Condar: Context-Aware Distributed Dynamic
Object Detection on Radar Data

Ian Harshbarger
University of California Irvine
Irvine, USA
iharshba@uci.edu

Abstract—Deep neural networks are an established class of
algorithms widely used for real-time data analysis in computer
vision-based mobile applications. However, on one hand the
constrained resources - computing power, energy reservoir and
memory - available to mobile devices clash with the complexity of
high-performance neural models. On the other hand, offloading
the execution of the computing task to a wirelessly connected
edge/cloud server requires the transfer of information rich signals
over volatile and capacity constrained channels. To address this
issue, the Split Computing (SC) paradigm has been proposed.
In SC frameworks, a baseline DNN model is used to create
two models, namely head and fail models, that are executed
at a mobile device and edge/cloud server, respectively. In this
work, a SC paradigm - Condar - is presented that introduces
several core design and conceptual innovations: (i) we target
object detection on radar data rather than 2D RGB images;
(ii) we design encoders/decoder structures that are specialized
to the specific operating environment; (iii) we develop a multi-
branched model that can dynamically select the best performing
encoder while executing the main model. Our design is based on
the CenterNet model with a split ResNet50 backbone trained on
the RADIATE dataset’s radar images of resolution 1152x1152.
Our results show that Condar has performance analogous to that
of a Generalized CenterNet Model with a difference of 4.41%,
1.72%, and 2.18% on mAP@50, mAP@75, and mAP@COCO
respectively, while simultaneously performing compression on the
features of the data to 15.5KB. This datasize is smaller than
lowest possible compression data size of JPEG compression at
21KB, which results in a considerable performance degradation.

Index Terms—Dynamic Deep Neural Networks, Edge Comput-
ing, Split Computing, Radar, Object Detection,

I. INTRODUCTION

Deep Neural Networks (DNN) are an established class of
algorithms widely used for real-time data analysis in com-
puter vision-based mobile applications. Three predominant
paradigms have been proposed to support the execution of
these compute-heavy algorithms in mobile computing ap-
plications: Edge Computing (EC), Local Computing (LC),
and a hybrid approach between the two often referred to as
Split Computing (SC). In LC, the mobile devices execute the
computing tasks in isolation, whereas in EC the execution
is offloaded to compute-capable devices - the edge servers
- interconnected to the mobile devices by means of com-
munication links. While the former paradigm suffers from

This paper has been partially supported by the National Science Foundation
under grants CCF 2140154 and CNS 2134567

Colin Zejda
University of California Irvine
Irvine, USA
czejda@uci.edu

Marco Levorato
University of California Irvine
Irvine, USA
levorato@uci.edu

the limited resources available to mobile devices - computing
power, energy reservoir and memory - the latter requires the
transmission of information rich signals (e.g., 2D images and
LiDAR scans) over volatile and capacity constrained wireless
channels. Note that EC involves offloading all computational
processes to an edge server, whereas LC relies entirely on the
client device for computation.

Split Computing, a fusion of these two approaches, lever-
ages the strengths of both edge and client-based computation
while reducing the impact from the constraints of each. SC
[1] emerged as an intermediate strategy, where the mobile
device and edge server share the computing burden. At a
high level, the core idea is to divide DNN models into two
sections - head and tail models - respectively executed by
the mobile device and edge server. The original SC approach
in [2] partitions an unaltered DNN model to create the head
and tail models, so that the tensor at the partition point is
transmitted over the channel. Unfortunately, such a strategy
results in highly sub-optimal computing/compression profiles.
More recent approaches such as [3]-[5], modify the architec-
ture and training to create optimized compression points whose
objective is to minimize the computing load at the mobile
device, while achieving high compression gains. At an intuitive
level, the core advantage of high-performance SC compared to
traditional neural compression is that compression is optimized
for the task.

However, some limitations emerge in current state-of-the-art
SC for computer vision: (1) SC models are almost exclusively
targeted to 2D RGB images; (2) the models are trained over
generalized datasets - e.g., [6], [7], and [8] for object detection.
The former issue results in a lack of general understanding
of whether SC strategies are applicable to more general data
structures. The latter issue results in the models failure to
leverage characteristics of specific environments, and thus
data, to maximize the compression gain, while also limiting
their ability to generalize due to the usually consistent set of
features in the datasets.

In this work, we introduce Condar, a context-aware SC
model for object detection on radar data that can seamlessly
adapts sub-sections of the models to match specific charac-
teristics of the environment. Remarkably, such capability is
embedded in the model itself in the form of a multi-branch
model where a classifier stems from the early layers of the

model to select how data will be routed across the layers.
Specifically, we make the following contributions:

o We design the first SC model for radar data, and show that
the achieved compression gain outperforms widespread
compression approaches;

+ We demonstrate that context-specific models can achieve
an improved performance compared to generalized SC
models;

e« We design an innovative multi-branched dynamic ar-
chitecture capable of selecting the optimal encod-
ing/decoding structure while executing the main model;

o We develop a novel three-stage training methodology: (1)
Foundation Calibration: Generalized Encoder/Decoder
Training, (2) Iterative Condar Tail Optimization, and (3)
Contextual Insight Distillation.

Our results show that Condar has performance analogous
to that of a Generalized CenterNet Model with a difference
of 4.41%, 1.72%, and 2.18% on mAP@50, mAP@75, and
mAP@COCO respectively, while simultaneously performing
compression on the features of the data to 15.5KB. This data
size is smaller than lowest possible compression data size of
JPEG compression at 21KB, which results in a considerable
performance degradation. These results show that Condar
supports high-performance distributed object detection over
challenged wireless channels - e.g., low capacity and high
variance air-ground channels.

II. RELATED WORK

In this Section, we summarize relevant literature to the
approach we propose in this paper.

A. Split Computing

Similar to edge computing, split computing assumes an
asymmetric system, where a compute-capable device (e.g.,
a fixed server, or a large mobile device) assists a resource
constrained mobile device in executing complex DNN models.
In the early development of split computing, DNN models
were simply split into two sub-models, head and tail, com-
posed of unaltered layers of the original network [2]. The
mobile device executes the head model, and transmits its
tensor output to the edge server, which then executes the tail
model. The issue with this approach is that depending on the
stage of the network, the intermediate features can be much
larger than the original network inputs, as “compression” is
achieved only in later layers. In more recent works [3], [4]
and [9], split computing (SC) focuses on injecting bottlenecks
in networks as encoder/decoder-based structures. These are
trained to compress and reconstruct the data of a particular
layer within the model, then fine-tuning the rest of the model to
accommodate the error produced through reconstruction. This
structure is then split into two models; the head comprising
the encoder, and the tail comprising the decoder and the rest
of the original model. The encoder’s design aims to compress
the data representation of the input as small as possible while
preserving important features for the tail model’s extraction.
This small representation, generated by a client device, can

then be efficiently sent over a channel to a more powerful
edge device for the larger tail’s execution, before sending the
results back, allowing for highly efficient computation across
devices.

An important concept in the training of these injected
bottlenecks found in SC models is knowledge distillation (KD)
[10]. The form of KD used in SC is that of an L2 loss. This
guides the layer feature reconstruction (model head + decoder)
of the student network in the first stage of training to produce
similar features between the student’s tail layers and the later
portions of the teacher model layers while keeping them both
frozen.

B. Context-Aware Object Detection

Another concept that is relevant to our design is context-
specific object detection. Object detection in adverse condi-
tions, such as extreme weather, has been a major roadblock
for efficient perception systems, as observed in scenarios such
as those experienced by autonomous vehicles and satellite
systems. Previous attempts to solve this issue involve sensor
fusion [11] and domain adaptation [12]. The issue with these
approaches is that none of them address the core problem: that
each context is unique, with characteristics that span spatial,
depth, and temporal dimensions.

Current context-aware models are insufficient for handling
these complexities. For example, LIDAR sensor performance
degrades significantly in heavy fog and rain situations due
to signal scattering. In these situations, combining multiple
sensor inputs or enhancing sensor robustness fails to fully
compensate for the noisy loss of meaningful features. In recent
works, the use of adversarial training to enhance the robustness
of object detectors is used. This involves generating adversarial
examples that mimic adverse conditions and training models
to recognize and focus on these perturbations.

The survey in [13] identifies the limitations of the current
state of the art context-aware models, explaining that they
often lack the adaptability required to effectively manage real-
time shifts in weather patterns. More advanced models are
required to map contextual information across the multiple
dimensions of adverse weather.

III. THE CONDAR FRAMEWORK

At a high level, Condar is an object detection architecture
— and specifically a SC architecture — whose substructures
are activated based on the notion of context. Considering
an overall set of training data 1D, we assume that subsets
of data can be grouped into specific domains or contexts
such that, D = {D¢,,...,D¢, } for n amount of contexts.
For instance, in computer vision, context is often defined as
illumination and weather conditions, the number of objects
and the complexity of structures presents in the data. We
assume that the context is classifiable though clear discernible
features and/or by some function f.;s(d¢,) where d¢, € Dg,.
Given the n contexts, context-specific models can be built that
outperform a generalized model trained on all data [11].

Context
Classifier

Pre-Encoder
Convolutions

Heatmap

" Context Specialized | Earr o
CenterNet Tail — il

Classification

.
= = = 4T ==

[JL JU J U J U J
Input Generalized compressed Context amount of specialized Output
Encoder, features Tail Models with Decoders
Context
Classifier

Fig. 1. Architecture of Condar realizing a multi-branched dynamical split DNN. The architecture of the original model is altered to include a decoder/decoder-
like structure. Different from traditional SC models, our architecture branch out after the encoder to include context-specific decoder and tail models that are

selected by an auxiliary gate model detecting the operating environment.

The general concept we introduce here is that context-
specific split computing models can be built using a gener-
alized encoder structure at the head network fypn.(d) and
set of context-specific decoders focused on specific data
subsets Fiee = {f50(fomne(d)), . £ (fymne(d))}. Here
the encoder compresses the features such that each decoder
can receive them and reconstruct a pre-selected i*" layer L;
of the context models. The remaining layers after the L;
for use in Condar we refer to as the tail model(s) Fy.. =
{ftcail(g;lc(ngM(d)))a e g;bl(f(jc;Z(ngnr(d)))} We remark
how the choice of the layers that are altered to build the
encoder/decoder structures within the model is quintessential
to balance computational complexity at the mobile device and
amount of data transmitted over the channel. The training
methodology we propose in this paper leads to extremely
compact payload transmitted over the channel with marginal
performance loss compared to the original model.

The model, then, is equipped with an internal gate that
selects the decoder structure based on the detected context.
We embed the detector in the early stages of the model itself
to minimize complexity.

A. Model Architecture

The Condar model is expressed as a CenterNet [8] frame-
work with a ResNet50 [14] backbone described in Fig.1. We
choose to build a bottleneck after the first maxpooling
layer in the ResNet50 backbone with a trailing convolutional
layer for branching off of to the context classifier head. The
bottleneck will replace and reconstruct the features found
at the output of the layerl set of convolutional layers
of the ResNet50 backbone structure. Here, unless specified
otherwise, we deploy all convolutions layers we create with a
batch-normalization layer and ReL.U operation.

Condar consists of one head model comprised of the all
layers up until the final encoder layer including the context
classification head. The tail of this model consists of n
different pairs of decoders and the subsets of layers after
the layerl of ResNet50 backbone for the n context-specific

CenterNet models. The Encoder is composed of convolutional
layers with varying strides compressing the feature size of the
image sample to be [B, C, %, %] where; B is the batch
size, C is the compressed channel size, H and W are the
height and width of the image, R is the reduction ratio based
on encoder design and implementation. Further we perform a
quantization over the values of the features compressing them
to 8-bit integer representations. The Decoder is comprised of
a combination of convolutional transpose as up-scaling layers
followed by one or more convolutional layers to assist the
target layer reconstruction. While the design of the Context
classifier head can vary we set it to be comprised of four
convolutional layers, an average pooling operation, and linear
layer. Through its design, it approximates a trained ResNet50
model on the context classification task. The decoder’s input
consists of the output from the preceding convolutional layer
before the Encoder. The Classification Head detects which
context is most likely represented and signals which decoder
and tail pair to use.

B. Training Procedures

The training procedure for Condar is structured into three
distinct stages, each tailored to optimize different compo-
nents for efficient context-based object detection. As split-
computing utilizes knowledge distillation we pretrain n con-
text specialized models for this training and label them as
M= M¢,,...,Mc,

1) Stage I: Generalized Encoder and Decoder Training:
This initial stage focuses on training the encoder and decoder
modules of the CenterNet. We copy and freeze all layers of the
tails from M, and train to minimize the reconstruction error of
not only the target layer but through select proceeding layers
of layer2, layer3, and layer4 outputs of the ResNet50
backbone. In addition to these, we also include the final layer
of the CenterNet just before the heat-map, class regression,
and bounding-box heads. We use a combined mean-squared
error (MSE) loss between teacher models output and the
reconstructed outputs to learn over. Additionally we utilize

gradient accumulation [15] to combine this loss for each nth
context decoder. By using gradient accumulation we are able
to increase B and stabilize the training process.

As a second fine-tuning step in this stage, we freeze the head
and encoder structure and further train each context decoder
on the combined MSE loss for only their particular context-
specific tail.

2) Stage 2: Condar Tail Training: This second stage we
select an i'" context tail and unfreeze it while simultaneously
freezing the head model and all decoders. We then perform
a retraining of the tail model’s weights by passing the model
input through the head model and decoder. The reconstructed
features from the decoder are then treated as input for the rest
of the tail model, which is retrained for object detection on
this new input.

3) Stage 3: Context Head Classifier: Similar to the object
detection model, we create a teacher context detector 7. For
this work, 7, will be a base ResNet50 model. As the design of
the context head mimics the structure of 7, we use a MSE loss
for knowledge distillation. We do the loss between the each
of the four sequential convolutional layers of our context head
and the output of the sets of layers in ResNet50 referred to
as; layerl, layer2, layer3, and layer4 respectively.

IV. RESULTS
A. Dataset

The RADIATE [16] dataset is a multi-sensor autonomous-
driving dataset with a focus on scenario specific contexts
of Cities, Traffic junctions, Motorways, Night time driving
Raining, Foggy, Rural, and Snowy conditions. Within this
dataset exists 39,416 labeled radar images for object detection
which we will use in this work. The radar images in this
dataset are collected with a Navtech CTS350-X radar set at a
range of 100 meters and azimuth sampling of 0.9°

It is important to note that RADIATE does not have an
equal distribution of data for each particular context and can be
unbalanced in this regard. To stabilize our training processes
we pool the datasets by their context labels. For each context
we assigned the first 75% of the images for training data in that
context and the remaining 25% for validation. In a combined
context we pool all splits of 75% as the combined training
split, and 25% as the combined validation split. When training
we redefine an epoch to be a static 15000 randomly sampled
images.

The distribution of images in an epoch will change depend-
ing on the training or validation focus context. For any focused
context training we randomly sample 75% of the 15000 images
to be from that context training split and an equal amount
of images from each different context such that they sum
to 25% of the 15000 images within an epoch. If there are
less images in a context than the 11250 for the focus context
or 535 for the non-focus contexts, we over-sample images
from that context such that we fully expand the whole context
dataset from the context split before oversampling again. For
the generalized or combined dataset training we sample 12.5%
of the 15000 images for each individual context following the

sample principles above. When validating a model we use all
data in the combined or a specific context dataset with the
Mean Average Precision (mAP) as the performance metric
for evaluation. Furthermore to reduce the need for additional
model complexity we straighten the bounding boxes of all
objects by generating a new bounding box target based on the
maximum and minimum x and y pixel positions of existing
rotated bounding box.

When training any of our models we transform the images
using an Affine Transformation to reduce the image height and
width from 1152x1152 to 512x512. We do this to decrease
training time and allow us to increase our maximum batch
size per training. No other alterations to the images are
performed and all model evaluations are done at the original
untransformed image size.

B. Encoder and Decoder Specification

A radar image from the RADIATE dataset is of size
1152x1152 in the height and width dimensions. When com-
pressing this to JPEG at 1% we obtain an average minimum
sized image over the dataset as 22KB. We design our encoder
and decoder structures to achieve a better compression than
22KBs. We implement Condar with a ResNet50 backbone and
design the encoder as 4 convolutional layers with kernel sizes
of 3 and padding of 1. the last 3 of which have a stride of 2.
With the initial layers of the backbone in place and a selected
bottleneck channel size of 12, we achieve an R = 32 and a
resulting feature size of [B, 12, 36, 36]. With quantization, the
data size of these features is 15.5KB.

To assist reconstruction of the target layers we implement
the decoder with 3 convolutional transpose layers with a kernel
size of 3, padding of 0, and stride of 1. We follow these with
two regular convolutional layers with the first having a kernel
size of 3, the second of 4, and both with a padding of 0 and
stride of 1.

1) Hardware: All training of Condar was done on an
NVIDIA GeForce RTX 3090 GPU. Execution times of Condar
are collected on this GPU and a Jetson ORIN Nano and
displayed in Tab.IL.

C. Teacher Models and JPEG Compression

For each context we train a CenterNet model for 100 epochs
with an Adam Optimizer [17] at learning rate of Se-4 which
we reduce by half at the epochs 55, 75, and 85, and batch
size of 40. We then take the best performing model from an
evaluation every 5 epochs. Upon training these models we
do see a increase in performance of the specialized context
models for their particular contexts when compared to the
generalized model as seen in Tab. I. We notice a peculiarity
of these models however: when evaluating the models with
the images compressed at various JPEG ratios we see a
gradual performance drop off until a compression ratio of 55%
where the models perform better than using the uncompressed
image seen in our results in fig.3 and Tab. I only to have
a further decrease in performance to 1% JPEG compression.

Fig. 2. Impact of JPEG compression on raw radar images.

At 55% JPEG compress we observe a noise reduction effect.

TABLE I
PERFORMANCE OF MODELS ON CONTEXT TASKS WITH UNCOMPRESSED IMAGES.
SPEC: CONTEXT SPECIFIC MODEL, CONDAR: CONDAR TAIL MODELS, GEN: GENERIC MODEL
PERFORMANCE IN DESCENDING ORDER ; BLUE, CREEN, RED

Night Rain Snow City
mAP(%) Spec | Condar Gen Spec | Condar Gen Spec | Condar Gen Spec | Condar Gen
Uncompressed @50% 49.53 44.63 32.16 | 60.40 49.63 47.30 | 63.19 64.42 53.32 | 28.37 20.05 18.28
@COCO | 23.40 18.15 11.88 | 27.24 18.45 16.19 | 23.31 20.77 18.29 | 10.57 6.78 6.72
@75% 19.01 11.79 5.05 21.50 8.28 4.65 15.96 7.29 13.93 4.78 2.54 3.15
IPEG 55% @50% 55.86 52.50 43.64 | 70.11 56.75 52.44 | 81.61 67.75 63.01 | 39.47 26.95 25.04
Compressi(jn @COCO | 29.22 24.82 18.84 | 34.74 25.76 2492 | 39.03 29.59 24.72 | 17.19 10.23 10.53
@75% 28.17 19.16 10.19 | 31.64 19.73 19.55 | 32.76 15.42 13.81 12.55 5.29 6.74
Junction Motorway Rural Fog
mAP(%) Spec Condar Gen Spec Condar Gen Spec Condar Gen Spec Condar Gen
Uncompressed @50% 45.19 34.19 26.69 | 48.77 34.30 30.59 | 68.66 54.00 53.63 | 69.05 67.12 44.19
@COCO | 18.15 12.46 9.06 17.23 10.68 10.00 | 25.46 18.68 22.18 | 26.39 21.85 18.90
@75% 11.66 5.99 2.86 6.64 2.92 3.82 11.99 6.42 11.68 10.39 8.68 12.40
IPEG 55% @50% 57.30 35.65 38.50 | 60.81 41.32 43.26 | 73.26 65.00 61.82 | 73.62 70.42 66.26
Compressi(:n @COCO | 25.39 14.13 15.40 | 25.08 14.29 15.11 | 34.76 27.50 30.77 | 32.36 27.21 32.45
@75% 18.73 6.79 8.55 14.93 5.56 6.21 25.75 15.07 29.46 | 20.23 11.14 23.82
TABLE II a learning rate of Se-5 and batch size of 10. We similarly train
EXECUTION TIMES the tail models for 100 epochs with a initial decreased learning
Head(ms) | Tail(ms) | Combined(ms) rate of 2e-5, which we reduce by half at the epoch§ 40, 65,
RTX3090 260 829 10.89 and 85 and a batch size of 40. The results of our training can
ORIN Nano 128.71 300.52 429.23 be seen in Table I.

With further inspection of the images as shown in fig. 2, we
can see the noise of the radar get progressively worse until
the 55% compression ratio where the compression actually
smooths the image out as noise reduction. This effect persists
until we see a gradual increase in artifacts due to the low
compression ratio seen best at 5%.

D. Context Split Model

When training the head model and decoder in the first stage
of training, we train with an Adam Optimizer for 15 epochs at

When comparing the performance of each specialized tail
model in relation to the non-split generalized model we see
mostly similar performances, if not slightly worse Tab. I.
Furthermore, the noise reduction trait of the JPEG compression
is still be observed in Condar as also seen in Tab. I.

E. Context Classification Head

For training of the Context Classification Head we first
trained a teacher ResNet50 model to classify the context of
images in the dataset for 80 epochs at a learning rate of Se-4
with a batch size of 40. Our teacher model achieves an 96.01%
accuracy on the combined validation set. We use this model

Model & Compression Size vs Mean Average Precision (mAP)

W 100% JPEG-421KB M 55% JPEG - 91KB 1% JPEG -21KB Ml GenSC-155KkB [l Condar- 15.5KB

30%

20%

10%

Mean Average Precision (%)

0%

mAP@50% mAP@COCO mAP@75%

Intersection Over Union (loU) Metric

Fig. 3. Compressed Data sizes vs mAP@ of Condar, Generalized Model, and
Generalized SC Model. Condar (far right) is outperforming both Generalized
Model and Generalized SC model with JPEG compressed images at 55%. We
also see the effects of JPEG as de-noising increasing the performance of the
generalized model (at 91KB or JPEG 55% Compression).

for knowledge distillation in our Context Classification Head
under the same hyper parameters as the teacher and achieve a
90.72% accuracy.

F. Condar vs Generalized model

For evaluation of Condar we first used as imput the radar
images at 55% JPEG compression, for the noise reduction
performance increase, and then selected the highest scoring
index value from the Context Classification Head prediction
vector matching the execution with the decoder of that index.
We then ran the combined validation dataset though the Con-
dar and achieved a mAP@50% 20.83%, mAP@75% 2.43%,
and mAP@COCO% 6.86% for uncompressed images and a
mAP@50% 27.01%, mAP@75% 4.95%, and mAP@COCO%
10.23% for JPEG compressed images at 55%. This does not
beat the raw mAP performance of the Generalized model at
55% JPEG compression as seen from the results in Tab.I but
as shown in Fig.3 Condar is capable of operating below the
the JPEG compression limit data size with minimal impact
on performance, behaving similarly to the Generalized model.
For additional comparison we also generate a SC model [3]
based on the Generalized model, with an encoder and decoder
designed with same structure as Condar, but with only one
decoder and tail model for comparison. Furthermore, we train
this SC model with the same hyper-parameters used for the
comparable stages of Condar’s training. As seen in Fig.3,
Condar out performs the generalized SC model performance of
mAP@50% 21.51%, mAP@75% 4.39%, and mAP@COCO%
8.21% for JPEG compressed images at 55%.

V. CONCLUSIONS

In this work, we presented Condar, a novel split computing
framework architecture for radar data. Unique to our design,
Condar realizes the first multi-branched split architecture,
where the output of the encoder is routed to different de-
coder/tail models to match the current operating environment.
This logic is supported by an auxiliary gate structure that
detects features of the data mapped to a specific context.

Condar model is expressed as a CenterNet framework
with a ResNet50 backbone trained on the RADIATE dataset.
Our results show that Condar has performance analogous to
that of a Generalized CeneterNet Model with a difference
of 4.41%, 1.72%, and 2.18% on mAP@50, mAP@75, and
mAP@COCO respectively, while simultaneously performing
compression on the features of the data to 15.5KB. This data
size is smaller than lowest possible compression data size of
JPEG compression at 21KB, which results in considerable
performance degradation.

REFERENCES

[1] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, vol. 55, no. 5, pp. 1-30, 2022.

[2] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS *17. New York, NY, USA: Associa-
tion for Computing Machinery, 2017, p. 615-629.

[3] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia,
“Bottlefit: Learning compressed representations in deep neural networks
for effective and efficient split computing,” in 2022 [EEE 23rd Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Jun. 2022.

[4] F. Cunico, L. Capogrosso, F. Setti, D. Carra, F. Fummi, and M. Cristani,
“I-split: Deep network interpretability for split computing,” in 2022 26th
Int. Conference on Pattern Recognition (ICPR). 1EEE, Aug. 2022.

[5] A. Bakhtiarnia, N. MiloSevi¢, Q. Zhang, D. Bajovi¢, and A. losifidis,
“Dynamic split computing for efficient deep edge intelligence,” 2022,
dynamic Neural Networks Workshop (DyNN) at ICML 2022.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” 2016, advances in
Neural Information Processing Systems 28 (NeurIPS) 2015.

[7]1 J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conf. on computer vision and pattern recognition, 2016, pp. 779-788.

[8] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” 2019, iEEE/CVF International
Conference on Computer Vision (ICCV 2019).

[9]1 A. Furtuanpey and et al., “Frankensplit: Efficient neural feature com-

pression with shallow variational bottleneck injection for mobile edge

computing,” IEEE Trans. on Mobile Computing, p. 1-17, 2024.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” arXiv preprint arXiv:1503.02531, 2015.

A. V. Malawade, T. Mortlock, and M. A. A. Faruque, “Hydrafusion:

Context-aware selective sensor fusion for robust and efficient

autonomous vehicle perception,” CoRR, vol. abs/2201.06644, 2022.

[Online]. Available: https://arxiv.org/abs/2201.06644

[12] J. Li, R. Xu, J. Ma, Q. Zou, J. Ma, and H. Yu, “Domain adaptation

based enhanced detection for autonomous driving in foggy and rainy

weather,” ArXiv, vol. abs/2307.09676, 2023.

Y. Zhang, A. Carballo, H. Yang, and K. Takeda, “Perception and sensing

for autonomous vehicles under adverse weather conditions: A survey,”

ISPRS Journal of Photogrammetry and Remote Sensing, vol. 196, p.

146-177, Feb. 2023.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770-778.

[15] J. R. Hermans, G. Spanakis, and R. Mockel, “Accumulated gradient

normalization,” in Asian Conference on Machine Learning. PMLR,

2017, pp. 439-454.

M. Sheeny, E. De Pellegrin, S. Mukherjee, A. Ahrabian, S. Wang,

and A. Wallace, “Radiate: A radar dataset for automotive perception

in bad weather,” in 2021 IEEE International Conference on Robotics

and Automation (ICRA). 1EEE, 2021, pp. 1-7.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[10]

[11]

[13]

[14]

[16]

(17]

