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Local random circuits scramble efficiently and accordingly have a range of applications in quantum infor-
mation and quantum dynamics. With a global U(1) charge however, the scrambling ability is reduced; for
example, such random circuits do not generate the entire group of number-conserving unitaries. We establish
two results using the statistical mechanics of k-fold replicated circuits. First, we show that finite moments can-
not distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of
number-conserving unitaries. Specifically, the circuits form a k.-design with k. = O(L?) for a system in d
spatial dimensions with linear dimension L. Second, for k < k., the depth 7 to converge to a k-design scales
as 7 > kL*2. In contrast, without number conservation 7 > kL?. The convergence of the circuit ensemble
is controlled by the low-energy properties of a frustration-free quantum statistical model which spontaneously
breaks k U(1) symmetries. The associated Goldstone modes are gapless and lead to the predicted scaling of .
Our variational bounds hold for arbitrary spatial and qudit dimensions; we conjecture they are tight.

I. INTRODUCTION

Consider a system of L? qudits arranged on a d-
dimensional lattice with a conserved U (1) charge N. Let the
qudits evolve according to a local unitary number-conserving
circuit (see Fig. 1a) . When the gate unitaries are drawn uni-
formly at random, such circuits have a range of applications in
quantum information and scrambling theory [1-9]. For exam-
ple, they provide minimal models for local unitary dynamics
with conservation laws, permitting the study of operator hy-
drodynamics and scrambling [5, 10-15]. They also enable
randomized benchmarking protocols for measuring the pu-
rity of systems with number conservation such as ultracold
atoms [16—-18], and produce output distributions from which
it is difficult to sample [19-21].

As the depth t of the random circuit grows, the circuit uni-
tary U, executes a random walk on the group of number-
conserving unitaries U (#|N) acting on Hilbert space . The
key question in the above applications boils down to how
‘scrambling’ the circuit is — for our purposes, how close the
distribution of U; is to a steady-state Haar distribution on
U(#|N). This can be quantified in several ways as these are
very high dimensional distributions. Luckily, physical appli-
cations typically only depend on low order moments of the
circuit unitary. These are naturally organized by the k’th mo-
ment operator,

T = /dUtp(Ut) (U, & U;)** (1)

which encodes all of the (k, k)’th order moments [22] in the
matrix elements of U; and U;*. Here, p(U;) is the probability
distribution of Uy; for the Haar measure on a unitary group G,
we also write TkG in a small abuse of notation.

If Tg ¢ = T then the ensemble of random unitaries U is
said to form an exact k-design on G — the distribution of Uy
is statistically indistinguishable from the Haar measure up to
k’th order moments [23, 24]. Typically, finite depth local cir-
cuits do not form exact designs; rather, they form approximate

k-designs which converge in the large depth limit
T 22 78 )

In the absence of number conservation, for G = U(H), this
limit is well-studied [2, 25-36].

Number conservation affects the limit, Eq. (2), in two ways.
First, the group generated by number-conserving b-body cir-
cuits of arbitrary depth, Ub(”H|N ), is a smooth proper sub-
group of U(H|N) with codimension O(L?) [37]. Thus, the
moment operators for these two groups must differ for suf-
ficiently large k. In particular, for arbitrary &, Eq. (2) holds
for the Haar measure on Uy (H|N), not U(H|N). Second,
charge transport is diffusive in a local number-conserving cir-
cuit. The depth required for convergence should thus grow
at least as quickly as L2. In contrast, b-body circuits without
conservation laws converge to the full unitary group U(H)
with depth scaling with L in d = 1 [2, 25, 26, 28-30].

We present two main results in this article. The first, in
Sec. V, is that all ﬁI}ite moments are identical for the Haar
measures on Up(#H|N) and U(H|N) as L — oco. More pre-
cisely, we show that for b-body circuits with b > 2,

T/gb(ﬂlN) _ T;J(HlN)7 k< k. (3)

with k. > L?. Finite moments cannot detect that b-body cir-
cuits diffuse on U, (#H|N) rather than U (H|N) in the thermo-
dynamic limit.

Second, in Sec. VI, we show that T,g ¢ converges to
Tlg (HIN) exponentially with a rate A limited by diffusion,
AU, AUMHINY | A - 1
TV FVHIN) L GemBt 4 AS 7 @
This follows from interpreting kaj * as a replicated quantum
statistical mechanical model (see Fig. 1b) whose low energy
properties govern the late time convergence. The frustration-
free ground state of the replicated model spontaneously breaks
k U(1) symmetries. The rate A in Eq. (4) is thus bounded by
the gap to the lowest wavenumber Goldstone mode (Fig. 2b).
Finally, putting these results together in Sec. VII, we find
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FIG. 1: (a) A number-conserving brick-layer circuit in d = 1 spatial dimensions with L = 5 qudits, t = 3 layers and b = 2
body gates. The conserved number (red circles) spreads under the action of the circuit. Each gate U, is independently and
uniformly sampled from the set of local number-conserving unitaries. A layer unitary U is the product of U, for each gate g in
a layer, and Uy is the product of ¢ layers. (b) Replica model for the £ = 3 moment operator with k& = 3 replicas and *-replicas.
Each replica and x-replica carries a separately conserved number current.

that random number-conserving circuits form e-approximate
k-designs on U (H|N) at a depth 7 (See Fig. 2¢), with

1
> kL2 In(Q) + 5L2 1n(§2) (5)

where the ~ hides geometry-dependent constants and () is the
total Hilbert space dimension of each qudit.

The paper proceeds as follows. Sec. II presents the high-
level spontaneous symmetry breaking analysis that leads to
Eq. (4). Sec. III collects definitions and symbols used
throughout the paper. Sec. IV reviews general properties
of the Haar measure and the moment operators for number-
conserving unitary groups. Sec. V presents the first of our
main results: all finite moments of Uy(H|N) and U(H|N)
are identical in the thermodynamic limit. Sec. VI analyzes the
low energy properties of the replicated circuit model and an
associated Hamiltonian model, both of which are frustration-
free. There we prove our second main result: T,?  converges

exponentially to T,ﬁj (HIN) Wwith a rate A ~ 1 /L?. Sec. VII
translates the convergence rate A into a lower bound on the
depth, 7, beyond which the circuit is an approximate unitary

k-design. We conclude with a discussion in Sec. VIII.

II. OVERVIEW OF REPLICA MODEL

In what follows, we present the arguments that lead to the
second main result, Eq. (4), in more detail. The moment op-
erator for U, is a product of moment operators on layers, each
of which is product of moment operators on gates,
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Clearly, T,g ' plays the role of a transfer matrix in the treatment
of the replicated system as a quantum statistical mechanical
model in d 4+ 1 dimensions [38, 39]. The convergence of T,g ¢

is thus governed by the maximum eigenvalue of T,g ' and the
spectral gap below it.

To make progress, we make several observations. First,
each gate operator, 779 is a Hermitian projector, with eigen-
values +1 and 0. This elementary result holds for the mo-
ments of any Haar distributed unitary (see Sec. IV for a re-
view of general properties of the moment operator for Haar
ensembles). As a product of projectors, the maximum pos-
sible eigenvalue of the transfer matrix Tlg " is +1, carried by
steady states which are simultaneous +1 eigenstates of all of
the gate projectors T,ij 9. So long as this joint steady state
space is non-empty, TA}? * converges to a finite projector, as
expected in Eq. (2).

While it is possible to further analyze T,g ' directly (see
Sec. VIB), it is instructive to consider the closely related layer
Hamiltonian of the replicated system,

= Y (1-1/") @)

Gates g€l

This Hamiltonian is frustration-free: its zero energy ground
state space is the joint zero energy ground state space of each
term — that is, the ground state space of H,, is the steady state
space of Tlg '. Technically, there are two advantages to shift-
ing our attention to the Hamiltonian H,, rather than Tg *. First,
while Hj, has all of the spatial structure of the gates in a cir-
cuit layer, it does not keep track of their ordering between
sublayers as in Fig. 1b, which simplifies its analysis. We do
not expect this to qualitatively matter to physical properties of
the low temperature limit, where the layers are iterated many
times; indeed, we find it does not. Second, it leads us to in-
terpret the steady states of the replicated system in terms of
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FIG. 2: The low energy spectrum of the replica model (a) without and (b) with number conservation. Dashes on the x-axis
mark the discrete set of momenta at finite size, and the red dots mark the corresponding excitation energies. Without number
conservation, the ground state spontaneously breaks the Sy x Sj symmetry down to a diagonal subgroup Si. The domain wall
excitations are gapped. With number conservation, the ground state additionally spontaneously breaks the U (1)* x U(1)*
symmetry down to a diagonal U (1)* subgroup. The resulting k gapless Goldstone modes having dynamical exponent z = 2,
owing to the frustration-freeness of the model. This leads to a finite-size gap A ~ L~2. (c) The spectral gap A sets the
timescale for convergence to an approximate k-design. The convergence time 7 is the depth required to reach an error, or

diamond norm difference, of £ (Sec. VII)

spontaneous symmetry breaking in the ground states of the
frustration-free Hamiltonian H, k-

Let us then turn to the symmetries of the replicated system.
As in all replica treatments, the replicated system has Sy, x S
replica (and *-replica) permutation symmetry. In the case of
unitary circuits without symmetries, it is well known that the
replicated system spontaneously breaks the Sy x Sj symme-
try down to a diagonal subgroup Sy [39]. More precisely, the
ground state space of Hy, is spanned by states labeled by per-
mutations o € Sj which bind the state on replica « to that on
x-replica o(«),

k
o) = Z <H Olia = ia(a)]>

i \a=1

i,i) = Z li,o(i)) (8

S[i=o(4)]

where i, (io) runs over basis states for the « replica (x-
replica). In the simplest case, when the dimension of the
Hilbert space that each gate acts on is larger than k, these
states are linearly independent and we obtain a ground state
space with dimension k!. As a discrete symmetry breaking
phase in a lattice system, the Hamiltonian Hy, has a spec-
tral gap A ~ O(LP) for large L; accordingly, T,g ¢ converges
exponentially with an order one timescale. The lowest lying
states above the gap are well-described by single domain wall
excitations, see Fig. 2a.

Returning to the case of a number-conserving circuit, each
replica (and *-replica) additionally carries its own conserved
charge associated to the replicated U(1) symmetry — the sys-
tem has a global U (1)* x U(1)* symmetry. This breaks spon-
taneously down to a diagonal subgroup U(1)*, which is in-
tertwined with the choice of replica permutation symmetry
breaking. Explicitly, the ground states of Hy, are spanned by
the symmetry-breaking vacua,

|@;0) = ¢! Za oo |g)

€))

where ® is a collection of £ phases, one to each replica.
Although the parameters ® vary continuously, they span a
ground state space of dimension k!M* where M is the num-
ber of global charge sectors in the system (again in the sim-
plest case for small enough k); indeed, a basis for these states
may be obtained by projecting the parent |®; o) states into the
global charge sectors (Sec. IV C).

As Hj spontaneously breaks a continuous symmetry, it
harbors k Goldstone modes associated with long-wavelength
fluctuations of the phases ®, see Fig. 2b. Such excitations can
be created with momentum ¢ above any symmetry breaking
vacuum using the modulated number operator,

Ao —iq-T s
ng = g e Ty,

x

(10)

where NS is the local number operator at qudit « in replica
a. The excitation energy of these modes provides a rigorous
upper bound on the spectral gap A of Hj. Indeed, A < #,
as expected for Goldstone modes in frustration-free systems,
independent of k, spatial dimension d, and local Hilbert space
structure.

The frustration free Hamiltonian Hj, has been previously
studied in two special cases in d = 1 [12, 40]. In Ref. [12],
the qudit on each site is composed of a charged qubit and a
neutral qudit with an infinitely large Hilbert space dimension.
Ref. [40] considers the case of qubits on each site. In both
cases, Hj, is a nearest neighbor Heisenberg model in each
replica. The nearest neighbor Heisenberg model is special be-
cause it has an enlarged SU(2) symmetry and is integrable in
one dimension. Indeed, Ref. [12] obtained the spectral gap
from the integrability literature. Our work shows that Hy, can
be derived for any local qudit structure in any dimension, and
in general, need not be integrable or have an enlarged symme-
try. It is however frustration-free and spontaneously breaks
the replicated U (1)-symmetry, which guarantees A < 1/L2.



Although we have sketched the arguments here for the as-
sociated Hamiltonian system, Eq. (7), the physics is the same
in the discrete time system defined by Eq. (6). Sec. VI B deals
with the mathematical tweaks required to analyze the discrete
time case.

III. DEFINITIONS AND NOTATION

We consider a system of V = L¢ qudits in d spatial dimen-
sions with linear dimension L. Under the U(1) symmetry,
each qudit’s local Hilbert space (') can be decomposed into
M@ number sectors,

MW 1

H) — @ fH(l).

We denote the local Hilbert space dimension of number sector

n as d<1) |7-[(1)\ For example, in a lattice model of single-
orbital spin-1/2 fermions, the local Hilbert space may have
0,1 or 2 particles and we write ") = (1,2, 1). In a spin-1,/2
system with S* conservation, d") = (1, 1).

The local dimensions d*) fully specify the decomposition
of the multi-qudit Hilbert space. For example, a pair of qudits
has joint Hilbert space #(?), which can be similarly decom-
posed into number sectors

QY

M 1
HP — ) gy = Z 7.[ (12)
n=0
d? = Z dLdlL). (13)
ni+na2=n
The Hilbert space of the V' qudits is denoted by H = HV),

with D = |H| (we omit sub/superscripts to denote properties
of a complete set of qudits). # and D may in turn be broken
into global number sectors as H = ) Hpand D =) d,
with d,, = [H,].

We take the standard basis |¢) to be compatible with the
decomposition of H into number sectors and qudits. That is,
we write the global number operator

N:Z’fbw

where = runs over spatial sites. Then, the site-resolved num-
ber operators are diagonal

(14)

oo li) = i) |i) (15)

We consider circuits with brick-layer architectures as in
Fig. 1b. Each of the ¢ layers is obtained by stacking a fi-
nite number of sub-layers of gates acting on all even bonds
along each spatial dimension, and odd bonds along each spa-
tial dimension. The ordering of the sub-layers is not impor-
tant. Thus, for example, in d = 1, each layer is composed of

two sub-layers (Fig. 1b), while in d = 2, there are four sub-
layers and the resulting interaction graph is that of a square
lattice. The total number of layers is denoted by ¢. Although
the geometry of each layer is repeated, the particular gates
Uy are not — they are each independently sampled from the
uniform measure on the group of number-conserving 2-body
gates.
Table I provides a comprehensive symbol glossary.

IV. MOMENTS OF GLOBAL UNITARY GROUPS

We briefly review key properties of the Haar ensemble on
compact unitary (matrix) groups G acting on a Hilbert space
‘H. We begin with features shared by all compact unitary
groups and then turn to the cases of the general unitary group
U(H) and the number-conserving unitary group U(H|N).
The results on U (H\N ) apply directly to the individual gates
in the local circuit model.

A. General Properties

Suppose G is a compact group of unitaries acting on the
Hilbert space ‘H with dimension D. This could be the general
unitary group U (#) or some compact subgroup of it, such as
U(#|N). The Haar measure on G is the unique normalized
measure which is invariant under both left- and right- shifts,
as well as inversion [41]. That is, for arbitrary functions f on
G and elements U,V € G,

/de(U) :/de(VU) = /de(UV) :/de(Ufl)

(16)
These invariance properties completely characterize the mea-
sure.

a. The Moment Operator—
in the moment operator

yo :/dU (e & )*F)

Moments of U are encoded

a7

which acts on the (k4 k)-fold replicated Hilbert space H®* ®
(H)*".

When the number of starred and unstarred replicas are un-
equal, & # k, the moment operator is called unbalanced. In
many cases, the unbalanced moment operators are identically
zero. Thus, we largely focus on the balanced moment opera-
tors, TkG = TkG i and only discuss unbalanced moments when
we need to show that they vanish (see Sec. IV B).

The matrix elements of the moment operator encode the
D* moments of order (k, k) of the matrix elements of U and
U*. For arbitrary compact unitary groups G, T kG is a Hermi-
tian projector — a fact that follows directly from the unitar-
ity of G and the invariance properties in Eq. (16). Explicitly,



Name | Symbol | Notes
Number of qudits V=L

Number of global number sectors M

Spatial dimension d

Dimension of nth global number sector dn

Number of qudits acted on by a gate b

Replica index o acl---k
Qudit index T rel---V
Number sector index n neld---M—1
Number-conserving unitary group U(H|N) Eq. (28)
Unitaries realizable from arbitrary depth b-body circuits | Up(H|N) Sec. V
Moment operator for random unitary U T,g Eq. (1)
Moment operator for Haar measure on group G TkG Eq. (17)
Moment operator for layer/transfer matrix T,ij ! Eq. (6)
Hamiltonian of associated replica model H, Eq. (53)
Gap of replica model A Eq. @)
Time to converge to approximate design T Sec. VII
Standard basis of Hilbert space H |4) Sec. 111
Standard basis of replica space (H ® H*)®* ‘i, i) Sec. 111
Permutation state |o) Eq. (23)
Number-permutation state |n; o) Eq. (32)
Phase-permutation state |®; o) Eq. (9)

TABLE I: Symbol glossary. Vectors (eg. ¢) have components across k replicas (i,). Bar indicates *-replicas.

shift-invariance implies

(T,S)Q = /dUdV UV @ U V*)EF

ST
_ 0.
while inversion-invariance gives
ot i
(T,f) - (/ dU(U ® U*)®k>
19)

= /dU(U’l QU
=17

Eq. (18) and (19) together imply TE is a Hermitian projector,
with eigenvalues of +1 and 0.

As a projector, T,f is completely characterized by its +1
eigenspace. Below, we construct these spaces explicitly for
the Haar measure on several unitary groups. First, we review
a few useful general relationships.

b. Restricted Measures and Subgroups—  Suppose uni-
tary V' is sampled according to an arbitrary non-Haar measure
on GG. The moment operator for V, Tkv , need not be a projec-
tor. Nonetheless, shift-invariance of the Haar measure implies
that TV TE = TGTY = TC. Less abstractly, the +1 eigen-
states of the Haar moment projector are also +1 eigenstates
of T, ,X .

In particular, if V' is sampled from the Haar measure on a
compact subgroup H C G, T,y projects onto a superspace

of T,f . This is useful for constructing the +1 eigenspace
of restricted unitary groups like U(#|N), as we will see in
Sec. IV C.

¢. Replica Symmetry— From its definition, the moment
operator TkG is clearly symmetric under the S X Sy separate
permutations of replicas and *-replicas. Indeed, replica per-
mutation symmetry holds for any ensemble on G. To make
this explicit and set some notation, let us introduce an or-
thonormal basis for the k replicas labeled by ¢ = (iy - - - ig),
and similarly for the k *-replicas ¢ = (i - - - i}, ), where each
ioyia = 1,...D. TS acts on states |i,i) € (H @ H*)®F
Consider permutations 0,7 € Sj and associated operator
Ry = Y47|0(3),7(3)) (i,4|. The action on T)C can be
understood,

(33| B T Rio.r [3:2)
N / v H Uiaayiatan H inﬁﬂm
o B
Rearranging the matrix elements in the integrand has no effect
on the ensemble average, and the moment operator is invariant
under replica and *-replica permutations.

d. Associated Hamiltonian— Replica symmetry implies
that the +1 eigenspace must be invariant under Sy x Sy per-
mutations, though the action inside that space may be non-
trivial. Indeed, a useful perspective is provided by considering

the replica-symmetric Hamiltonian whose ground state space
is the +1 eigenspace of T,

(20)

H,=1-TF 1)



If the subgroup S C Sy x Sy, leaves a particular ground state
of Hj, invariant, then we can say that the Sy x Sj symmetry
is spontaneously broken down to S.

e. Spatial permutation symmetry— Suppose the Hilbert
space H is a tensor product of single qudit Hilbert spaces,
so that the moment operator has 2kV incoming and outgo-
1ng qudit ‘legs’, V per replica and -replica. Let the operator
L =< [©2k apply the same permutation = € Sy to the spatial
indices in each replica. Left- and right- shift invariance of the
Haar measure implies that the moment operator has left- and
right- leg permutation symmetry,

Gl =L, T =TF. (22)

B. General Unitary Group U(H)

Let us now focus on the moments T,g ) for the general
unitary group U (H) without number conservation. As a con-
sequence of Schur-Weyl duality [23] (see App. A), Tlg (7)
projects onto the space spanned by the k! permutation states,

Z(Hl5 —@a<a> "7'>=Zli7o(i)> (23)

S[i=0(4)]

which bind replicas to x-replicas. Accordingly, Tlg *) has an
operator expansion of the form

> VT o) (24)

o, TESK

U(’H)

Pictorially (for k = 3),

_ 1
i = > v ] . @5)
o, TESk I:

The coefficients V7, better known as the Weingarten func-
tions [42], are determined by the overlaps of the states |o) onto

which T v) projects. These are neither orthogonal nor nor-
malized — indeed, they are not linearly independent for k& > D.
The formulae for V7 are presented in Appendix B for any
k for completeness, but will not be needed in the main text.
Furthermore, the states |o) are linearly independent only if
k < D. If k is too large we must instead draw from a linearly
independent set of states labeled by o in the set S kSD C Sg.
The details of this set are left to Appendix B. Rather than clut-
ter the already burdened notation, we leave the set from which
permutations are drawn implicit.

The states |o) transform non-trivially under the S, X Sk
replica symmetry:

Ry ) = lo ) (26)

6

That is, the space spanned by {|o)} is invariant under replica
symmetry Sy X Sj (as it had to be), but any given state
|o) is invariant only under a subgroup isomorphic to Si. In
the language of the ground state space of the Hamiltonian
Hy=1- T () , we say that the Sj x S}, replica symmetry
is spontaneously broken down to the diagonal subgroup Sj.
The unbalanced moment operators are identically zero,
a simple consequence of shift invariance. Consider left-
multiplying by the unitary V = e,
0D (k=k)pUH) _ pUH) (27)

®k (1/*\@kU(H) _
VEEVT) Ty = bk = Ak

As the equality should hold for any 6, lg )= 0ifk # k.

C. Number-Conserving Unitary Group U (#|N)

With number conservation, the unitary group on the Hilbert
space H is restricted to those unitaries which commute with
the global number operator,

UHIN) ={U € U(H)|[U.N] = 0} (28)

Any unitary in U(#|N) may be block decomposed

M-1
U= U, (29)

n=0

where U,, acts unitarily on H,, and is zero for all other sec-
tors. The group U(#|N) is a compact subgroup of U(H),
isomorphic to the direct product of unitary groups on the n-
subspaces.

The U(”H|J\7 ) Haar ensemble is the unique shift-invariant
ensemble on the number-conserving unitary group. In partic-
ular, if U = @, U, is sampled from the U(#|N) Haar en-
semble, then each U, is independently sampled from the Haar
ensemble on U (H,,), with H,, the Hilbert space of states with
total number n. This allows us to bootstrap results in Sec. IV B
to the number-conserving case.

Using Eq. (29), the k-th moment operator is:

A k
FOON) _ /dU@ (@ Un, ® U;Q> (30)
n,n \a=1

Here « labels the replicas and n, n labels the number sec-

tor for the replicas and x-replicas. Once again, shift- and

inversion-invariance of the Haar measure imply that TU(H|

Rk

acts as a Hermitian projector on (H ® H*)®". In addition

to Si x Sy replica symmetry, TU( M) is invariant under 2k

replicated number operators,
VN N =0 [V N =0, 31

which generate a U(1)* x U(1)* symmetry group.



Let us explicitly construct a set of states which span the
k’th moment space for U(H|N). We begin with the par-
ent permutation states |o) of Eq. (23); as U(#|N) is a sub-
group of U(H), these states are automatically +1 eigenstates
of the number-conserving moment operator, Eq. (30). The
number symmetry, Eq. (31), implies that we can act on |o)

with any operator constructed from N, and N and obtain
another +1 eigenstate. In particular, the U(1)* phase states,

|®;0) = ¢! 2a P Na |o), are all +1 eigenstates of TU<H|N)
We note that the permutation states are invariant under the k

generators N, — Ng(a), so that there are only k phases avail-
able to parameterize the moment space.

Since they are continuously parameterized, the phase states
are clearly linearly dependent. An alternative, discrete basis
may be obtained by projecting |o) onto the number sectors

n = (ny,- - ,ny) of each replica,
In;0) = 1y [o)
=2 (H 3[No(ia) = m]) i,0(8)  (32)

§[n(3)=n]

It is straightforward to check that, (i) states in Eq. (32) with
different number labels are orthogonal to one another, (ii)
there are M*k! such states, (iii) the states are linearly inde-
pendent if £ < d,, for all n, and span the +1 eigenspace of
Tg (HlN), and (iv) a linearly independent and spanning sub-
set can be chosen if £ > d,, for some n. See Appendix C.
We thus obtain a Weingarten like representation of the k-th

moment operator for U (H|N)

ZZ|TLO’V€TTLT| (33)

n o, T

U(’HIN)

As in the non-conserving case in Sec. IV B, the coefficients
VT follow from the inverse of a suitably restricted overlap
matrix for any value of k. Explicit formulae follow from a
straightforward generalization of Appendix B.

We note that the states |®; o) transform non-trivially un-
der the U(1)* x U(1)* number symmetry and the S x Sy
replica symmetry. In the language of the ground state space
of the Hamiltonian f[k =1- T,ij (HIN), we say that the
U(1)¥ x U(1)* number symmetry is spontaneously broken
down to the diagonal subgroup U(1)* which is intertwined
with the diagonal S, chosen by the Si x S), replica symmetry
breaking.

The unbalanced moment operators, number sector by num-
ber sector, are identically zero following the same argument
as in Sec. IV B.

V.  MOMENTS OF 5-BODY CIRCUIT ENSEMBLES

We now turn our attention to the group of unitaries gener-
ated by b-body circuits — that is, circuits of arbitrary depth

composed of unitary gates which act on at most b qudits.
Without number conservation, this group is simply the full
unitary group, Up(H) = U(H) [43]. As noted in Eq. (2),
this implies that the moment operators of brick-layer random
circuits converge to the moment operators of the full unitary
group.

It came as a surprise when Marvian [37] showed that
number-conserving b-body circuits fail to generate the full
group of number-conserving unitaries, U(H|N). Rather,
b-body circuits generate a proper subgroup U,(H|N) C
U(H|N). However, since the codimension of Uy(H|N) is
very small (linear in L) compared to the full dimension of
U(H|N) (exponential in L%), one might expect that the mo-
ment operators are distinguishable only for rather high-order
moments. Indeed, we argue here that this is the case: in the
thermodynamic limit L — oo, all finite moments of the b-
body circuit ensemble converge to those of the Haar measure
on U(H|N). More precisely, the moment index & must ex-
ceed a critical value k. > L% to distinguish between the Haar
measure on U (#|N) and the Haar measure on Uy (H|N).

Our argument proceeds in several steps. First, in Sec. V A,
we show that the moment operators, Tg (HIN) and T,? b(HIN)

can be factored into the product of a projector on the space

SU(?—L\N)

of U(1) charges and the moment operator, 7}, for

a related group of special unitary matrices SU (H\N ) =
1Y SU(H,,). UGHIN) 4ng

T,g PN differ only in the first factor, see Eq. (40). In
Sec. V B, we analyze this factor and obtain linear constraints,
Eq. (45), on the number sectors in which the difference can

be nonzero. In Sec. VC, we turn to the second factor,
TSU(H\N)
k

This factorization reveals that T

, which provides further constraints on the number
sectors in which the difference is non-zero, Eq. (48). Finally,
in Sec. V D, we combine these constraints to obtain k. > L4

A. Decomposition of Moment Operators

Consider a number-conserving unitary U € U(H|N). It
may be block diagonalized,

U=e“ U, (34)

where det ﬁn = 1. This factorization is not unique as one
may shift 8,, — 6, + 27/d,, and simultaneously multiply U,,
by a compensating phase. Nonetheless, the Haar measure on

U(H|N) factorizes uniformly,

/dU /( —dUn> =1 (35)

From these factorizations,



Tg(H\N)

n [e%

{na,na}

_ / du <@ 0, © @ e U
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@ /<H§> exp{zZ(@na

-
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In the final step, we have exploited that both P and Tks UCHIN)

are block diagonal in the M?* number blocks labeled by

n,n. Indeed, both P and T:U(Hlm are moment operators
in the sense of Sec. IV A for Haar measures on U(1)M and
SU(H|N), respectively.

Let us now derive an analogous factorization to Eq. (36)
for the b-body unitary circuits, U,(H|N). As demonstrated
in Ref. 37, the structure of b-body unitary circuits imposes a
set of linear constraints among the phases {6,,} in (34). We
denote by {¢,} the set of unconstrained phases which param-
eterize the (b+ 1)-dimensional subtorus of U (1)™ accessible

by b-body circuits. The moment operator T,g v(HIN) can then
be written as
Téjb(ﬂl]\?) _ prSU(H|N) (37)
where
X W 0
Pb: @ / (H §> exp{z'Z(@na —ana)}
{na,ia} 4 «
(38)
In this representation, the 6,, are given by,
On = Gty (39)
[

where the integer-valued matrix G encodes the linear embed-
ding of the ¢-torus into the -torus. Explicit forms for G are
available in Ref. [37], but are unnecessary for our purposes:
what is essential is that P, is a projector. This follows either
by explicit evaluation of the Fourier representation Eq. (38) or
from regarding P, as a moment operator of the Haar measure
on the ¢-torus U (1)°*1.

Thus, the difference of the moment operators can be writ-
ten,

FUHIN) _ T}g(%lm _ (Pb _ p) T,f””“'m (40)

As is clear from the definitions in Eqs. (36), (38), the factor,
P, — P, only depends on the number sector {n,, 7.} and,
as we show in Sec. V B, vanishes except in special circum-
stances. In those circumstances, we turn to the second factor,
T: U(HlN), to determine the minimal £ at which the moment
operators are distinguishable, Sec. V C.

@),

(36)

B. First Factor: Number Sector Projectors

The projectors, P, and P, select number blocks in the repli-
cated space. Without the b-body restriction, the projector P
simply projects onto number-balanced blocks. To make this
more precise, define the counting operators,

o= 0Na=n]  H#.= 6Na=n] @D

which determine the number of replicas (x-replicas) in the
number sector n. As these operators are diagonal in num-
ber and in our choice of standard basis, Eq. (15), we will also
abuse notation slightly by writing #,,(n) and #, () for the

appropriate diagonal matrix elements of the operator #,, (and

similarly for #,,). The Fourier integral defining P, Eq. (36),
imposes that these counts cancel,

P =[] ol#n = #a] (42)

as claimed. A

To understand the projector P, we make use of the shift
invariance of the Haar measure on U (1)°+1. Consider the ef-
fect of a global 0-body phase shift v, which acts on operators
U € U(H|N) as U — ¢"U. This transformation acts en-
tirely on the phase part of the factorization, Eq. (34), which
leads matrix elements of P, to acquire non-trivial phases,

B,

<i, 5| b, |z,;> — exp

x (1,3

i,1) (43)

Similarly, we can implement 1-body phase shifts U =
Hx_a €Phs.0 under which matrix elements transform as

(i3

Pb "L,i> — exp llﬂZn (#n(l) - #n(z))]

X <’I,,;| P},

i,i) (44)

However, shift invariance of the Haar measure guarantees that
both global phase shifts and 1-body phase shifts leave P, un-
changed (for b > 1); equations (43) and (44) are therefore



satisfied for arbitrary -, 5 only if

Z (#n - #n) =0
. 45)

Zn (#n — #n) =0

n

The number balanced sectors, or the +1 eigenspace of P, pro-
vide a trivial solution of these constraints, thus P, projects

onto a superspace of the image of P, as expected.

It follows that the moment operators, TkU »(FIN)

TU(H|N)

and

, are indistinguishable within number-balanced
blocks of the replicated space. Thus, in order to find differ-
ences, we need to consider nontrivial solutions to the con-
straints Eq. (45). We return to these constraints to construct a
bound on the critical moment index, k., in Sec. V D.

C. Second Factor: Moments of the Special Unitary Group

FSUGHIN) for the Haar mea-

sure on the special unitary group SU(H|N) = Hﬁ/f SU(Hy).
The operator is block-diagonal with M?2¥ blocks, labeled by
the replicated numbers, nn, and n. Here, we show that if
the block (7 SU(HlN))nﬁ is non-zero, then #,(n) — #,(7n)
is an integer multiple of the dimension d,, for every n =
M —1. )
Consider the unitary W € SU(H|N)

Consider the moment operator 1

2 A
W = exp (i—”é[N - n]) (46)
dn
which acts as the identity in all number sectors except n, in

which it applies a global phase ¢?>7/4~  Right shift invariance
of the Haar measure implies,

exp ZZ—: (#n( ) #n( ))] SU(H‘N)| >
= 15 ).

(47)

If T:U(H‘N) |7,7) is nonzero with j, j in the m, A number
sector, then we must have that the phase in Eq. (47) is 1.
Therefore,

for some integer c,,.

D. A Boundon k.

According to Sec. VB, in order to distinguish TUb(HIN)

from TU(HlN) we must look in an unbalanced number block
where #n # 4, for some n; this implies that the con-
straint Eq. (45) holds non-trivially. Such blocks vanish in the

common factor TSU(H| V) unless they further satisfy Eq. (48).

Combining these two conditions, we find the linear system

Z dpcn, =0
n
Z ndncn =0
n

where c,, are the integers in Eq. (48).

Any nontrivial vector of integers ¢ = (cq - - - ¢pr—1) which
satisfy the conditions (49) must contain a minimum of three
nonzero entries. With only two, the restricted coefficient ma-
trix always has a full rank and only admits zero solutions.
Translating back to n, 1, there must be at least three unbal-
anced number sectors.

Due to Eq. (48), any unbalanced number sector n has
|#n(n) — #,(R)| = |cndn| > dp. This requires k& > d,.

Accordmgly, the minimum value of k to distinguish T}, pUNHIN)

from ng (HIN grows at least as quickly as the dimension of
the third-smallest number sector. A worst-case estimate for
the scaling of different number sectors is provided by qubit
systems with .S, conservation, defined by single-particle di-
mensions d') = (1,1). The two smallest number sectors
correspond to polarized states, dy = dy = 1. The third small-
est sector, which is degenerate with d; = dy_; = V, grows
extensively, corresponding to the number of choices of qubit
flips in the fully polarized states. We therefore conclude that

(49)

ke>V (50)

in qubit systems.
Any other qudit structure, d*), leads to at least as large a
lower bound on k., typically exponentially large in V.

VI. GAP ANALYSIS OF CIRCUIT MOMENT OPERATORS

Now we turn to an analysis of the gap of the quantum statis-
tical mechanical system defined by replica averaging the ran-
dom circuits of depth ¢, see Fig. 1b. This gap controls the
convergence of the finite depth moments, 1Y, to the global

Haar moments, TU(HlN). Throughout this section, we as-

sume k < k. and neglect the distinction between U (#|N)
and Uy (H|N).

We analyze two closely related statistical models in d + 1
dimensions. The primary model of interest gives the imagi-
nary time representation of the moment operator, with parti-
tion function,

z® = /dUt p(U)| Tr U, 28 = Tr {Tﬂ (51)

The associated transfer matrix,

A /\U(
Y = H 7.’ (52)

Gates g€l

propagates the system between layers in imaginary time. This
model spontaneously breaks the U(1)¥ x U(1)* symmetry



down to U(1)* in a frustration-free manner. In Sec. VIB,
we bound the gap of the transfer matrix due to the associated
Goldstone modes.

Before turning to the circuit model, in Sec. VIA we ana-
lyze the closely related, but technically simpler, Hamiltonian
system

b= Y (-1 (53)

Gates g€l

where the sum runs over all gates present in a layer of the
replicated circuit. The ground state space of H,, is constructed
to be identical to the +1 eigenspace of the layer transfer ma-
trix Tlg '. Again, the Goldstone modes control the Hamiltonian
gap, which in turn controls the large imaginary time proper-
ties.

Both models have gaps scaling as 1/L?. This is the result
we use in Sec. VII to bound the convergence of the circuit to
an e-approximate k-design.

A. Variational Bound on Gap of H,

As discussed in Sec. I, the ground states of Hj, are spanned
by the phase states,

|®;0) = |Py,..., P 0) — 120 Pala |o) (54)

These states transform non-trivially under U(1) rotations as-
sociated with the conserved charges Na, and N,

ei(ON“Jraﬁ"(a)) |‘§;O‘> = ‘CI)l, e, Py +H 0+ é, . 7<Dk§0'>

(55)

Thus, of the original 2k symmetries, k are unbroken.

Each broken symmetry yields a Goldstone mode. To bound
the gap, A, we consider long-wavelength modulations of the
phase,

%0 €T W) = (1 4i0A2 + ...) | W)

= |¥) +i0ga) + ... (56)

where 2 = Y7 """ and |¥) is an arbitrary ground state
of H, and fis a perturbative parameter. The finite momentum
states |q,) are necessarily orthogonal to the ground states of
H;,, which have leg-permutation symmetry (see Eq. (22)) and

therefore carry zero momentum. The variational energy

A = <QQ|I:Ik |Qa>.
e <QQ|QO¢>

provides an upper bound on the true gap A. Note that the
replica index, «, is just a spectator and is omitted going for-
ward.

We now evaluate the numerator of (57) using symmetries

Of]f[k,

(57)

(al Helg) = D "= )y (58)

z,Y,9
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Here and henceforth, () implicitly denotes an average with
respect to the ground state |¥). We further specialize to the
case of 2-body gates in a nearest neighbor square lattice for
simplicity, although the final result can be readily generalized.
Each gate operator T commutes with the total number op-
erator for sites in the support of that gate. For example, if gate
g actson z and ¥,

U
[T}

Tz 4+ Tiy] = 0. (59
Further, leg permutation symmetry, Eq. (22), and Tg W) =
|¥) implies an identity for number operators connected by a
gate,

Uy 1 . .

T, iy V) = 5(773: + ) |¥) . (60)
Applying (60) to each term in (58), we remove all depen-

dence on the moment operator and replica count k,

~U.

~2 A A
(T ) = (T} () + (Putty)

AwT Zy A _

Correlation functions of number operators are strongly con-
strained by invariance under translations and permutations:

w) (fofg)  (62)

where in the first equality we have applied translation invari-
ance, and in the second, permutation invariance. Applying
this result to Eq. (61), we find

(61)

<ﬁxﬁy> = <ﬁ0ﬁy—x> = 5:C,y<ﬁg> + (1 — 0z

(ql Hy |lq) = L ((Rg) — (fofn) (d Zcowm)- (63)

We now turn our attention to the denominator of (57). Us-
ing the structure of correlation fuctions in Eq. (62), we find

(qlg) = LURZ) + L fghy) (64,00 — 1). (64)

Putting (63) and (64) together we find a variational gap,
Ay =d - Z €OS - (65)
i

Note that A, is independent of our initial choice of |¥) as
well as the qudit structure. One exception, however, are fully
polarized states, which are eigenstates of the number operator
on each site and have no number fluctuations; in these sectors,
one cannot construct a state with nonzero momentum and the
variational analysis breaks down. However, it is clear that in
such cases that conservation laws are irrelevant, and the results
of previous studies[30, 34] predict an O(1) gap.

All finite momentum states are orthogonal to the ground
state manifold and the variational gap A, provides an upper
bound for A. Minimization of A, with respect to g in a finite
system provides the bound on the gap in the square lattice
system

A<l (66)



Careful readers may have recognized that Eq. (65) is the
spatial Fourier transform of the Laplace operator on the square
lattice. This is no accident; on general lattices with higher
body interactions, the charge undergoes a continuous time
random walk on the spatial lattice. Consider the imaginary
time correlation function (for ¢ > 0),

Coy(t) = (A (t)f2y (0)) ©7)
where

N (t) = e Hi,etH (68)
The correlator satisfies the equation of motion,

d
53 Cov(t) = (H, na()lny) = (Ra(O)Hty)  (69)
where in the second equality we have used the frustration free
condition. That is, the right hand side is precisely the numer-
ator of Eq. (57). Using number conservation and leg permuta-
tion symmetries of the gates it is straightforward to show that
[H, 7] is a linear combination of 7, operators when evalu-
ated within the ground space. This leads Eq. (69) to close,

d
Ecxy (t) = - ; Fm’,xcﬂc’y(t) (70)

where I';, is a transition rate matrix which satisfies
> I'ar o = 0in order to conserve number. That is, we have
obtained a continuous time random walk. For any particular
choice of gate geometry, it is straightforward to compute I"
explicitly.

For a general short-ranged, translation-invariant Hamilto-
nian, we can Fourier transform I" and find a long-wavelength
gap which closes as ¢2. Thus, we obtain

A<C

< 73 (71)

where C' is a geometry dependent factor.

B. Variational Gap on Tlf] ‘

We now consider the layer transfer matrix, T,g ', governing
the primary circuit model. There are two technical complica-
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tions compared to the Hamiltonian case. First, as Tlg ' is not
Hermitian, it is not guaranteed to have real eigenvalues. How-
ever, it is frustration-free and has a degenerate +1 eigenspace
identical to the ground state space of the Hamiltonian. The
relevant gap is thus between the 41 eigenvalues and the real
part of the next-largest eigenvalue. Second, the circuit T,g !
has structure in time corresponding to the sequence in which
gates are applied. This complicates the mathematical treat-
ment slightly, but does not change the scaling of the Goldstone
gap with L.

Recall that the moment operator for depth ¢ circuits can be
broken into ¢ layers composed of individual gates obtained by
Haar-averaging,

. N

7Y = (T,ﬁ’l) . (72)
We write the second-largest-magnitude eigenvalue of Tlg " as
A = e 2, with Re(A) > 0. To bound A, we again con-
sider the Goldstone excitations, |¢) = 7, |¥). The reduction

in norm of |g) under the action of the transfer matrix sets a
bound,

175" o) |1

< le™28], 73
@g =l @)

The denominator is familiar — see Eq. (64).

The numerator of Eq. (73) can be mapped onto a discrete
time random walk reminiscent of the continuous time walk
obtained in the Hamiltonian case. Every step of the walk
spreads the operators 7, equally to the outgoing legs of each
gate, so that the moves of the conserved charge are determined
by the geometry of the circuit. This process is encoded in a
doubly-stochastic matrix R,

T, W) =3 Ryainy |9). (74)
Y

Following similar arguments used to simplify the Hamiltonian
bound, Eq. (73) can be rewritten as

1 .
7a D RpaRaye 1Y) < e8], (75)

Tya

It is useful to define R,, = Y, RyqRay, Which is itself
a symmetric, doubly-stochastic matrix corresponding to the
walk on the circuit defined by (Tg I)TT,? '. For small ¢ and
sufficiently short-ranged R,

1 L 1 .
= ZRwezq(., Y) — 7d ZRW cos (q(z —y))

Ty Ty

1 -
~1-¢’ (m > (- y>2R1y> +0(q") (76)
Ty

e}



where C'is a geometry dependent constant. Plugging this into
Eq. (75) and selecting the longest wavelength available, leads
to

Re(A) < ¢

<72 (77)

for another constant C'. In Appendix D, we explicitly compute
the bound including constants for the case of 2-body brick-

layer circuits in d = 1 and obtain a bound ‘LLL; > Re(A).

VII. CONVERGENCE TIME TO APPROXIMATE
UNITARY £-DESIGNS

The results of Sec. VI show that diffusive processes govern

the relaxation of 7Vt to 7 "™ with a rate A ~ 1/L2. In
this section, we convert this into a bound on the convergence
time, 7, at which T,g * becomes approximately indistinguish-

able from a unitary k-design[33],

T — T ™V, < e (78)

for some error tolerance €, where || - ||, denotes the diamond
norm [44]. In general, Tf t is not Hermitian and its left and
right eigenspaces may differ. However, it still admits an eigen-
decomposition

T =10 L N et (79)
i

where C; are non-Hermitian projectors and the “energies”
A; have positive real part. In this expansion, the Hermitian
T,g (HIN) projects onto the ground space as a consequence of
the frustration-freeness of the model.

The diamond norm is bounded by the simpler 2-norm [30,

45],
|17 — T M| < D37 Cre 2|13

<D* N ||Cil[Ze A (80)
i

This right hand side can be interpreted as a partition function
of a system with degeneracies given by ||C;||2 and energies
A,

Naively, the convergence is controlled by the lowest-energy
term. This is bounded by single excitation of the Goldstone
modes at the smallest allowed momentum ¢ ~ 27/L. For
specificity, we work in the remainder of this section on the d-
dimensional square lattice with periodic boundary conditions,
although these results are readily generalized to other lattices
at the expense of a few O(1) constants. On the square lattice,
there are 2kd degenerate states with momentum 27/ L and as-
sociated gap A, = ¢*. Plugging this estimate into (78), we
find

D 2kd x e 27(F)" < &2, @81)
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To interpret this result, it is useful to make the dependence
on system size explicit by writing D = QLd, where (Q =
don d is the local Hilbert space dimension. The bound on
the convergence time from Eq. (81) is then

d+2 2
T> kL — In(Q) + R ]n<2kd). (82)

~ 4r? 8?2 g2

The cautious reader may worry that the large low energy
density of states for the bosonic Goldstone modes might lead
to parametric corrections increasing the right hand side of
Eq. (82). This is not the case, as might be expected because
T ~ L2 > 1/A. A slightly more detailed estimate of the
statistical mechanics of k independently populated Goldstone
modes (see App. E) confirms this result.

It is instructive to compare this result with that of Ref. 30,
which computed the convergence time of random unitary cir-
cuits without a conservation law. There it was found that 7
scales as O(Lk) for a system of L qudits in d = 1 which
should be contrasted with O(L3k) in the presence of diffusive
modes.

VIII. DISCUSSION

We have shown that local random circuits with number con-
servation form an approximate k-design on the full group of
number-conserving unitaries in depth 7 > kL9t2. We ex-
pect the bound on 7 is tight as it simply reflects the diffusive
bottleneck of charge transport in the random circuit. This im-
mediately points to a geometric approach to speed up the con-
vergence given a fixed large number of qudits, V' — embed the
circuit in higher spatial dimension, where 7 > kV1+2/d_If
long-range gates are available, then a random circuit on an ex-
pander graph corresponds to the d — oo limit, where 7 2> kV
up to logarithmic corrections.

One well-known application of unitary k-designs is to mea-
suring the Rényi entropy of quantum states [16—18, 46]. The
entropy can be computed from the statistics of measurements
after evolution by Haar random unitaries. True Haar unitaries
are challenging to apply experimentally, but may be approx-
imated by sufficiently deep random local circuits. Our re-
sults indicate that number conservation, as arises for example
in systems of ultracold atoms/molecules, necessitates signifi-
cantly longer evolution times (~ L%t2) as compared to what
has been discussed in the literature to date.

Technically, our results rely on the indistinguishability of
moments of the Haar measure on the full group of number-
conserving unitaries, U(H|N), and the group generated by
b-body circuits, Uy(H|N). We showed that moments up to
k. = L% are identical. It is clear that k. is much larger than
L4 for b > 2 or for qudits with more than one state in the
maximal or minimal local number sector; either of these con-
ditions leads to super-extensive k.. Future work could tighten
these bounds.

The perspective afforded by spontaneous symmetry break-
ing in the replica model suggests several immediate gener-
alizations. First, random circuits obeying discrete symmetry



groups lead to replica models with more intricate but nonethe-
less gapped discrete symmetry breaking phases. These ought
to converge as k-designs on an O(L®) time scale, as in
the case without symmetry. Circuits obeying non-Abelian
continuous symmetry groups, such as G = SU(2), would
map to spontaneous symmetry breaking phases with z = 2
frustration-free Goldstone modes. Accordingly, we expect
diffusion of non-Abelian charge remains the bottleneck. In
this case, however, the global group generated by b-body cir-
cuits is a more complicated proper subgroup of U(#|G) than
in the U(1) case [37] and it remains an open question to sort
out what order moments distinguish them [47].
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Appendix A: Moment Operator Decomposition From
Schur-Weyl Duality

In this appendix, we show that the moment operator expan-
sion

7709 =" v o) (7] (A1)

follows from a well-known expansion of quantum channels
in permutation operators. We begin by briefly reviewing that
expansion, which is derived in more detail in Ref. [23].

Consider a Hilbert space #, and let A be a linear operator
on the replicated Hilbert space H®*. Let ®;(A) denote the
k-fold twirl of fl, defined as

By (A) = / du (U®)" Auek (A2)

Due to shift invariance of the Haar measure, (I)k(fi) com-
mutes with all replicated unitary operators of the form V' ®*,
This implies, as a consequence of Schur-Weyl duality, that
<I>k(/1) can be expanded in terms of permutation operators

& = lo(0)) il
By(A) =S VT {%A} & (A3)
Diagramatically (taking & = 3 for simplicity),
" 0
w(4) = [ av | —mHi (Ad
—H

T

(AS5)

= Z ver G- | Tr
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With this result in hand, the claimed expansion for moment
operators (A1) follows from index rearrangements, which we
carry out diagramatically. Instead of thinking of the chan-

nel ®;, acting on an operator A = i Aiild) (2], consider

the moment operator T,ﬁj () acting on the corresponding state
_ 1 -\ |7 w\k
[4) =5 Az li) i) € HOHY)",

TV | 4) = / dU A) |. (A6)

fRlLLL.

The state T,g (%) |A) is related to the operator ®;(A) by
reindexing,

(i, 3| T A) = (3| Di(A) [4) . (A7)

Diagrammatically, this reindexing manifests as a simple ma-
nipulation of the incoming and outgoing indices,

/dU <—>/dU

il LY,

(A8)

Applying the operator expansion of Eq. (A3) to ®(A)
yields,

(A9)

Reorganizing the indices in a manner analogous to Eq. (A7)
leads to the desired result Eq. (A1),

7004 =S v | o
=y v Ecr T (A10)
T,g(m = Z ver EO’ TE = Z VT o) (7].

(Al1)



Appendix B: Generalized Weingarten Functions and the
Moment Operator for U (H)

In this appendix, we present the explicit formulae for the
matrix elements V°7 of the moment operator

T/ =3 v o) (el (B1)

in the subspace spanned by the permutation states |o). For
k < D, the matrix elements VV°7 are the well-known Wein-
garten functions. For £ > D, the permutation states are lin-
early dependent, and the expansion is not unique. This regime
is often ignored in the physics literature.

The matrix elements V°7 are determined by the overlaps

of the permutation states |o) onto which TA,? () projects. The

overlap matrix D™ = (r|o) counts cycles in the relative per-

mutation o7 1,

D7 = 3 (el ) (i)
S 3li = m(@)]afi = o (i)
_ [ » (B2)

c€Cycles(or—1)

Pictorially,

L]

— D|Cycles(m'71)|.

Formally, the function Cycles(o) gives the cycle decomposi-
tion of a permutation o € Sy. Each cycle cis an ordered list of
indices ¢ = (c1...cq()) with ¢; € {1...k}. Graphically, each
¢ € Cycles(o) corresponds to a closed cycle in the diagram
for (7|o). The diagonal components of the overlap matrix are
simply

D% = DF (B3)

The coefficients V°7 are determined by the requirement

N 2 N
that (T,ﬁj (H)) = T,g (), Plugging in the representation

Eq. (24), we find this requires
V =VDV. (B4)

The solution of this system depends on whether D is invert-
ible, that is, whether the k! permutation states are linearly in-
dependent. For k < D, all of the k! permutation states are
linearly independent and D is invertible [48]. Hence, Eq. (B4)
simplifies to V = D~!. Readers familiar with Haar averag-
ing will recognize V°7 = Wg(o7~!, D) as the Weingarten
function [42, 49, 50]. In this case, the k! permutation states
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|o) provide a (non-orthogonal) basis for the +1 eigenvectors
SU(H)
of T,/ ™.

When k£ > D the overlap matrix is not invertible. Counting
the number of +1 eigenstates makes the problem obvious; at
sufficiently large k, k! can exceed the total Hilbert space di-
mension of the replicated space D?* so that the |o) states must
be linearly dependent. However, it is clear how to proceed to
construct a projector onto the space spanned by the |o) states:
if we can identify a maximal linearly independent subset of
the |o), we can drop the others and still obtain an appropriate
projector with the matrix of coefficients V' = D! restricted
to the linearly independent set. The appropriate subset is

< . .
k—d = {0 € S | all increasing subsequences

of o have length < d} (B5)

as identified in Ref. 51, by adapting the representation theory
of the unitary group to the moment operators. Remarkably,
results derived for k£ < D hold for k£ > D if sums over permu-
tation states are restricted to .S ED. In particular, Eq. (24) with
V = D! is satisfied when o, T are restricted to permutations
in 557,

The trace of the moment operator directly measures the di-
mension of the 41 space. We summarize these trace moments
for future convenience,

/dU|TrU|2k —Ti/M =k k<d (B6)

For the general case where k& > d is allowed, the RHS is
modified to the number of permutations in Sy for which all
increasing subsequences have length < d,

/dU|TrU\2’“ = |55 (B7)

Appendix C: Generalized Weingarten Functions and the
Moment Operators of U (H|N)

In this appendix, we generalize the results of App. B to the
case of number-conserving unitaries. First, we use combina-

toric arguments to compute the trace of T,f] (H|N), determining
the dimension of the 41 eigenspace. Then, we construct a ba-
sis for the space by projecting the parent permutation states
|o) onto number sectors and demonstrating that we have ex-
hausted the count obtained by trace arguments.

If U = &, U, is sampled from the Haar measure
U(H|N), then each U, is independently sampled from the
Haar ensemble on U(#,,) (each number block is Haar). This
allows us to bootstrap results about averaging with respect to
the usual Haar ensemble to the number-conserving case.

In the simplest case, the formula Eq. (B6) is modified:

| Tr U2k = /dU\TrU\% (C1)

= kIMF

where we have introduced an overline notation to indicate av-
eraging with respect to the appropriate ensemble. Let us show
this result:

k< d,vVn (€2)



[ TrUPF = | T @ U, |2
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(C3)

P>

N1y Mk, Nk

A term in this sum is only non-zero if the n-sectors which ap-
pear among the U’s match the n-sectors which appear among
the U*’s, counting with multiplicity. In any configuration of

n;, there are
#n = On,m (C4)
i
U’s in sector n. There are then
k k!
= - (CS5)
(#0"'#nm—1) Hn#n'

choices of n; which match the n partition. The value of such
a term is (assuming d,, > k):

[ TeUp[P#o [ Tr Uy %1 -+ = | #a! (C6)
n
Putting this together,
—_— k
TrU|?* = ( > n!
| | mz;lk #o- - FHm-1 1;[#”
_ Z Kl (C7)
.
= kIM*

as desired.

In the general case, where d,, < k is allowed, the com-
binatorics are not simple. The counting of non-zero terms is
unchanged, but the value of Eq. (C6) is modified:

[ tr Up|?#o | tr Uy |2#1 - .- = H‘Siﬂ
n

(C8)

where we have used the set notation in Eq. (BS). Putting this
together, we find

T S w]y S

niy- Nk

(€9)

As a check, for k& < d,Vn, we have \Si:ﬂ = |Sg, | = #n!
and the formula reduces to the one in Eq. (C1).

To find a set of states which span the 41 eigenspace of
T,g (HlN), we start with the parent permutation states and
project them down by (replicated) number sector:

|n; o) =11, |o) (C10)
where the M* orthogonal projectors 11,, resolve the identity.
Recalling that [IL,,, Tg(H‘N)] = 0 and that Tg(H‘N) projects

onto a superspace of T,g (H), we have,

TV ;o) = TV, |0) = [nso) (€L

(TrUn,) - (Tr U, )(Tr U5, ) -+ (Tr U3,

We note that these k! M* non-zero states bind the number on
the *-replicas to that specified by n through the permutation

o and thus they are jointly diagonal in N and N. As expected
from their count, these states span TéJ(HIN); this can also be
understood by considering the action of U, resolved number

block by number block.
The extension of Eq. (B1) to the number-conserving case is

N = Y Vi mo)mir|(€12)

n,o,T

Shift-invariance requires that V,, = V,, D,,V,, number sector
by number sector, where the overlap matrix within the number
sector n is

DT = (njolns) =[]

ceCycles(or—1)

o[t =+ =n%]dye

(C13)

Explicit combinatorial formulae can be found to invert these
matrices so long as k < d,, for all n. In the case where k > d,,
for some n, the inversion defining V,, is well-defined by re-
stricting the permutations to S,fd”, but does not have a closed
form.

Appendix D: Variational Bound on 2-body Brick-Layer Circuits
ind=1

The arguments of Sec. VI B are high-level and very general;
for completeness, this appendix works through a concrete ex-
ample for which the circuit gap can be computed exactly. We
consider a brick-layer circuit built out of 2-body gates acting
on a chain with L sites, with L an even integer. This case can
be solved in the sense that R is diagonalized by Fourier modes
after mapping onto a classical random walk, as in Eq. (74).
The classical random walk follows from the replacement

TV, W) — Z Ry, W) . (D1)
Yy

We denote the states on sites of the lattice by rounded kets,
|-), to distinguish them from states in the replicated Hilbert
space, for which we reserve the standard ket. In this notation,
repeated application of (74) yields

(77) 0y = Y, [9) IRY2) (D)
Yy

For a 2-body brick-layer circuit in a single spatial dimen-
sion, R can be written in terms of the states |x) by consid-
ering the action of R on each ;. Using periodic boundary



conditions, it follows that R is given by

[Nl
|
—

R= (|2w71)+|2w)+|2w+1)+\2w+2))

0

R

g
Il

X ((2w| + (2w + 1|). (D3)

In the following, all sums over w run over the range [0, %),
and we omit the limits of the sums. R is diagonalized by

1 . . )
Rlgy) = i D (12w = 1) + [2w) + [2w + 1) + [2w + 2)) (e 4 €'7) 2™

= cos(q) Z ((262”(“’71) + 262iqw> |2w) + (2€2iqw + 262iq(“’+1)) [2w + 1))

2VL
cos? (k)

w

= Z e (e7 ™| 2w) + ™ |2w + 1))

VL “
= cos® (q) |q+)
1
Rlo-) = 7%

=0

In the case where L is not divisible by four, these eigen-
states are linearly independent and diagonalize R. However,
if L is divisible by four, then ¢ = 7/2 is an allowed momen-
tum, and it is straightforward to check that |5 ) is equal to
|5 _). up to a global phase. Therefore, an eigenvector of R at
momentum 7 /2 is missing. This can be fixed by noting that
the following two states are eigenstates of R with eigenvalue
0 and momentum 7 /2:

[¢1) =D ™ (j2w) + 2w+ 1)) (D12

[f2) =D €™ (2w) = 2w+ 1)) (DI3)

These states, in combination with the states |g+) and |¢_)
(¢ # m/2), diagonalize R.

In either case, R has a set of degenerate eigenvectors
with eigenvalue zero, and another set |¢;) with eigenvalues
cos?(q). The action of R on its eigenstates can be used to

study Tlg t. Consider the state
1 j —iqp iz
lgy) = i 37 e (e iy, + €igy1) [U) . (D14)

We can then, by the relation in (74), equate the eigenvalues of
R to the bound (73),

|R|CI+)\2 _ |T;?L lg+) |2

= cos* e 28
(q+a+) (a+la+) a @ <

(D15)

D (12w — 1) + 2w) + 2w+ 1) + [2w + 2)) (1 — 1) 79
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Bloch wavefunctions with a 2-site unit cell,

1 pivw [ .
= — e (e7"2w) + e |2w + 1 D4
l41) = =D (e 2w) + 2w 1)) (D4

w

1 2iqw w) — 2w
‘qJZWZL}e (12w) — [2w + 1)) . (D5)

where g = 2mm/L, with m € [0, £). These states are eigen-
states of R:

(D6)
(D7)

(D8)

(D9)
(D10)

(D11)

For small ¢ we expand cos*(q) ~ ¢4 and find the bound
A < 2¢?, consistent with the results of Sec. VIB.

Appendix E: Statistical Mechanics of Goldstone Bosons

The results of Sec. VII provide a lower bound on the
convergence time, 7, for number-conserving random circuits
to become approximately indistinguishable from k-designs.
There we assumed that the lowest energy Goldstone excitation
was solely responsible for setting the convergence rate. In this
appendix, we check this assumption by calculating the contri-
bution of states from higher momentum Goldstone modes and
higher occupations. At large depth, these indeed turn out to
be exponentially suppressed.

Consider k£ Goldstone modes occupied by independent
bosons, with microstates characterized by the assignment of
occupation numbers, n, to each momentum q # 0 in each
replica. The energy of each momentum mode is A, = ¢2,
and the partition function reads

k

Zy=|1] i e~2nd’t | (E1)

q#0 n=0

To restrict the partition function to excited states alone, we
subtract off the contribution of the ground state, in which ev-
ery mode occupation is zero with Boltzmann weight 1. Hence
the excited-state partition function is given by Ze. = Zp — 1.



Expanding D?*Z,. in degenerate microstates
duces the sum (80) up to gapped excitations,

then repro-

k

R o
Hjﬂlgz _ Tg(H\N)HZ < D2k H Z e—anz-r 1
q#0n=0

(E2)

Summing over the occupation numbers and taking a log, the
inequality becomes

-2
—kZln(l — 672(]27-) <In <1 + ﬁ) . (E3)

q#0

We now focus on the limit of small errors €2 < D?* and
late times 7 > L2, In this regime, the logarithms of Eq. (E3)

< &2,
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can be expanded and the left hand side is given by

,kZ]n(l _ 672‘127) ~ kz 672“12

q#0 q#0
d (E4)
—k <262’q2> -1
q

A similar expansion of the right hand side of Eq. (E3) yields
the bound

(E5)

1
2 d

,2.,-212 g
1+ 2e (L) +§(1+W> .

Putting this together, we find that the convergence time to
an e-approximate k-design is bounded from below by

T >
~ 4r?

d+2 2
kL L (de) (E6)

That is, exactly reproducing the result (82) due to the lowest
energy states alone.

[1] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad,
J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland,
Physical Review A 77, 012307 (2008).

[2] A. W. Harrow and R. A. Low, Communications in Mathemati-
cal Physics 291, 257 (2009).

[3] P. Hayden and J. Preskill, Journal of High Energy Physics 2007,
120 (2007).

[4] W. Brown and O. Fawzi, Communications in Mathematical
Physics 340, 867 (2015).

[5] M. P. Fisher, V. Khemani, A. Nahum, and S. Vijay, An-
nual Review of Condensed Matter Physics 14, 335 (2023),
https://doi.org/10.1146/annurev-conmatphys-031720-030658.

[6] E. McCulloch, J. De Nardis, S. Gopalakrishnan, and
R. Vasseur, (2023), 10.48550/ARX1V.2302.01355.

[7] U. Agrawal, A. Zabalo, K. Chen, J. H. Wilson, A. C. Potter,
J. H. Pixley, S. Gopalakrishnan, and R. Vasseur, Physical Re-
view X 12, 041002 (2022).

[8] A.J. Scott, Journal of Physics A: Mathematical and Theoretical
41, 055308 (2008).

[9]1 W. Brown and O. Fawzi, “Scrambling speed of random quan-
tum circuits,” (2013), arXiv:1210.6644 [quant-ph].

[10] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Phys.
Rev. X 8, 031058 (2018).

[11] V. Khemani, A. Vishwanath, and D. A. Huse, Phys. Rev. X 8,
031057 (2018).

[12] H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka, Jour-
nal of High Energy Physics 2018, 124 (2018).

[13] A. Chan, A. De Luca, and J. T. Chalker, Physical Review X 8,
041019 (2018).

[14] M. Znidari¢, Communications Physics 3, 100 (2020).

[15] T. Rakovszky, F. Pollmann, and C. von Keyserlingk, Commu-
nications Physics 4, 91 (2021).

[16] S.J. van Enk and C. W. J. Beenakker, Physical Review Letters
108, 110503 (2012).

[17] A.Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller,

Physical Review Letters 120, 050406 (2018).

[18] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P.
Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Science 364, 260
(2019).

[19] S.Boixo, S. V.Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Nature
Physics 14, 595 (2018).

[20] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, Nature
Physics 15, 159 (2018).

[21] S. Aaronson and S. Gunn,
of spoofing linear cross-entropy benchmarking,”
arXiv:1910.12085 [quant-ph].

[22] Unbalanced moments in the matrix elements of U; and U} are
encoded by Tg ¢. These can be non-zero for sufficiently large

“On the classical hardness
(2020),

k, or k with number conservation, see Sec. V.

[23] D. A. Roberts and B. Yoshida, JHEP 04,
arXiv:1610.04903 [quant-ph].

[24] D. Gross, K. Audenaert, and J. Eisert, Journal of Mathematical
Physics 48, 052104 (2007).

[25] L. T. Diniz and D. Jonathan, Communications in Mathematical
Physics 304, 281 (2011).

[26] F. G.S. L. Brandao, A. W. Harrow, and M. Horodecki, Physical
Review Letters 116, 170502 (2016).

[27] J. Haferkamp, Quantum 6, 795 (2022).

[28] Y. Nakata, C. Hirche, M. Koashi, and A. Winter, Physical Re-
view X 7 (2017), 10.1103/physrevx.7.021006.

[29] A. W. Harrow and S. Mehraban, Communications in Mathe-
matical Physics (2023), 10.1007/s00220-023-04675-z.

[30] N. Hunter-Jones, “Unitary designs from statistical mechanics
in random quantum circuits,” (2019), arXiv:1905.12053 [cond-
mat, physics:hep-th, physics:quant-ph].

[31] F. G. Branddo, W. Chemissany, N. Hunter-Jones, R. Kueng,
and J. Preskill, PRX Quantum 2, 030316 (2021).

[32] J. Haferkamp, P. Faist, N. B. T. Kothakonda, J. Eisert,
N. Yunger Halpern, Nature Physics 18, 528 (2022).

121 (2017),

and



[33] R. A. Low, Pseudo-randomness and Learning in Quantum
Computation, Ph.D. thesis, University of Bristol (2010).

[34] S.-K. Jian, G. Bentsen, and B. Swingle, “Linear Growth
of Circuit Complexity from Brownian Dynamics,” (2022),
arxiv:2206.14205 [quant-ph].

[35] J. Emerson, E. Livine, and S. Lloyd, Physical Review A 72
(2005), 10.1103/physreva.72.060302.

[36] A. Deshpande, P. Niroula, O. Shtanko, A. V. Gorshkov, B. Fef-
ferman, and M. J. Gullans, PRX Quantum 3, 040329 (2022).

[37] 1. Marvian, Nature Physics 18, 283 (2022).

[38] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Phys. Rev. X 7,
031016 (2017).

[39] T. Zhou and A. Nahum, Physical Review B 99, 174205 (2019).

[40] F. Barratt, U. Agrawal, S. Gopalakrishnan, D. A. Huse,
R. Vasseur, and A. C. Potter, Phys. Rev. Lett. 129, 120604
(2022).

[41] J. Diestel and A. Spalsbury, The joys of Haar measure, Graduate
studies in mathematics; volume 150 (American Mathematical
Society, Providence, Rhode Island, 2014 - 2014).

[42] D. Weingarten, Journal of Mathematical Physics 19, 999
(1978).

18

[43] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, 2010).

[44] D. Aharonov, A. Kitaev, and N. Nisan, “Quantum circuits with
mixed states,” (1998), arXiv:quant-ph/9806029 [quant-ph].

[45] J. Watrous, The Theory of Quantum Information (Cambridge
University Press, 2018).

[46] B. Vermersch, A. Elben, M. Dalmonte, J. I. Cirac, and P. Zoller,
Physical Review A 97, 023604 (2018).

[47] 1. Marvian, H. Liu, and A. Hulse, arXiv e-prints ,
arXiv:2105.12877 (2021), arXiv:2105.12877 [quant-ph].

[48] B. Collins, S. Matsymoto, and J. Novak, American Mathemat-
ical Society 69, 734 (2022).

[49] B. Collins, International Mathematics Research Notices
2003, 953 (2003), https://academic.oup.com/imrn/article-
pdf/2003/17/953/1881428/2003-17-953.pdf.

[50] B. Collins and P. gniady, Communications in Mathematical
Physics 264, 773 (2004).

[51] J. Baik and E. M. Rains, Duke Mathematical Journal 109, 1
(2001).



	Unitary k-designs from random number-conserving quantum circuits
	Abstract
	Introduction
	Overview of Replica Model
	Definitions and Notation
	Moments of Global Unitary Groups
	General Properties
	General Unitary Group U(H)
	Number-Conserving Unitary Group U(H | )

	Moments of b-body Circuit Ensembles
	Decomposition of Moment Operators
	First Factor: Number Sector Projectors
	Second Factor: Moments of the Special Unitary Group
	A Bound on kc

	Gap Analysis of Circuit Moment Operators
	Variational Bound on Gap of k
	Variational Gap on kUt

	Convergence Time to Approximate Unitary k-Designs
	Discussion
	Acknowledgments
	Moment Operator Decomposition From Schur-Weyl Duality
	Generalized Weingarten Functions and the Moment Operator for U(H)
	Generalized Weingarten Functions and the Moment Operators of U(H|)
	Variational Bound on 2-body Brick-Layer Circuits in d=1
	Statistical Mechanics of Goldstone Bosons
	References


