
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.

April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the

21st USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

Efficient Exposure of Partial Failure Bugs
in Distributed Systems with Inferred Abstract States

Haoze Wu and Jia Pan, Johns Hopkins University;

Peng Huang, University of Michigan

https://www.usenix.org/conference/nsdi24/presentation/wu-haoze

Efficient Exposure of Partial Failure Bugs in

Distributed Systems with Inferred Abstract States

Haoze Wu† Jia Pan† Peng Huang‡

Johns Hopkins University† University of Michigan‡

Abstract

Many distributed system failures, especially the notorious

partial service failures, are caused by bugs that are only

triggered by subtle faults at rare timing. Existing testing is

inefficient in exposing such bugs. This paper presents Legolas,

a fault injection testing framework designed to address this gap.

To precisely simulate subtle faults, Legolas statically analyzes

the system code and instruments hooks within a system. To

efficiently explore numerous faults, Legolas introduces a novel

notion of abstract states and automatically infers abstract states

from code. During testing, Legolas designs an algorithm that

leverages the inferred abstract states to make careful fault

injection decisions. We applied Legolas on the latest releases

of six popular, extensively tested distributed systems. Legolas

found 20 new bugs that result in partial service failures.

1 Introduction

Deployed distributed systems frequently encounter faults in

the underlying hardware and dependent software. While these

systems are generally fault-tolerant, an unexpected fault can

still expose bugs. Indeed, real-world distributed system outages

are often triggered by some fault events [6, 14, 16, 34].

Fault injection testing,also known as chaos engineering [48],

has gained popularity to find fault-induced bugs early. Various

solutions are developed to inject common faults such as

crashes [3,15,40],disk faults [13,26],and network partitions [2,

3,27]. Despite the progress, many complex fault-induced bugs

remain hidden in existing testing and cause failures after

deployment. These bugs share several characteristics.

First, they cause puzzling symptoms where the services

seem to work but are partially broken, which are notorious in

production distributed systems [10, 12, 22, 23, 36]. Figure 1

shows a real failure from a ZooKeeper deployment. The clients

experienced timeouts in create requests, but get requests still

succeeded. Pinging the leader also showed that it was alive.

As another example, users reported [5, 9, 25] that their Kafka

cluster occasionally experienced partial breakdown, and one

broker could not return to an in-sync status.

Second, these bugs are triggered under subtle faulty con-

ditions, such as a network error that only affects some oper-

ations but not others [1, 36], transient slowness [17, 21], or

microburst [28]. In the aforementioned ZooKeeper example,

Leader Follower

Request

Processors

Leaner

Handler

Snap

shot
…

Follower

NewExisting

Client

create

set

get

void serialize(OutputArchive oa) {

 synchronized (node) {

 ...

 oa.writeRecord(node, "node");

 }

}
// stuck due to a network issue

Figure 1: A real ZooKeeper production incident [46] triggered by a

partial network fault, which caused the writeRecord operation to be

stuck while holding a lock.

(0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6]

Elapsed Time (second)

101

102

103

#
 o

f
o
p
s
 t

o
 i
n
je

c
t

Figure 2: Hundreds to thousands of operations per second are

candidates for injecting IOException during ZooKeeper’s execution.

the buggy code works properly in normal conditions. The

failure was only exposed by a partial network fault between a

leader and a new follower, and the fault only affects a specific

operation (writeRecord). The faults can also originate from

software and be system-specific, such as a custom exception

from an RPC to a remote component (e.g., when the database

is overloaded). The Kafka failure example was caused by a

custom exception returned from an RPC to the dependent

ZooKeeper service. Simulating these fault conditions in testing

requires precise control of the fault types and locations.

Third, these bugs require careful choices of when and where

the fault occurs. Distributed systems have a large number of

fault points (Figure 2), but since these systems are robust, most

faults would be tolerated or result in an expected failure (e.g.,

abort on error in reading a file). To expose the ZooKeeper

failure, a transient network latency increase must be injected

while a new follower is requesting a snapshot from the leader.

Injecting the fault at other times or other locations is ineffective.

A random injection choice,which is commonly used in existing

solutions, will have a high chance of missing the buggy point.

We present Legolas, a fault injection framework designed

to efficiently expose the above class of complex fault-induced

bugs in large distributed systems. Unlike the practice of

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1267

injecting system-agnostic faults externally in the environment

or libraries, Legolas uses program analysis to perform fine-

grained and system-specific fault injection. It analyzes the fault

conditions for each instruction in the code and instruments

hooks to precisely simulate subtle faults within the system.

With more faults to consider, the problem of a large fault

injection space becomes more pronounced.

Our insight is that production bugs occur in unusual

conditions—otherwise, existing testing likely has exposed

it. Thus, we can selectively inject faults by checking if the

system reaches an unusual condition. Unfortunately, we do

not know beforehand whether a program point is unusual or

not. Using ad-hoc heuristics, such as only injecting faults

when the program is inside a critical section, can miss many

failure-inducing conditions. We should still systematically

explore the injection choices for generality and completeness.

Based on this insight, Legolas introduces a novel notion of

abstract state to guide systematic but efficient exploration of

the fault injection space. The basic idea is to use system states

to group injection points. A system’s state can be represented

by its variables and concrete values. This representation,

however, is massive for large systems, and it would make

almost all injection points appear in unique groups. For fault

injection, we need a more high-level state representation, in

which multiple injections likely yield similar effect.

Legolas uses a simple yet novel static analysis that auto-

matically infers abstract states from the target system code.

The automation is feasible because developers usually leave

clear hints in the code about abstract states: the system checks

one or more state variables’ concrete values in a branch to see

if an important condition occurs; if so, it performs some sig-

nificantly different action. An abstract state thus can indicate

that a system enters a unique stage of service, e.g., request

parsing, snapshotting, and leader election.

Specifically, Legolas first infers concrete state variables

in a system. It then identifies code blocks that are control-

dependent on some concrete state variable. It finally creates a

mnemonic abstract state variable for each such block, which

will be set when the program execution reaches that point.

Leveraging the inferred abstract states, Legolas can effi-

ciently explore the injection space. During testing, the in-

jection hooks Legolas instruments dispatch queries to the

Legolas controller. The controller checks the system’s current

abstract states and decides whether to grant an injection or

not. Essentially, Legolas enables stateful fault injection.

We design a stateful injection decision algorithm called

budgeted-state-round-robin (bsrr). Other stateful policies are

also feasible, and it is easy to add and switch policies in

Legolas. Compared to the straightforward new-state-only

policy, bsrr is robust to tolerate potential inaccuracies in the

abstract state analysis. It also reduces biases in injections.

We have built an end-to-end prototype for the Legolas

framework, including the static analyzer, fault injection con-

troller, workload driver, and failure checkers.

We apply Legolas to six large distributed systems: Kafka,

ZooKeeper, HDFS, HBase, Cassandra, and Flink. Legolas

automatically instruments these systems and extracts abstract

states without special tuning. We run fault injection exper-

iments on these systems’ recent releases. Using the bsrr

algorithm, Legolas finds 20 new bugs with a median time

of 58 minutes. These bugs all cause partial service failure

symptoms. We report the bugs to developers. Four reports are

marked as critical, fourteen reports are marked as major, and

two are marked as normal. Eleven reports have been explicitly

confirmed by developers so far. We also compare Legolas

(bsrr) with state-of-the-art solutions and other policies. The

best performing baseline is the new-state-only policy with

Legolas, which exposes eight bugs. The random injection

policy only exposes three bugs in a median of 362 minutes.

In summary, this paper makes the following contributions:

• We propose an approach that uses program analysis to

enable customized and fine-grained fault injection.

• We introduce a novel concept of abstract state and a method

that automatically infers abstract states from a given system’s

code. We design a new decision algorithm that leverages

the inferred abstracts to guide efficient fault injections for

exposing complex bugs that cause partial service failures.

• We build a fault injection framework Legolas and evaluate

Legolas on large distributed systems.

2 Overview of Legolas

Legolas is an end-to-end fault injection testing framework

for large distributed systems. It aims to efficiently expose

fault-induced bugs like the motivating examples.

Scope. Consider a distributed system S that consists of mul-

tiple processes % and provides a range of services '. One

definition of a partial failure is that a subset of % are faulty

(crash, Byzantine, or gray faults [23]), which may be tolerated

and not affect the functionalities of S .

Legolas focuses on exposing partial failures with respect

to services, where some ' 5 ⊂ ' fail to maintain their safety

or liveness properties, while other services ' \ ' 5 behave

as expected. In contrast, in a total failure, all services in '

break. An intuitive strategy to uncover partial failures is thus

to perturb each service based on their specifications, but this

strategy can be difficult to apply with large concrete codebases.

Owing to the modular designs prevalent in large distributed

systems, each service is typically implemented by a specific

component made up of threads; each process c encompasses

disjoint sets of components that provide different services for

S . For example, a leader process in ZooKeeper has dedicated

request handlers, snapshot manager, quorum messenger, etc.

If one thread fails, the recovery mechanisms will try to avoid

interruptions to the corresponding service. Thus, Legolas is

designed to perturb each component (some thread) within

c—instead of crashing c outright—by inducing faults to the

instructions executed by the component. This allows for a

deeper exploration of the potential partial failures in S .

1268 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

id of the current thread. If the injection is granted, the agent

looks up the fault id, which can be either a delay or some

exception. For delay, the agent simply invokes the thread sleep

function. We focus on worst-case situations and use 1 minute

as the default delay (the writeRecord call in Figure 1 can

hang for over 15 minutes under default Linux TCP settings).

For exception, the agent constructs an exception instance and

throws it before the injection hook returns.

Automatically creating an exception instance to throw is

a non-trivial task. Some custom exception type includes

complex arguments and compositions. Legolas analyzes the

constructor and recursively reduces complex arguments to

primitive types. It then creates an exception instance by

assigning the primitive fields with default values.

Where to add the injection hooks also requires careful

considerations. The straightforward way is to instrument each

call instruction that Legolas analyzes to possibly encounter a

fault. Suppose foo() is analyzed to possibly throw MyError,

but that is only because foo() internally calls bar(), which can

throw that error. If MyError is injected at the call sites of foo(),

we need further explanation of why this exception occurs. For

deep call chains, such injections make the exception reasoning

difficult and may turn out to be invalid.

To address this issue, Legolas instruments as deep as possi-

ble. It identifies faults that originate from a method through

explicit throw statement. It then only instruments calls to

either a method that has a non-empty list of such faults, or an

external function. If the called method is from an interface

or abstract class, Legolas injects at the caller’s call sites to

handle potential invalid injections.

Benefits. Legolas’s approach eases fault simulation without

requiring a special environment (e.g., a FUSE-based file sys-

tem [13,49]). It also gives precise control to simulate partial

faults, e.g., a partial disk failure that only affects a subset of

file operations; only some RPCs within certain code region

are delayed. It also supports simulating custom errors. While

a custom error may be caused by some environment fault, it

can be difficult to simulate them with external injection. For

example, a method may throw an exception only when all

three retries of a connection fail.

4 Abstract State Guided Fault Injection

A key challenge in fault injection for distributed systems is

the enormous injection choices (Figure 2). Moreover, only

few choices can expose bugs. This is because production dis-

tributed systems have extensive fault resilience mechanisms.

Insight. Our insight is that many fault injection attempts

are unnecessary because they are testing the same or similar

scenarios. Take a ZooKeeper code snippet in Figure 5 as an ex-

ample. The SyncRequestProcessor component is responsible

for synchronizing the requests to log files on disks. Suppose

we are injecting faults on I/O operations. There are numerous

injection points here, including operations inside the called

Figure 5: The grayedareas are code regions containing I/O operations.

The bug in Figure 1 occurs inside a call chain from line 13.

o1 o2 o3 o4 o7

t

o5 o8 o9 …o10

buggy point

futile point

o6

A

B

C D

on

system state

Figure 6: Group the injection points by the state they appear in.

functions. Line 6, which syncs requests to logs, gets executed

at each loop iteration, while line 13 only occurs occasionally.

With limited testing resources, we may only inject faults on

operations inside line because of their frequent occurrences.

Idea. Inspecting the system state for each component can help

us make better decisions. For the previous example, we could

realize that the system enters a rare state (snapshotting) when it

reaches line 13. Operations in this state couldbe ofhigh interest.

Our basic idea is thus to group the injection points based on the

underlying system state (Figure 6). Grouping helps avoid being

indiscriminate when making injection decisions. The injection

points that lie in the same group of state are hypothesized to

yield similar outcomes if injected, while the injection points

in different groups may yield different outcomes.

However, we do not just focus on rare states, as defining

them is subjective. Moreover, the presence of an injection

point in a rare state does not imply a bug. Neither does an

injection point in a common state guarantee the absence of

bugs. For example, a bug may be exposed with a fault occurring

inside the append call in Figure 5—which is in a common

state—when it is executed for the fourth time.

We thus explore the injection space systematically. That is,

if there were four chances, we try to explore injections in all

four states, instead of spending them only in one state.

4.1 State Representation Choices

The next question is how to define the system state for effective

grouping? Unlike distributed protocols that have specifica-

tions, determining the state representation for complex system

implementation is not easy. The complete execution states—

the program counter, stack traces, and memory snapshot—are

1270 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

S
0

S
2

S
3

S
1

Figure 7: State machine with abstract states for Figure 5. Each state

is an abstraction over the concrete state variable logCount.

obviously too excessive. A more reasonable representation is

to use some key state variables (SV). A value change of these

variables then could indicate the system is in a different state.

This representation, however, can still be excessive.

Take Figure 5 as an example. If we treat the logCount as

a state variable (SV), the value is incremented for = times,

and each increment is counted as a new state. Using such a

representation not only requires frequent state tracking, but

also degrades the injection point grouping to be useless.

The key reason is that some values in a concrete state

variable do not imply a significant change, at least for fault

injection purposes. All the increment-by-one value transitions

of logCountwhile n<=snapCount indicate the same information

about the system, while only the transition of n>snapCount

indicates something new (starting to snapshot).

Essentially we need a more high-level representation than

concrete state variables (SV), which we define as abstract

state variable (ASV). The intuition behind ASVs is that

they represent different stages of service in a system. For the

example in Figure 5, a natural way to define the abstract state

is to divide the execution into four stages— (0 to (3 . Figure 7

shows the corresponding abstract state machine. This simpler

representation can recognize when the system starts to do

snapshot (state (2). In turn, they can effectively group the

injection points to make fault injection efficient.

4.2 Infer Abstract State Variables

The Legolas analyzer uses a simple yet novel method to

automatically infer ASVs in a system. The feasibility of the au-

tomation is based on our insight that developers usually already

encode sufficient hints about ASVs. In particular, developers

checks one or more state variables (SV) in a branch, and if

certain condition occurs, the system performs some action, i.e.,

if (func(state_var1, var2, ...)) { do_action1(); } . From

our inspection, in long-lived components, it is a common

practice to utilize SV to designate different functionalities at

different iterations. For example, the QuorumPeer component in

ZooKeeper uses a static variable state to indicate the node sta-

tus, which could be LEADING, FOLLOWING, etc. The QuorumPeer

component then has a while loop that does a switch case on

this SV to select different functionalities over time.

Legolas first locates all the task-unit classes in the system.

These classes are generally threads or workers, such as classes

that extend Thread or Runnable in Java. The analyzer then runs

ASV inference on each task-unit class.

Algorithm 1 lists the core algorithm. It starts by inferring the

SVs in the code (Line 2). InferCSV simply treats all non-static,

non-constant fields defined in a task unit to be SVs.

Legolas then analyzes the main task method of the task

unit class, such as the run() method of a Thread. It finds the

Algorithm 1: Infer abstract state variables

1 Function InferASV(task_class):

2 2BE_;8BC ← InferCSV(C0B:_2;0BB);

3 C0B:_<4Cℎ>3← getTaskMethod(C0B:_2;0BB);

4 34?_6A0?ℎ← buildDependence(C0B:_<4Cℎ>3, 2BE_;8BC);

5 0BE_;>20C8>=B← [C0B:_<4Cℎ>3.body().getFirst()];

6 Process(task_method.body(), dep_graph, false);

7 Function Process(8=BCAD2C8>=B, 34?_6A0?ℎ, 5 ;06):

8 8=BC ← 8=BCAD2C8>=B.begin();

9 ℎ0B�2C8>=← false;

10 while 8=BC ≠ 8=BCAD2C8>=B.end() do

11 if isBranch(8=BC) then

12 <2>=3, 1;>2:B, =4GC>← parseBranch(8=BC);

13 if dep_graph.contains(cond) then

14 for block← blocks do

15 Process(block.body(), dep_graph, true);

16 end

17 end

18 8=BC ← =4GC;

19 else

20 ℎ0B�2C8>=← ℎ0B�2C8>= | isAction(8=BC);

21 8=BC ← 8=BC.next();

22 end

23 end

24 if ℎ0B�2C8>= and 5 ;06 then

25 0BE_;>20C8>=B.add(8=BCAD2C8>=B.begin());

basic blocks in the task method that are control dependent on

some SV and treats each such basic block as a new ASV.

Specifically, the analyzer iterates through instructions in the

task method. Upon a branch instruction, it checks if the branch

condition is dependent on some SV (Line 13). This check

considers not only direct usage of SV but also indirect data

dependence, i.e., a branch condition involving a local variable

that gets its value from an SV. Accordingly, the analyzer builds

a data dependence graph of the SVs (Line 4). The algorithm

then recursively processes the basic blocks control dependent

on this branch instruction (Line 15). A system should perform

non-trivial actions in an abstract state. Thus, we check if the

basic block contains at least one function invocation or an

operation that could change a state variable (Line 20).

Once the proper basic blocks are located, the analyzer

assigns indexes for them, 0BE0, . . ., 0BE=. The indexes are

local to the task class. For each inferred ASV, the analyzer

instruments a call to the Legolas agent. At runtime, the agent

notifies the Legolas state tracker of the 0BE8 that is entered,

along with the node id, the name and id of the current task.

Note that our ASV is not equivalent to conventional control-

flow path. We make program paths collapse into more mean-

ingful ones (service stages) that guide fault injection.

Example. Figure 8 shows the ASVs Legolas infers and

inserts for the code in Figure 5. The inferred ASV is slightly

different from (2 in the simplified snippet in Figure 7. This

is because the logCount is a local variable, thus the Legolas

analyzer does not treat it as an SV. Another variable snapThd is

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1271

Figure 8: The ASVs Legolas infers for Figure 5.

o1 o2 o3 o7

t

o8 o9 o10

buggy point

futile point

A B

system state

o11

inject

…

Figure 9: The buggy point may not be the first request in a state.

a non-static field of SynchRequestProcessor. Legolas treats it

as an SV and infers the 0BE3 that represents the snapshot stage.

This result is in fact more accurate than using logCount, be-

cause it infers an additional state (0BE2)—a previous snapshot

is ongoing while the snapshot threshold is reached.

Alternative. We also explored other ASV inference meth-

ods. For example, we observe that although some function only

uses local variables, it can still represent an important system

service stage, e.g., handling an event. Defining an ASV at the

function entry can be useful. We chose our above inference

method for its simplicity. As Section 7 later show, it is general

enough to apply on all the popular distributed systems we

evaluate and achieve significant performance. It is also feasible

to extend Algorithm 1 and analyze the functions called in

the task method to extract more thorough stages. However,

only analyzing the main task method already provides a good

generalization to capture key stages in a component that match

the system modularity and design documentations.

4.3 Injection Decision Algorithm

With the inferred abstract states, Legolas enables stateful

decision policies for efficient fault injection. When the con-

troller receives an injection request from the Legolas agent,

the controller checks which abstract state the target system is

in at the time of the injection request to make a decision.

A straightforward stateful policy is to grant an injection

request only if the system is in a new state, which we call a new-

state-only policy. While this policy matches the intuition that

complex bugs are often only triggered when the system enters

an unusual condition, it has several drawbacks. As Figure 9

shows, there can be multiple injection requests from one state,

and a buggy point may not be the first request. Indeed, for the

ZooKeeper example, even though the bug only appears in the

snapshot state, the snapshot function performs several write

operations before it reaches the buggy point. This policy also

Algorithm 2: Budgeted state round robin (bsrr) policy

Global Vars: Queue<State> rrl, Map<State,Info> visit
/* invoked at start of a fault injection trial */

1 Function setupNewTrial():

2 resetIfAllUsed(AA;, E8B8C);

3 while !AA;.empty() do

4 B← AA;.pop();

5 info← E8BC.get(B);

6 if info = nil or info.budget > 0 then

7 AA;.append(s);

8 break;

9 end

10 end

11 while !AA;.empty() and E8B8C.get(AA;.front()).budget = 0 do

12 AA;.pop();

13 end

14 updateProbabilities(E8B8C);

/* invoked for each injection request */

15 Function shouldInject(request):

16 2DAA ← getCurrentState(A4@D4BC);

17 if not visit.contains(2DAA) then

18 E8B8C.put(2DAA , new Info());

19 AA;.append(2DAA);

20 end

21 info← E8B8C.get(2DAA);

22 info.occur← info.occur + 1;

23 if rrl.front() ≠ curr then return false;

24 if info.budget > 0 and rand() < info.prob then

25 info.budget← info.budget - 1;

26 return true;

27 end

28 return false;

relies on the abstract state analysis to be precise. If the static

analysis misses instrumenting an ASV close to the buggy

point, the buggy point will likely be treated as in a seen state.

In addition, the system can take a long time to enter a new

state. If we only wait for new states, we may not inject anything

when the workload finishes and waste an experiment trial.

To address these drawbacks, we design a budgeted-state-

round-robin (bsrr) policy. Algorithm 2 lists its algorithm.

The algorithm allocates a budget (default 5) for each state to

be potentially granted injection more than once. This relaxes

the stringent new state requirement. After all states use up

their budgets, the budgets are reset (Line 2).

It keeps a round-robin list of the abstract state tuples (rrl in

Algorithm 2). Suppose the list has B1, B2, . . . , B=. The algorithm

intends to grant injection requests from state B1 for the first

trial, grant requests from B2 for the second trial, and so on. In

other words, it focuses on one state in one trial.

Specifically, before each trial, bsrr rotates the state focused

in the last trial to the end of the round-robin list (Line 7). If a

state’s budget is used up, it is removed from the list.

The round-robin design addresses the imbalanced injections

problem illustrated by Figure 10: in all three experiment trials,

1272 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

t

buggy point

system state
inject

A

B

C

trial 1 trial 2 trial 3

futile point

Figure 10: All injection chances are given to operations in state A.

we would inject operations in the frequent state A (within its

budget), while no operation in state B or C is injected.

The algorithm also applies randomization to allow exploring

different choices when a state has multiple injection requests.

The probability ? should be set properly. If it is too large, we

would always grant the first (few) requests in a state. If it is

too small, we may waste the injection trial.

We calculate ? for each state tuple based on 2—the

times this state appears in injection requests. We set ? =

1− 4;=(0.01)/(2+1) . This formula’s rationale is that we want to

(i) grant at least one injection among the 2 requests to avoid

wasting the trial; (ii) let the injection occur neither too early

nor too late among the 2 requests. The probability that all

2 injections are not granted is (1− ?)2. Because of (i), this

probability should be close to 0. Suppose (1− ?)2 = n . With

(ii), n should not be too small; otherwise ? is too close to 1

and the injection would be too early. We set n to 0.01, and

solve this equation, which gives ? = 1− 4;=(0.01)/2. We use

1− 4;=(0.01)/(2+1) instead to handle corner cases of 2 = 2 or 3.

The bsrr policy is adaptive to leverage information from

prior trials. Upon each injection request, the algorithm dynam-

ically updates the parameter 2 (Line 22). Before a trial starts,

it uses the occurrences from previous trials to re-calculate the

probabilities for the visited states (Line 14). Similarly, bsrr

updates the round-robin list dynamically (initially empty). If

a state in an injection request is not visited before, it is added

to the round-robin list for later exploration (Line 19).

5 Testing Experiment

Legolas starts fault injection testing after the analyzer finishes

instrumentations (§3, § 4.2) on the target system. Legolas uses

a client-server architecture to manage the testing (Figure 3),

where the Legolas agents embedded in the system send RPC

requests to a Legolas server that is composed of an abstract

state tracker, injection controller, workload driver, and failure

checkers. The testing proceeds in continuous trials.

5.1 Injection Trial

In each trial, Legolas starts a cluster of the target system and

then invokes the workload driver (Section 5.2). The trial ends

when the workload finishes (successfully or not).

To support stateful injection decision algorithm (Sec-

tion 4.3), while the target system is restarted in each trial,

the Legolas server will live throughout the experiment. Thus,

it carries information such as the round-robin list across trials.

When a node enters a new abstract state, the Legolas agent

notifies the state tracker, which maintains one Abstract State

Machine (ASM) per task-unit (usually a thread) for each system

node. Each state update event is a tuple of node id, ASM-name

(class name), ASM-instance (class instance), and ASV. The

tracker records the current ASV and transitions for each ASM.

When a node reaches an injection hook, the Legolas agent

sends an injection query to the controller, which is a tuple of

node id, ASM-instance, operation, and fault ids. The controller

runs the bsrr algorithm to decide whether to grant the injection

or not. Notice, however, that the injection query does not carry

the ASV information. The controller obtains the associated

ASV by indexing the node id and ASM-instance from the

injection query to the ASM map in the state tracker.

Legolas by default grants at most one injection in one trial.

Allowing multiple injections in a trial only requires a simple

change. While it seems more attractive to keep injecting faults

in a trial, that choice has several disadvantages. Although

distributed systems are designed to be fault-tolerant, each

system has a limited tolerance level. If we keep injecting in a

single run, the system may likely break as expected. Moreover,

each injected fault can alter the system state and leave side

effects. With continuously injected faults, it becomes very

difficult to judge the system behavior and tell which fault is

responsible for the symptom. Also importantly, if injections

are performed non-stop, we may go deeper in an execution

path, but we will not inject earlier, skipped operations or

explore other paths, sacrificing completeness.

5.2 Workload Driver

Legolas uses a workload driver to exercise the target system.

For each system, we select several existing, representative test

cases to create the workload driver.

To better suit our objectives, we make a few adaptations to

the test cases. First, the driver creates multiple clients and each

client is typically dedicated to interacting with one node. In

this way, Legolas can observe the status of every system node

without mixing signals. Second, the driver divides workloads

into phases, e.g., create, read and write. Only when the current

workload phase finishes successfully will the next phase starts.

This is to localize the failed system functionalities and avoid

unnecessary errors that mislead the results. Third, in one

workload phase, each client is expected to send a series of

requests and will report its progress to Legolas server after

one request completes. The Legolas server also tracks when a

client timeouts or encounters exceptions. This allows Legolas

to more accurately assess the failure impact. Lastly, we use a

small workload scale, such that a trial does not take long and

Legolas can explore more trials.

5.3 Failure Checkers

To determine the testing results, Legolas currently provides

three failure checkers:

• Crash checker: it monitors the OS signals to check if a

system node crashes, aborts, or exits with a non-zero status.

• Client checker: it approximates Panorama [22], a state-of-

the-art gray failure detector, to identify whether differential

observability exists. In particular, it marks a trial suspicious

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1273

System Release SLOC Type

ZooKeeper 3.6.2 95K Coordination service

HDFS 3.2.2 689K Distributed file system

Kafka 2.8.0 322K Event streaming system

HBase 2.4.2 728K Distributed database

Cassandra 3.11.10 210K Distributed database

Flink 1.14.0 78K Stateful streaming system

Table 1: Evaluated distributed systems in latest releases.

if (1) a fault is injected in one node, but only another node’s

clients report errors; (2) the system’s own detector indicates

a node is active, but the node’s clients report errors; (3) only

a subset of clients fail to complete their workloads.

• Log checker: it scans the logs of each system node to identify

whether there are log entries at warning or error level.

As a testing framework, Legolas is extensible to add more

checkers. For example, users can add checkers about inconsis-

tency [38], semantic failures [37], or transaction isolation [30].

When a fault is injected, Legolas records the stack trace

of the originating operation. With the stack traces, Legolas

further clusters the trials by stack trace similarities so that

similar symptoms are investigated together.

6 Implementation

We implement Legolas with around 7,500 SLOC for the core

components, and 100–300 SLOC for the workload driver for

each evaluated target system. The Legolas static analyzer is

built on top of the Soot [52] framework, so it supports systems

in JVM bytecode, including Java and Scala. Its core analysis

algorithms are based on universal programming language

constructs such as thread classes, member variables, branches,

and conditionals. Thus, they are language-independent. The

controller and orchestrator are designed in a client-server

architecture using Java RMI for local RPCs.

7 Evaluation

Our evaluation aims to answer several key questions: (1)

does Legolas work on large distributed systems? (2) can

Legolas expose new complex fault-triggered bugs? (3) does

the abstract states Legolas infers significantly help the fault

injection efficacy? (4) how does Legolas using the bsrr policy

compare to other policies and state-of-the-art solutions?

Evaluated Systems. We evaluate Legolas on the recent stable

releases of six popular, large-scale distributed systems (Ta-

ble 7). These systems have different functionalities, written

with various programming paradigms. Our appendix lists the

workloads we use in the testing.

Measure. For a testing tool, its ability to exposes new bugs is

a key measure. Our evaluation thus centers around this aspect

(Section 7.2). Since our target systems are widely deployed in

production and have been extensively tested for years, finding

new bugs in their latest releases is not an easy task.

Additionally, we apply Legolas on a number of randomly

sampled known bugs in old releases of the systems (Sec-

tion 7.5), including the running example in Figure 1.

System Class ASM
ASV Static. Injected

Total Mean Min Max Methods Points

ZK 708 36 226 6 1 31 484 1947

HDFS 4636 104 390 4 1 16 2127 3913

Kafka 5829 51 220 4 1 15 343 754

HBase 10462 96 312 3 1 17 5874 11051

CSD 4636 104 390 4 1 18 2127 3913

Flink 4852 48 110 2 1 6 997 2299

Table 2: Statistics of applying Legolas static analyzer. Class: ana-

lyzed Java classes; ASM: classes analyzed as abstract state machines;

Mean, min, and max of ASV are abstract state variables in each ASM.

Setup. We run experiments on servers with a 20-core 2.20GHz

CPU and 64 GB memory running Ubuntu 18.04.

Each system’s fault injection experiment consists of 2000

trials. A trial’s time is dominated by the system startup and

workload execution. The trials’ durations vary depending on

how the system reacts to the injected faults and whether it fails

early or not. The experiment time for the six systems is 2.7 hrs,

10.7 hrs, 23.5 hrs, 8.4 hrs, 54.6 hrs, and 26.5 hrs respectively.

We use the bsrr policy (Section 4.3), and set the state budget

to the default value of 5 for all systems.

Due to the large scale of experiments and time constraints,

our testing focuses on the following faults: (1) I/O related

exceptions, e.g., IOException, ClosedChannelException; (2)

custom exception types that inherit from IOException; (3)

delays to function calls that involve disk or network I/O.

We run two separate experiments (exception and delay) for

each system. We observe that IOException is widely used to

represent more than hardware issues. For example, developers

add throw new IOException statements for situations such as

“unreasonable length”, “missing signature”, “current epoch

is less than accepted epoch”, and “snapshot already exists”,

which are difficult to simulate by external fault injection tools.

7.1 Injection Points and Abstract States

Legolas successfully applies on the six systems. Besides

scaffolding information (e.g., class paths, task class types), the

analyzer does not require additional input for a new system.

The injection policies are also not specially tuned.

As Table 2 shows, the number of task classes (ASMs) Lego-

las extracts is much smaller compared to the number of classes

in the system. It also varies across different systems due to

their design choices. For example, ZooKeeper has a relatively

small number, while Cassandra has over 100; yet, ZooKeeper

has the largest ASVs per ASM. This is because ZooKeeper

uses long-running threads, while Cassandra adopts an event-

driven architecture that uses many short-lived runnables. The

mean ASVs per ASM is moderate, because currently Legolas

only analyzes the direct ASM classes and task entry methods.

We further manually inspect the 36 ASMs and 226 ASVs

Legolas generates for ZooKeeper. We find that they can repre-

sent the state transitions in ZooKeeper at different granularities.

For example, in the QuorumPeer ASM, the ASVs exactly match

the states of a node in the quorum: for the states such as

1274 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Looking, Observing, Leading, and Following, there exists ex-

actly one ASV for each. In the SyncRequestProcessor ASM,

the ASVs capture local state transitions: there is one ASV

in which the transaction log is written, one when flushing

in-memory log, and one when the snapshot is taken.

Dynamically, 24 ASMs and 76 ASVs are traversed during

our testing. For the 150 non-traversed ASVs, 46 are from the

12 unutilized ASMs. We check the rest 104 ASVs to see if

they encode meaningful execution states. In 20 of them, the

code blocks have at least one I/O operation. In another 58

ASVs, they are in the exception handlers or shutdown blocks.

In 8 ASVs, they only print a log. The remaining 18 ASVs do

not contain significant operations and are introduced due to

code optimizations by Soot. For the 20 unvisited ASVs that

contain I/O operations, we tried to enlarge our workload (more

reads/writes, reconfiguration), which did not help. However,

our small workload achieves decent utilization of the ASVs.

7.2 Finding New Bugs

Our overall experience in the fault injection experiments is that

the evaluated systems are robust to tolerate or at least cleanly

abort various faults in most places. Take ZooKeeper as an

example. If a thread is doing a socket write and a network delay

is injected, this thread will get stuck. In general, ZooKeeper

can handle the fault correctly even though this thread hangs.

For example, if the LearnerHandler thread hangs in this way,

the QuorumPeer is able to confirm the stale PING state and

abandon the problematic QuorumPeer.

Despite the robustness, Legolas finds new bugs in all tested

systems. It finds 20 unique bugs (Table 8 in Appendix). All

bugs are non-trivial and require domain knowledge to un-

derstand, such as mishandling of errors, design flaws, and

synchronization issues. They all trigger partial failure symp-

toms, such as some requests get stuck while others succeed.

We reported the bugs to developers. Four reports are marked

as critical, fourteen as major, and two as normal. Eleven reports

have been explicitly confirmed by developers so far. Our bug

reports generate substantial discussions with developers, with

a median of 21 comments and a maximum of 42 comments.

Our reports to ZooKeeper inspired the developers to adopt

fault injection testing practice.

Case Studies. HDFS-15925 In one trial, Legolas injects an

IOException in the BlockReceivermodule while one datanode

is forwarding the data blocks to a mirror (another datanode).

One client gets stuck without any error log, and its work-

load progress is partial (1/5), while other clients finish the

workload (5/5). After investigation, we find that normally

the datanode in such a situation will inform the client of

this error state immediately. Then the client will resend the

blocks. This process would be fast. Through code analysis,

we find the root cause is a complex timing bug. In particular,

when the datanode encounters the IOException it sets the

mirrorError flag (Figure 11). However, a concurrency condi-

tion exists in which the mirrorError flag set could be shortly

Figure 11: A timing bug that causes the packet responder to get

blocked when the datanode encounters an IOException.

0 250 500 750 1000 1250 1500

Experiment time (minutes)

0
2
4
6
8

10
12
14
16
18
20

#
 o

f
b
u
g
s
 e

x
p
o
s
e
d bsrr

random

new state only

exhaustive

Figure 12: Efficacy of decision policies in Legolas on detecting new

bugs. bsrr: our budgeted-state-round-robin algorithm.

after the PacketResponder thread checks this flag, causing

PacketResponder to not notice this status and get blocked, and

the ACK packet will not be sent by the mirror datanode.

Legolas exposes the bug five times in the experiment, with

the first time in trial 124 at around 43 minutes.

HDFS-15869 The HDFS namenode uses the EditLog to

maintain a transaction log of the namespace modifications.

In one trial, Legolas injects a delay to a remote write in

the FSEditLogAsync thread. The injection occurs when the

thread sends a response to the client and other servers, after it

commits a transaction. This causes the whole FSEditLogAsync

to be unable to proceed. The critical logSync function cannot

be executed for incoming transactions. This is undesirable

because FSEditLogAsync’s key feature is asynchronous edit

logging that is supposed to tolerate slow I/O.

7.3 Impact of Abstract States and BSRR

This paper’s thesis is that our inferred abstract states can enable

efficient fault injection. Section 7.2 shows that Legolas finds

complex new bugs with our bsrr algorithm. To further validate

our thesis, we compare the bsrr algorithm with alternative

decision policies on the 20 new bugs.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1275

Detected Bugs Median Detection Time

FATE 1 1057.9 minutes

CrashTuner 4 20.4 minutes

CORDS 0 N/A

Table 3: Effectiveness of existing work on the 20 new bugs.

For each policy, we run a 2000-trial experiment and measure

the number of bugs it exposes, as well as the time it takes to

expose the bugs. The latter is an important metric. If a solution

cannot expose a bug within a reasonable time, developers in

practice likely will not use it even if the solution in theory

may expose the bug after a long time.

Figure 12 shows the result. The exhaustive policy only

exposes one bug. The random policy only exposes three bugs.

It is also inefficient. It takes a median of 208 minutes and a

max of 994 minutes to find the three bugs. After finding the

third bug, it fails to find more bugs in 24 hours.

The new-state-only policy (§ 4.3) exposes eight bugs in

a median of 11.4 minutes. It is the best among the baseline

policies, showing the advantages of our inferred abstract states.

The bsrr significantly outperforms all alternatives. It ex-

poses 20 bugs in a median of 58.2 minutes (min 4.0 minutes,

max 302.0 minutes). Compared to new-state-only, it is more

robust in leveraging the imperfectly inferred abstract states,

exposing much more bugs while achieving good efficiency.

The inferred ASVs help improve the fault injection efficacy

in two ways. First, they can capture the unusual system service

stages, allowing Legolas to inject in places that are not well

tested and buggy. For example, in HDFS-15957, one of the

ASVs Legolas infers for FSEditLogAsync represents the state

of sending a response to client while FSEditLogAsync is com-

mitting transactions. The ASVs for the running ZooKeeper

example also belong to this category. Second, the inferred

ASVs can help make progress in skipping uninteresting in-

jection points. For example, in HDFS-15925, the injection

(Figure 11) occurs inside the DataXceiver thread in the datan-

ode. The relevant ASV that Legolas infers corresponds to the

processOp stage. Although this ASV is just the main stage of

the thread, the other ASVs Legolas infers in other threads

help avoid wasting too much time in injecting in other places.

7.4 Comparing with Other Solutions

Research Baselines. We compare Legolas with three state-

of-the-art fault injection research projects, FATE [15] Crash-

Tuner [40] and CORDS [13]. FATE tests multiple failures by

using a concept of failure IDs to efficiently enumerate the

combinations of failures. CrashTuner uses meta-info variable

accesses to decide the timing of injecting node crashes for

exposing crash recovery bugs. CORDS uses a FUSE file sys-

tem to inject a single corruption or read/write error to one

file-system block at a time, and enumerate all possible faults.

The first two works focus on node-level faults, making them

not directly comparable to Legolas. We apply their key ideas

to attempt meaningful comparisons. We define the failure

IDs as described in the FATE paper and implement a policy

in Legolas to grant an injection request when its associated

failure ID has not been visited. For CrashTuner, because its

analyzer component is not available, we re-implement its static

analysis to identify all meta-info variable accesses and assign

each access point a global ID. We instrument each access

point to record the accesses at runtime. Then we grant an

injection request when some meta-info variable access occurs

within the past 5 ms and the access ID has not been seen. The

latter is needed because a system may access the meta-info

variable in a deterministic order, leading to only one injection

being always granted if the access ID is not checked.

For CORDS, we utilize similar procedures as described in

the paper to enumerate file system level errors on the requests

to FUSE. For the experiment, we use the same workloads as

in Legolas but use the injection algorithm in CORDS.

Table 3 shows the result. FATE only detects one of the

20 new bugs in 1057.9 minutes. CrashTuner only detects

four bugs. Legolas significantly outperforms both solutions.

CORDS does not detect any of the 20 new bugs despite

enumerating all of its injection choices during the experiment.

Although CORDS is a fine-grained fault injection tool, its

fault scope is limited. It only injects corruption or error of

a file block. Only 2 of the 20 bugs’ root causes are related

with that. For the two cases, they require a transient error and

special timing, while CORDS injects persistent corruption or

error that more likely leads to a total failure (node crash).

Popular Tool Baselines. We further compare Legolas with

three fault injection tools that are popular among developers:

CharybdeFS [49] (a fault-injection filesystem), tcconfig [19]

(a network fault injection tool based on Linux Traffic Control),

and byte-monkey [53]. Byte-monkey is closer to Legolas in

that it also performs bytecode-level fault injection.

These tools rely on user-provided parameters to configure

the injection, such as the packet loss rate and probability of

returning an error code. Settings that are too large or too small

produce meaningless results. We choose one moderate setting

and one mild setting for each tool. We exercise the target

systems using the same workloads from Legolas.

Most injections lead to either a high percentage of successful

trials or a high percentage of early exits (shown in appendix).

For the small percentage of partial_progress injection trials,

the failed client requests either happen directly because of the

injected fault (e.g., the server logs that it is unable to read data

from client) or the system is in the middle of fault handling

and successfully recovers. We verify that none of these trials

expose any of the 20 new bugs Legolas finds. We also vary

the parameters, but the conclusions remain the same.

In the Legolas decision policy comparison experiments

(§ 7.3), its random policy exposes three bugs. In comparison,

the evaluated popular tools do not expose any bugs with their

random strategies. The discrepancies are due to the probability

factor and the fact that Legolas’s in-situ injection mechanism

has more precise control—it instruments operations that are

possible to throw IOException (or its subtype) errors, which

1276 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

8 Discussion and Limitations

Our ASV inference currently only analyzes states inside the

task classes and the task entry functions. Thus, the inferred

ASVs for each task are relatively coarse-grained. The analysis

can be extended to other task functions and states that are

passed to other classes through function calls, which will

extract more detailed ASVs. However, it is not always the

more detailed the better. A large system typically has tens to

hundreds of task classes, so too fine-grained ASVs can lose

the benefits of effectively grouping injection requests.

Our workload drivers use workloads on a small scale to

exercise the target system. More workloads can be added to

the Legolas workload drivers, which is not a difficult task and

would allow Legolas to expose fault-induced bugs that require

large workloads (e.g., performance bugs).

Legolas injects a single fault in one fault injection trial.

It would miss bugs triggered by multiple faults. Supporting

injection of multiple faults in Legolas only requires a simple

change. However, the decision algorithm and failure checkers

would likely require significant changes. Indeed, we tried

enabling multi-fault injection for the ZooKeeper experiment,

but it only improved the efficiency for one bug.

Legolas does not explicitly control non-determinism in the

target system, such as thread schedules, which is the focus of

concurrency testing tools. Thus, while Legolas can expose a

concurrency bug, it may not expose it reliably or efficiently.

Legolas can be combined with concurrency testing tools.

9 Related Work

Fault Injection. Early fault injection work targets standalone

software. Faults are injected into hardware, simulated en-

vironment [20], or libraries (LFI [43]). Fault injection test-

ing becomes popular in distributed systems with much re-

search [2–4,7, 13,15,24,26,27,40,45]. Many inject coarse-

grained faults externally such as node crashes to expose proto-

col or crash recovery bugs. The injection is done randomly, or

exhaustively, or based on user specifications. Several solutions

proposed more advanced techniques. For example, LDFI [3]

leverages data lineage to inject crashes or network faults if

the faults could prevent correct outcomes; CrashTuner [40]

injects crashes when meta-info variables are accessed.

Legolas focuses on complex partial failure bugs. It uses an

instrumentation approach to inject system-specific, instruction-

level faults within a target system. It designs a novel static

analysis method that automatically infers abstract states from

distributed system code. Its decision algorithm leverages the

abstract states to efficiently explore the fault space.

Recent fault injection research addresses other applications,

such as multi-threaded programs [32], cluster-management

controllers [51], microservices [44, 57], and REST applica-

tions [8]. Legolas is orthogonal to these efforts. It targets

large-scale distributed systems and aims to expose partial

failure bugs triggered by exceptions or delays in the operations

of a component within a distributed system node.

Model Checking. Model checking enumerates the possible

interleaving of non-deterministic events such as messages.

It has been applied to distributed systems [18, 29, 31, 50,

54]. Distributed system model checkers (dmcks) including

MODIST [54], SAMC [31], and FlyMC [42] also explore the

interleaving of crash/reboot failure events. Legolas shares

high-level similarity with these solutions in that it systemat-

ically explores the fault injection space. However, Legolas

is a complementary effort. Existing dmcks target protocol

bugs caused by complex interleaving of node-level events,

while Legolas targets implementation-level bugs triggered by

diverse faults in fine-grained program instructions. Legolas

can leverage a dmck to drive the target system into unexplored

states, allowing Legolas to try more injections.

Distributed Concurrency Bug Detection. Several

projects [33,35,39,56] aim to detect concurrency bugs in dis-

tributed systems. FCatch [35] applies happens-before analysis

on correct execution traces to identify unprotected conflicting

operations. Legolas is a general fault injection framework

aiming to expose diverse bugs.

Partial Failure Detection. Failure detectors are part of a

running production distributed system to determine whether

the system is faulty or not. Recent works [22,36,41,47] explore

advanced detectors for the notorious partial failures. Legolas

is an offline testing tool. It can leverage these advanced

techniques in its checkers to find more bugs in testing.

Error Handling Bug Detection. Error handling code is

known to be buggy. Studies [36, 55] have shown that this is

also true for distributed systems. Aspirator [55] uses rules

to statically find simple error handling bugs such as empty

handlers. Legolas focuses on fault injection to systematically

test distributed systems and uncover diverse types of bugs.

10 Conclusion

This paper presents Legolas, a fault injection testing frame-

work that aims to catch complex partial failure bugs in large

distributed systems. Legolas uses static analysis to enable

fine-grained, system-specific fault injection. It designs a novel

method to extract abstract states from system code and uses

them to efficiently explore the fault injection space. We apply

Legolas on six distributed systems and find 20 new bugs. Lego-

las is available at https://github.com/OrderLab/Legolas.

Acknowledgments

We thank our shepherd, Peter Alvaro, and the anonymous

reviewers for their valuable and detailed feedback that im-

proved our work. We appreciate the help from the developers

of the open-source distributed systems we evaluated. We

thank CloudLab [11] for providing the resources to run our

experiments. This work was supported in part by NSF grants

CNS-2317698, CNS-2317751, and CCF-2318937.

1278 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,

and Samer Al-Kiswany. Toward a generic fault toler-

ance technique for partial network partitioning. In 14th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20), pages 351–368. USENIX

Association, November 2020.

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,

and Samer Al-Kiswany. An analysis of network-

partitioning failures in cloud systems. In Proceedings

of the 12th USENIX Conference on Operating Systems

Design and Implementation, OSDI ’18, pages 51–68,

Berkeley, CA, USA, 2018. USENIX Association.

[3] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein.

Lineage-driven fault injection. In Proceedings of the

2015 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’15, pages 331–346, New

York, NY, USA, 2015. ACM.

[4] Cory Bennett and Ariel Tseitlin. Chaos monkey released

into the wild. http://techblog.netflix.com/2012/07/

chaos-monkey-released-into-wild.html, 2009.

[5] Dmitry Bugaychenko. Kafka production failure because

of BadVersionException. https://issues.apache.org/

jira/browse/KAFKA-1407, 2014.

[6] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng

Qin. Understanding exception-related bugs in large-scale

cloud systems. In Proceedings of the 34th IEEE/ACM

International Conference on Automated Software Engi-

neering, ASE ’19, page 339–351. IEEE Press, 2020.

[7] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng

Qin. CoFI: Consistency-guided fault injection for cloud

systems. In Proceedings of the 35th IEEE/ACM Interna-

tional Conference on Automated Software Engineering,

ASE ’20, page 536–547, New York, NY, USA, 2021.

Association for Computing Machinery.

[8] Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang,

and Tianyin Xu. Push-Button reliability testing for

Cloud-Backed applications with rainmaker. In 20th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 23), pages 1701–1716, Boston,

MA, April 2023. USENIX Association.

[9] Kim Christensen. Kafka partial cluster break-

down. https://issues.apache.org/jira/browse/

KAFKA-3577, 2016.

[10] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the impact of limpware on scale-out cloud

systems. In Proceedings of the 4th Annual Symposium

on Cloud Computing, SOCC ’13, pages 14:1–14:14, New

York, NY, USA, 2013. ACM.

[11] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,

Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,

Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,

Kuangching Wang,Glenn Ricart,Larry Landweber,Chip

Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin

Kar, and Prabodh Mishra. The design and operation of

CloudLab. In 2019 USENIX Annual Technical Confer-

ence (USENIX ATC 19), pages 1–14, Renton, WA, jul

2019. USENIX Association.

[12] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph

Idziorek, Richard Krog, Colin Lazier, Erben Mo,

Akhilesh Mritunjai, Somasundaram Perianayagam, Tim

Rath,Swami Sivasubramanian, James Christopher Soren-

son III, Sroaj Sosothikul, Doug Terry, and Akshat Vig.

Amazon DynamoDB: A scalable, predictably perfor-

mant, and fully managed NoSQL database service. In

Proceedings of the 2022 USENIX Annual Technical Con-

ference, USENIX ATC ’22, pages 1037–1048, Carlsbad,

CA, July 2022. USENIX Association.

[13] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-

dundancy does not imply fault tolerance: Analysis of

distributed storage reactions to single errors and corrup-

tions. In Proceedings of the 15th Usenix Conference on

File and Storage Technologies, FAST ’17, page 149–165,

USA, 2017. USENIX Association.

[14] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and

Suman Nath. How to fight production incidents? an

empirical study on a large-scale cloud service. In Pro-

ceedings of the 13th Symposium on Cloud Computing,

SoCC ’22, page 126–141, New York, NY, USA, 2022.

Association for Computing Machinery.

[15] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Al-

varo, Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba

Borthakur. FATE and DESTINI: A framework for cloud

recovery testing. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implemen-

tation, NSDI’11, pages 238–252, Berkeley, CA, USA,

2011. USENIX Association.

[16] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,

Agung Laksono, Anang D. Satria, Jeffry Adityatama, and

Kurnia J. Eliazar. Why does the cloud stop computing?:

Lessons from hundreds of service outages. In Proceed-

ings of the 7th ACM Symposium on Cloud Computing

(SoCC), pages 1–16, October 2016.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1279

[17] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,

Casey Golliher, Swaminathan Sundararaman, Xing Lin,

Tim Emami, Weiguang Sheng, Nematollah Bidokhti,

Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin

Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,

Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe

Hao, and Huaicheng Li. Fail-slow at scale: Evidence of

hardware performance faults in large production systems.

In Proceedings of the 16th USENIX Conference on

File and Storage Technologies, FAST’18, pages 1–14,

Berkeley, CA, USA, 2018. USENIX Association.

[18] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Jun-

feng Yang, and Lintao Zhang. Practical software model

checking via dynamic interface reduction. In Proceed-

ings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, October 2011.

[19] Tsuyoshi Hombashi. tcconfig: A tc command wrapper.

https://github.com/thombashi/tcconfig, 2022.

[20] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K.

Iyer. Fault injection techniques and tools. Computer,

30(4):75–82, April 1997.

[21] Lexiang Huang, Matthew Magnusson, Abishek Ban-

galore Muralikrishna, Salman Estyak, Rebecca Isaacs,

Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-

pko. Metastable failures in the wild. In 16th USENIX

Symposium on Operating Systems Design and Imple-

mentation, OSDI ’22, pages 73–90, Carlsbad, CA, July

2022. USENIX Association.

[22] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong

Zhou, and Yingnong Dang. Capturing and enhancing

in situ system observability for failure detection. In

13th USENIX Symposium on Operating Systems Design

and Implementation, OSDI ’18, pages 1–16. USENIX

Association, October 2018.

[23] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.

Lorch, Yingnong Dang, Murali Chintalapati, and Ran-

dolph Yao. Gray failure: The Achilles’ heel of cloud-

scale systems. In Proceedings of the 16th Workshop on

Hot Topics in Operating Systems, HotOS XVI, British

Columbia, Canada, May 2017. ACM.

[24] LLC. Jepsen. Jepsen: a framework for distributed sys-

tems verification, with fault injection. https://github.

com/jepsen-io/jepsen, 2023.

[25] Jiahongchao. updateisr should stop after failed several

times due to zkVersion issue. https://issues.apache.

org/jira/browse/KAFKA-3042, 2015.

[26] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen.

PREFAIL: A programmable tool for multiple-failure

injection. In Proceedings of the 2011 ACM International

Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’11, pages 171–

188, New York, NY, USA, 2011. ACM.

[27] Xiaoen Ju,Livio Soares,Kang G. Shin,Kyung Dong Ryu,

and Dilma Da Silva. On fault resilience of OpenStack.

In Proceedings of the 4th Annual Symposium on Cloud

Computing, SoCC ’13, pages 2:1–2:16, New York, NY,

USA, 2013. ACM.

[28] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi,

and Mun Choon Chan. Debugging transient faults in

data centers using synchronized network-wide packet

histories. In Proceedings of the 18th USENIX Sympo-

sium on Networked Systems Design and Implementation,

NSDI ’21, pages 253–268. USENIX Association, April

2021.

[29] Charles Killian, James W. Anderson, Ranjit Jhala, and

Amin Vahdat. Life, death, and the critical transition:

Finding liveness bugs in systems code. In 4th USENIX

Symposium on Networked Systems Design and Implemen-

tation (NSDI 07), Cambridge, MA, April 2007. USENIX

Association.

[30] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isola-

tion anomalies from experimental observations. Proc.

VLDB Endow., 14(3):268–280, November 2020.

[31] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi

Joshi, Jeffrey F. Lukman,and Haryadi S. Gunawi. SAMC:

Semantic-aware model checking for fast discovery of

deep bugs in cloud systems. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and

Implementation, OSDI ’14, page 399–414, USA, 2014.

USENIX Association.

[32] Guangpu Li, Shan Lu,Madanlal Musuvathi, Suman Nath,

and Rohan Padhye. Efficient scalable thread-safety-

violation detection: Finding thousands of concurrency

bugs during testing. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, SOSP ’19,

page 162–180, New York, NY, USA, 2019. Association

for Computing Machinery.

[33] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li,

Shan Lu, Haryadi S. Gunawi, and Chen Tian. Dcatch:

Automatically detecting distributed concurrency bugs

in cloud systems. In Proceedings of the Twenty-Second

International Conference on Architectural Support for

Programming Languages and Operating Systems, ASP-

LOS ’17, pages 677–691. ACM, April 2017.

[34] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman

Nath. What bugs cause production cloud incidents? In

Proceedings of the Workshop on Hot Topics in Operating

1280 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Systems, HotOS ’19, page 155–162, New York, NY, USA,

2019. Association for Computing Machinery.

[35] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye,

and Chen Tian. FCatch: Automatically detecting time-

of-fault bugs in cloud systems. In Proceedings of the

Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating

Systems, ASPLOS ’18, pages 419–431. ACM, 2018.

[36] Chang Lou, Peng Huang, and Scott Smith. Understand-

ing, detecting and localizing partial failures in large sys-

tem software. In 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20), pages

559–574, Santa Clara, CA, February 2020. USENIX

Association.

[37] Chang Lou, Yuzhuo Jing, and Peng Huang. Demysti-

fying and checking silent semantic violations in large

distributed systems. In Proceedings of the 16th USENIX

Symposium on Operating Systems Design and Implemen-

tation, OSDI ’22, pages 91–107, Carlsbad, CA, USA,

July 2022. USENIX Association.

[38] Haonan Lu,Kaushik Veeraraghavan,Philippe Ajoux, Jim

Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar,

and Wyatt Lloyd. Existential consistency: Measuring and

understanding consistency at facebook. In Proceedings

of the 25th Symposium on Operating Systems Principles,

SOSP ’15, page 295–310, New York, NY, USA, 2015.

Association for Computing Machinery.

[39] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. CloudRaid:

hunting concurrency bugs in the cloud via log-mining. In

Proceedings of the 2018 ACM JointMeeting on European

Software Engineering Conference and Symposium on the

Foundations of Software Engineering, FSE ’18, pages

3–14. ACM, November 2018.

[40] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan,

Jun Yang, and Liang You. CrashTuner: Detecting crash-

recovery bugs in cloud systems via meta-info analysis. In

Proceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP ’19, page 114–130, New York,

NY, USA, 2019. Association for Computing Machinery.

[41] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,

Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu, Guang-

tao Xue, Jiwu Shu, Minglu Li, and Jiesheng Wu.

PERSEUS: A fail-slow detection framework for cloud

storage systems. In Proceedings of the 21st USENIX

Conference on File and Storage Technologies, FAST ’23,

USA, 2023. USENIX Association.

[42] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O.

Suminto, Daniar H. Kurniawan, Dikaimin Simon, Satria

Priambada, Chen Tian, Feng Ye, Tanakorn Leesataporn-

wongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi.

FlyMC: Highly scalable testing of complex interleavings

in distributed systems. In Proceedings of the Fourteenth

EuroSys Conference 2019, EuroSys ’19, New York, NY,

USA, 2019. Association for Computing Machinery.

[43] Paul D. Marinescu and George Candea. LFI: A practical

and general library-level fault injector. In 2009 IEEE/I-

FIP International Conference on Dependable Systems

Networks, DSN ’09, pages 379–388. IEEE, June 2009.

[44] Christopher S. Meiklejohn,Andrea Estrada,Yiwen Song,

Heather Miller, and Rohan Padhye. Service-level fault

injection testing. In Proceedings of the ACM Sympo-

sium on Cloud Computing, SoCC ’21, page 388–402,

New York, NY, USA, 2021. Association for Computing

Machinery.

[45] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli,

Pandian Raju, and Vĳay Chidambaram. Finding crash-

consistency bugs with bounded black-box crash testing.

In Proceedings of the 13th USENIX Conference on

Operating Systems Design and Implementation, OSDI

’18, page 33–50, USA, 2018. USENIX Association.

[46] Donny Nadolny. Debugging distributed systems. In

SREcon 2016, Santa Clara, CA, April 7-8 2016.

[47] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan

Gupta, Vinayak Khot, and Haryadi S. Gunawi. IASO:

A fail-slow detection and mitigation framework for dis-

tributed storage services. In Proceedings of the 2019

USENIX Conference on Usenix Annual Technical Con-

ference, USENIX ATC ’19, page 47–61, USA, 2019.

USENIX Association.

[48] Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak,

Nora Jones, and Ali Basiri. Chaos Engineering. O’Reilly

Media, Inc., 2017.

[49] ScyllaDB. CharybdeFS: A fuse based fault injection

filesystem. https://github.com/scylladb/charybdefs,

2021.

[50] Jiri Simsa, Randy Bryant, and Garth Gibson. dbug:

Systematic evaluation of distributed systems. In 5th

International Workshop on Systems Software Verifica-

tion (SSV 10), Vancouver, BC, October 2010. USENIX

Association.

[51] Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya

Ganesan, Ramnatthan Alagappan, Michael Gasch, Lalith

Suresh, and Tianyin Xu. Automatic reliability testing

for cluster management controllers. In Proceedings of

the 16th USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’22, pages 143–159,

Carlsbad, CA, July 2022. USENIX Association.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1281

Bug Id Injected Fault Symptom Root Cause

ZK-4074 delay when Learner is executing

writePacket

requests to one follower get stuck and the follower cannot

rejoin the quorum for a long time

write in a critical section and prevents

QuorumPeer from entering the receiving stage

ZK-4203 an exception during accepting a con-

nection from the second follower

one follower keeps trying to join the quorum but keeps

failing, even though the other 2 nodes get the request

the ERROR state set by learner is not discovered

by the leader in some condition

ZK-4419 an exception when a learner creates

a socket to connect to leader

one follower takes a long time to join the quorum and causes

temporary service unavailability

the server state is prematurely changed, which

triggers unnecessary re-election

ZK-4424 an exception when leader is config-

uring socket options for a follower

causes re-election and partial service unavailability error is unnecessarily re-thrown, which causes

handler exit and costly re-creations

KA-13457 an exception when a broker is accept-

ing a connection

some client requests to create topics experience InvalidRepli-

cationFactorException errors for a long time

error is swalloed without closing the socket

channel

KA-13468 an exception when the log manager

initalize a log

a broker proceeds but consumers hang for more than 3

minutes without any error log

the log manager should handle the error but

instead let it propagate to the request handler

KA-13538 an exception when a broker is access-

ing checkpoint file

some clients get unexpected TopicExistsException even

though they have never created the topic before

a design flaw in the client library for handling

broker change

KA-14882 a delay when a broker sends request

to ZooKeeper

some retry of topic creation requests gives the client Top-

icExistsException

broker controllers do not roll back the meta-

data in ZooKeeper when topic creation fails

KA-14886 a delay when handling a request from

consumer and storing data to disk

a critical thread pool in broker gets full soon after the delay

of a single request from client

the delayed thread blocks multiple threads and

causes the thread pool to be used up

HD-15925 IOException when a datanode is for-

warding a packet to the mirror

normally a client is immediately notified of the error, but

now the client hangs for 1min

race condition causes PacketResponder to be

blocked without notifying the client

HD-15957 exception when namenode finishes

sync edit log andnotifies journalnode

some client hangs forever without any log and the expected

file does not exist in HDFS

namenode dismisses one client RPC, adding

retry of the notification resolves the issue

HD-15869 delay when namenode sends the edit

log notifications

namenode hangs even with the async edit logging the notification sending is performed syn-

chronously and blocks queued edit logs

HA-17552 error after the namenode accepts a

socket before creating a reader

some client hangs instead of timing out after ping interval read method does not re-throw the socket

timeout exception

HA-18024 an exception when namenode con-

figures socket options

some client hangs for a long time socket connection is not closed when error

happens

HB-26256 a delay when the region server tries

to open a region using HDFS RPC

table creation command hangs for a long time without any

error but list command shows the table exists

region sequence idfile write operation is block-

ing without any timeout

HB-26955 an exception when the master tries

to do an update operation

some table create requests experience a long delay retry code misses the case when a server is

quickly reinitialized

CS-16603 a delay in serializing a mutation to

commit log in node 2

clients to node 1 experience sporadic CQL operation timeout

due to unconfigured table

the add method is not protected with a timeout

CS-17564 exception when deleting file during

a compaction task

node continues after erroreous startup state and later causes

client failures

missing sync. to wait for compaction comple-

tion before setting node startup flag

FL-30032 an IOException when sending a wa-

termark to Kafka

synchronous batch processing request from client finishes

without errors while the job is actually not finished

the exception is not handled properly and then

a few messages do not get sent to Kafka

FL-31746 an IOException when task managers

finish a job and commit some data

when the job is finished, the client throws confusing errors

due to a fault in commit phase

The commit phase does not affect the correct-

ness of output but its fault is propogated to

the client with confusing messages

Table 8: New bugs found by Legolas. All issues cause partial failure symptoms. The root causes are diverse. ZK: ZooKeeper; KA: Kafka; HD:

HDFS; HA: Hadoop; HB: HBase; CS: Cassandra; FL: Flink.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1283

	Introduction
	Overview of Legolas
	Identify and Instrument Injection Points
	Abstract State Guided Fault Injection
	State Representation Choices
	Infer Abstract State Variables
	Injection Decision Algorithm

	Testing Experiment
	Injection Trial
	Workload Driver
	Failure Checkers

	Implementation
	Evaluation
	Injection Points and Abstract States
	Finding New Bugs
	Impact of Abstract States and BSRR
	Comparing with Other Solutions
	Exposing Known Bugs
	Performance
	Effort and False Positive

	Discussion and Limitations
	Related Work
	Conclusion
	Evaluation Details

