
SoK: All You Need to Know About On-Device ML Model Extraction - The Gap

Between Research and Practice

Tushar Nayan∗

Florida Intl. University

Qiming Guo∗

Florida Intl. University

Mohammed Al Duniawi

Florida Intl. University

Marcus Botacin

Texas A&M University

Selcuk Uluagac

Florida Intl. University

Ruimin Sun

Florida Intl. University

Abstract

On-device ML is increasingly used in different applications.

It brings convenience to offline tasks and avoids sending user-

private data through the network. On-device ML models are

valuable and may suffer from model extraction attacks from

different categories. Existing studies lack a deep understand-

ing of on-device ML model security, which creates a gap

between research and practice. This paper provides a sys-

tematization approach to classify existing model extraction

attacks and defenses based on different threat models. We eval-

uated well known research projects from existing work with

real-world ML models, and discussed their reproducibility,

computation complexity, and power consumption. We identi-

fied the challenges for research projects in wide adoption in

practice. We also provided directions for future research in

ML model extraction security.

1 Introduction

Internet of Things (IoT) applications have seen a growing

trend in adopting on-device machine learning (ML). This

allows for the execution of ML models directly on the IoT

devices, enhances user experiences, optimizes system perfor-

mance, and enables intelligent decision-making at the edge.

This trend is now boosted by new AI chips available in the lat-

est devices such as Apple’s Bionic neural engine, NVIDIA’s

Jetson series, Google’s Coral Dev Board, and Qualcomm’s AI-

optimized SoCs [1]. Nowadays, modern smartphones come

equipped with on-device ML capabilities, and some even have

dedicated AI accelerators for tasks such as image recognition,

language translation, and predictive text input. Even Large

Language Models (LLM), such as The MLC Chat, can run lo-

cally on Android devices with the latest Snapdragon chip [12].

Although executing ML tasks in the cloud for IoT applica-

tions offers convenience to developers, it comes with security

implications. First, user-private data are shared with the cloud

and can be leaked to network attacks, or other users sharing

∗The first two authors contributed equally to this work.

the cloud. Second, cloud-based ML can cause latency, which

decreases the performance of real-time applications such as

intrusion detection [35, 114, 115]. Whereas, on-device ML

avoids sending private user data to the cloud, and provides

real-time responses. For example, autonomous vehicles utilize

on-board ML models for real-time object detection, pedestrian

recognition, and decision-making without constant reliance on

cloud-based services. Smart speakers such as Amazon Echo

or Google Home use on-device natural language processing

(NLP) models to understand and respond to voice commands

without relying entirely on cloud processing [127]. However,

on-device ML introduces a new security challenge—the valu-

able, proprietary, and possibly security-critical ML models

are now deployed on user-end devices, and adversaries may

attempt to extract these models from devices, causing model

stealing or extraction attacks [112].

The extraction of ML models from IoT applications can

lead to both financial concerns and security implications. In-

tuitively, commercial ML models are the core intellectual

property of model vendors. A leaked model gives away the

research and development cost of the model owner, and may

result in unethical business competition [112]. Further, IoT

applications handle sensitive data, ranging from biometric in-

formation to personal preferences, and a leaked model poses

a direct threat to compromise these sensitive data. This is

because a leaked model can equip attackers with grey-box

information (e.g., partial models, recovered models), or even

white-box information (e.g., plaintext models), and allow at-

tackers to perform further attacks more conveniently and accu-

rately. For example, attackers can craft adversarial examples

to deceive IoT users in decision-making, perform membership

interference attacks to reveal sensitive training data or even

data poisoning and model poisoning attacks [46, 74, 113] if

the models need to be updated later. These attacks can lead to

privacy violations and unauthorized use of the data collected

by IoT devices [95]. In addition, ML models can be used

for safety- and security-critical functions (e.g., climate fore-

casting, face authentication), and leaked models will allow

attackers to bypass the safety or security check [133].



In performing and defending model extraction attacks, re-

spectively, existing research has explored various techniques.

From the attacker’s perspective, existing works have explored

decomposing [32] and decompiling techniques [42], runtime

memory extraction [123], side-channel attacks [109], and data

mining techniques [101] to extract valuable ML models. To

defend against model extraction attacks, defenders have ex-

plored Advanced Encryption Standard (AES) [58], Homomor-

phic Encryption (HE) [132], Trusted Execution Environment

(TEE) [45], data transformation [35], and various learning

algorithm-based protection techniques [88]. While there have

been advances in model extraction security, existing efforts

have often been ad-hoc and fragmented. Together with the

rapid advances in ML, it becomes challenging for researchers

and practitioners to have a comprehensive understanding of

all aspects of model extraction attacks. This gap hinders the

development of robust security techniques, including issues

related to privacy, optimization, and computation.

This research aims to contribute to building greater trust

in IoT devices adopting on-device ML, and relieving privacy

concerns in leaking sensitive user information. Specifically,

we design a general framework to systematize existing studies

in model extraction attacks and defenses. We define four cate-

gories of threat models, including app-based, device-based,

communication-based, and model-based attacks and defenses.

We focus on studies investigating Android-based applications

and Arm-based devices, due to their popularity in serving on-

device models [8]. Our investigation highlights a significant

issue within the research community: many research projects,

although innovative, may not be open source, or cannot be

reproduced in practice, and the amount of effort in project

deployment and maintenance prohibits the wide adoption of

these projects. We further chose representative projects from

each category of threat models and evaluated them with real-

world ML models. We found that when research projects are

applied to real-world ML models, they may not produce as

good performance as reported in the paper. The computation

complexity and power consumption can also be high. Our

code in reproducing and evaluating existing projects is open-

source1. Last, we point out the open challenges in applying

these projects to practice, and future research directions for re-

searchers and practitioners to enhance on-device ML security.

Our investigation can be beneficial to myriad technologies

ranging from ML training and inference, IoT and Android app

development, IoT sensing, data communication, and secure

memory design and development.

Note that although ML models can suffer from a range of

attacks, including model pollution attacks [33], model stealing

attacks [50], membership inference attacks [107], etc., this

paper focuses on ML model extraction or stealing.

1https://github.com/sys-ris3/ML_Extraction_Sok

2 Model Extraction: Security Design

This section provides context for later discussion. We give a

high-level overview of the security design of model extraction

techniques. Our goal is to describe the threat models, the

security techniques, the methods, and the effective stages of

model extraction. These factors will contribute to a general

framework to analyze the challenges in preventing model

extraction attacks.

2.1 Threat Models

We categorize existing works into four distinct types of threat

models, from attacker’s and defender’s perspectives, respec-

tively.

2.1.1 Attacker’s perspective

App-based attacks: attackers assume they can gain access

to the application files either through the public application

marketplace, or through a vulnerability within the IoT devices.

Attackers will perform application de-packaging or decompil-

ing [112], and extract the model files [41,80,112,129]. These

model files can be either usable plaintext models or encrypted

and obfuscated models. Attackers can directly utilize plain-

text models or employ decryption and deobfuscation tools to

reverse the plaintext model.

Device-based attacks: attackers assume they can access

the IoT devices and gain access to the memory [112]. Attack-

ers can either force a vulnerable application to launch and load

ML models into memory or consistently scan the memory to

wait for models to be loaded. Attackers assume that, no matter

how many times the models have been encrypted/obfuscated,

plaintext copies of ML models will eventually be loaded into

memory so that the vulnerable application can actually use

the models. Attackers also assume to have knowledge of the

in-memory format of models. This is possible for well known

frameworks, such as TensorFlow and PyTorch.

Communication-based attacks: attackers can intercept

communication between various memory regions and hard-

ware architectures on an IoT device. This communication

data can encompass application runtime data, hardware usage

records [59, 83], memory usage [67], electromagnetic [134]

and power-related data [128]. Attackers assume to leverage

these data to recover partial or complete details of ML mod-

els, including their structure and weights, or infer functionally

equivalent models.

Model-based attacks: attackers assume to be able to send

(selective) input queries to the models and observe the ML

inference results. Attackers assume the ability to use the pairs

of (sent data, and received inference results) to assess the

functionality of models and fine-tune the data to send in sub-

sequent steps. Attackers then go through the above process

and train substitute models [96]. Attackers sometimes assume



to leverage pre-trained models to improve the accuracy of

training substitute models or employ large-scale datasets or

distributed methods to send query requests to the target mod-

els. Attackers can even use intelligent query agents and more

advanced techniques to enhance query efficiency [86].

2.1.2 Defender’s perspective

App-based defense: defenders assume that attackers can

get access to an app package, and extract the model files

from the app package. Defenders apply techniques, including

encryption, obfuscation, or customized protection to model

files in an app package. The files can contain model layers,

weights, and other configurations.

Device-based defense: defenders assume that attackers

can extract models from memory in plaintext. Defenders ap-

ply device-based protection, such as secure hardware, to pre-

vent arbitrary memory access. Defenders can also customize

hardware to support computation on encrypted data, so that

memory extraction will not reveal plaintext models.

Communication-based defense: defenders assume that

attackers cannot directly extract models from memory but can

sniff the communication between two memory components.

Defenders apply data transformation, encryption, and random-

ization techniques to prevent side-channel information leak-

age and enable further calculation based on the transformed

data in the memory components.

Model-based defense: defenders assume that attackers can

send crafted input to ML models and leverage the input and

output pattern to train equivalent student models. Defenders

apply weight obfuscation, misinformation and differential

privacy to increase the effort of attackers in training equivalent

student models.

2.1.3 Motivating Example

The threat models can exist alone or coexist with others.

A powerful and motivated attacker can explore the four cate-

gories of threat models altogether. Now let us consider a real-

world e-health application that runs on an Android phone and

uses on-device ML in diagnosing skin cancer, diabetes, and

hypomnesia [40]. The model takes input from sensors measur-

ing human body data, including electrocardiography (ECG)

data, Electroencephalogram (EEG) data, and polysomnogra-

phy (PSG) recordings. The data are user-private and can be

personal identifiable information (PII). Figure 1 describes the

process of a powerful attacker (Alice) in extracting this ML

model. A defender (Bob) tries to stop the model extraction

attack throughout the process. Alice begins by downloading

the e-health app from Google Play and using apktool to de-

package the app. Alice expects to extract the plaintext model

from the package (e.g., an App-based attack), but Bob has

encrypted the model before shipping the app to Google Play

(e.g., an App-based defense). Alice fails and continues in

Step (1). Alice tries to run the app on a phone, invoke the ML

task, and use the Frida tool to extract the model from mem-

ory (e.g., a Device-based attack). However, Bob has enforced

the model to run only in the Trusted Execution Environment

(TEE) (e.g., a Device-based defense). Alice fails again and

continues in Step (2). Alice tries to sniff the communication

between the secure and normal world to recover the model

(e.g., a communication-based attack), but Bob has enabled

random shuffling to avoid useful side-channel information

(e.g., a communication-based defense). Alice fails again and

continues in Step (3). Alice tries to query the model with spe-

cific input, obtain inference output, and use the input, output

pattern to train a highly similar student model with less effort

(e.g., a model-based attack). However, Bob has enabled adap-

tive misinformation to make the patterns misleading (e.g., a

model-based defense), and the game continues in Step (4).

Alice and Bob’s story can be executed across various IoT

devices, encompassing smartphones, smart home devices, and

wearable gadgets.

Privacy Concerns. The extraction of on-device ML can

worsen privacy issues within IoT devices [22, 34], and bring

new attacks including data poisoning attacks, model poison-

ing attacks, and membership inference attacks. Without the

extracted models, attackers can only perform attacks based

on black-box information. With the extracted models, under

different threat models, attackers can obtain white-box, or

grey-box information, with plaintext models, partial models,

or surrogate models with high fidelity. The additional infor-

mation makes it more convenient to perform attacks.

2.2 Security Techniques

Based on the threat models, attackers and defenders may

explore different security techniques to perform or prevent ML

model stealing attacks. The following describes the common

techniques in different categories.

2.2.1 Attacker’s perspective

Decomposing and Decompiling: these methods unpacks

application packages to extract useful files (e.g., ML models)

from the sources. Popular tools include apktool [2], Jadx [9],

IDA Pro [7], and so on.

Memory analysis: these methods access device mem-

ory and obtain memory buffers containing model layers and

weights. Popular tools include Frida [5], GDB [6], mem-

fetch [11], and so on.

Side-channel attacks: these methods exploit indirect (side-

channel) information that can be used to infer ML inference

data. The side-channel information includes power consump-

tion, electromagnetic (EM) radiation, cache accesses, timing,

and so on. Popular tools include ChipWhisperer [4], SCA-

Lab [14], CacheAudit [3], etc.





Table 1: Existing works on model extraction attacks.

Title Category Target Method Open-source Reproduced ML Framework

First Look App Whole Decompile Yes Yes Multiple

SmartAppAttack App Whole Decompile Yes Yes Multiple

Mind’21 App, Device Whole Decompile, mem. searching Yes Yes Multiple

Understanding’22 App, Device Whole Decompile, API hooking No N/A Multiple

DeepRecon Comm. Arch. Cache (Fl.&Re.) Yes No TensorFlow

CSI NN Comm. Arch.,Layer,Weight timing and electromagnetic No N/A General

Cache Telepathy Comm. Arch. Cache (Pr.&Pr.,Fl.&Re.) No N/A General

Open DNN box Comm. Arch.,Weight Power Feature No N/A General

Reverse CNN Comm. Arch.,Weight Memory Access No N/A General

GANRED Comm. Arch. Cache Attack No N/A General

DeepEM Comm. Arch.,Layer,Weight EM Attack No N/A General

StealingNNTiming Comm. Arch.,Weight Timing Attack No N/A General

HuffDuff Comm. Arch.,Weight Timing Attack No N/A General

Hermes Attack Comm. Whole Model PCIe traffic No N/A TensorFlow

Leaky DNN Comm. Arch. GPU Context-Switching No N/A TensorFlow

ScanChainSteal Comm. Model Weight Scan-chain Infrastructure No N/A TensorFlow

DeepSniffer Comm. Model Arch. Memory, Bus snooping Yes Yes PyTorch

DeepSteal Comm. Functionality Memory Access (rowhammer) Yes Yes PyTorch

ML-Doctor Model Model Weight Inference Attacks Yes Yes Pytorch

Hyperparameters Model Hyperparameters Hyperparameter Stealing No N/A General

Reverse BlackBox Model Arch., Optm.,etc Adversarial Example No N/A Pytorch

Activethief Model Model Weight Active Learning Yes No TensorFlow

ML-Stealer Model Functionality Prediction Stealing No N/A General

KnockoffNets Model Functionality Functionality stealing Yes Yes Pytorch

SimulatorAttack Model Functionality black-box attack Yes Yes TensorFlow,Pytorch

Note that Pr.&Pr. means Prime+Probe, and Fl.&Re. means Flush+Reload.

Table 2: Existing works on model extraction defense.

Title Category Target Method Open-source Reproduced ML Framework

TFSecured* App Whole Encryt. Yes Yes TensorFlow

MindSpore* App,Model Whole Encryt.,Obfu.,DP Yes Yes MindSpore

Knox* App Whole Encryt. Yes Yes Multiple

MACE* App Whole Obfu.,Convert Yes Yes TensorFlow,Caffe,ONNX

m2cgen* App Whole Convert Yes Yes Multiple

MindDB* App Whole Convert Yes Yes Multiple

MMGuard App Whole Encrypt, node insertion Yes Yes TensorFlow

MyTEE Device Whole TEE Yes No General

SANCTUARY Device Whole TEE Yes Yes General

OMG Device Whole TEE No N/A TFLite

DarkneTZ Device layer,output TEE Yes Yes General

Graviton Device Whole TEE No N/A Caffe

ObfuNAS Comm. Arch. Obfu. Yes Yes PyTorch

ShadowNet Device,Comm. layer,weight Transform Yes Yes Darknet, TFLite

Slalom Comm. layer,weight Transform Yes No TensorFlow

E2DM Comm. Whole HE No N/A TensorFlow

NPUFort Comm. Weight Secure Hardware No N/A General

NeurObfuscator Comm. Arch. Obfu. Yes Yes PyTorch

Mitigating’19 Comm. Functionality Oblivious shuffle, ASLR, etc. No N/A General

NNReArch Comm. Arch. EM Obfu. No N/A General

Misinformation Model Weight Adaptive Misinformation Yes Yes PyTorch

PredictionPoison Model Weight Perturbation Yes Yes PyTorch

PRADA Model Weight Extraction Detection Yes Yes PyTorch

SteerAdversary Model Weight Gradient redirection Yes Yes PyTorch

LDA-DP Model Weight DP No N/A General

Note: title with * means the project is maintained by industry community



further attacks, such as adversarial attacks, to a portion of the

extracted models.

In general, app-based model extraction attacks target the

extraction of a whole model and can extract models on a large

scale. Attackers leverage the weaknesses that (1) app pack-

ages are easily accessible and prone to reverse engineering,

and (2) model files are not adequately protected through en-

cryption or obfuscation measures. Next, we describe existing

works that may potentially defend against the weaknesses.

3.1.2 Defender’s perspectives

App-based model extraction defenses aim to obscure eas-

ily readable machine learning models into something highly

complex and difficult to interpret. Thanks to advancements in

computing power and model compression techniques, encrypt-

ing and decrypting model files on IoT devices has become

increasingly feasible. For example, Samsung’s Knox [106]

employs AES encryption to secure various model formats.

The models will be shipped in encrypted format with the app

package. When ML inference starts, the models will be de-

crypted in the device memory, and start working as regular

plaintext models. In IOS, Apple’s CoreML [69] provides AES

solutions to its models in a similar way. Outside of the indus-

try community, researchers have developed specialized AES

methods [16] that run faster with TensorFlow and provide

bundling with app package. MMGuard [65] uses a secret to-

ken and inserts an extra input node to the model. This makes

a stolen model to behave incorrectly without the secret token.

It is worth noting that even traditional encryption algorithms

are highly effective in preventing large-scale model extraction

attacks.

Besides encrypting models into unreadable formats, ob-

fuscation, and code conversion are investigated to produce

models that are readable but difficult to interpret. For example,

MindSpore [17] employs dynamic obfuscation to enable apps

to perform regular ML inference, but will produce meaning-

less outputs unless the obfuscation scheme is known to the

apps. MACE [10] opts for code conversion, turning models

into C++ code representations. M2cgen [28] is capable of

transforming a variety of machine learning models into more

than ten types of code, including Java, C, Python, Go, and

so on, with zero dependencies. NCNN [15] converts model

files into binary formats and removes all text, creating a bar-

rier against decomposing-based reverse engineering. Finally,

MindsDB [90] converts model files into a database which

facilitates easier model deployment. It also supports obfuscat-

ing models as a regular database file, making it less vulnera-

ble to attacks targeting popular ML frameworks. In general,

app-based defense solutions are effective in mitigating the

weaknesses of app-based attacks, by preventing large-scale

model extraction. However, as shown in Table 2, such solu-

tions are often tied to an ML framework or a vendor-specific

product, limiting the adoption to a broad range of apps and de-

vices. Further, extra effort will be needed from the app/model

vendors (e.g., in encrypting the models), the user/device (e.g.,

in decrypting the models), and key management between the

two parties. The decryption process for the model may slow

down app performance, depending on device settings.

3.1.3 Findings

We found that app-based model extraction defense solu-

tions mostly come from the industry communities, which

indicates that app-based model extraction attack is indeed a

severe problem in practice.

We found that, from the attacker’s perspective, attackers

may not be able to directly use the extracted models for sev-

eral reasons. First, attackers have to understand the input and

output of the models. For example, the input is an image of

a bird and the output (i.e., labels) is “bird”. Attackers will

need to understand the semantics of the app code to obtain

such information. Second, the models can be black-box, so

the model functionality is unknown to the attackers. The best

chance for attackers is to hope the models come from popular

ML frameworks (e.g., TensorFlow, PyTorch) and serve com-

mon functionalities (e.g., card recognition) so that the models

are more likely to be understood and directly used. Last, the

models may have been obfuscated or encrypted, so attackers

will need to explore de-obfuscation or decrypt techniques to

use the models.

We also found that app-based defense alone is not suffi-

cient. For example, the key management mechanism can be

vulnerable. Previous work [112] has found the key (or license)

to be shipped together with the app package, and attackers

can extract the key from the app and use that to decrypt the

model. Even if the keys are not accessible, attackers can per-

form dynamic analysis of the app on a device, and bypass the

encryption and obfuscation that have been described. Next,

we introduce such cases as device-based attacks.

3.2 Device-based Attacks and Defenses

3.2.1 Attacker’s perspective

Device-based ML model extraction attack is explored to by-

pass app-based model encryption. ModelXtractor [112] first

demonstrated the case of extracting encrypted models from

device memory in plaintext. The assumption is that for en-

crypted models to be used by the app, a plaintext model will

eventually be loaded into memory. ModelXtractor uses app

instrumentation with four types of instrumentation strategies

to dynamically find the memory buffers where a (decrypted)

model is loaded and accessed by the ML frameworks. Mod-

elXtractor was able to extract models even though three layers

of encryption had been applied.

Similar to ModelXtractor, Deng et al. developed Adv-

Droid [41] to hook API calls that relate to model loading



and extract models from memory. AdvDroid leverages pro-

gram slicing to search the app code with relevant functions of

model inference, and constructs a sequence of UI operations

that are associated with the code. AdvDroid focuses on the

models for image classification and object detection, with the

assumption that the majority of the models are related to these

two functions.

In general, device-based model extraction attacks cannot

be performed on a large scale. Some apps are complicated

and will require authentication and registration to start the

ML model inference. Therefore, it depends on some “luck"

to trigger a required ML model and extract it from memory.

3.2.2 Defender’s perspectives

Device-based model extraction protection aims at defend-

ing against in-memory model extraction and related attacks.

Graviton’s architecture [120] was first proposed to support

trusted execution environments on GPUs. Graviton enables

applications to offload security- and performance-sensitive

kernels and data to a GPU, and execute kernels in isolation

from other code running on the GPU and all software on the

host. Graviton requires hardware changes to integrate into

existing GPUs. To relieve the hardware changes, SANCTU-

ARY [31] presents the first security architecture that enables

the execution of security-sensitive apps in TrustZone’s normal

world with strongly isolated compartments. SANCTUARY is

a generic Trusted Execution Environment (TEE) solution that

paves the road for protecting on-device ML models. Based on

SANCTUARY, OMG [27] provides a prototype implemen-

tation of user-space enclaves to protect both client data and

model privacy for TensorFlow Lite models. OMG can protect

the whole model while lacking support for GPU acceleration

and easy adaptation. To solve the problem, LEAP [110] was

developed to offer hardware-assisted secure IO and flexible re-

source management. LEAP also presents a developer-friendly

TEE programming interface for app developers to enable

memory-protected ML models. To protect partial models,

DarkneTZ [91] allows selected layers (e.g., non-linear lay-

ers) to run inside the TEE to protect sensitive parts of the

model from being stolen. DarknetTZ does not support se-

cure GPU acceleration. ShadowNet [111] also runs sensitive

layers inside TEE but extends the support to GPU, with a

smaller TCB compared with DarknetTZ. In a different line

of research, Mgx [66] introduces a memory protection unit

(MPU) design through dynamically adjusting memory ac-

cess permissions based on the execution context of the DNN

model. MyTEE [55] introduced a TEE environment on em-

bedded devices without assuming the existence of TrustZone

hardware extensions.

In general, existing works in device-based defenses focused

on TEE-based solutions. As Table 2 shows, the protection

target ranges from a whole model, layers of the model, and

model input/output. The deployment requires either changes

to the hardware, or implementing the ML libraries in TEE.

TEE-based solutions usually incur significant runtime infer-

ence overhead, which prohibits their wide adoption in pro-

tecting ML models in practice. The integration of GPU is

promising while more research in this direction is warranted.

3.2.3 Findings

We found that attacks in this category are semi-automatic,

and are hard to perform on large-scale. For attacks to be suc-

cessful, attackers will need a deep understanding of the ML

library, and the formats of ML models when they are stored in

the memory. This excludes in-memory extraction of models

from uncommon frameworks. Even after the models are ex-

tracted, the models may not be directly useful, as mentioned

in the findings of app-based attacks and defenses.

We also found that device-based defense alone is not suffi-

cient in preventing ML models from extraction. For example,

TEE is usually limited in memory size and slow in ML infer-

ence speed, so large models cannot fit in TEE. When model

partitions are needed, communication data between the secure

world and the normal world will leak model information as

well. Next, we describe attacks in this category.

3.3 Comm-based Attacks and Defenses

3.3.1 Attacker’s perspective

Communication-based attacks aim at stealing or recovering

ML models by collecting data from or between different mem-

ory components during ML inference. The communication

data can include direct model information or side-channel

information. Direct model information leakage is only briefly

mentioned in a few works [111, 117]. Most studies focus on

side-channel data to extract ML models, including cache infor-

mation, electromagnetic (EM) radiation, timing information,

power consumption, and so on.

In cache and memory-based side-channel attacks, existing

works have explored non-invasive and passive ways. For ex-

ample, Hua et al. [67] designed the first attack to steal CNN

architectures while it requires the attacker to monitor all of the

memory addresses accessed by the victim. DeepRecon [60]

reconstructs the architecture of a victim model by analyzing

cache access times using Flush+Reload. It passively observes

model-related function invocations, and reconstructs the vic-

tim’s entire network. Cache Telepathy [130] is similar but can

obtain more detailed hyper-parameters, such as the number

of neurons in fully connected layers and filter size in convo-

lutional layers. DeepRecon and Cache Telepathy require a

shared main memory segment between attacker and victim,

while GANRED [83] relieves the requirement with cache

timing side-channel. These works provide no direct evidence

between the statistics and the attack’s effectiveness. To under-

stand this issue, DeepSniffer [64] learns the relation between



extracted architectural hints (e.g., volumes of memory read-

s/writes obtained by side-channel or bus snooping attacks)

and models internal architectures, to achieve more efficient

attacks. Besides passive attacks, researchers have actively

stimulated bit-flipping in the memory storing the models, and

derive approximate models [104].

In timing-based side-channel attacks, Duddu et al. [44] aim

to extract a black-box Neural Network and infer the depth of

the network. They leveraged reinforcement learning-based

optimization to reduce the search space and reconstruct a sub-

stitute architecture. These techniques do not work well when

the model is sparse in either weights or activation layers, be-

cause off-chip transfers no longer correspond exactly to layer

dimensions. To mitigate the sparsity problem, HuffDuff [131]

leverages the boundary effect present in CONV layers, and

the timing side channel of on-the-fly activation compression

to extract black-box models.

With other side-channel information, CSI NN [26] uses tim-

ing and electromagnetic (EM) emanations to recover multi-

layer perceptron and convolutional neural networks. DeepEM

[134] is similar but estimates the weights through margin-

based adversarial active learning. Open DNN Box [128] de-

rives the power signature of embedded AI devices, and em-

ploys machine learning techniques to discern the model ar-

chitectures of embedded AI devices. It further utilizes the

concept of model sparsity to deduce the model parameters.

Hermes Attack [140] uses plaintext Peripheral Component

Interconnect Express (PCIe) traffic to leak the whole DNN

model. The stolen DNN models have the same hyperparam-

eters, parameters, and semantically identical architecture as

the original ones. The methodology is supposed to be effec-

tive for all models. However, it depends on the buffer size

of the snooping device. Leaky DNN [124] utilizes context-

switching penalties to exploit GPU side channels and intro-

duced the MosCons attack prototype, which enables a spy to

obtain finer-grained information of DNN ops and hyperpa-

rameters. Scan chain attacks [100] reveal that course-grained

scan-chain access to non-linear layer outputs is sufficient to

steal ML models.

In general, the side-channel information to extract ML mod-

els can come from many sources, and be passive or active.

These attacks can produce high accuracy and fidelity to the

original models and are capable of recovering black-box mod-

els. As expected, such attacks cannot be performed to ex-

tract models on a large scale. In addition, the attacks may

not always succeed because model information may have

been transformed through encryption, obfuscation, and ran-

dom shuffling, so the victim models do not serve as ground

truth anymore. Next, we describe existing works with such

defenses.

3.3.2 Defender’s perspective

Communication-based model extraction defenses aim to mit-

igate model-related data or side-channel data leaked from

TEE or hardware accelerators or between secure and normal

worlds in TEE. To prevent communication data leakage be-

tween secure and normal worlds, existing works are based on

the assumption that sensitive layers run in the secure world,

while the rest of the layers run in the normal world. Based on

this assumption, Slalom [117] first splits models into linear

and nonlinear layers and secures nonlinear layers in SGX.

Slalom uses masked input with encryption and randomiza-

tion to the normal world layers and can protect partial model

layers and user input to the models. To further protect the

model weights from extraction, ShadowNet [111] applies

linear transformation and random noises to secure the inter-

mediate results transferred between the normal world and the

secure world.

To prevent side-channel information leakage from hard-

ware accelerators, NPUFort [122] protects general DNN accel-

erator from side-channel information leakage NeurObfusca-

tor [77] prevents exact architecture extraction by obfuscating

the dimension and number of the DNN layers. Liu et al. [82]

proposed to prevent architecture extraction through memory

access pattern analysis, including oblivious shuffle, address

space layout randomization, and dummy memory accesses.

Luo et al. [85] proposed to increase the difficulty of extract-

ing DNN architectures through tensor execution scheduling,

as a way to prevent EM based side-channel leakage. These

methods require low-level modification and are limited by

the execution environment. ObfuNAS [138], instead, obfus-

cates models via Neural Architecture Search (NAS) to defend

against architecture extraction attacks without requiring spe-

cialized hardware.

Other secure ML systems use cryptographic primitives,

such as E2DM [70], using HE for encrypted data and en-

crypted models. However, the performance overhead is sig-

nificant and it is far from practical to apply these theoretical

approaches to real-world applications.

In general, communication-based defense solutions can mit-

igate side-channel-based model extraction attacks. However,

similar to device-based defenses, these approaches usually

require low-level hardware changes or the development of a

full-stack ML inference framework. This limits the protection

to a certain type of hardware (e.g., TEE, GPU), or a certain ML

framework (e.g., TensorFlow). The incurred deployment ef-

fort also prohibits the wide adoption of the existing solutions.

Due to the ad-hoc nature of side-channel attacks, it is also

challenging to propose a generic solution to prevent model

extractions from different types of side-channel information.

3.3.3 Findings

We observed that the number of side-channel-based model

extraction attacks exceeds the available defenses designed



to counter them. The extracted (or recovered) models can

achieve high accuracy and fidelity. However, for the attacks

to be successful, attackers will need to be co-located with the

victim processes or share the same memory regions with the

victim. The monitored data will need to be recorded in log

files or be frequently transferred to the attackers. All of these

increase the chance to expose the attacks and question the

possibility of real-world attacks in practice. We are not aware

of industry defense solutions in this category of threat model.

We also found that communication-based model extraction

defense alone is not sufficient. For example, attackers do not

need direct or side-channel model information to recover a

model. Instead, attackers query the model with special input

and obtain the inference result as output. but can. With the

input, output pairs, attackers can train a substitute (or student)

model of the victim model. Next, we introduce existing works

with such attacks.

3.4 Model-based Attacks and Defenses

3.4.1 Attacker’s perspective

Model-based extraction attacks assume that attackers use pairs

of inputs, outputs to train substitute models that are highly

similar with the victim models. Based on this assumption,

existing works have explored to (1) achieve high model simi-

larity with minimal accuracy loss, (2) eliminate the require-

ments of prior knowledge of the victim models, (3) optimize

query efficiency and effectiveness, and (4) generate natural

patterns to avoid extraction detection. Note that most of the

attacks here are agnostic to the device setting. Even though

some attacks were created in a cloud ML setting, we included

them as they will be effective to on-device ML extraction as

well. Due to the large number of papers within this category,

we only describe the important ones.

Through API accesses, Tramer et al. [118] performed the

first attack replicating ML model functionality to extract

model parameters from popular model classes. It requires no

prior knowledge of model parameters or training data. It also

provides evidence that extraction attacks remain applicable

even when the models only generate class labels. In a sim-

ilar approach, Knockoff Nets [96] integrated reinforcement

learning techniques to train a surrogate model to optimize

query timing and effectiveness. Knockoff Nets aim to steal

model functionality with black box internals. It does not re-

quire knowledge of model family or training data. Knockoff

Nets could achieve remarkable accuracy and fidelity across

a range of tasks. Simultaneously, Oh et al. [94] showed that

model stealing attacks can extract different types of inter-

nal information from black-box models, such as activation

types, optimization algorithms, and model hyperparameters,

as have done by prior work [121]. ML-Stealer [79] presents a

mere black-box access scenario. It incorporates VAE-based

synthetic data generation and GAN-based replica model con-

struction, so it does not require prior knowledge of the victim

model nor the statistics of the training data. ML-Stealer has

achieved a testing accuracy as high as 93.6%. To reduce the

number of queries and the chance of exposure to possible

defenses, Ma et al. [86] proposed a method to enhance the

efficiency of model stealing using intelligent query agents.

This approach employs highly accurate pre-trained models

specialized for various tasks and strategically uses different

categories of training data to probe the victim model. This

allows intelligent query agents to achieve a near-identical

accuracy to the victim model after a relatively small number

of queries. Eventually, multiple intelligent agents collaborate

locally to train an alternative model. In order to understand

the factors that can impact the success rate of model stealing

attacks, Liu et al. [81] conducted assessments of attacks under

various conditions. They found that the complexity of the

dataset used to train the victim model and the dataset used

for the stealing attack can affect the attack’s accuracy. S Pal

et al. introduced an attack method [98] that employs active

learning techniques to make model stealing attacks more ef-

fective. They used unannotated public data and made their

attack follow a natural distribution that cannot be detected by

a query distribution-based monitoring approach.

In general, model-based extraction attacks can achieve

high accuracy. In generating the input queries, even though

attackers may assume in-distribution datasets and out-of-

distribution datasets [61], they mostly focus on image-based

ML and datasets, and test on the common datasets, including

CIFAR [73] and MNIST [39]. Even with different learning

algorithms available, it is still hard to enable model stealing

with generic types of input queries. In addition, model-based

extraction attacks may fail, given the advances in different pro-

tection techniques, including adaptive misinformation, query

distribution detection, and so on. Next, we describe existing

works with such defenses.

3.4.2 Defender’s perspective

Existing works in this category mostly focus on two direc-

tions: (1) minimizing prediction information leakage, and (2)

adding cost and overhead to attacks.

In minimizing prediction information leakage, PRADA

[71] serves as the first proactive defense method. PRADA’s

defense is based on the pattern of the attacker’s query distri-

bution, such as query proximity. It analyzes the distribution

of consecutive queries and issues an alert when the query

distribution is abnormal. Users can choose to return incorrect

predictions, terminate queries, and so on. Since the data distri-

bution generated in natural life is significantly different from

the attacker’s training set, PRADA has shown excellent iden-

tification and defense capabilities against abnormal queries,

often achieving 100% accuracy. In a different approach, Pre-

diction Poison [97] proposed a model-agnostic defense. It

introduces targeted perturbations on posterior probabilities



and maximizes the angle deviation between the generated

gradient signal and the original gradient signal. With a 1-

2% accuracy loss, Prediction Poison reduces the accuracy of

the substitute model by up to 65%, and query efficiency by

13.53%. GRAD2 [87] is also a perturbation-based defense. It

uses gradient redirection to selectively alter the trajectory of

model-stealing attacks. GRAD2 achieves small utility losses

and low computational costs. In addition, adaptive misinfor-

mation [72] has been proposed to mislead model-stealing

attackers. If a model input is outside of a pre-defined distri-

bution, the predictions will be modified. Adaptive Misinfor-

mation maintains the high accuracy of the protected models

while reducing the accuracy of the attacker’s cloned model to

14.3%.

In adding cost and overhead to attacks, differential pri-

vacy [92, 99, 136] offers protection against model stealing at-

tacks by introducing privacy-preserving noise into the training

and inference processes of ML models. During ML training,

controlled noise to the data and gradients makes it difficult

for attackers to reconstruct a model. During ML inference, ad-

ditional noise is introduced to the model’s outputs, preventing

attackers from learning specific internal parameters. In theory,

this technique should significantly increase the complexity

of stealing the model’s architecture and parameters. How-

ever, empirical research conducted by Liu et al. [81] suggest

that while DP and similar methods are effective at protecting

the privacy of training data, their impact on model extraction

attacks remains uncertain.

In general, the above defense solutions can help mitigate

model-based extraction attacks. Through analyzing the dis-

tribution of input queries, these solutions can achieve a high

accuracy. The challenges are (1) attackers may craft input

queries that fit well into the pre-defined input categories, mak-

ing adaptive misinformation and obfuscation techniques inef-

fective; (2) an unknown object from a pre-defined category

may be incorrectly labeled as out-of-distribution category,

and experience low-accuracy inference results. For example,

attacks can query with unannotated public data [98] and do

not demonstrate obvious patterns to bypass PRADA [71].

Therefore, it is hard for defenders to define a complete and

accurate set of categories.

3.4.3 Findings

We have found that model-based extraction attacks have

become more automated and with high fidelity, with the devel-

opment of intelligent query agents [86]. However, the attacks

may not be practical on IoT devices. Even with the optimized

number of queries (e.g. 10k queries), the power consumption

of devices will see an observable increase [20], and defenders

may detect and terminate the attacker’s querying processes.

For both attacks and defenses, the performance of the pro-

posed solutions depends on the distribution of training data,

the algorithm in generating the input, and output pairs, the

number of queries, and the complexity of the victim models.

It is hard for these solutions to be generalized, even with the

large number of research papers available (we have only cov-

ered representative ones here). The effectiveness of the above

solutions, therefore, can only apply to a small scale of models.

Since both attacks and defenses in this category are not

specifically designed for IoT devices, we expect future re-

search to identify unique challenges in IoT-specific model-

based extraction security.

4 Evaluation

The goal of this section is to measure the gap between research

and practice in defending model extraction attacks. Specif-

ically, we aim to answer the following questions: (1) can

research projects be reproduced in practice? (2) are proposed

model extraction attacks and defenses effective in practice?

and (3) what are their computation complexity and power

consumption?

To obtain real-world ML models, we collected around 210K

Android Application Packages (APKs) from AndroZoo [21].

The APKs were collected from popular Android stores span-

ning the period from 2020 to the current date. We used Mod-

elXray [112] to filter out ML models from these APKs and

obtained 16.5K models in total. Since different apps may use

exactly the same models, we use hashes to identify the same

models and obtain 3K unique models after de-duplication.

The models come from different ML frameworks, and allow

us to perform evaluation on existing projects described later.

4.1 Reproducibility.

We first use reproducibility as a criterion to measure the gap

between research and practice in defending model extraction

attacks. We will investigate (1) whether a research project

is open source, (2) whether open-source projects can be re-

produced with the results, and (3) what the challenges are in

reproducing the projects.

Finding source code. We try three approaches: (1) go

through the paper and search for the provided code link, (2)

search paper title through Papers With Code [13], and (3)

reach out to the author’s team for code if the paper is newly

published. If none of them produces a result, we consider the

source code as not available.

The criteria for reproducibility. We consider a project as

not reproducible if we experience system/hardware incompat-

ibility while the system/hardware is not available anymore or

has lost maintenance. In other cases, there might be erroneous

code or documentation, or outdated library. We then allow

two graduate students majoring in cybersecurity to test the

code for a maximum of one week. If the code still fails to

produce the paper-reported results, we consider the project as

not reproducible.



Based on the above criteria, we statistically analyzed the ex-

isting papers, and summarized the results of open source and

reproducible projects in Figure 2. As the figure shows, app-

based attack and defense projects are the most reproducible

ones, while device-based and communication-based projects

have much lower percentages of being open source and re-

producible. Projects that are not reproducible often lack core

modules, have invalid links for downloading models or data,

or face compatibility issues with older package versions or

newer hardware requirements. The most challenging projects

to reproduce are those released more than five years ago.

0

2

4

6

8

10

12

14

App Device Communication Model

Attack Projects Attack Open Source Attack Reproducible

Defense Projects Defense Open Source Defense Reproducible

Figure 2: Open source and reproducible projects in attacks

and defenses.

4.2 Effectiveness of Model Extraction Attacks.

To understand whether existing model extraction attacks are

practical, for each threat model, we test and evaluate repre-

sentative projects (from those reproducible) with real world

applications. We consider a project representative if (i) it is

popular on Github and its method is shared by most projects

in the threat model, and (ii) it is the only reproducible project

in the threat model. This criteria applies to defense projects

as well.

4.2.1 App-based attack: ModelXray

ModelXray [105] is an app-based attack with diverse fea-

tures, including package decomposing, ML model and library

analysis, statistical data generation, and multi-task processing.

Results: We used our whole app collection to test Mod-

elXray in extracting model files from app packages. We used

the same criteria for plaintext model detection and obtained

the results in Figure 3. Astonishingly, the attack success rate

continues to rise even with heightened awareness and the

availability of more defenses. Overall, the success rates is

33.83% for unique models (after we de-duplicate models with

the same hashes), and 48.81% for all models, which are con-

sistent with those reported by ModelXray (34% to 76%). It

reveals that since the publication of ModelXray, the app-based

attack is still a critical issue—a wide range of apps still do

not protect their models at all.

0.15

0.25

0.35

0.45

0.55

0.65

0.75

2020 2021 2022 2023

All models After de-duplication

Figure 3: Success rate of ModelXray in the past four years.

Challenges: Relating this result to the app-based defenses

in Table 2, we hypothesize the lack of protection to the follow-

ing reasons: (1) the available protections are mostly vendor-

specific [17, 106], (2) the few research solutions focus on

TensorFlow [16], while our model collection shows only a

small portion (e.g., 7%) of models are pure TensorFlow mod-

els. Even worse, we found that research popular frameworks

(e.g., TensorFlow, PyTorch) have seen a decreased market

portion in the last four years, while new ML frameworks are

increasingly developed.

4.2.2 Device-based attack: ModelXtractor

ModelXtractor [105] uses Frida to extract ML models from

memory, when applications are running and loading ML mod-

els. ModelXtractor can extract plaintext models even if the

models have been encrypted several times before distributing

to the app store.

Results: ModelXtractor is tailored to extract models in

ProtoBuf (.pb, .pbtxt) and FlatBuffer (.tflite) formats. Despite

the large number of models we collected, we found only 27

unique models that are encrypted and in these two formats.

Since ModelXtractor requires a lot of manual effort in trigger-

ing the models, we opted to randomly select 10 models for

our experiments.

Challenges: We were not able to extract useful and com-

plete models due to the following reasons: apps cannot be

instrumented, or do not trigger the ML functions; some apps

require registration with phone numbers from certain coun-

tries that we could not obtain; banking apps require a local

bank account to trigger ML functionalities. Additionally, Mod-

elXtractor makes it hard to determine the start and end points

of model buffers in memory. It relies on keyword searching,

such as “TFL2" or “TFL3" as version numbers for TFLite

models. With the fast development of new ML frameworks,

ModelXtractor will see more difficulty in extracting models

from memory. In fact, Deng’s work [41] with source code

analysis on ML functions and program slicing can be a good

complement to ModelXtractor. However, Deng’s work does

not have open-source code available.



4.2.3 Comm-based attacks: DeepSniffer and DeepSteal

DeepSniffer [64] uses side-channel information, such as

memory and bus monitoring, to snoop ML model structures.

It functions during model executions and does not depend

on specialized hardware. DeepSteal [104] leverages memory

side-channel information to steal the model weight. It exploits

hardware fault vulnerabilities using a rowhammer attack.

Results: DeepSniffer requires model checkpoints in .ckpt

and .pth.tar formats, while DeepSteal requires PyTorch mod-

els in .pt format. With DeepSniffer, we successfully replicated

the results reported by the paper. However, when testing with

our real-world model checkpoints, DeepSniffer failed to infer

layer sequences due to incompatible log files. With DeepSteal,

we cannot run .pt models because only four types of hardware

architectures (outdated) are available.

Challenges: Besides the log incompatibility issue, Deep-

Sniffer requires retraining of predictors. The predictors may

vary from one device to another and can be affected by factors

such as obfuscation, trusted execution environments, model

conversion, and other encryption methods. Also, the process

of collecting memory access events, running the LSTM-CTC

model for sequence identification, analyzing memory access

patterns, and estimating layer dimensions could require non-

trivial computational resources and energy demands.

4.2.4 Model-based attack: ML-Doctor

ML-Doctor [81] provides the newest and complete tool

sets for model-based attacks. ML-Doctor assumes that (1)

attackers have knowledge of training data and can use in-

distribution data to perform attacks, and (2) target models

are in black-box, but the inference function is accessible to

attackers.

Results: ML-Doctor is designed to run Pytorch models in

.pt format. We found only 8 unique models in our real-world

model collection in this format. However, none of the 8 mod-

els could be loaded to ML-Doctor. We therefore repeated the

same setting as reported in the paper, and achieved accuracy

results ranging from 92% to 94%. However, the computa-

tional complexity of the model-stealing attack remains unde-

termined due to limited publicly available datasets. The study

by Liu et al. (2022) [81] suggests that dataset complexity

influences generalization, thereby affecting the computational

cost of model-stealing techniques. Overall, the analysis indi-

cates that the extraction attack is effective, and the results are

consistent with those reported in the paper but it fails to cover

broader validation across various ML models.

Challenges: ML-Doctor reveals that model-based defenses

have been primarily theoretical rather than extending to real-

world models. ML-Doctor may experience false success is-

sues, meaning that the attack accuracy is not equal to the

quality of capturing the utility or the specialized capabili-

ties of the target models. This can happen when the target

0

0.5

1

1.5

2

2.5

3

1MB 11MB 89MB 530MB 1340MB

PC

AES Encryption AES Decryption

0

2

4

6

8

10

1MB 11MB 89MB 530MB 1340MB

Phone

AES Encryption AES Decryption

Figure 4: Execution time of encrypting and decrypting ML

models with AES.

model randomly assigns labels to input data that are out of a

pre-defined distribution.

While model extraction attacks offer ambiguous benefits, at-

tackers face the growing sophistication of defensive strategies.

Clues for identifying malicious queries, such as frequency,

location, and data similarity, can be easily spotted and neu-

tralized by defenders.

4.3 Effectiveness of Model Extraction Defenses

4.3.1 App-based defense: AES

App-based defenses, as reported in Table 2, use similar AES

libraries. We select a lightweight package [16] using AES that

allows us to quickly encrypt and decrypt TensorFlow model

files.

Results: To assess the practicality of AES encryption, we

compared performance on a desktop (Intel i5-12400, 64GB

RAM) and a mobile device (Pixel 6) using various file sizes,

as shown in Figure 4. We randomly selected five real-world

model files in different sizes and recorded the encryption/de-

cryption time. On Pixel 6, encrypting and decrypting a 1MB

file took only 0.05 and 0.02 seconds, respectively. With the av-

erage APK size being around 2MB, encryption/decryption can

be completed in approximately 0.1 seconds, demonstrating

fast and practical AES implementation for on-device security.

Challenges: While encryption is effective in protecting

ML models during distribution, it becomes limited when the

model is loaded into memory for inference. Attackers who

can access the system’s memory may extract the model in

decrypted format. To address this challenge, various new en-

cryption techniques are continually emerging. The new meth-

ods aim to offer an additional layer of protection, even when

the model is loaded into memory for operations [65].



4.3.2 Device and comm-based defense: ShadowNet

ShadowNet [111] is selected due to its support for Trusted

Execution Environment (TEE) to protect model privacy and

uses hardware acceleration to speed up the performance of on-

device ML. ShadowNet secures non-linear layers in TEE and

runs linear layers in GPU. It applies a linear transformation to

the weight data sent between TEE and GPU. Other works use

similar techniques but do not protect model weights [117], or

lack the support for GPU acceleration.

Results: ShadowNet supports TFLite and Darknet frame-

works to run in TEE-emulated mode. It also offers a model-

transforming pipeline that transforms models into ShadowNet-

enabled models. We were able to reproduce the results of

ShadowNet using the same models as used in the paper, in-

cluding MobileNet, AlexNet and MiniVGG. The amount of

manual effort in setting up ShadowNet is huge, including (1)

model preparation with Keras API, (2) choosing an obfusca-

tion scheme on a model, (3) splitting model based on a set of

rules, (4) generating model weights for the TEE part, and (5)

writing the client application and trusted application for the

model with ShadowNet libraries. We were not able to test our

collected real-world models. According to the documentation,

both CNN and RNN models in TFLite models from Android

can be seamlessly integrated.

Challenges: The amount of effort in using ShadowNet is

more than expected. The steps in transforming models to

ShadowNet-enabled models prevent ShadowNet’s wide adop-

tion. In addition, ShadowNet’s TEE-enabled mode is only

supported on TFLite, while models from other ML frame-

works will need to be transformed or even compressed, which

will reduce the original models’ accuracy. ShadowNet’s pro-

totype was tested on the Hikey board 960, while the other

types of hardware may not be compatible.

4.3.3 Model-based defenses: Prediction-Poison and

Adaptive Misinformation

Prediction-Poison(PP) [97] is selected due to its good per-

formance on a variety of models and its effectiveness in poi-

soning the training objectives of the attacker by perturbing

the predictions. Adaptive Misinformation (AM) [72] delib-

erately introduces inaccuracies for queries identified as Out-

Of-Distribution (OOD) while ensuring that In-Distribution

(ID) queries receive correct predictions. Because a significant

portion of the adversary’s queries fall into the OOD category,

the mislabeled data leads the adversary to train low-quality

student models with poor accuracy. Other defenses [71] will

incur a slight delay of attack by increasing the number of

queries and achieving low accuracy in protection.

Results: Both defenses aim to reduce the accuracy of the

adversary’s student model with a minimum impact on the

defender’s model accuracy. We used the Knockoff Nets attack

strategy to evaluate the [96] Prediction-Poison (PP) [97] and

Adaptive Misinformation (AM) [72]. Both defenses are lim-

ited to Pytorch models stored in .pth/.pt format. We examined

the results on a surrogate dataset for undefended victim mod-

els provided by the author like MNIST, CIFAR10, ResNet-18,

LeNET, and CUB200. Our investigation revealed that PP has

overall lower clone accuracy whereas AM has lower com-

putational overhead compared to PP. Additionally, both AM

and PP have minimal defender accuracy loss (< 1% - 0.5%).

However, we encountered errors while loading the other ex-

tracted models stored in .pt/.pth formats. The code will ask

for an additional log file that was not available.

Challenges: Compared to previous works, PP and AM are

effective techniques. But with an increase in the query bud-

get and optimizing parameters, they may not scale well on

resource-intensive devices or with large complex target mod-

els. The introduced computational overhead and the slowing

down of model inference tasks could make them less practi-

cal in wide adoption. Additionally, an adaptive attacker may

bypass the detection of misinformation.

In summary, the transition from open-source projects to

practice requires a comprehensive examination of various

factors. We have examined the effectiveness of attacks and

defenses from several representative projects. Later work in

evaluating the runtime performance, the required resources,

and the deployment effort should be warranted.

4.4 Other Metrics

4.4.1 Computation complexity

Computation complexity is an important metric in determin-

ing attack feasibility in victim devices and defense perfor-

mance. We analyze the computation complexity of the afore-

mentioned projects which require access to victim devices.

DeepSniffer’s complexity can be represented as O(k +
f (n)+b∗n), where k is the number of kernel classes, f (n) is

the complexity function of the sequence model, and (b∗n) rep-

resents the search algorithm with the width (b) and the length

of the sequence (n). DeepSteal reduces the search space of

model weights W with a rowhammer attack and has an overall

time complexity of O(RowHammerAttacks) + O(W +T ∗B),
where (W ) is the leaked weight bits, and (T ∗B) is the number

of training iterations and batches. ML-Doctor’s complexity

equals training a student model, which is O(m∗d ∗ e), where

m is the number of queries, d is the combined size of the

network (total number of weights and biases), and e is the

number of epochs.

The complexity of AES depends on key size, block size,

number of rounds, and model size. The former three factors

are usually fixed numbers (e.g., 128, 256), so the complexity

becomes O(m) where m is the model size. ShadowNet’s com-

plexity can be represented as O(T EE + r ∗ l), which depends

on the TEE implementation, the number of linear layers l

in target ML models, and a constant number r as the trans-



formation ratio. AM and PP train a process to minimize the

worst-case loss over perturbations and the complexity equals

O(g∗h), where O(g) is the inner optimization in finding the

worst-case perturbation, and O(h) is the outer optimization in

updating the model parameters.

4.4.2 Power consumption

Energy efficiency has been overlooked in existing model ex-

traction attacks and defenses, although these efforts have con-

sidered efficient algorithms or code optimizations to acceler-

ate execution or reduce computation overhead. We measure

the power consumption of different ML model extraction

attacks and defenses, using Intel PCM. Some methods are ig-

nored because they do not need access to victim devices, such

as ModelXray, or require a specific hardware architecture

(e.g., DeepSteal) or device (e.g., ShadowNet) that are unavail-

able. Table 3 shows the power consumption in Joules before

and after attacks or defenses. Specifically, AES consumes

significantly less power compared with others. AM is more

energy efficient compared to PP. The average consumption is

around 30 Joules.

Table 3: Power consumption of different projects.

Project Model Before (J) After (J)

DeepSniffer ResNet-18 0.45 29.98

ML-Doctor a simple CNN 0.70 33.81

AES ResNet-18 0.41 3.28

PP LeNet 0.42 33.47

AM LeNet 0.77 29.24

5 Future Research Directions

Multi-user sharing on-device ML. In this paper, we focus on

on-device ML models that are used by a single user. However,

there are other cases where an IoT application with on-device

ML is used by multiple users. For example, a smart home

with different IoT devices can be shared by home residents

[135]. Another example is a healthcare service using an IoT

device that can be shared among multiple patients or staff

in the hospital [76]. Sharing on-device ML may raise new

security challenges which may lead to privacy violations for

the app users if an attacker is one of the users who share

the model. In this case, the attacker may try to attack the

model to collect sensitive information about the model users

(patients, for example). New defense techniques are needed if

on-device ML is used in a multi-user environment to maintain

the security and privacy of the users.

On-device ML in Federated Learning. In some on-device

ML applications, the future updates for on-device ML models

depend on locally trained models by different users to improve

the accuracy of the model results. To make updating the ML

model possible, federated learning (FL) is usually used to

enable model training and inference to occur directly on the

device [125]. FL regularly collects general information about

all locally trained models to be used in the future update

from the ML-provider server. Model extraction from the on-

device ML apps by an untrusted user is still possible in a large

number of IoT apps. More work is needed with the help of

techniques like Multi-party Computation (MPC) to prevent

such attacks on the on-device ML apps. We suggested using

MPC since MPC plays an important role in privacy preserving

when multiple-party involved in the system.

On-device models with early exit. Early exit policies

and the architecture in ML allow large deep neural network

(DNN) models to run on resource-constrained devices. This

improves ML inference performance and data transmission

efficiency. Existing works have partitioned ML models to

introduce early exits across multiple systems [25, 52]. This

includes transformer-based neural networks [24, 126, 139].

However, early exit models suffer from model extraction at-

tacks as well. For example, model-based attacks can query

the early-exit model with different types of input data and use

the input, output pairs to infer the exit places and possible

parameters. Existing efforts have been proposed to fingerprint

early-exit models via inference time and have shown unique-

ness and robustness on different model architectures [43].

In addition, because early exit policies are data-dependent,

data patterns can be used to reveal model architecture or even

model parameters. To defend against such attacks, we sug-

gest future research to explore shuffling, randomization, and

perturbation-based techniques [82], for example, exit point

randomization, inference result perturbation, and inference

with noises. We expect possible performance loss, including

decreased inference speed and accuracy. We suggest follow-

ing existing studies [43] to balance between model privacy

and accuracy.

Cryptography-based defenses. Cryptography-based de-

fenses provide a strong mathematical back-end to secure ML

models from various attacks. For example, Homomorphic

encryption (HE) [19, 30, 102] has been explored to ensure

the privacy of both ML models and their input data. Even

though the state-of-the-art HE and MPC algorithms are still

too slow to use in practice, existing efforts have been ex-

plored to reduce the performance overhead. These include

Partially Homomorphic Encryption (PHE) schemes for the

reduced computation complexity, and optimized libraries to

help mitigate the performance overhead. For example, Mi-

crosoft’s SEAL (Simple Encrypted Arithmetic Library) [36]

and IBM’s HElib [53] provide optimized implementations for

various applications. We suggest future research to explore

more efficient Cryptography-based solutions to protect ML

models from stealing, including AES, HE, and MPC.

ML models using on-device GPUs. GPUs are increasingly

adopted by devices to accelerate ML tasks. With the advances

in LLM, we expect to see more adoption of on-device GPUs

in the future. However, modern GPUs lack memory protec-

tion support at the equivalent level of CPUs and can suffer



from a range of security attacks [38], including model data

reconstruction from GPU dumps. We suggest future research

to investigate securing on-device accelerators from model ex-

traction attacks. For example, in general-purpose computers,

GPUShield [75] provides a hardware-software cooperative

region-based bounds-checking mechanism. It improves GPU

memory safety by assigning a random unique ID to each

buffer and storing individual bounds in the global memory.

For embedded devices, D-Box [89] provides a compartmen-

talization solution to different tasks sharing access to DMA,

allowing developers to create security policies flexibly. We be-

lieve both solutions would be interesting in isolating different

ML tasks sharing the same on-device GPUs.

6 Conclusion

In this paper, we have provided a systematic review of knowl-

edge concerning on-device ML model extraction attacks and

defenses. To facilitate clear understanding, we have defined

four types of threat models for both attacks and defenses. Our

findings reveal that while certain attacks may not be practi-

cal or scalable, the corresponding defense solutions are often

constrained in their deployment as well. Real-world ML im-

plementation can be complex even in an on-device setting.

Therefore, we have identified future research directions aimed

at preventing complex model extraction attacks.

Acknowledgement

We thank the anonymous reviewers for their helpful feed-
back and time. This work was partially supported by the US
National Science Foundation (Awards: 2039606, 2219920,
2327427) and Microsoft. We thank AndroZoo for providing
the Android applications. The views expressed are those of
the authors only, not of the funding agencies.

References

[1] A brief guide to mobile AI chips. https:

//www.theverge.com/2017/10/19/16502538/

mobile-ai-chips-apple-google-huawei-qualcomm.

[2] APKTool - A tool for reverse engineering Android APK files. https:

//github.com/iBotPeaches/Apktool.

[3] CacheAudit - A Tool for the Static Analysis of Cache Side Channels.

https://github.com/IAIK/CacheAudit.

[4] ChipWhisperer - An Open-Source Toolchain for Hardware Secu-

rity Research. https://chipwhisperer.readthedocs.io/en/

latest/.

[5] Dynamic instrumentation toolkit for developers, reverse-engineers,

and security researchers. https://frida.re/.

[6] GNU Debugger (GDB). https://www.gnu.org/software/gdb/.

[7] IDA Pro - The IDA Disassembler and Debugger. https://www.

hex-rays.com/products/ida/.

[8] IoT Development. Top 15 Internet of Things Tools and Plat-

forms in 2023. https://www.sam-solutions.com/blog/

iot-development/.

[9] jadx - DEX to Java decompiler. https://github.com/skylot/

jadx.

[10] Mace: Mobile ai compute engine. mace/tools/python/encrypt.

pyatmasterÂůXiaoMi/maceÂůGitHub.

[11] MemFetch - Memory Acquisition and Analysis Tool. https://

github.com/504ensicsLabs/Memfetch.

[12] MLC LLM. https://mlc.ai/mlc-llm/#android.

[13] Paper With Code. https://paperswithcode.com/.

[14] SCA-Lab - Side-Channel Analysis Laboratory. https://github.

com/Riscure/SCA-Lab.

[15] Strip visible string in ncnn. https://github.com/Tencent/ncnn/

blob/be054aacb0cfac3725507d220c417e138803ebab/docs/

how-to-use-and-FAQ/use-ncnn-with-alexnet.md.

[16] TFSecured. https://github.com/dneprDroid/tfsecured.

seems for ios.

[17] Mindspore. https://github.com/mindspore-ai/mindspore/

tree/08085e7d6a63fa08c548b5006a3297c08ff88def/

mindspore/lite/tools, 2020.

[18] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential

privacy. In Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security, pages 308–318, 2016.

[19] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A

survey on homomorphic encryption schemes: Theory and implemen-

tation. ACM Computing Surveys (Csur), 51(4):1–35, 2018.

[20] Anshul Agarwal, Vitobha Munigala, and Krithi Ramamritham. Ob-

servability: A principled approach to provisioning sensors in buildings.

In Proceedings of the 3rd ACM International Conference on Systems

for Energy-Efficient Built Environments, pages 197–206, 2016.

[21] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves

Le Traon. Androzoo: Collecting millions of android apps for the

research community. In Proceedings of the 13th International Con-

ference on Mining Software Repositories, MSR ’16, pages 468–471,

New York, NY, USA, 2016. ACM.

[22] Leonardo Babun, Z Berkay Celik, Patrick McDaniel, and A Selcuk

Uluagac. Real-time analysis of privacy-(un) aware iot applications. In

Privacy Enhancing Technologies Symposium (PETS) 2021, number 1,

2021.

[23] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent

advances in adversarial training for adversarial robustness. arXiv

preprint arXiv:2102.01356, 2021.

[24] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis. Multi-

exit vision transformer for dynamic inference. arXiv preprint

arXiv:2106.15183, 2021.

[25] Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun

Wang, and Yong Zhang. Auto-split: A General Framework of Collab-

orative Edge-Cloud AI. In Proceedings of the 27th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, pages 2543–

2553, 2021.

[26] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek.

{CSI}{NN}: Reverse engineering of neural network architectures

through electromagnetic side channel. In 28th USENIX Security

Symposium (USENIX Security 19), pages 515–532, 2019.

[27] Sebastian P Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian

Riedhammer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel

Stapf, and Christian Weinert. Offline model guard: Secure and private

ml on mobile devices. In 2020 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 460–465. IEEE, 2020.

[28] BayesWitnesses. m2cgen: A lightweight library for transpiling

trained statistical models into native code. https://github.com/

BayesWitnesses/m2cgen#supported-models, 2022.

[29] Alessandro Bellini, Emanuele Bellini, Massimo Bertini, Doaa

Almhaithawi, and Stefano Cuomo. Multi-party computation for pri-

vacy and security in machine learning: a practical review. In 2023

IEEE International Conference on Cyber Security and Resilience

(CSR), pages 174–179. IEEE, 2023.

[30] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir

Wierzynski. nGraph-HE2: A high-throughput framework for neural

network inference on encrypted data. In Proceedings of the 7th



ACM Workshop on Encrypted Computing & Applied Homomorphic

Cryptography, pages 45–56, 2019.

[31] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza

Sadeghi, and Emmanuel Stapf. Sanctuary: Arming trustzone with

user-space enclaves. Proceedings 2019 Network and Distributed

System Security Symposium, 2019.

[32] Cesar Federico Caiafa, Jordi Solé-Casals, Pere Marti-Puig, Sun Zhe,

and Toshihisa Tanaka. Decomposition methods for machine learn-

ing with small, incomplete or noisy datasets. Applied Sciences,

10(23):8481, 2020.

[33] Yinzhi Cao, Alexander Fangxiao Yu, Andrew Aday, Eric Stahl, Jon

Merwine, and Junfeng Yang. Efficient repair of polluted machine

learning systems via causal unlearning. In Proceedings of the 2018

on Asia conference on computer and communications security, pages

735–747, 2018.

[34] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,

Gang Tan, Patrick McDaniel, and A Selcuk Uluagac. Sensitive in-

formation tracking in commodity {IoT}. In 27th USENIX Security

Symposium (USENIX Security 18), pages 1687–1704, 2018.

[35] Deyan Chen and Hong Zhao. Data security and privacy protection

issues in cloud computing. In 2012 international conference on

computer science and electronics engineering, volume 1, pages 647–

651. IEEE, 2012.

[36] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arith-

metic library-SEAL v2. 1. In Financial Cryptography and Data

Security: FC 2017 International Workshops, WAHC, BITCOIN, VOT-

ING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected

Papers 21, pages 3–18. Springer, 2017.

[37] Yoon-Ho Choi, Peng Liu, Zitong Shang, Haizhou Wang, Zhilong

Wang, Lan Zhang, Junwei Zhou, and Qingtian Zou. Using deep learn-

ing to solve computer security challenges: a survey. Cybersecurity,

3(1):1–32, 2020.

[38] Cristina Cismaru, Ruxandra Chiroiu Trandafir, and Emil-Ioan Slusan-

schi. A study of gpu memory vulnerabilities. In 2023 22nd RoEduNet

Conference: Networking in Education and Research (RoEduNet),

pages 1–9. IEEE, 2023.

[39] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre

Van Schaik. Emnist: Extending mnist to handwritten letters. In 2017

international joint conference on neural networks (IJCNN), pages

2921–2926. IEEE, 2017.

[40] Xiangfeng Dai, Irena Spasić, Bradley Meyer, Samuel Chapman, and

Frederic Andres. Machine learning on mobile: An on-device inference

app for skin cancer detection. In 2019 fourth international conference

on fog and mobile edge computing (FMEC), pages 301–305. IEEE,

2019.

[41] Zizhuang Deng, Kai Chen, Guozhu Meng, Xiaodong Zhang, Ke Xu,

and Yao Cheng. Understanding real-world threats to deep learning

models in android apps. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security, pages 785–

799, 2022.

[42] Marjolein Dijkstra and Erik Luijten. From predictive modelling to

machine learning and reverse engineering of colloidal self-assembly.

Nature materials, 20(6):762–773, 2021.

[43] Tian Dong, Han Qiu, Tianwei Zhang, Jiwei Li, Hewu Li, and Jialiang

Lu. Fingerprinting multi-exit deep neural network models via infer-

ence time. arXiv preprint arXiv:2110.03175, 2021.

[44] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E Balas.

Stealing neural networks via timing side channels. arXiv preprint

arXiv:1812.11720, 2018.

[45] Jan-Erik Ekberg, Kari Kostiainen, and Nadarajah Asokan. Trusted

execution environments on mobile devices. In Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security,

pages 1497–1498, 2013.

[46] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local

model poisoning attacks to {Byzantine-Robust} federated learning.

In 29th USENIX security symposium (USENIX Security 20), pages

1605–1622, 2020.

[47] Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer, and PN Sug-

anthan. Ensemble deep learning: A review. Engineering Applications

of Artificial Intelligence, 115:105151, 2022.

[48] M. Garcia-Bosque, G. Díez-Señorans, C. Sánchez-Azqueta, and

S. Celma. Introduction to physically unclonable fuctions: Properties

and applications. In 2020 European Conference on Circuit Theory

and Design (ECCTD), pages 1–4, 2020.

[49] Ian Goodfellow, Nicolas Papernot, Sandy Huang, Yan Duan, Pieter

Abbeel, and Jack Clark. Attacking machine learning with adversarial

examples. OpenAI Blog, 24, 2017.

[50] Jiyang Guan, Jian Liang, and Ran He. Are you stealing my model?

sample correlation for fingerprinting deep neural networks. Advances

in Neural Information Processing Systems, 35:36571–36584, 2022.

[51] Trung Ha, Tran Khanh Dang, Hieu Le, and Tuan Anh Truong. Security

and privacy issues in deep learning: a brief review. SN Computer

Science, 1(5):253, 2020.

[52] Amirhossein Haddadpour, Keivan Navaie, Halim Yanikomeroglu, and

H. Vincent Poor. Adaptive Federated Learning in Resource Con-

strained Edge Computing Systems. IEEE Transactions on Communi-

cations, 68(11):6875–6889, 2020.

[53] Shai Halevi and Victor Shoup. Design and implementation of a

homomorphic-encryption library. IBM Research (Manuscript), 6(12-

15):8–36, 2013.

[54] Shigeyuki Hamori, Minami Kawai, Takahiro Kume, Yuji Murakami,

and Chikara Watanabe. Ensemble learning or deep learning? applica-

tion to default risk analysis. Journal of Risk and Financial Manage-

ment, 11(1):12, 2018.

[55] Seung-Kyun Han and Jinsoo Jang. Mytee: Own the trusted execution

environment on embedded devices. In NDSS, 2023.

[56] Song Han, Huizi Mao, and William J Dally. Deep compression:

Compressing deep neural networks with pruning, trained quantization

and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[57] Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and Srinivas De-

vadas. Physical unclonable functions and applications: A tutorial.

Proceedings of the IEEE, 102(8):1126–1141, 2014.

[58] Simon Heron. Advanced encryption standard (aes). Network Security,

2009(12):8–12, 2009.

[59] Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya, Dana Dachman-

Soled, and Tudor Dumitraş. How to 0wn nas in your spare time. arXiv

preprint arXiv:2002.06776, 2020.

[60] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans

Locke, Ian Rackow, Kevin Kulda, Dana Dachman-Soled, and Tu-

dor Dumitraş. Security analysis of deep neural networks operat-

ing in the presence of cache side-channel attacks. arXiv preprint

arXiv:1810.03487, 2018.

[61] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized

odin: Detecting out-of-distribution image without learning from out-

of-distribution data. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 10951–10960, 2020.

[62] Hailong Hu and Jun Pang. Model extraction and defenses on genera-

tive adversarial networks. arXiv preprint arXiv:2101.02069, 2021.

[63] Han Hu, Yujin Huang, Qiuyuan Chen, Terry Yue zhuo, and Chunyang

Chen. A first look at on-device models in ios apps. ACM Transactions

on Software Engineering and Methodology, 2023.

[64] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji,

Xinfeng Xie, Yufei Ding, Chang Liu, Timothy Sherwood, et al. Deep-

sniffer: A dnn model extraction framework based on learning ar-

chitectural hints. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages

and Operating Systems, pages 385–399, 2020.

[65] Jiayi Hua, Yuanchun Li, and Haoyu Wang. Mmguard: Automatically

protecting on-device deep learning models in android apps. In 2021

IEEE Security and Privacy Workshops (SPW), pages 71–77. IEEE,

2021.

[66] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh.

Mgx: Near-zero overhead memory protection with an application to

secure dnn acceleration. CoRR, pages 1–14, 2020.



[67] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse engineering

convolutional neural networks through side-channel information leaks.

In Proceedings of the 55th Annual Design Automation Conference,

pages 1–6, 2018.

[68] Yujin Huang and Chunyang Chen. Smart app attack: hacking deep

learning models in android apps. IEEE Transactions on Information

Forensics and Security, 17:1827–1840, 2022.

[69] Apple Inc. Core ML. https://developer.apple.com/

documentation/coreml.

[70] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure

outsourced matrix computation and application to neural networks.

In Proceedings of the 2018 ACM SIGSAC conference on computer

and communications security, pages 1209–1222, 2018.

[71] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada:

protecting against dnn model stealing attacks. In 2019 IEEE Euro-

pean Symposium on Security and Privacy (EuroS&P), pages 512–527.

IEEE, 2019.

[72] Sanjay Kariyappa and Moinuddin K Qureshi. Defending against

model stealing attacks with adaptive misinformation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2020.

[73] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief net-

works on cifar-10. Unpublished manuscript, 40(7):1–9, 2010.

[74] Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning

attacks on pre-trained models. arXiv preprint arXiv:2004.06660,

2020.

[75] Jaewon Lee, Yonghae Kim, Jiashen Cao, Euna Kim, Jaekyu Lee, and

Hyesoon Kim. Securing gpu via region-based bounds checking. In

Proceedings of the 49th Annual International Symposium on Com-

puter Architecture, pages 27–41, 2022.

[76] Yong Lee and Goo Yeon Lee. Security management suitable for life-

cycle of personal information in multi-user iot environment. Sensors,

21(22):7592, 2021.

[77] Jingtao Li, Zhezhi He, Adnan Siraj Rakin, Deliang Fan, and Chaitali

Chakrabarti. Neurobfuscator: A full-stack obfuscation tool to mitigate

neural architecture stealing. In 2021 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), pages 248–258.

IEEE, 2021.

[78] Lin Li and Michael Spratling. Data augmentation alone can improve

adversarial training. arXiv preprint arXiv:2301.09879, 2023.

[79] Gaoyang Liu, Shijie Wang, Borui Wan, Zekun Wang, and Chen Wang.

Ml-stealer: Stealing prediction functionality of machine learning mod-

els with mere black-box access. In 2021 IEEE 20th International

Conference on Trust, Security and Privacy in Computing and Com-

munications (TrustCom), pages 532–539. IEEE, 2021.

[80] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang,

Michael Backes, Emiliano De Cristofaro, Mario Fritz, and Yang Zhang.

ML-Doctor: Holistic risk assessment of inference attacks against ma-

chine learning models. In 31st USENIX Security Symposium (USENIX

Security 22), pages 4525–4542, Boston, MA, August 2022. USENIX

Association.

[81] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang,

Michael Backes, Emiliano De Cristofaro, Mario Fritz, and Yang Zhang.

{ML-Doctor}: Holistic risk assessment of inference attacks against

machine learning models. In 31st USENIX Security Symposium

(USENIX Security 22), pages 4525–4542, 2022.

[82] Yuntao Liu, Dana Dachman-Soled, and Ankur Srivastava. Mitigating

reverse engineering attacks on deep neural networks. In 2019 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pages 657–

662. IEEE, 2019.

[83] Yuntao Liu and Ankur Srivastava. Ganred: Gan-based reverse engi-

neering of dnns via cache side-channel. In Proceedings of the 2020

ACM SIGSAC Conference on Cloud Computing Security Workshop,

pages 41–52, 2020.

[84] Rundong Luo, Yifei Wang, and Yisen Wang. Rethinking the effect of

data augmentation in adversarial contrastive learning. arXiv preprint

arXiv:2303.01289, 2023.

[85] Yukui Luo, Shijin Duan, Cheng Gongye, Yunsi Fei, and Xiaolin Xu.

Nnrearch: A tensor program scheduling framework against neural

network architecture reverse engineering. In 2022 IEEE 30th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 1–9. IEEE, 2022.

[86] Chen Ma, Li Chen, and Jun-Hai Yong. Simulating unknown target

models for query-efficient black-box attacks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 11835–11844, 2021.

[87] Mantas Mazeika, Bo Li, and David Forsyth. How to steer your ad-

versary: Targeted and efficient model stealing defenses with gradient

redirection. In International Conference on Machine Learning, pages

15241–15254. PMLR, 2022.

[88] K Meenakshi and G Maragatham. A review on security attacks

and protective strategies of machine learning. Emerging Trends in

Computing and Expert Technology, pages 1076–1087, 2020.

[89] Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda, and Long

Lu. D-Box: DMA-enabled Compartmentalization for Embedded

Applications. In The Network and Distributed System Security (NDSS)

2022, 2022.

[90] MindsDB. MindsDB: Abstracting Machine Learning Mod-

els as Virtual Tables (AI-Tables) for SQL Interactions.

https://mindsdb.com/?utm_medium=referral&utm_source=

medium&utm_campaign=mlflow+article+2022-03, Year the

resource was accessed. 2022.

[91] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris

Demetriou, Ilias Leontiadis, Andrea Cavallaro, and Hamed Haddadi.

Darknetz: towards model privacy at the edge using trusted execution

environments. In Proceedings of the 18th International Conference

on Mobile Systems, Applications, and Services, pages 161–174, 2020.

[92] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot,

and Nicholas Carlin. Adversary instantiation: Lower bounds for

differentially private machine learning. In 2021 IEEE Symposium on

security and privacy (SP), pages 866–882. IEEE, 2021.

[93] Mario Noseda, Lea Zimmerli, Tobias Schläpfer, and Andreas Rüst.

Performance analysis of secure elements for iot. IoT, 3(1):1–28, 2021.

[94] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards reverse-

engineering black-box neural networks. Explainable AI: Interpreting,

Explaining and Visualizing Deep Learning, pages 121–144, 2019.

[95] Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. I know what you

trained last summer: A survey on stealing machine learning models

and defences. ACM Computing Surveys, 55, 04 2023.

[96] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff

nets: Stealing functionality of black-box models. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4954–4963, 2019.

[97] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction

poisoning: Towards defenses against dnn model stealing attacks. arXiv

preprint arXiv:1906.10908, 2019.

[98] Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish She-

vade, and Vinod Ganapathy. Activethief: Model extraction using

active learning and unannotated public data. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 34, pages 865–872,

2020.

[99] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow,

and Kunal Talwar. Semi-supervised knowledge transfer for deep

learning from private training data. arXiv preprint arXiv:1610.05755,

2016.

[100] Seetal Potluri and Aydin Aysu. Stealing neural network models

through the scan chain: A new threat for ml hardware. In 2021

IEEE/ACM International Conference On Computer Aided Design

(ICCAD), pages 1–8. IEEE, 2021.

[101] Arun K Pujari. Data mining techniques. Universities press, 2001.

[102] Bernardo Pulido-Gaytan, Andrei Tchernykh, Jorge M Cortés-

Mendoza, Mikhail Babenko, Gleb Radchenko, Arutyun Avetisyan,

and Alexander Yu Drozdov. Privacy-preserving neural networks with

homomorphic encryption: C hallenges and opportunities. Peer-to-Peer

Networking and Applications, 14(3):1666–1691, 2021.



[103] Pytorch. Pytorch Mobile. https://pytorch.org/mobile/home/.

[104] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and

Deliang Fan. Deepsteal: Advanced model extractions leveraging

efficient weight stealing in memories. In 2022 IEEE Symposium on

Security and Privacy (SP), pages 1157–1174, 2022.

[105] RiS3-Lab. ModelXRay: On-device Machine Learning Model An-

alyzer and Extractor for Android Apps. https://github.com/

RiS3-Lab/ModelXRay/blob/main/modelxray.py.

[106] Samsung. Knox ML Encryption Tool. https://docs.samsungknox.

com/dev/knox-sdk/ml-protection/model-protection-tool.

htm.

[107] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.

Membership inference attacks against machine learning models. In

2017 IEEE symposium on security and privacy (SP), pages 3–18.

IEEE, 2017.

[108] Manli Shu, Yu Shen, Ming C Lin, and Tom Goldstein. Adversarial

differentiable data augmentation for autonomous systems. In 2021

IEEE International Conference on Robotics and Automation (ICRA),

pages 14069–14075. IEEE, 2021.

[109] François-Xavier Standaert. Introduction to side-channel attacks. Se-

cure integrated circuits and systems, pages 27–42, 2010.

[110] Lizhi Sun, Shuocheng Wang, Hao Wu, Yuhang Gong, Fengyuan Xu,

Yunxin Liu, Hao Han, and Sheng Zhong. Leap: Trustzone based

developer-friendly tee for intelligent mobile apps. IEEE Transactions

on Mobile Computing, 2022.

[111] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowd-

hury, Long Lu, and Somesh Jha. Shadownet: A secure and efficient

on-device model inference system for convolutional neural networks.

In 2023 IEEE Symposium on Security and Privacy (SP), pages 1489–

1505. IEEE Computer Society, 2022.

[112] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your

weight (s): A large-scale study on insufficient machine learning model

protection in mobile apps. In 30th USENIX Security Symposium

(USENIX Security 21), pages 1955–1972, 2021.

[113] Fnu Suya, Saeed Mahloujifar, Anshuman Suri, David Evans, and Yuan

Tian. Model-targeted poisoning attacks with provable convergence. In

International Conference on Machine Learning, pages 10000–10010.

PMLR, 2021.

[114] Nazli Tekin, Ahmet Aris, Abbas Acar, Selcuk Uluagac, and Vehbi Ca-

gri Gungor. A review of on-device machine learning for iot: An

energy perspective. Ad Hoc Networks, 153:103348, 2024.

[115] Nazlı Tekin, Abbas Acar, Ahmet Arış, Selcuk Uluagac, and Vehbi

Gungor. Energy consumption of on-device machine learning models

for iot intrusion detection. Internet of Things, 21:100670, 12 2022.

[116] TensorFlow. TensorFlow Lite. https://www.tensorflow.org/

lite.

[117] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private

execution of neural networks in trusted hardware. arXiv preprint

arXiv:1806.03287, 2018.

[118] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas

Ristenpart. Stealing machine learning models via prediction apis. In

25th {USENIX} Security Symposium ({USENIX} Security 16), pages

601–618, 2016.

[119] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Pa-

pernot. Data-free model extraction. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 4771–

4780, 2021.

[120] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted

execution environments on gpus. In OSDI, pages 681–696, 2018.

[121] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in

machine learning. In 2018 IEEE symposium on security and privacy

(SP), pages 36–52. IEEE, 2018.

[122] Xingbin Wang, Rui Hou, Yifan Zhu, Jun Zhang, and Dan Meng. Npu-

fort: A secure architecture of dnn accelerator against model inversion

attack. In Proceedings of the 16th ACM International Conference on

Computing Frontiers, pages 190–196, 2019.

[123] Zhendong Wang, Xiaoming Zeng, Xulong Tang, Danfeng Zhang, Xing

Hu, and Yang Hu. Demystifying arch-hints for model extraction: An

attack in unified memory system. arXiv preprint arXiv:2208.13720,

2022.

[124] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Ab-

dullah Al Faruque. Leaky dnn: Stealing deep-learning model secret

with gpu context-switching side-channel. In 2020 50th Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks

(DSN), pages 125–137. IEEE, 2020.

[125] Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and

Wensheng Zhang. A survey on federated learning: challenges and

applications. International Journal of Machine Learning and Cyber-

netics, 14(2):513–535, 2023.

[126] Wang Wenjian, Xiao Qian, Xue Jun, and Hu Zhikun. DynamicSleep-

Net: a multi-exit neural network with adaptive inference time for sleep

stage classification. Frontiers in Physiology, 14:1171467, 2023.

[127] Wikipedia contributors. Amazon alexa — Wikipedia, the free ency-

clopedia, 2024. [Online; accessed 10-February-2024].

[128] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao,

Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. Open

dnn box by power side-channel attack. IEEE Transactions on Circuits

and Systems II: Express Briefs, 67(11):2717–2721, 2020.

[129] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin

Liu, and Xuanzhe Liu. A first look at deep learning apps on smart-

phones. In The World Wide Web Conference, pages 2125–2136, 2019.

[130] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache

telepathy: Leveraging shared resource attacks to learn {DNN} archi-

tectures. In 29th USENIX Security Symposium (USENIX Security 20),

pages 2003–2020, 2020.

[131] Dingqing Yang, Prashant J Nair, and Mieszko Lis. Huffduff: Stealing

pruned dnns from sparse accelerators. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2, pages 385–399, 2023.

[132] Xun Yi, Russell Paulet, Elisa Bertino, Xun Yi, Russell Paulet, and

Elisa Bertino. Homomorphic encryption. Springer, 2014.

[133] Shunsuke Yoshimura, Kazuaki Nakamura, Naoko Nitta, and Noboru

Babaguchi. Model inversion attack against a face recognition system

in a black-box setting. In 2021 Asia-Pacific Signal and Informa-

tion Processing Association Annual Summit and Conference (APSIPA

ASC), pages 1800–1807, 2021.

[134] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier

Jin. Deepem: Deep neural networks model recovery through em side-

channel information leakage. In 2020 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), pages 209–218.

IEEE, 2020.

[135] Eric Zeng and Franziska Roesner. Understanding and improving se-

curity and privacy in {multi-user} smart homes: A design exploration

and {in-home} user study. In 28th USENIX Security Symposium

(USENIX Security 19), pages 159–176, 2019.

[136] Fangyuan Zhao, Xuebin Ren, Shusen Yang, Qing Han, Peng Zhao,

and Xinyu Yang. Latent dirichlet allocation model training with

differential privacy. IEEE Transactions on Information Forensics and

Security, 16:1290–1305, 2020.

[137] Weimin Zhao, Sanaa Alwidian, and Qusay H Mahmoud. Adversarial

training methods for deep learning: A systematic review. Algorithms,

15(8):283, 2022.

[138] Tong Zhou, Shaolei Ren, and Xiaolin Xu. Obfunas: A neural archi-

tecture search-based dnn obfuscation approach. In Proceedings of

the 41st IEEE/ACM International Conference on Computer-Aided

Design, pages 1–9, 2022.

[139] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu,

and Furu Wei. Bert loses patience: Fast and robust inference with early

exit. Advances in Neural Information Processing Systems, 33:18330–

18341, 2020.

[140] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. Her-

mes attack: Steal dnn models with lossless inference accuracy. In

USENIX Security Symposium, pages 1973–1988, 2021.


	Introduction
	Model Extraction: Security Design
	Threat Models
	Attacker's perspective
	Defender's perspective
	Motivating Example

	Security Techniques
	Attacker's perspective
	Defender's perspective


	Systematization
	App-based Attacks and Defenses
	Attacker's perspective
	Defender's perspectives
	Findings

	Device-based Attacks and Defenses
	Attacker's perspective
	Defender's perspectives
	Findings

	Comm-based Attacks and Defenses
	Attacker's perspective
	Defender's perspective
	Findings

	Model-based Attacks and Defenses
	Attacker's perspective
	Defender's perspective
	Findings


	Evaluation
	Reproducibility.
	Effectiveness of Model Extraction Attacks. 
	App-based attack: ModelXray
	Device-based attack: ModelXtractor
	Comm-based attacks: DeepSniffer and DeepSteal
	Model-based attack: ML-Doctor

	Effectiveness of Model Extraction Defenses
	App-based defense: AES
	Device and comm-based defense: ShadowNet
	Model-based defenses: Prediction-Poison and Adaptive Misinformation

	Other Metrics
	Computation complexity
	Power consumption


	Future Research Directions
	Conclusion

