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states [48, 49] which pump in opposite directions. Any
scattering between these bands causes the pumping to
decay to zero.

At finite frequency there are non-adiabatic transitions
between the bands. A Landau-Zener analysis predicts a
pumping decay time which is exponentially long in the
period of the drive τQ = O(eα/ω)/α, where α is an energy
scale related to the band gap (Fig. 1(c)). Relating this
timescale to a length scale allows for verification of our
prediction for τQ through a finite size scaling analysis of
Q̄ as L→ ∞, ω → 0.

In the adiabatic limit the instantaneous band gap
closes at least once during a period for W ≥ Wc. The
states of the two bands form avoided level crossings with
gaps scaling with the system size. This allows transitions
between the bands at any drive frequency. The associ-
ated timescale is related to the density of states at the

edges of the bands, τQ = O(eR/
√
W−Wc)/ω. Similarly to

the non-adiabatic mechanism, we verify this prediction
with a finite size scaling analysis of Q̄ near the W =Wc

transition point in the adiabatic limit.
Model.—We work with the disordered Rice-Mele

model [50]. This is a time periodic model (H(t + T ) =
H(t)) of spinless fermions on a N = 2L site chain, of L
unit cells, and is given by

H(t) = −
L−1
∑

j=0

(

J+(t)c
†
2j−1c2j + J−(t)c

†
2jc2j+1 + h.c.

)

−
N−1
∑

l=0

(

(−1)l∆(t) +Wζl
)

c†l cl,

(1)

where c†j creates a fermion on site j. Parameters J±(t) =
J±δ0 cosωt represent intra/inter unit cell hopping ampli-
tudes and ∆(t) = ∆0 sinωt is the on site potential. Wζl
represents the on site disorder of strength W , with inde-
pendently and identically distributed ζl drawn uniformly
from [−1/2, 1/2]. We restrict to periodic boundary con-
ditions.

The pump rate Q̄ is given by

Q̄ = lim
n→∞

1

n

∫ nT

0

dt ⟨ψ(t)|I(t)|ψ(t)⟩, (2)

where

I(t) =
i

L

L−1
∑

j=0

(

J+(t)c
†
2j−1c2j + J−(t)c

†
2jc2j+1 − h.c.

)

(3)
is the current operator. Here |ψ(t)⟩ is the time evolved
many-body ground state of H(t = 0) at half-filling.

We use the Floquet diagonal ensemble to calculate the
pump rate

Q̄ =

N−1
∑

m=0

pm

∫ T

0

dt Imm(t), (4)

where m enumerates the Floquet states, defined by
U†(t, 0)fm(t)U(t, 0) = fm(t)e−iϵmt with fm(t) =
∑

j amj
(t)cj annihilating the mth Floquet state and

fm(t + T ) = fm(t). The Floquet state popula-
tions are pm = ⟨ψ(0)|f†m(0)fm(0)|ψ(0)⟩ and Imn(t)
are the corresponding matrix elements of I(t) =
∑

mn Imn(t)f
†
m(t)fn(t). Here |ψ(0)⟩ denotes the ground

state of H(t = 0) at half-filling.
We now describe the properties of the single particle

eigenstates of the Rice-Mele model. The instantaneous
spectrum of the model (1) in the clean W = 0 limit
splits into two bands of delocalised states separated by
a gap. With weak random disorder the instantaneous
eigenstates remain organised in two bands; however, they
are now Anderson localised [48, 49]. We assume that
disorder broadens the clean system bands such that the
four edges of the bands become [51, 52]

Eb =

(

E+,↑ +
W

2
, E+,↓ −

W

2
, E−,↑ +

W

2
, E−,↓ −

W

2

)

,

(5)

where E+(−),↑(↓) refers to the top and bottom clean band
edges of the upper and lower bands. With random dis-
order the edges of the bands have Lifshitz tails [53–55].
The states in these tails are delocalised over clusters of
contiguous sites with low disorder (close to extremal val-
ues of onsite potential ζl = ±1/2). In one dimension
Lifshitz tails have the density of states [54, 56–58]

n(E) ∝ exp
(

−R|Eb − E|−1/2
)

, (6)

where Eb are the edges of the bands (5) and R is some

scale with units of
√
E.

In the adiabatic limit of the model (1), the quantised
charge pumping is intuitively explained using the instan-
taneous basis. The system is initialised in its many-body
instantaneous ground state at half filling—an occupied
lower band. Adiabatic following of this instantaneous
eigenstate in a period of the drive results in quantised
pumping of charge along the chain. This occurs if there
is a nontrivial spectral flow of instantaneous single parti-
cle eigenstates, which may be related to a nonzero Chern
number C in a 2D synthetic lattice (Appendix C). As
the model (1) is local, the spectral flow of the two bands
must cancel. The Chern numbers of the instantaneous
bands in model (1) is C = ±1, with current flowing in
the opposite direction along the chain if the upper band
is initially occupied.

The breakdown of quantised pumping away from the
adiabatic limit, or at strong enough disorder W ≥ Wc,
is understood through processes connecting the bands.
Any finite rate of scattering between the bands causes a
decay in quantised pumping. The pump rate vanishes,
Q̄ = 0, when the population of the two bands becomes
equal. This can occur either by non-adiabatic scattering
between the instantaneous eigenstates belonging to the
two bands at finite drive frequencies ω > 0, or via the
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Appendix A: Excitation rates

The excitation rate between the bands can be calcu-
lated from the transition rate between individual states
belonging to the two bands (8). The two scattering mech-
anisms discussed in the main text—adiabatic and non-

adiabatic—yield distinct scalings of the excitation rate
and hence the charge pumping lifetime.

In both cases the excitation rate may be expressed as

Γ = ω

∫

dr− dr+ dE− dE+ n(E−)n(E+)Pexc, (A1)

where Pexc is the excitation probability in a single pe-
riod between two states with localisation centers r± and
energy E±, and n(E±) is the density of states. The dom-
inant contribution to the scattering rate for both mech-
anisms comes from the states near the bottom of the
bands, but Pexc will have a different form in each case.
For our class of models (1), with extensive perturbations,
the scattering rate (A1) will also be extensive, as O(L)
states can scatter.

In Sec. A 1 we evaluate Eq. (A1) for the non-adiabatic
scattering mechanism at small ω, while the adiabatic
scattering mechanism is treated in Sec. A 2.

1. Non-adiabatic mechanism

The transitions between states of two bands in the non-
adiabatic mechanism are modelled by a parabolic level
crossing

Heff(t− t∗) =
(

ϵ0 + κω2(t− t∗)2
)

σz + V σx+

O
(

ω3(t− t∗)3
)

.
(A2)

We take the matrix element V to be exponentially small
in the distance between the localisation centers

V = O
(

Je−|r+−r−|/max{ξloc(E+),ξloc(E−)}
)

, (A3)

where ξ±(E±) are the localisation lengths of instanta-
neous eigenstates in the upper and lower bands.

The parabolic crossing problem is not fully solvable, so
must resort to approximations to estimate the transition
probability Pexc. We will consider ϵ0 ≫ V .

Indeed, for W < Wc and not too close to Wc this
condition holds. The band edges are given by Eq. (5), so
the smallest instantaneous energy gap is finite ϵ0 ≥Wc−
W . Meanwhile, the matrix elements are exponentially
small in distance between localisation centers. On the
other hand, for W > Wc, the two bands of states overlap,
and the adiabatic mechanism (Sec. (A 2)) takes over.

In the limit ϵ0 ≫ V , Ref. [59] shows that the transition
probability is given by

Pexc(ϵ0, ω, V ) =
πV 2

2ω
√
κϵ0

exp

(

−8

3

ϵ
3/2
0

ω
√
κ

)

. (A4)

Because the excitation probability is super-exponentially
small in ϵ0, the dominant contribution to the excitation
rate (A1) comes from the band edges.

The matrix elements (A3) are simplified for states near
the band edges. Since the localisation length of states is a
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smooth function of energy (which does not diverge at the
band edge) [54], we may approximate it as ξ(E±) = ξ.
Equation (A3) becomes V = O

(

Je−|r+−r−|/ξ). Note
that the states at the band edges are confined to rare
regions of contiguous sites with low disorder. The spatial
extent of the rare regions is much smaller than their typ-
ical spatial separation. This validates considering rare
region states as genuinely localised states.

Evaluating the integrals over the distances in the
bands, to leading order in the ω → 0 and V ≪ ϵ0 limits,
the scattering rate (A1) becomes

Γ = ξL
J2π

4
√
κ

∫

dE− dE+ n(E−)n(E+)

√

2

E+ − E−

× exp

(

−8|(E+ − E−)/2|3/2
3ω

√
κ

)

.

(A5)

We calculate the integrals over the energies in the two
bands by restricting them to the band edges E± = ±(δ+
e±), where |e±| ≪ δ. Here, δ is half of the instantaneous
band gap at its smallest value during a cycle. The density
of states at the edges of the two bands is given by the

Lifshitz tail form n(E±) = Ae−R|±δ−E±|−1/2

, where A
is a normalisation constant with units of inverse energy
and inverse length. Inputting the appropriate integration
windows the scattering rate becomes

Γ = ξLA2 J
2π

4
√
κ

∫

de− de+ e
−Re

−1/2
+ e−Re

−1/2
−

√

2

2δ + e+ + e−
exp

(

−8|δ + (e+ + e−)/2|3/2
3ω

√
κ

)

.

(A6)

The energy integrals above can be done by saddle point
approximation. Evaluating these integrals to first order
approximation in e± ≪ δ, we obtain

Γ = ξLA2 J
2πR4

4
√
κδ

exp

(

− 8δ3/2

3ω
√
κ
− (4R)2/3

(

δ

κ

)1/6

ω−1/3

)

.

(A7)

Note that the saddle points e± = R2
(

ω2κ
16R4δ

)1/3

indeed

go to 0 as ω → 0. This is consistent with the claim that
the scattering rate is dominated by the band edge states
in the asymptotic limit ω → 0. The second term in the
exponent is subdominant in the limit ω → 0, so we drop
it in the scaling analysis in Eq. (12).

We estimate the parameters δ and κ in the approxi-
mation to the scattering rate in Eq. (A7). Parameters δ
and κ correspond to the minimal eigenenergy separation
of the states in the opposite bands during a cycle and the
curvature of the eigenenergy at the band edges, respec-
tively. To calculate these we expand the eigenenergy of

the bands at their extrema during the cycle t = 0

Edis
± (k = π/2, t) = ±

[

√
2
√

δ20 + J2

+
∆2

0 − 2δ20

2
√
2
√

δ20 + J2
ω2t2 +O

(

(ωt)
3
)

]

∓W/2.

(A8)

Here we assume that the edges of both bands are broad-
ened by disorder according to Eq. (5). In this model,
we can even make a prediction of the critical disorder
as being the value of W at which δ = 0. We have
δ =

√
2
√

δ20 + J2−W/2 = (Wc−W )/2, yielding the crit-
ical disorder Wc ≈ 3.16J for δ0 = 0.5J , as in the main
text. This critical disorder strength is in good agreement
with numerics.

The coefficient of ω2t2 in Eq. (A8) is the curvature

κ =
∆2

0 − 2δ20

2
√
2
√

δ20 + J2
≈ 0.55J, (A9)

for δ0 = 0.5J and ∆0 = 1.5J , as in the main text. The
full scattering rate is

Γ = ξLA2

√
2J2πR4

4
√

κ(W −Wc)
exp

(

−kJ
ω

)

, (A10)

where k ≈ 1.27
(

W−Wc

J

)3/2
. This estimate of k is close

to the value used for the scaling collapse in Fig. 3, but
we were unable to confirm the scaling k ∝ (W −Wc)

3/2.

2. Adiabatic mechanism

The adiabatic mechanism controls the scattering
rate (A1) as the band gap closes (W ≥ Wc) in the adi-
abatic limit. Near the transition (W → Wc) the states
that participate in scattering are at the band edges.

We estimate the probability of excitation per period
Pexc due to the adiabatic mechanism. There is a finite
time window in which the two bands coalesce in energy.
Each state of the lower band forms many level crossings
with states of the upper band in this window. Predict-
ing the population of the upper band at the end on the
window is a complicated biased tree problem. A simplifi-
cation to this problem is estimating an average excitation
probability between the bands per period.

The average probability of excitation into the upper
band is finite, Pexc = O(1). We model each crossing as
involving only two levels with Landau-Zener crossing [89],

H(t) = V σx + κ′ωtσz. (A11)

The gaps at these crossings are set by the matrix el-
ements V connecting the instantaneous states. If the
gap between the states is much larger than the drive fre-
quency V ≫ ω the probability of excitation to the upper
band is negligible. The adiabatic theorem [89–93] states
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the weight will remain in the lower branch at every cross-
ing ending up in the same band. In the opposite limit
V ≪ ω the probability of excitation to the upper band
is also negligible since the diabatic transitions lead to
the weight remaining in the state belonging to the lower
band until it leaves the overlap region. However, a cross-
ing with a gap V = O(ω) leads to splitting of weight
between the two branches. A single excitation like this
leads to the finite probability of excitation to the up-
per band. In the order of limits L → ∞, ω → 0 there
are always gaps as small as the drive frequency, so that
V = O(ω) crossings always occur no matter how small ω
is [62, 63].

We compute the scattering rate (A1) by counting the
number of states participating in level crossings with
V = O(ω). We define the dimensionless number ζ =
O(1), such that the crossings with matrix elements in
the range V ∈

[

ωe−ζ , ωeζ
]

are considered. The spatial
separation between such states is r ∈ r0 + ξ [−ζ, ζ] with
r0 = ξ log (J/ω). For every state in the lower band the
number of such states in the upper band, within an en-
ergy window dE, is

∫ r0+ζ

r0−ζ

dr+ dE n+(E) = 2ξζn+(E)dE, (A12)

where n+ is the density of states of the upper band at
energy E. We normalise the density of states such that its
integral over distance and energy is 1. That is, distance
and energy are measured in the units of the number of
unit cells and bandwidth, respectively.

The number of states in the lower band in the energy
window dE at energy E is

∫

dr− dE n−(E) = Ln−(E)dE. (A13)

Piecing the scattering rate (A1) together gives

Γ = 2ξζLω

∫

dE+ dE− n+(E+)n−(E−). (A14)

Inserting the density of states near the band edges and
integrating over the overlapping energy region E± ∈
[

−W−Wc

2 , W−Wc

2

]

by saddle point approximation we ob-
tain

Γ = 2ξζLωR4 exp
[

−2R (W −Wc)
−1/2

]

. (A15)

Note that the rate (A15) is only valid as we approach the
transition from above the critical disorder value.

Appendix B: Adiabatic limit transition

We predict that the adiabatic transition at W = Wc

occurs when the gap between the instantaneous bands
closes at least once per cycle of the drive. At the tran-
sition the excitations between the instantaneous eigen-
states at the band edges cause the breakdown of charge

pumping. The excitation rate per period due to this pro-
cess gives the pumping decay timescale in the thermo-
dynamic limit (12). At finite system sizes the decay in
charge pumping is cut off as the charges reach the bound-
ary of the system. Therefore, the pump rate Q̄ assumes
a finite value across the W = Wc transition at finite
system sizes. This allows us to perform finite-size scaling
analysis on the disorder averaged parameter Q̄ across the
transition in the adiabatic limit.

The finite-size scaling is done by comparing the length
of the system L to the length scale over which the charge
is transferred

ξW = τQ/T ∼ exp
[

2R (W −Wc)
−1/2

]

(B1)

measured in the number of unit cells. Here, τQ is the
timescale associated with the decay in pumping. This
timescale (14) is the inverse of the scattering rate (A15)
per state.

In the vicinity the transition, the long-time averaged
charge pumped per period becomes a function of a single
variable

Q̄ ∼ Q̃ (ξW /L) . (B2)

To check this scaling relationship, we use the data from
Fig. 4 (a) and plot it in Fig. 5 (a) with log(ξW /L) on the
horizontal axis. The scaling relationship (B2) is consis-
tent with data from Fig. 4 (a). The parameter R, found
in the scaling of Lifshitz tail states with energy (6) has
not been found numerically. We leave it as a free param-
eter. Note that the data with [Q̄] = 1 for W < Wc from
Fig. 4 (a) is not included in Fig. 5 (a) since the length
scale ξW is not well defined there.

Our understanding of the Thouless pumping transi-
tion in the adiabatic limit is notably different from [22].
This work studied the disorder induced transition in the
Thouless pump as a localisation-delocalisation transition
of the steady states of the system. Computing the local-
isation length of the steady states across the transition,
they obtain a good scaling collapse with the localisation
length scaling as

ξ ∼ |(W −Wc)/J |−1/ν , (B3)

where ν ≈ 2. This relationship was derived assuming
the transition is in the universality class of the integer
quantum Hall effect (IQHE) transition [69–71, 94–96].
Figure 5 (b) tests the scaling (B2) using (B3) instead of
ξW with ν = 2.6 [70]. This collapse is also consistent
with the data from Fig. 4 (a).

At these system sizes, finite size scaling analysis is un-
able to distinguish between the different proposed uni-
versality classes of the Thouless pump transition in the
adiabatic limit. At larger system sizes the Lifshitz state
physics should be more prominent. Accessing the adia-
batic limit at very large system sizes would be helpful in
distinguishing between these universality classes.
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