Heterogeneity in soil and landscape properties of Northern Forests

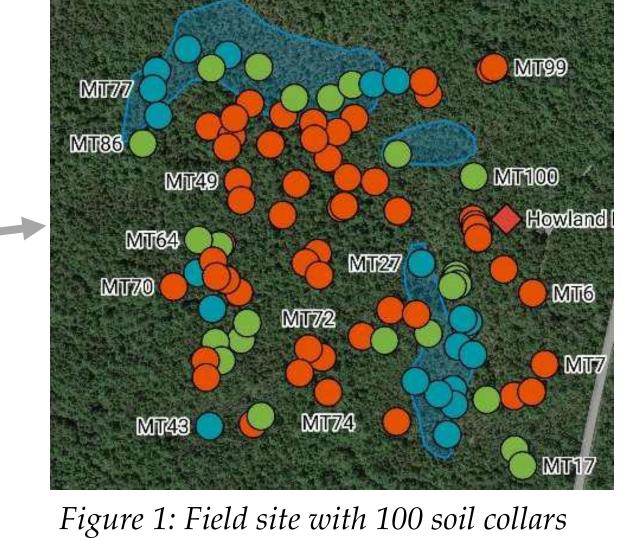
Dana A. Kahn¹, Kathleen Savage², Hinsby Cadillo-Quiroz³, Shawn Fraver⁴, Jennifer Watts², Xiaofeng Xu⁵, and Debjani Sihi¹

EMORY

¹Emory University, ²Woodwell Climate Research Center, ³Arizona State University, ⁴University of Maine, ⁵San Diego State University

Highlights

Total Carbon by Drainage Class


Northern Forests are CH₄ consumers

Assessing spatial Exploring soil heterogeneity properties

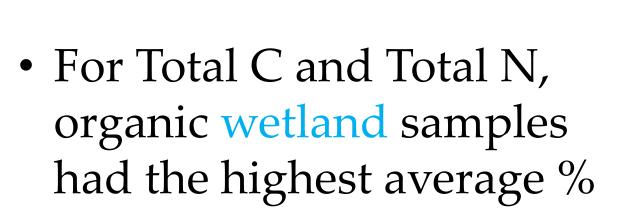
Studying CH₄ cycle processes to reduce uncertainty of CH₄ budget

Study Site Howland Research Forest Source: University of Maine **Central Maine**

Drainage Classes: Upland, Transitional, Wetland

Upland

Hummock


Wetland

Hollow

transitional wetland Drainage Class Figure 3: TC distributions of organic samples, n = 150pH for organic samples by Drainage Class

Drainage Class

Figure 5: pH distributions of organic samples, n = 166

Preliminary Results

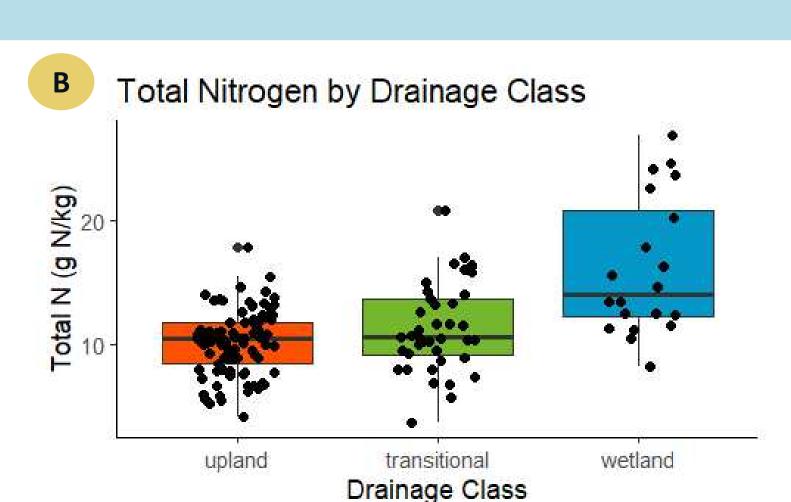
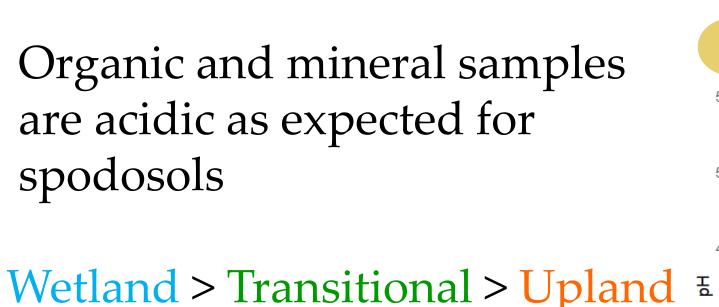



Figure 4: TN distributions of organic samples, n = 150

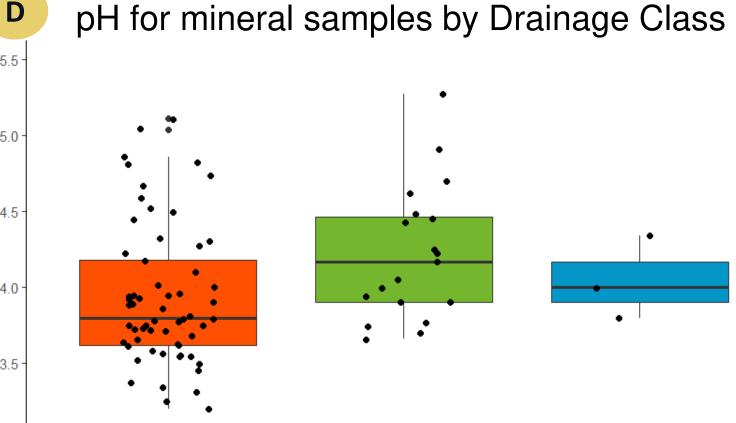


Figure 7: Spodosol = acidic

(Source: USGS)

Drainage Class Figure 6: pH distributions of mineral samples, n = 84

Methods

Year 1: Field Campaign

- 100 soil collars for GHG fluxes
- Forest Inventory Assessments
- 250 soil samples from 75 collars

Soil Samples

- Organic (3 depths)
- Mineral (2 horizons)

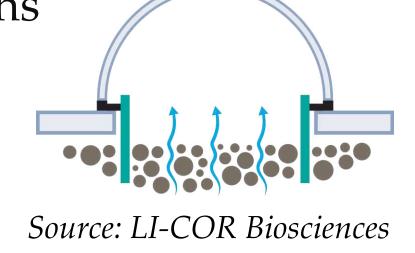
Initial Soil Analyses

- Total Carbon
- Total Nitrogen
- Soil pH
- Figure 2: Total C, Total N, and pH for the organic horizon samples across the three drainage classes

Property	Drainage	Min	Max	Mean
Total C (TC) %	Upland	24.17	51.20	37.22
	Transitional	23.47	45.89	38.32
	Wetland	34.54	44.20	39.54
Total N (TN) %	Upland	0.42	1.79	1.02
	Transitional	0.37	2.09	1.14
	Wetland	0.83	2.70	1.62
pН	Upland	2.76	6.51	3.48
	Transitional	2.98	4.58	3.81
	Wetland	3.68	4.44	4.07

Conclusions

- Upland soils are interspersed with wetland (Sphagnum bog), and transitional soils along with hummockhollow microtopography in Howland Forest
 - \rightarrow Result is a complex mosaic of microsites with sources and sinks of CH₄ subjected to change under future climate
- Understanding mechanisms behind CH₄ cycle can reduce the current uncertainty of CH₄ sink/source estimation in critical ecosystems (Lee, 2023).


Implications

- Soils = large GHG sink
- Short lifetime of CH₄ makes it more potent than CO₂ \rightarrow Quantify biogenic CH₄ emissions
- In-situ fluxes + soil gas sampling for isotope dilution method

wetland

• Landscape-level estimations of CH₄ dynamics in Northern Forests

References

Acknowledgments

Hollinger, D. Y. Global Change Biology, 1999. Hollinger, D. Y. Journal of Geophysical Research: Biogeoscience, AGU, 2021. IPCC, 2023: Synthesis Report. Weil, Ray, R. Pearson, 2017. Lee, J., Award #2208659 to DS Nature Communications, 2023. Whiticar, M.J., Springer Nature, 2020.

Funding Support: Emory ENVS Lester Grant to DAK and NSF Research