 Specific frequency band from ⌦
T Total duration of the given signal
E Number of electrodes
L Number of frequency bands
d Number of selected genes in each solution
D Number of genes in the transcription

dataset
N
pop

Number of solutions in the population
� A solution mask in a given population
⇢
 ,s

Spearman correlation between EEG and
transcriptomics profiles for band  and
selected genes s

f
®
�

Normalized fitness of solution �
⌦ Set containing names of all frequency bands
B Set containing all frequency band rangesS ,S ® Set of solutions in current and next genera-

tion respectively
íF Vector containing discrete frequency com-

ponents
íP
a,b, 

PSD vector for the bth electrode of ath
sample for band  

ÇP
a,b, 

Normalized PSD vector for the bth electrode
of ath sample for band  

�(EEG)
b, 

Distance value for Euclidean distance be-
tween AD and CN hypothetical groups for
band  of electrode b

�(EEG)
 

Spectral difference vector for Euclidean dis-
tances between AD and CN groups for band
 across all 11 brain regions

�(T)
s

Transcriptional profile differences across all
regions for selected genes s

R�(⌧) Rank vector for a list of distances �(⌧)
X
m
(F

k
) FFT of the mth segment of the EEG signal

for the kth frequency component
X
a,b
(F

k
) FFT of the EEG sequence for sample a,

electrode b, corresponding to kth frequency
component

M
A
,M

C
Matrices representing transcriptomics data
for AD and CN groups respectively

H
Ai
,H

Ci
Hypothetical samples for AD and CN groups
for region i

�(T )
i

Euclidean distance representing transcrip-
tional profile differences between AD and
CN groups for region i

Ò íP
a,b, 

Ò2 =

yxxxw
N …
k=1

P
2
a,b, ,k

(3)

We then compute the normalized PSD vector ÇP
a,b, 

as:

ÇP
a,b, 

=
íP
a,b, 

Ò íP
a,b, 

Ò2
(4)

Next, for each electrode b and frequency band  , we
derive a hypothetical sample for each CN and AD groups,
represented as H

Cb, 
and H

Ab, 
respectively. We compute

these samples based on the mean of the normalized PSD
values over their respective groups. Let us denote the number
of CN and AD samples with N

C
and N

A
, respectively. We

compute H
Cb, 

and H
Ab, 

, as:

H
Cb, 

= 1
N
C

NC…
a=1

ÇP
a,b, 

and H
Ab, 

= 1
N
A

NA…
a=1

ÇP
a,b, 

(5)

Following this transformation, we measure the Eu-
clidean distance between the hypothetical samples of the AD
and CN groups across predefined frequency bands for each
electrode. Let E be the total number of electrodes and L be
the total number of frequency bands. To capture the spectral
di�erential, we compute the Euclidean distance between the
AD and CN groups denoted with �(EEG)

b, 
as:

�(EEG)
b, 

=

yxxxw
E…
b=1

L…
 =1

⇠
H
Cb, 

*H
Ab, 

⇡2
(6)

2.2. Transcriptomics preprocessing

We use a transcriptomics dataset containing 328 AD and
214 CN samples over 11 brain regions. We represent the AD
and CN data with matrices M

A
and M

C
, respectively. Here,

each row of these matrices corresponds to a unique brain
region sample, and each column a gene. Let us also denote
indices for sample and gene axes with i and j, respectively.
We first apply L2 normalization for each gene in each matrix.
This means that for each gene indexed j, we normalize its
expression values across di�erent samples y in the matrices
M

A
and M

C
to have a unit L2 norm at each column.

Mathematically, let us denote the value at the ith row and jth
column of theM

C
withM

C
[i, j]. We compute the inverse of

the L2 norm of the jth column (i.e., gene) of M
C

as:

⇠
j
= 1 _

yxxwNC…
i=1

M
C
[i, j]2

Let us denote the number of genes withD. We denote in-
verse L2 norms of all genes with vector ⇠ = [⇠1, ⇠2,… , ⇠

D
]T .

Let us denote theDùD identity matrix with I
D

. We compute
the normalized matrix for CN samples as:

ÇM
C
=M

C
I
D
⇠ (7)

We normalize the matrix M
A

for the AD group, simi-
larly.

In order to align the transcriptomics data with the EEG-
derived hypothetical samples, we construct region-specific
hypothetical samples for each brain region. We isolate the
normalized transcriptomic data of region i with matrices
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ÇM
A
[i] and ÇM

C
[i]. For a given region i, let us denote the

number of CN and AD samples of that region with N
Ai

and
N
Ci

, respectively. We derive the mean vectors of H
Ai

and
H
Ci

across all samples as:

H
Ai

= 1
N
Ai

NAi…
h=1

ÇM
A
[i,h] and H

Ci
= 1
N
Ci

NCi…
h=1

ÇM
C
[i,h]

(8)

Given these hypothetical samples, we then compute the
Euclidean distances between the AD and CN groups for each
brain region i. The Euclidean distance, denoted as �(T )

i
,

provides means to di�erentiate transcriptional profiles be-
tween the two groups for a specific region. More specifically:

�(T )
i
=

yxxxw
D…
j=1

⇠
H
Ai,j

*H
Ci,j

⇡2
(9)

Later, the distances calculated for each gene across all
brain regions serve as values that form many di�erent com-
binations of genes that represent solutions to be utilized in
our algorithm in 2.4.

2.3. Brain region mapping

Here, we leverage literature-driven information and re-
tain only those transcriptomics dataset regions where EEG
data regions are also a part of. To establish correlation be-
tween EEG and transcriptomic profiles we utilize the relative
positions of the electrodes, their functional relationships
defined within the concept of Broadmann Areas (BA), and
the variability analyses [34].

In order to eliminate noise, we exclude transcriptomics
samples acquired from deep brain regions in the transcrip-
tomics dataset. Specifically, from these regions we exclude
Amygdala, Nucleus Accumbens, Parahippocampal Gyrus,
Hippocampus, Caudate Nucleus, and Putamen. Hence, we
retain samples from the cerebellar cortex to ensure a higher
degree of overlap between the EEG and transcriptomics
datasets, as an EEG recording is more likely to capture
activity from the outer surface of the brain. This leads to
selection of 11 brain regions. In total, 19 electrodes monitor
the EEG activities of these 11 brain regions. Note that the
mapping between electrodes and brain regions is a many-
to-many relationship. That is, an electrode may monitor
multiple brain regions, and a brain region may be monitored
by multiple electrodes. Table 2 lists the 11 brain regions, and
the electrodes monitoring each of these regions.

For each identified region, we compute the mean spectral
distances between AD and CN hypothetical samples corre-
sponding to the relevant electrodes, denoted with�(EEG)

b, 
.

More specifically, let us take the ’Frontal Pole’ region as an
example from Table 2. Assume that this is the first brain
region, (i.e., i=1). We compute its mapped region distance
�(EEG)1, by averaging the hypothetical sample distances
from electrodes ’Fp1’ and ’Fp2’. More specifically:

Table 2
Determined brain regions and their corresponding mapped
electrodes.

Index Regions Mapped Electrodes
1 Frontal Pole Fp1, Fp2
2 Occipital Visual Cortex O1, O2
3 Inferior Temporal Gyrus F7, F8
4 Middle Temporal Gyrus F7, F8
5 Superior Temporal Gyrus T3, T4, F7, F8, T5, T6
6 Posterior Cingulate Cortex Pz
7 Anterior Cingulate Fz
8 Temporal Pole T3, T4, T5, T6
9 Precentral Gyrus C3, Cz, C4
10 Superior Parietal Lobule P3, P4, Pz
11 Prefrontal Cortex F3, F4, F7, F8, Fz

�(EEG)1, =
�(EEG)(Fp1), + �(EEG)(Fp2), 

2 (10)

This representation allows us to capture the di�erences
between AD and CN groups across the distinct frequency
bands and brain regions.

2.4. Gene selection algorithm

We develop a genetic algorithm to identify the gene
set with a prespecified number of genes, whose variation
of transcriptional profile correlates with that of their EEG
profiles in 11 brain regions among CN and AD samples. This
algorithm designs novel selection, crossover and mutation
operators, unique to handle both transcription and EEG pro-
files, thus allowing e�cient navigating of the search space.
Initialization. Our algorithm starts by creating a population
of randomly generated solutions. Let us denote the number
of selected genes in each solution with d. Also, let us denote
the total number of genes in our transcription dataset with
D. Let us denote a given solution with a binary vector s of
lengthD. The jth value in s, denoted with s

j
corresponds to

the jth gene. For j À {1, 2,… ,D}, if the jth gene is a part
of that solution, we set s

j
= 1. Otherwise we set s

j
= 0.

Note that since each solution has d selected genes, exactly d
values in s are equal to 1.
Fitness evaluation. Briefly, given a solution s of sizeDwith
d selected genes, the fitness function measures how well the
di�erences between the EEG values of AD and CN samples
at 11 brain regions mirror the transcription di�erences of the
AD and CN samples of those selected genes in the same 11
brain regions.

More specifically, we compute this function as follows.
For each frequency band  À ⌦, we construct a vector
of spectral distances for the 11 brain regions, denoted with
�(EEG)

 
as:

�(EEG)
 
= [�(EEG)1, ,�(EEG)2, ,… ,�(EEG)11, ]

Recall that �(EEG)
b, 

is the spectral di�erence between
AD and CN samples for the bth brain region and frequency
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band  (see Equation 6). Also recall that �(T )
i

consists of
transcriptional distances across all genes for region i (see
Equation 9).

Firstly, for a given binary solution mask s of size D,
we apply element-wise multiplication to our transcriptional
distance matrix�(T )

i
. The resulting distance matrix for each

region i, containing the distances of the genes selected by
the solution mask is given by �(T )

i,s
= �(T )

i
˝s. Then,

we construct the transcriptomics distances �(T)
s

for the 11
regions as:

�(T)
s
= [�(T)1,s,�(T)2,s,… ,�(T)11,s]

Each value in �(T)
s

indicates the di�erences in the
transcriptomic activity for the selected genes in one of the
11 brain regions.

After obtaining the EEG and transcriptomics distances,
denoted as �(EEG)

 
and �(T)

s
respectively, we calculate

rank vectors for each brain region. We determine the rank
vectors, R�(EEG) 

and R�(T)s , by sorting each list in as-
cending order and assigning ranks based on their position.
We explain this on a small hypothetical example for three
brain regions. Consider a list of distances given by �(⌧) =
[0.5, 0.9, 0.3]. If we sort this list in ascending order, we
obtain [0.3, 0.5, 0.9]. Thus, the rank for the value 0.3 is 1,
for 0.5 is 2, and for 0.9 is 3 (i.e., 0.3 is the smallest value, 0.5
is the second smallest value and 0.9 is the third). Hence, the
rank vector for �(⌧) is R�(⌧) = [2, 3, 1].

Let us denote covariance and standard deviation func-
tions with cov() and �, respectively. We compute the Spear-
man correlation ⇢

 ,s
between the EEG and transcriptomics

profiles for band  and selected genes s as:

⇢
 ,s

=
cov

⇠
R�(EEG) 

,R�(T)s

⇡

�
R�(EEG) 

ù �
R�(T)s

(11)

A higher value of ⇢
 ,s

indicates a stronger relevance
between the EEG and transcriptomics profiles. This evalu-
ation metric drives the algorithm searching for genes that
e�ectively capture the underlying relationship between EEG
profiles and transcriptional activity across the predetermined
11 brain regions.

2.4.1. Crossover
Let us denote the set of solutions in the current popu-

lation with S
c
. Crossover operator combines genetic infor-

mation from two existing solutions (called parent solutions)
to create new solutions which partially carry characteristics
of the two selected solutions. Our custom crossover strategy
ensures that the o�springs inherit the genes for which both
parents agree. To make sure that the o�spring solution has
the same number of selected genes as the parents, it then
randomly picks more genes among those the parent solutions
disagree.

We explain this on a small hypothetical example. As-
sume that in each solution mask, the total number of genes

is D=7, and the number of selected genes in each solution
is d=4. Also assume that we pick parent solutions �1 =
[1, 0, 1, 1, 0, 0, 1] and �2 = [1, 1, 0, 1, 0, 1, 0] for crossover.
Let us denote the logical OR, AND and XOR operators with
symbols ‚, ·, and ‚ respectively. Genes common to both
parents are �1 · �2 = [1, 0, 0, 1, 0, 0, 0] and genes unique
to one parent are �1 ‚ �2 = [0, 1, 1, 0, 0, 1, 1]. There are 2
genes common to both parents. Thus, we need d * 2 = 2
more genes to create a new valid solution. To do that, we
randomly pick two genes from �1‚�2 and include them in
�1 · �2.

Assume that our random selection picks genes 2 and 7
(i.e., r1 = [0, 1, 0, 0, 0, 0, 1]) and genes 6 and 7 (i.e., r2 =
[0, 0, 0, 0, 0, 1, 1]). Then, the two new solutions we generate
are:

�
®
1 = (�1 · �2) ‚ r1 = [1, 1, 0, 1, 0, 1, 1]

and

�
®
2 = (�1 · �2) ‚ r2 = [1, 0, 0, 1, 0, 1, 1]

We repeat the procedure of picking two parents and gen-
erating new solutions until we generate N

pop
new solutions.

We denote the set of new solutions with S ®.

2.4.2. Selection
Previous step doubles the number of solutions by gen-

erating N
pop

new solutions. At this step, we reduce it down
to N

pop
by selecting a subset of the solutions in S

i
‰ S®.

During the selection process, we apply elitism for the best
fit member of the population. That is, we guarantee that the
solution with the highest fitness is preserved for the next
generation.

For the remaining 2N
pop

* 1 solutions, we employ the
roulette-wheel selection as it provides a balanced level of
exploration and exploitation [22]. The main objective of
this scheme is to introduce a fitness proportionate selection,
thus allowing solutions with lower fitness values to have
a non-zero chance to be selected. This helps maintain the
gene diversity within the population, preventing premature
convergence to a suboptimal gene set.

The Spearman correlation values range in the [-1, 1]
interval. To avoid potential biases in the roulette wheel
selection process, we normalize the fitness of each solution
in the population to fall within the [0, 1] range, and revert
back to its original range after the selection. If not addressed,
negative correlations could result in certain solutions being
unfairly penalized, leading to their unwarranted exclusion
during the selection step.

We denote the fitness of solution �with f
�

and compute
the normalized fitness score f ®

�
relative to a given frequency

band  as:

f
®
�
=
⇢
 ,�

+ 1
2 (12)

Consider a population with a total of 2N
pop

*1 solutions.
We define the vector F ® = [f ®

1, f
®
2,… , f

®
2Npop*1

] as the

Ozelbas et al.: Preprint submitted to Elsevier Page 6 of 15



IDEEA: Information diffusion model for data integration

normalized fitness vector, which comprises the normalized
fitness scores of each member in ascending order.

In roulette wheel selection, each member in the gener-
ation population occupy a segment of the wheel, specified
by its value in F ®. The size of the segment is proportional
to the member’s normalized fitness f ®

�
. Thus, the proba-

bility of a member being selected is directly proportional
to its normalized fitness. More specifically it is equal to
the ratio of the normalized fitness of the member to the
aggregated normalized fitness of the entire population. LetS< represent the union of population sets S

c
and S ®, (i.e.,S< = S

c
‰ S ®). Mathematically, the probability of selecting

a solution � À S< is:

P (�) =
f
�≥

�qÀS< f�q

(13)

We repeat selecting solutions using this strategy from
among 2N

pop
* 1 current solutions, until we have exactly

N
pop

solutions selected. We call the resulting population of
solutions S

c+1.

2.4.3. Mutation
While crossover derives o�springs from the recombina-

tion of solutions in the population, mutation introduces small
changes to gene configuration of a solution. The goal is to
ensure genetic diversity in the population and thus explore
new regions of the solution space. We design our mutation
strategy to ensure in a way that preserves the number of
selected genes in each mutated solution. We do not mutate
the best member of the population to ensure that it is passed
to the next generation.

Let us denote the mutation rate of a gene and a solution
with �

g
and the solution mutation rate with �

s
, respectively.

Here, �
g

is the probability of a single gene undergoing
mutation within an individual solution. For each solution
in S

c+1 (except for the solution with the highest fitness),
we flip a biased coin with success probability of �

s
. If it is

successful, for each selected gene in that solution, we flip
another biased coin with success probability of �

g
. When

the coin flip is successful for a selected gene, we remove that
gene from that solution and insert another randomly selected
gene to the same solution.

From our earlier crossover example, let us use the so-
lution �®

1 = [1, 1, 0, 1, 0, 1, 1]. Assume that the algorithm
arbitrarily selects the second gene for mutation, and the
fifth gene as replacement. After the mutations, the solution
transforms into �®®

1 = [1, 0, 0, 1, 1, 1, 1] (we show the mutant
genes in boldface).

2.4.4. Termination condition
After creating the initial population of solutions S0,

our algorithm iteratively updates the current population. At
each iteration c, we apply crossover, selection and mutation
to S

c
to generate next generation S

c+1 of solutions. The
highest fitness observed at each generation monotonically
increases. After each generation, we track the fitness of the
solutions, and dynamically adjust mutation probabilities to

avoid stagnation. If our mutation metrics exceed certain
thresholds, we take corrective actions, including the possi-
bility of early termination. The adaptive mutation strategy
ensures that our genetic algorithm can dynamically adjust its
evolutionary behavior based on fitness performance across
generations. This design choice especially helps with ma-
neuvering through multiple local optima and promoting
further exploration of the solution space.

We set the initial mutation probabilities as �
s

= 0.1 and
�
g

= 0.2. As generations progress, the algorithm adjusts the
values of �

s
and �

g
based on the predefined rules. Let us

denote maximum fitness in given generation S
c

with f (c)
max

and denote the maximum fitness in the previous generation
with f (c*1)

max . We adapt the mutation rates as follows:

1. If f (c)
max = f

(c*1)
max , the algorithm perceives this as

stagnation and increases the stagnation counter. If
such a condition persists for a predefined number of
consecutive generations, it increases the value of �

s

by 50%. Concurrently, the algorithm checks for the
following:

(a) If �
s
g 0.2, the algorithm increments the �

g
by

25% to promote mutation rates across all genes.
Following that, it resets �

s
to 0.05 to prevent

excessive gene mutations.
(b) If �

g
g 0.4, the algorithm terminates, as the

mutation rate becomes too aggressive.
2. If f (c)

max > f
(c*1)
max , the algorithm perceives this as a

progression and resets the stagnation counter.

3. Results

In this section we evaluate the performance of the pro-
posed IDEEA algorithm in terms of its convergence to
solutions and ability to find the AD related features, such
as AD-associated genes and their protein interactions across
di�erent EEG bands.
Dataset Description. We evaluate our method using an EEG
and a transcriptomics dataset.
EEG DATASET: This dataset contains resting state-closed
eyes recordings from 88 samples, among which 36, 23, and
29 belong to Alzheimer’s disease (AD group), Frontotempo-
ral Dementia (FTD group), and healthy subjects (CN group)
respectively [28]. For our analysis, we omit the FTD patients,
focusing on the 65 subjects in the AD and CN groups. The
EEG data is collected using 19 scalp electrodes (Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, and O2) according to the 10-20 international system.
The mean age of the AD group is 66.4 with a standard
deviation of 7.9 and 67.9 for the CN group with a standard
deviation of 5.4. Thus, AD and CN groups have similar age
distributions. During the EEG recording, subjects were in a
sitting position with eyes closed. Skin impedance was below
5k⌦. The sampling rate of the recording was 500 Hz with
10�V/mm resolution. To eliminate noise in the dataset, the
authors applied a Butterworth band-pass filter (0.5-45 Hz),
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Figure 2: Fitness progress across varying gene set sizes (50, 100, 200) with a constant population size (100) for different EEG
frequency bands.

Figure 3: Fitness progress across varying population sizes (50, 100, 200) with a constant gene set size (100) for different EEG
frequency bands.

re-referencing to A1-A2, Artifact Subspace Reconstruction
(ASR), and Independent Component Analysis (ICA). They
also removed the artifacts stemming from eye movement and
muscle activity.
TRANSCRIPTION DATASET: For the transcriptomics dataset,
we use 1053 post-mortem brain samples, collected from 19
cortical regions of 125 individuals [38] (GSE84422). These
individuals represent a diverse range of dementia severity

and neuropathology characteristic of AD. The dataset is
originally collected using three platforms (GPL96, GPL97,
GPL570). It contains gene expression data from 2004 sam-
ples classified as CN, definite AD, probable AD, and pos-
sible AD. We prioritized our focus on definite AD cases.
In our study we use the GPL96 platform as it contains the
largest number of samples among the three platforms with
328 AD and 214 CN samples. It features a total of 12,937
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Figure 4: Distribution of the 100 most frequently selected genes with N
pop

= 100, d = 200 for different EEG bands.

di�erentially expressed genes. From the 19 brain regions
available, which cover both deep brain and cerebellar cortex
areas, we omit the deep brain regions and concentrate on
the remaining 11 regions. EEG recording is predominantly
sensitive to the activity from the outer surface of the brain.
Table 2 lists these regions. This dataset provide Robust
Multi-array Average (RMA)-normalized transcription data.
SYSTEM DETAILS: We conduct all computational experi-
ments on a system equipped with 32 GB DDR4 RAM, an
AMD Ryzen 5 3600 CPU with 6 cores, and an NVIDIA RTX
2070 GPU with 8 GB of VRAM.

3.1. Evaluation of genetic algorithm performance

We start by evaluating the convergence behavior of our
algorithm over iterations. Specifically, we evaluate how its
convergence speed is a�ected by the gene set size d and
the population size N

pop
. We measure the influence of these

parameters across di�erent bands.

3.1.1. IDEEA parameters: Role of gene set size
In order to understand the impact of the gene set size,

in Figure 2, we vary the gene set size d to values 50, 100
and 200 while keeping the population size N

pop
constant at

100. For each frequency band, we run our algorithm until
convergence of the frequency band with the most number
of generations till convergence (which is less than 140 gen-
erations). We repeat this process five times with di�erent
initializations, leading to 180 experiments (i.e., 5 ù 6 ù 3
with 5 repeats, 6 frequency bands, and 3 gene set sizes). We
compute the fitness value of our top result with the highest
fitness value for each generation and report the average of
the five runs for each experimental set up.

3.1.2. IDEEA parameters: Role of population size
To study the impact of population size, we fix the number

of genes to be emulated by EEG measurements to d = 100,

and vary the population size as 50, 100, and 200. Similar
to the previous experiment, for each parameter setting, we
repeat each experiment five times with di�erent random
and report the average fitness of the best result of each
generation. Thus, we run 180 experiments (i.e., 5 repeats
ù 6 frequency bands ù 3 population sizes). We run our
algorithm until convergence, which happens in less than 250
generations. We present our results in Figure 3

3.2. Evaluation of gene selection performance

In our next set of experiments we aim to understand
the range of biological implications of our IDEEA method
for studying the relationship between the EEG signals and
transcription patterns for AD disease.

3.2.1. Distribution of AD-related genes
Recall that the goal of our IDEEA algorithm is to identify

the genes which have di�erential transcriptional behaviors
for Alzheimer’s patients without knowing the actual tran-
scription values, by studying the EEG patterns. Here, we
evaluate how well we achieve this goal. To do that we
focus on the top 100 most frequently selected genes by our
algorithm in a total of 5 runs per frequency band. We also
obtain the list of Alzheimer’s Disease associates genes from
two databases; Gene Disease Association (GDA) scores
from DisGeNet [29] and GeneCards [36]. These scores
provide a quantifiable measure of the relationship between
individual genes and Alzheimer’s disease, with higher scores
indicating a stronger association. We define thresholds for
both database GDA scores based on the 95th percentile,
aiming to focus on the top 5% of genes most strongly
associated with AD. We then sort the top 100 genes our
algorithm finds in descending order of their frequency (i.e.,
the number of times each gene appears in a top solution
found by our algorithm across di�erent iterations). We plot
the frequencies of these genes with the colors green, red,
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Figure 5: Heatmaps for correlation of 100 most frequently selected genes between bands with varying N
pop

(50, 100, 200) and d
(50, 100, 200) sizes.

and purple if they appear in GeneCards, DisGeNet, and
both databases, respectively. In summary, we perform this
evaluation by conducting 30 runs of experiments using our
method (5 random initial populations ù 6 frequency bands)
and compare the results against four combinations of gene
classifications with respect to two disesase/gene association
databases. Figure 4 presents our results.

3.2.2. Evaluation of band-pair association
An important question which follows from our findings

in Figure 4 is how much variation does our method exhibit
in selecting top genes across di�erent EEG frequency bands.
To answer this question, we compare the top 100 genes
identified by our method for every pair of frequency bands.
More specifically, consider two frequency bands  1, 2 À
⌦ with  1 ë  2. Let us denote the top 100 genes our
IDEEA algorithm identifies as G

 1
and G

 2
respectively.

For each parameter combination N
pop

À {50, 100, 200} and
d À {50, 100, 200} we compute the Pearson’s correlation
between the frequencies of the genes in G

 1
‰G

 2
using the

band  1, and those using the band  2 for every band pair
( 1, 2).

Thus, we carry out 135 experiments (i.e., 15 band pairs
ù 3 population sizes ù 3 gene set sizes) to perform this
analysis. We plot the resulting correlations as a heatmap in
Figure 5.

While Figure 5 assesses the correlation in the top 100
gene histograms across bands, we also perform a quantitative
evaluation of the similarity across bands. In order to do that,
we identify the intersecting gene sets for each band pair
( 1, 2) by applying G

 1
„ G

 2
. The heatmap in Figure 6

shows the number of genes that are shared between bands
in their top 100 genes, regardless of their occurrence counts.
The purpose of this experiment is to understand whether the
correlation values is a�ected by common gene selection.

3.2.3. Evaluation of interactions among selected genes
The final question we seek to answer is whether the genes

selected by our IDEEA method are acting alone or they
are interacting with each other. By answering this question,
we aim to understand the functional connection among the
identified genes. To do this, for each frequency band, we
pick the top 100 genes identified by our IDEEA algorithm,
and extract the protein-protein interaction (PPI) networks
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Figure 6: Heatmaps for common genes of 100 most frequently selected genes between bands with varying N
pop

(50, 100, 200)
and d (50, 100, 200) sizes.

induced on these genes using the STRING database [37] (see
Figure 4). To simplify the figure, we show the connected
components with more than 3 genes in Figure 7. After this
filtering, the genes selected by our IDEEA method using the
EEG signals form two connected components for the delta
and alpha1 bands, and a single connected component for the
remaining four bands theta, alpha2, beta, and gamma.

4. Discussion

AD is a complex disease that is extensively studied with
no e�ective cure present. It is di�cult to elucidate the genetic
disease mechanism since AD is a neurodegenerative brain
disease that may require invasive approaches to explore the
genetic factors that induce neuropathological changes in the
brain system. In this study, we build an alternative machine
learning approach to study AD, without risky invasive brain
tissue harvesting process. We introduced IDEEA algorithm
to associate non-invasively acquired EEG signals with the

genetic basis of AD using transcriptional data. In our algo-
rithm we employed machine learning techniques to analyze
the PSD di�erences between AD and healthy samples across
six di�erent frequency bands — delta, theta, alpha1, alpha2,
beta, and gamma and identified the genes whose di�erential
transcription patterns are reflected in di�erential EEG sig-
nals for each frequency band.

Impact of the gene set size. From Figure 2, we observe
that as the number of selected genes d decreases, conver-
gence speed and the best fitness score improves. We conjec-
ture that this happens for three possible reasons. First, our
algorithm is more e�ective in exploring smaller gene sets,
and thus finds those gene sets whose transcription patterns
have high correlation with the EEG patterns. Second, EEG
patterns may decipher the transcription patterns of a limited
set of genes. Third, only a limited number of genes are
associated with the di�erential behavior of the transcription
patterns of AD and CN groups, and thus imposing more
genes into the subset introduces noise.
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Figure 7: Protein interactions between 100 most frequently selected genes with N
pop

= 100, d = 200 for different EEG bands.

Our results demonstrate that the IDEEA algorithm can
always achieve high correlation values (i.e., over 0.75),
particularly for small gene subsets. The correlation values
are larger than 0.8 for 4/6 frequency bands, and larger than
0.9 for 2/6 bands (beta and gamma bands). In this context,
while delta and theta bands show relatively slower conver-
gence and lower fitness scores, especially when d > 100,
this is not the case for beta and gamma bands. The faster
convergence and higher fitness scores in beta and gamma
bands, even with larger gene sets, essentially have to do with
algorithm solving a simpler optimization problem due to
less di�erentiation in these bands for Alzheimer’s disease.
In contrast, a higher fluctuation in spectral di�erences in
delta, theta and alpha sub-bands suggest a more complex
relationship between spectral patterns and gene expressions
in these bands, potentially due to more significant impact of
Alzheimer’s disease on the cognitive states they represent.
Overall, this implies the functional di�erence between these
bands in finding a fitting transcriptomics profile to the spec-
tral distances provided.

Impact of population size. Firstly, our results in Fig-
ure 3 suggest that our method can achieve high fitness
values across all bands, which confirm our results above.
We observe that higher population size provide a relative

improvement in fitness convergence along with higher fit-
ness scores. This is because, larger population sizes allows
us to widen the exploration of key genes especially for
the bands that are di�erentially impacted by Alzheimer’s,
as there would be more opportunities for the algorithm to
evaluate diverse genetic combinations including potential
biomarkers for Alzheimer’s disease that are not as promi-
nent by themselves. The gap between the performance of
our method across di�erent population sizes are however
marginal, except for the alpha2 band. Thus if our algorithm
is run long enough, it will converge to a similar local optimal
value without necessitating very large populations. All in all,
these findings further inform us regarding the optimization
strategy for di�erent spectral characteristics in our algorithm
when applied to EEG data for the detection of Alzheimer’s
disease.

Evaluation of AD-related genes. From our results in
Figure 4, we observe that alpha1, alpha2, and gamma yield
a significantly high number of AD-associated genes among
all bands. We show the statistical significance of these find-
ings with hypergeometric test for each frequency band and
provide p-values. We hypothesize that the frequency range of
alpha2 (10-13 Hz) has a potential relation to neural activities
or processes that are significantly impacted in Alzheimer’s
disease. The p-value for alpha2 band is 0.05, showing the
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significance of this finding. Along with alpha2, alpha1 and
gamma bands also result in relatively more AD-related genes
compared to the other frequency bands.

Existing literature supports our results as the relation-
ship between the alpha band with electrophysiological and
neurophysiological processes is suggested in several stud-
ies as being crucial for understanding spectral responses
to AD [12, 31, 35]. Studies have shown changes in the
alpha power and coherence in AD, indicating a disruption
in neural synchrony and connectivity [12, 35]. Moreover,
the alpha2 band has been associated with distinct frequency
features in AD, showing evidences of potential pathological
changes [12, 31].

Evaluation of band-pair association. Our results in Fig-
ure 5 demonstrate that for all population sizes (N

pop
) and

number of selected genes (d), except for the largest values
of N

pop
and d, there is no significant correlation among

di�erent EEG bands. This indicates that our algorithm cap-
tures the di�erential transcription behavior of di�erent sets
of genes when it is fed with di�erent EEG band values.
This is promising as it implies that our method can help us
mimic and monitor the transcriptional patterns of alternative
gene sets at di�erent frequencies, thus providing a rich set
of observations. We observe some high positive correlation
when we increase the number of selected genes and the
population size of our algorithm to 200. Particularly (alpha1,
gamma), (alpha1, delta) and (alpha1, theta) pairs show high
correlation while the other pairs remain low.

The heatmaps in Figure 6 provide an alternative view of
the association between frequency band pairs, as they show
the number of genes that are commonly shared between
bands in their top 100 genes, regardless of their occurrence
counts. By cross-referencing the two heatmaps from these
figures, we can discern whether a high correlation coincides
with high intersection counts, which would suggest not only
similar gene frequencies but also a substantial overlap in the
specific set of genes that are considered important across
those bands. In parallel to Figure 5, we observe a mostly sim-
ilar trend for selected genes and the population size. There
are also several nuances where we see that the correlation
between certain bands are not necessarily accompanied by
the relatively similar level of intersecting gene counts. This
is particularly observed when we decrease the number of
selected genes and the population size in the algorithm. As
we decrease the values of these two parameters the number
of genes shared across di�erent band pairs dramatically
drops (see the heatmaps in the first row and first column of
Figure 6 in the 3 ù 3 heatmap organization). While reduced
number of common genes is expected with smaller gene
set sizes, for the number of genes we select among 12,937
di�erentially expressed genes becomes as low as 50, we
observe that this drop is a�ected more prevalent with respect
to reduced population size. More specifically when we set
the parameters as d = 50 and N

pop
= 200, the total number

of common genes across all band pairs is 117 (i.e., the sum
of the values in the top-right heatmap in Figure 6). On the

other hand, the same number when we set the parameters as
d = 200 and N

pop
= 50 is 55. This inidicates the success

of our IDEEA algorithm in identifying gene sets when it
uses large enough population to explore the search space.
Ultimately, from both figures we can further confirm when
we increase the selected genes and set the population size
to 200, the highly correlated band pairs also show a similar
increase in the number of intersecting genes. For d = 200
and N

pop
= 200, we obtain the largest number of common

gene sets for the band pairs (alpha1, delta), (gamma, delta),
(gamma, alpha1), and (alpha1, theta) with more than 35
common genes among 200. Alpha1 band shares the most
genes with any other band across all the frequency bands,
with a total of 163 times a gene is shared. Alpha2 shares the
least number of genes with other bands with a total of 108
genes.

Interaction topology of selected genes. From Figure 7,
we observe that the genes we found are highly connected
through known PPI relationships at all frequency bands.
Furthermore, our method was able to select hubs (i.e., highly
connected genes) at each frequency band as well. Among
them, some of the notable ones are MDM2 in theta band
(top-middle in Figure 7), whose inhibition reduces the neu-
rogenic defects, such as AD [16]. Another one is IL4 which
appears in all six bands delta, theta, alpa1, alpha2, beta,
and gamma. The stimulation of IL4 increases the proportion
of oligodendrocytes and neurons, thereby having positive
e�ects on cognition [11, 30]. TGF in alpha1 band (top-right
figure) and gamma band (bottom-right figure) a�ects the
mediation of microglia, which are resident macrophages in
brain thus altering the neurodegenrative disease promotion,
such as AD [25].

The networks acquired in delta and theta bands resulted
in statistically significant PPI enrichment p-values, 0.01 and
0.03 respectively. This suggests that these genes do not
interact randomly but are part of a larger, interconnected
network. Functional enrichment analysis within these net-
works indicates several prominent pathways. This includes
the pathways related to immune response (e.g., T cell re-
ceptor signaling pathway, FDR=0.0447). This connection is
particularly relevant as neuroinflammation has a prominent
role in the pathogenesis of AD as recently suggested by the
studies [19, 26, 10].

Limitations and opportunities. Main challenges in as-
sociating EEG readings with gene transcription value for
AD patients arise from the nature of the AD disease that
collecting tissue samples is a challenge as it is a risky and
invasive procedure. Typically, tissue samples are collected
from deceased patients. There can be variety in the brain
regions where the tissue samples are collected, which make
the dataset less homogeneous. Furthermore, the transcrip-
tion patterns of more than one brain region may be a�ected
in some AD patients. These factors may negatively influence
machine learning strategies as data is diverse. Our results
already demonstrate that our method can associate EEG
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readings with known AD genes. We conjecture that, more
transcription data availability will further improve the accu-
racy of our IDEEA method.

Another limitation arise from the EEG readings. Some
of the electrodes may read EEG values from multiple brain
regions (see Table 2). As a result, the EEG values from
some electrodes are aggregate readings from multiple brain
regions rather than those focused on specific regions. In this
study, we use a linear aggregate model to describe such
relationships. In our model, we use equal weight to the
regions listed in Table 2 for the electrodes which map to
multiple brain regions if we do not have established weights
in the literature. This brings an opportunity for us the train a
machine learning model to compute the contribution of dif-
ferent brain regions for the EEG readings of each electrode.
Since this problem deviates from the central hypothesis of
this study, in order to maintain the focus of this paper, we
defer that as a separate future work. We conjecture that deep
learning methods integrated with our IDEEA method will
address this important challenge.

In summary, across the spectral plane, our algorithm
identified genes whose transcriptional profiles correlate with
the EEG patterns observed in AD patients compared to
healthy individuals. The genes determined through our algo-
rithm, particularly in the alpha2 frequency range, included a
significant number of AD-associated genes. The statistical
significance of these findings was supported by hypergeo-
metric testing, suggesting that certain frequency bands are
more closely associated with neural activities disrupted by
AD. Protein-protein interaction networks further confirmed
the biological relevance of the selected genes through the
significant PPI enrichment p-values observed in the delta
and theta bands. In addition, functional enrichment in im-
mune response pathways supported the hypothesis that the
identified genes are biologically connected and play a role
in the pathogenesis of AD.
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