
Microwave-Induced Cooling in Double Quantum Dots: Achieving Millikelvin Temperatures to 
Reduce Thermal Noise around Spin Qubits 
Daryoosh Vashaeea,b* and Jahanfar Abouiec* 

a Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27606, 
USA 

b Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27606, 
USA 

c Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran 

Abstract 
Spin qubits in gate-defined quantum dots are emerging as a leading technology due to their scalability 

and long coherence times. However, maintaining these qubits at ultra-low temperatures typically requires 
complex cryogenic systems. This paper proposes a novel gate-defined double quantum dot (DQD) cooling 
system using microwave-induced state depopulation and phonon filtering to achieve local temperatures 
below 10 mK at a bath temperature of 1 K. The system utilizes microwave-induced state depopulation and 
phonon filtering, combined with fast cyclic detuning of the quantum dot on-site energies and Rabi 
oscillations, to efficiently transfer thermal populations to the ground state, thereby surpassing natural 
thermal transition rates. The cooling cycle involves adjusting gate potentials to drive the system through 
adiabatic and diabatic transitions, complemented by microwave pulses resonant with specific energy level 
differences. This mechanism continuously pumps population from excited states into the ground state, 
effectively reducing the system's temperature. Numerical calculations demonstrate the feasibility of 
achieving these low local temperatures, with detailed analysis showing the sensitivity of cooling 
performance to detuning energy, magnetic field strength, and diabatic return time. 

Introduction 
Quantum computing promises to revolutionize various fields by solving problems that are intractable 

for classical computers. Among the different qubit technologies, spin qubits in gate-defined quantum dots 
(QDs) have emerged as a leading candidate due to their scalability and relatively long coherence times.1 
These qubits typically operate at sub-100 mK temperatures, which presents a significant challenge for 
large-scale integration of control electronics and other components.2 There is a substantial technological 
interest in increasing their operational temperature to above 1 K, which would facilitate easier integration 
and reduce the complexity of cooling systems.3 Achieving this would not only simplify the infrastructure but 
also enhance the practicality and scalability of quantum computing systems. 

Cooling is a critical aspect of quantum computing, particularly for maintaining qubit coherence and 
minimizing thermal noise. For gate-defined QD spin qubits, operating at higher temperatures while 
maintaining high fidelity is a significant challenge. Traditional methods such as dilution refrigerators are 
effective but cumbersome and expensive. Innovations in cooling technologies can thus have profound 
implications for the development and deployment of quantum computers. 

Over the past several decades, various cooling technologies have been developed for different qubit 
systems. Sympathetic cooling for ion traps involves cooling one species of ions using laser cooling and 
then transferring the cooling effect to another species through Coulomb interactions.4 This technique has 
been extended to spatially separated traps using superconducting LC circuits, enabling efficient cooling 
over macroscopic distances.5 Sideband cooling for superconducting qubits has been demonstrated, where 
thermal populations are driven to higher excited states via sideband transitions, followed by relaxation to 
the ground state. This method has achieved effective temperatures as low as 3 mK for bath temperatures 
ranging from 30 to 400 mK.6 Algorithmic cooling leverages quantum algorithms to transfer entropy from 
some qubits to others or to the environment, effectively cooling the system. Algorithmic cooling has been 
shown to exceed Shannon's bound on data compression and has applications in initializing highly pure 
qubits for quantum computation.7,8 
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Recent advancements propose the use of few-qubit quantum refrigerators for cooling multi-qubit 
systems. These systems typically involve a central qubit coupled to several ancilla qubits, using short 
interactions to achieve cooling.9,10,11 However, these methods are usually applicable for the initialization 
stage and do not work for computational qubits during operations. 9,12 Additionally, the number of ancilla 
qubits required to achieve sub-100 mK temperatures increases rapidly, leading to greater size and cost for 
quantum technology applications.9,13 Therefore, there remains a gap in effectively cooling interacting multi-
qubit systems, particularly those based on spin qubits in quantum dots. This work aims to address this gap 
by exploring a DQD system as an alternative approach for quantum refrigeration. This new method could 
provide a more efficient and practical solution for cooling at higher operational temperatures using a single 
DQD, thereby facilitating the integration of control electronics and enhancing the scalability of quantum 
computing systems. 

Microwave-Induced Cooling Mechanism for Double Quantum Dots 
We propose leveraging the interplay among state transitions of a double quantum dot, microwave 

absorption at resonance, and detuning of the potential of the QDs to design a cooling cycle capable of 
reducing the system temperature to the millikelvin range using hole or electron spins. This cycle exploits 
the rapid response of hole spin qubits via spin-orbit coupling (SOC) to implement a dual cooling mechanism 
involving (i) microwave-induced state depopulation and (ii) phonon filtering (Figure 1). By adjusting gate 
potentials, the system is manipulated to drive the thermal population back to the ground state, surpassing 
natural thermal transition rates. Additionally, this method uses the energy imbalance induced by microwave 
absorption to extract energy from specific phonon modes, significantly lowering the system's energy. 
Repeating this process cyclically can achieve temperatures well below the surrounding environment. 

 
Initially, the system is at a detuning energy ϵ(t). The ground state at this point is ∣S(0,2)⟩, with the first 

excited state ∣T−(1,1)⟩, the second excited state ∣S(1,1)⟩, and the third excited state at ∣T+(1,1)⟩ (labeled as 
1, 2, 3, and 4, respectively, in Figure 1). The system transitions at time t1 from 𝜖(𝑡1) to 𝜖(𝑡2) by tuning the 
differential potential across the gates. This transition is executed through accelerated adiabatic transitions 
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Figure 1: (a) A gate-defied DQD with two HH spins with Zeeman splitting 𝐸𝑍 and level detuning 𝜖 = 𝜖𝑅 − 𝜖𝐿. Both the 
spin-conserving and spin-flipping tunneling are allowed through DQD in the presence of SOC (see the section of 
theoretical formalism). The level detuning energy is controlled by the gate potential. (b)The lowest energy levels of 
the Hamiltonian 𝐻 in the plotted energy range. Here, 𝜖(𝑡1) and 𝜖(𝑡2) are the difference between the on-site energies 
at times t1 and t2, respectively. Initially, thermal excitations transfer population fractions from the spin ground state 
∣S(0,2)⟩ to the excited states ∣T−(1,1)⟩, ∣S(1,1)⟩, and ∣T+(1,1)⟩ according to pj =exp(-Ej/kBT0)/Σi[exp(-Ei/kBT0)], where pj 
is the population fraction at energy level Ej, and T0 is the bath temperature. To cool below T0, energy is cycled between 
two adjacent QDs by detuning from 𝜖(𝑡1) to 𝜖(𝑡2) using an accelerated adiabatic passage, followed by microwave 
absorption and then quickly returning to 𝜖(𝑡1) via a fast diabatic path. This process transfers the excited population 
to the ground state, cooling the DQD. The microwave signal applied to the DQD at time 𝑡2 induces a transition from 
∣S(1,1)⟩ to ∣S(0,2)⟩. Upon quick returning to 𝜖(𝑡1), the system remains at ∣S(0,2)⟩ but at a lower energy, effectively 
driving the thermal population back to the ground state. This transition must occur faster than the tunneling rate to 
prevent charge transfer to ∣T±(1,1)⟩ or ∣S(1,1)⟩.  
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over time t12=t2−t1. Consequently, populations p1, p2, p3, and p4 transition to p5, p6, p7, and p8, respectively. 
At time t2, a microwave pulse resonant with the energy difference between states |6⟩ and |8⟩ transitions the 
p6 population to p8. The pulse duration is adjusted so that the entire p6 (and p5 and p7) population is 
transferred to p8 at time t3. 

At t3, the potential across the gates is quickly returned to the starting voltage, setting 𝜖(𝑡4) = 𝜖(𝑡1). This 
transition must be faster than the tunneling rate to ensure the charge remain in the ∣S(0,2)⟩ configuration. 
Without charge transfer, there is no population transfer to p2, p3, and p4. Consequently, the entire population 
is transferred to the ground state 1. This process moves the population in the excited states 2, 3, and 4 to 
the ground state 1, leading to cooling of the DQD system. 

The second aspect, microwave-induced phonon filtering, happens at the end of the first cycle. At this 
time, the DQD is at a lower local temperature compared to the lattice, causing it to absorb phonons to reach 
equilibrium with the environment. By cycling the DQD back and forth between the two detuning points, more 
phonons are absorbed, effectively filtering the phonons locally where the DQD is situated. Phonons 
resonant with the energy difference of states 1 and 2 are expected to be filtered more efficiently. This energy 
can be adjusted to match the Zeeman energy splitting of a nearby computational spin qubit. Therefore, 
phonons in resonance with the Zeeman energy splitting of the computational qubit can be filtered around 
the qubit. Consequently, the cold DQD acts as a filter for specific phonon modes, particularly those resonant 
with the energy levels of the spin qubit. By selectively interacting with these local phonon modes, the cold 
DQD reduces the effective phonon noise experienced by the spin qubit, enhancing its dephasing time. 

The following sections describe the theory and computational results of the proposed DQD cooler. 

Theoretical Formalism 
We examine a planar DQD system containing two heavy holes (HHs), as depicted in Figure 1(a). The 

overall Hamiltonian is expressed as 𝐻 = 𝐻𝐷𝑄𝐷 + 𝐻𝐵 + 𝐻𝑆𝑂𝐶   where the first term is defined as: 

𝐻𝐷𝑄𝐷 = ∑ ∑ 𝜖𝑖𝑐𝑖𝜎
† 𝑐𝑖𝜎

𝜎=↑,↓𝑖=𝐿,𝑅

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖=𝐿,𝑅

− 𝑡𝑁 ∑ (𝑐𝐿𝜎
† 𝑐𝑅𝜎 + 𝐻𝑐)

𝜎=↑,↓

 

Here, 𝜖𝑖 (for i=L,R) represents the energy levels of the left and right dots, U is the intradot Coulomb 
energy (on-site Hubbard interaction), and tN is the spin-conserving tunneling amplitude between adjacent 
dots. The operators 𝑐𝑖𝜎(𝑐𝑖𝜎

† ) annihilate (create) a hole with spin σ in dot 𝑖, and 𝑛𝑖𝜎 is holes number operator. 
A magnetic field B, perpendicular to the plane of the dots, induces a Zeeman splitting. The interaction of 
the magnetic field with the HHs in the DQD is given by the following Hamiltonian: 

𝐻𝐵 =
1

2
𝑔∗𝜇𝐵𝐵 ∑ (𝑛𝑖↑ − 𝑛𝑖↓)

𝑖=𝐿,𝑅

 

where g∗ is the effective Landé factor and μB is the Bohr magneton. We assume a homogeneous 
magnetic field and g factor. The spin-orbit coupling (SOC) is described by: 

𝐻𝑆𝑂𝐶 = 𝑖𝛼𝐸⊥(𝜎+𝑝3
− − 𝜎−𝑝3

+) − 𝛽(𝜎+𝑝−𝑝+𝑝− + 𝜎−𝑝+𝑝−𝑝+) 

The ladder operators are defined as 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦) √2⁄ , and the momentum operator 𝑝± = 𝑝𝑥 ± 𝑖𝑝𝑦 is 
given by 𝒑 = −𝑖ℏ∇ +

𝑒∗

𝑐
𝑨, where e* is the effective charge of the hole, c is the speed of light, and A is the 

magnetic vector potential. This equation represents the Rashba SOC (α) due to structure inversion 
asymmetry, controlled by the effective electric field 𝐸⊥ from the accumulation gate, and Dresselhaus SOC 
(β) due to bulk inversion asymmetry. 

Since we consider a closed system, it is convenient to write the Hamiltonian matrix in the molecular 
basis of singlets: |𝑆(1,1)⟩ ≡ (|↑, ↓⟩ − |↓, ↑⟩) √2⁄ , |𝑆(0,2)⟩ ≡ |0, ↑↓⟩  and |𝑆(2,0)⟩ ≡ |↑↓ ,0⟩, and triplets 
|𝑇0(1,1)⟩ ≡ (|↑, ↓⟩ + |↓, ↑⟩) √2⁄ , |𝑇−(1,1)⟩ ≡ |↓, ↓⟩, and |𝑇+(1,1)⟩ ≡ |↑, ↑⟩. The nonvanishing spin-flip tunneling 
matrix elements are between the polarized triplet states and the double- and single-occupied singlet states 
as: 

⟨𝑇±(1,1)|𝐻𝑆𝑂𝐶|𝑆(0,2)⟩ = 𝜆2 



⟨𝑇±(1,1)|𝐻𝑆𝑂𝐶|𝑆(2,0)⟩ = 𝜆2 

⟨𝑇±(1,1)|𝐻𝑆𝑂𝐶|𝑆(1,1)⟩ = 𝜆1 

where 𝜆1 = √2𝑆𝜆2. The overlap between the wave functions in each dot is defined as 𝑆 = ⟨𝐿|𝑅⟩ =
exp (−𝑑2 2𝑙2⁄ ), where 𝑑 is the distance between dots and 𝑙 is the extent of the wave function centered at 
each dot. The matrix element 𝜆2 also depends on these parameters. 

Under a constant magnetic field B, the unpolarized triplet state |𝑇0(1,1)⟩ does not interact with any 
other states. The anticrossing between |𝑇+(1,1)⟩ and the singlet states occurs at a detuning near 𝜖 + 𝑈 ≈
−2𝑡𝑁

2 𝐸𝑍⁄ + 𝐸𝑍, where 𝜖 is the detuning energy controlled by the gate potential. Additionally, if the detuning 
is sufficiently large (𝜖 > −𝑈), the double-occupied singlet state |𝑆(2,0)⟩ is energetically distant and does not 
play a role. 

To obtain the eigenenergies and eigenvectors of the total Hamiltonian 𝐻, we construct its matrix in 
the basis |𝑇−(1,1)⟩, |𝑆(0,2)⟩, |𝑆(1,1)⟩, |𝑆(2,0)⟩, |𝑇+(1,1)⟩, |𝑇0(1,1)⟩. Considering that 𝜖 = 𝜖𝑅 − 𝜖𝐿 and 𝜖𝑅 +
𝜖𝐿 = 0, the action of 𝐻 = 𝐻𝐷𝑄𝐷 + 𝐻𝐵 + 𝐻𝑆𝑂𝐶 on these states are given by: 

𝐻|𝑇0(1,1)⟩ = 𝐻𝑆𝑂𝐶|𝑇0(1,1)⟩ = 0, 

𝐻|𝑇+(1,1)⟩ = 𝐸𝑧|𝑇+(1,1)⟩ + 𝜆2
∗(|𝑆(0,2)⟩ + |𝑆(2,0)⟩) + 𝜆1

∗ |𝑆(1,1)⟩, 

𝐻|𝑇−(1,1)⟩ = −𝐸𝑧|𝑇−(1,1)⟩ + 𝜆2
∗(|𝑆(0,2)⟩ + |𝑆(2,0)⟩) + 𝜆1

∗ |𝑆(1,1)⟩,                        (1) 

𝐻|𝑆(0,2)⟩ = (𝜖 + 𝑈)|𝑆(0,2)⟩ − √2𝑡𝑁|𝑆(1,1)⟩ + 𝜆2(|𝑇+(1,1)⟩ + |𝑇−(1,1)⟩), 

𝐻|𝑆(2,0)⟩ = (−𝜖 + 𝑈)|𝑆(2,0)⟩ − √2𝑡𝑁|𝑆(1,1)⟩ + 𝜆2(|𝑇+(1,1)⟩ + |𝑇−(1,1)⟩), 

𝐻|𝑆(1,1)⟩ = −√2𝑡𝑁(|𝑆(0,2)⟩ + |𝑆(2,0)⟩) + 𝜆1(|𝑇+(1,1)⟩ + |𝑇−(1,1)⟩), 

where we have used:  

𝐻̂𝑠𝑜𝑐|𝑇+(1,1)⟩ = 𝜆2
∗(|𝑆(0,2)⟩ + |𝑆(2,0)⟩) + 𝜆1

∗ |𝑆(1,1)⟩, 

𝐻̂𝑠𝑜𝑐|𝑇−(1,1)⟩ = 𝜆2
∗(|𝑆(0,2)⟩ + |𝑆(2,0)⟩) + 𝜆1

∗ |𝑆(1,1)⟩, 

𝐻̂𝑠𝑜𝑐|𝑆(0,2)⟩ = 𝜆2(|𝑇+(1,1)⟩ + |𝑇−(1,1)⟩), 

𝐻̂𝑠𝑜𝑐|𝑆(2,0)⟩ = 𝜆2(|𝑇+(1,1)⟩ + |𝑇−(1,1)⟩), 

𝐻̂𝑠𝑜𝑐|𝑆(1,1)⟩ = 𝜆1(|𝑇+(1,1)⟩ + |𝑇−(1,1)⟩), 

The vanishing act of the Hamiltonain on the unpolarized state indicates that this state does not 
interact with the other states. Thus,  the total Hamiltonian 𝐻 is a 5 × 5 matrix, and is expressed in the 
basis (|𝑇−(1,1)⟩, |𝑆(0,2)⟩, |𝑆(1,1)⟩, |𝑆(2,0)⟩, |𝑇+(1,1)⟩) as: 

𝐻 =

[
 
 
 
 
 
−𝐸𝑧 𝜆2

𝜆2
∗

𝜆1
∗

𝜆2
∗

0

𝜖 + 𝑈

−√2𝑡𝑁
0
𝜆2

𝜆1 𝜆2 0

−√2𝑡𝑁
0

−√2𝑡𝑁
𝜆1

0

−√2𝑡𝑁
−𝜖 + 𝑈

𝜆2

𝜆2
∗

𝜆1
∗

𝜆2
∗

𝐸𝑧]
 
 
 
 
 

 

Here, the Zeeman splitting in each quantum dot is given by 𝐸𝑍 = 𝑔∗𝜇B𝐵, where g* is the effective g-factor, 
𝜇B is the Bohr magneton, and B is the magnetic field. The terms 𝜆1

∗ and 𝜆2
∗   are the complex conjugates of 

𝜆1 and 𝜆2, respectively. The spin-orbit coupling terms represented by 𝜆1 and 𝜆2 capture the spin-flip 
tunneling processes between the states. The diagonal terms account for the energy contributions from the 
Zeeman effect and the detuning energies, while the off-diagonal elements represent tunneling and SOCs.  

For sufficiently small values of SOCs 𝜆1 and 𝜆2, as indicated by the relations in equation (1), the states 
|𝑇±(1,1)⟩ are the eigenstates of the Hamiltonian H, with the eigenenergies ±𝐸𝑧. These eigenenergies are 
depicted in Figure 1 with the horizontal orange-purple and green-blue lines at 𝐸(𝜖) 𝐸𝑧⁄ = ±1. Moreover, for 
very small values of spin-conserved tunneling energy, the singlet states are also eigenstates of the system: 
the doubly occupied singlet states |𝑆(0,2)⟩ and  |𝑆(2,0)⟩ with eigenenergies 𝜖 + 𝑈 and −𝜖 + 𝑈, respectively, 



and the state |𝑆(1,1)⟩ with a vanishing eigenenergy. In Figure 1, the eigenstate |𝑆(0,2)⟩ is represented by 
the off-diagonal blue-green-purple-orange line with 𝐸(𝜖) 𝐸𝑧⁄ = (𝜖 + 𝑈) 𝐸𝑧⁄ , and the eigenstate |𝑆(1,1)⟩ is 
represented by the purple-green horizontal line at 𝐸𝑧 = 0. The eigenenergy −𝜖 + 𝑈 is a diagonal line that is 
distant from the other eigenenergies and does not appear in our working energy window. 

By turning the SOCs and spin-conserved tunneling energy, states repulsions make deformations in the 
energy spectrum. These deformations are seen as three avoided level crossing points, one with 𝜆2-
dependent energy gap appeared at 𝜖 + 𝑈 = 0, and two with 𝑡𝑁-dependent energy gaps appeared around 
the 𝜖 + 𝑈 = 0 point, symmetrically. 

In the absence of the SOCs, the total Hamiltonian is block diagonal and the diagonalization of the 
following Hamiltonian  

 𝐻3×3 = [

𝜖 + 𝑈 −√2𝑡𝑁 0

−√2𝑡𝑁 0 −√2𝑡𝑁
0 −√2𝑡𝑁 −𝜖 + 𝑈

], 

gives the eigenstates of the system. The eigenenergies are obtained as: 

       𝐸0 =
2𝑈

3
−

𝑈2+3𝜖2+12𝑡𝑁
2

3(𝑥1+
√𝑥2

2
)

1
3

−
1

3
(𝑥1 +

√𝑥2

2
)

1

3
, 

         𝐸± =
2𝑈

3
−

𝑈2+3𝜖2+12𝑡𝑁
2

3

2
(−1±√3𝑖)(𝑥1+

√𝑥2

2
)

1
3

−
−1±√3𝑖

6
(𝑥1 +

√𝑥2

2
)

1

3, 

with 𝐸0 < 𝐸− < 𝐸+. The corresponding eignestates are given in terms of the singlet states as: 

|Φ0⟩ =
1

√(−1+(
𝐸0

√2𝑡𝑁
)
2
+

𝐸0(𝜖−𝑈)

2𝑡𝑁
2 )

2

+(
𝐸0+𝜖−𝑈

√2𝑡𝑁
)
2
+1

((−1 + (
𝐸0

√2𝑡𝑁
)

2

+
𝐸0(𝜖−𝑈)

2𝑡𝑁
2 ) |𝑆(0,2)⟩ − (

𝐸0+𝜖−𝑈

√2𝑡𝑁
) |𝑆(1,1)⟩ + |𝑆(2,0)⟩), 

|Φ±⟩ =
1

√(−1+(
𝐸±

√2𝑡𝑁
)
2
+

𝐸±(𝜖−𝑈)

2𝑡𝑁
2 )

2

+(
𝐸±+𝜖−𝑈

√2𝑡𝑁
)
2
+1

((−1 + (
𝐸±

√2𝑡𝑁
)
2

+
𝐸±(𝜖−𝑈)

2𝑡𝑁
2 ) |𝑆(0,2)⟩ + (

−𝐸±−𝜖+𝑈

√2𝑡𝑁
) |𝑆(1,1)⟩ +

|𝑆(2,0)⟩), 

Here, 𝑥1 = 𝑈(𝑈2 + 18𝑡𝑁
2 − 9𝜖2), and 𝑥2 = −4(𝑈2 + 3𝜖2 + 12𝑡𝑁

2)3 + 4𝑥1
2. 

To achieve an adiabatic transfer from the triplet state |T-(1,1)〉 to the singlet state |S(1,1)〉 in a DQD 
system, the procedure involves designing a detuning pulse that allows the system to evolve along the 
instantaneous eigenstate. This process is detailed in reference [14]. The goal is to transition from |T-

(1,1)〉 to |S(1,1)〉 by manipulating the detuning ϵ(t) between the quantum dots. The accelerated quasi-
adiabatic protocol has been proposed to achieve high-fidelity state transfer [14]. The protocol adjusts the 
detuning ϵ(t) dynamically to maintain adiabatic conditions, minimizing diabatic transitions. In brief, the 
adiabatic condition for an N-level system is: 

𝐶 = ℏ∑ |
⟨𝜙𝑖(𝑡)|𝜕𝑡𝐻(𝑡)|𝜙𝑘(𝑡)⟩

[𝐸𝑖(𝑡) − 𝐸𝑘(𝑡)]2
|

𝑁

𝑘≠𝑖
 

where |𝜙𝑘(𝑡)⟩ are the instantaneous eigenstates and 𝐸𝑘(𝑡) the corresponding eigenenergies, and 𝐶 is a 
dimensionless constant. By solving the differential equation: 

𝜖̇ =
𝐶

ℏ
∑ |

[𝐸𝑖(𝜖) − 𝐸𝑘(𝜖)]2

⟨𝜙𝑖(𝜖)| ∂𝜖𝐻(𝑡)|𝜙𝑘(𝜖)⟩
|

𝑁

𝑘≠𝑖
 



the time-dependent driving parameter ϵ(t) is obtained, ensuring a constant value of C during the transfer. 
The fidelity of the protocol is defined as ℱ ≡ |⟨𝑆(1,1)|Ψ(𝑡𝑓)⟩|

2
, where |Ψ(𝑡𝑓)⟩ is the finial state achieved 

subsequent of the accelerated adiabatic transfer. The protocol shows an ondulatory behavior of fidelity, 
tending asymptotically to unity as the total time tf increases. The boundary conditions for the 
detuning ϵ(t1) and ϵ(t2) significantly affect the transfer fidelity. Higher fidelities are achieved by increasing 
the detuning range Δϵ=ϵ(t2)−ϵ(t1) [14].  

Thermal and Microwave Excitations 
The four states at 𝜖(𝑡1) + 𝑈 are in constant interaction with phonons, leading to thermodynamic 

equilibrium at the bath temperature T0. The population fraction rate equations in matrix form can be 
expressed as:   

𝑑

𝑑𝑡
[

𝑝1

𝑝2
𝑝3

𝑝4

] = [

−𝑊12 − 𝑊13 − 𝑊14 𝑊21 𝑊31

𝑊12 −𝑊21 − 𝑊23 − 𝑊24 𝑊32

𝑊13

𝑊14

𝑊23

𝑊24

−𝑊31 − 𝑊32 − 𝑊34

𝑊34

𝑊41

𝑊42

𝑊43

−𝑊41 − 𝑊42 − 𝑊43

] [

𝑝1

𝑝2
𝑝3

𝑝4

] 

where 𝑊𝑖𝑗 and 𝑊𝑗𝑖  are the spontaneous absorption and emission, respectively, between states i and j at 
temperature T. Wij can be estimated using thermodynamic relations 𝑊𝑖𝑗 = 𝑊0𝑛(𝐸𝑖𝑗) and 𝑊𝑗𝑖 =

𝑊0(𝑛(𝐸𝑖𝑗) + 1). 𝑛(𝐸𝑖𝑗) represents the occupation number of phonons with energy 𝐸𝑖𝑗 = 𝐸𝑗 − 𝐸𝑖 and follows 
the Bose-Einstein distribution at temperature T. The negative signs behind the diagonal matrix elements 
are an indication of population reduction due to transition. The above set of rate equations is formulated 
and solved at times t1 and t4 among states ∣1⟩, ∣2⟩, ∣3⟩, and ∣4⟩. 

During the interval from t3 to t4, between states ∣6⟩ and ∣8⟩, there is coherent interaction with the 
microwave, causing Rabi oscillations. The Rabi oscillations are characterized by: 𝑝46(𝑡) = cos2(Ω𝑡 2⁄ ) and 
𝑝8(𝑡) = sin2(Ω𝑡 2⁄ ), where Ω is the Rabi frequency. Their derivatives are: 𝑑𝑝6(𝑡) 𝑑𝑡⁄ = − Ω 2⁄ sin(Ω𝑡) and 
𝑑𝑝8(𝑡) 𝑑𝑡⁄ = Ω 2⁄ sin(Ω𝑡). There are also spontaneous transitions among all these states, characterized by 
Wij. Therefore, the population fraction rate equations in matrix form can be written as:  

𝑑

𝑑𝑡
[

𝑝5

𝑝6
𝑝7

𝑝8

] = [

−𝑊56 − 𝑊57 − 𝑊58 𝑊65 𝑊75

𝑊56 −𝑊65 − 𝑊67 − 𝑊68 𝑊76

𝑊57

𝑊58

𝑊67

𝑊68

−𝑊75 − 𝑊76 − 𝑊78

𝑊78

𝑊85

𝑊86

𝑊87

−𝑊85 − 𝑊86 − 𝑊87

] [

𝑝5

𝑝6
𝑝7

𝑝8

]

+ [

0
−Ω 2⁄ sin(Ω𝑡)

0
Ω 2⁄ sin(Ω𝑡)

] 

The negative sign in the second term indicates a trade-off between the population of the states 6 and 8 due 
to Rabi oscillations, i.e., following an increase in the population of 8, a reduction in the population of the 
state 6 occurs. 

Numerical Results 
For the numerical calculations, we assume the following parameters: Rabi frequency Ω=2 MHz, g∗=0.3 

(the effective g-factor of HHs in Ge), accelerated adiabatic transition time t12=1 μs, microwave radiation 
time t23= 5.25 μs, quantum dot separation 𝑑=50 nm, the extent of the wave function 𝑙=25 nm, effective mass 
m∗=0.36m0, 𝜇𝐵 = 2.58 × 10−23𝐽/𝑇 (corresponding to the density of states hole effective mass in Ge), 
detuning energy 𝜖(𝑡2) = 55.8 μeV − U, U = 2 meV, and spin-conserving tunneling amplitude tN=1 μeV. The 
spin-flip tunneling matrix element 𝜆2=0.1 μeV, and the corresponding value between single-occupied states 
|𝑇±(1,1)⟩ and |𝑆(1,1)⟩, λ1, is 0.02 μeV, calculated as 𝜆1 = √2exp (−𝑑2 2𝑙2⁄ )𝜆2. 𝑊0 is chosen as 50 kHz to fit 
the empirical value of the hole spin relaxation time T1. 𝑊0 = 5 𝑘𝐻𝑧 results in a hole spin relaxation time of 
200 µs at 20 mK between the excited state ∣T−(1,1)⟩ and ground state ∣S(0,2)⟩ at 𝜖(𝑡1) + 𝑈 = −65 μeV. At 
this detuning energy, the energy splitting is 50 µeV corresponding to typical spin qubits. For consistency, 
𝑊0 is kept constant for all 𝑊𝑖𝑗, and they only differ from each other through 𝑛(𝐸𝑖𝑗) term. 



Figure 1b is plotted assuming these parameter values and B=0.3 T. However, in the plots presented 
in this section, wherever the energy levels change with variables such as the magnetic field and tunneling 
matrix elements, the energy levels are calculated accordingly for consistency. The equivalent temperature 
T at time t=t4 is calculated by solving this equation for T:  

1

𝑍(𝑡4)
∑ 𝐸𝑖(𝑡4)exp(−𝐸𝑖(𝑡4) 𝑘𝐵𝑇⁄ )

𝑖=1,2,3,4

= ∑ 𝑝𝑖(𝑡4)𝐸𝑖

𝑖=1,2,3,4

(𝑡4) 

where 𝑍(𝑡4) = ∑ exp(−𝐸𝑗(𝑡4) 𝑘𝐵𝑇⁄ )𝑗=1,2,3,4 . 

Figure 2 illustrates the transient population dynamics of states p5(t), p6(t), p7(t), and p8(t) starting at time t2 
with an initial temperature of 1 K during the first cycle of microwave radiation. The Rabi frequency is 
assumed to be 2 MHz. At the outset, the population in state p8(t2) is much lower than the other states due 
to its higher energy. Microwave radiation, resonant with the energy difference between states ∣6⟩ and ∣8⟩, 
induces Rabi oscillations, causing the population to shift from ∣6⟩ to ∣8⟩. Concurrently, population transfer 
occurs from ∣5⟩ to ∣6⟩ via spontaneous absorption and from ∣7⟩ to ∣6⟩ via spontaneous emission. These 
interactions continuously pump the population from ∣5⟩ and ∣7⟩ into ∣6⟩ and from ∣6⟩ to ∣8⟩. As Rabi 
oscillations proceed, states ∣5⟩ and ∣7⟩ become completely depopulated, and the population oscillates 
between ∣6⟩ and ∣8⟩ in resonance with the microwave radiation. This dynamic effectively drives the system 
toward the desired cooling state by manipulating the populations of the energy levels through controlled 
microwave interactions. 

 
Figure 2: Transient population dynamics of states p5 (solid blue), p6 (dotted black), p7 (solid green), and p8 (solid 
black) starting at time t2 with an initial temperature of 1 K during the first cycle of microwave radiation. The Rabi 
frequency is assumed to be 2 MHz. At the outset, the population in state p8(t2)) is much lower than in the other 
states due to its higher energy. Microwave radiation, resonant with the energy difference between states ∣6⟩ and 
∣8⟩, induces Rabi oscillations, causing the population to shift from ∣6⟩ to ∣8⟩. Concurrently, population transfer 
occurs from ∣5⟩ to ∣6⟩ via spontaneous absorption and from ∣7⟩ to ∣6⟩ via spontaneous emission. These 
interactions continuously pump the population from ∣5⟩ and ∣7⟩ into ∣6⟩ and from ∣6⟩| to ∣8⟩. As the Rabi 
oscillations proceed, states ∣5⟩ and ∣7⟩ become completely depopulated, and the population oscillates between 
∣6⟩ and ∣8⟩ in resonance with the microwave radiation.  

Figure 3 provides an analysis of the system temperature and the normalized populations of the ground 
state (p1) and first excited state (p2) as functions of the detuning energy 𝜖(𝑡1) + 𝑈. Panel (a) illustrates the 
system temperature at B=0.3 T for three different bath temperatures: T0=1 K (solid black line), T0=4 K (solid 
blue line), and T0=10 K (solid red line). At 𝜖(𝑡1) + 𝑈 ≈ 20 μeV and t34=10 ns, the system temperature 
reaches 10 mK for T0=1 K. As the detuning potential is further reduced, the temperature approaches 2 mK. 
When t34 increases from 10 ns to 1 µs, the system temperature rises to 18 mK. For bath temperatures of 
T0=4 K and T0=10 K with t34=10 ns, the system temperature increases to 15 mK and 26 mK, respectively. 
Panel (b) shows the normalized populations of the ground state (p1 in black) and the first excited state (p2 
in blue) relative to their equilibrium values at steady state. As the system temperature decreases, the 
population of the ground state (p1) increases, while the population of the excited state (p2) decreases. This 
analysis emphasizes the sensitivity of the system temperature to the detuning energy and the diabatic 
return time, t34, under varying bath temperatures. 
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Figure 3: (a) System temperature and (b) normalized population of the ground state p1 (blue) and the first excited 
state p2 (black) at 1 K (solid line) and 10 K (dotted line) with respect to their equilibrium values at steady state versus 
detuning energy 𝜖(𝑡1) + 𝑈. In panel (a), the results are plotted for B=0.3 T at three bath temperatures: T0=1 K (solid 
black), T0=4 K (solid blue), and T0=10 K (solid red). The system temperature at ϵ(t1) + U ≈ −20 μeV and t34=10 
ns reaches 10 mK for T0=1 K and approaches 2 mK as the detuning potential is further reduced. This temperature 
increases to 18 mK when t34  rises from 10 ns to 1 µs (dotted black line). For T0=4 K and 10 K, with t34=10 ns, the 
system temperature increases to 15 mK and 26 mK, respectively. Panel (b) shows that as the temperature 
decreases, the ground state population increases while the excited state population decreases. 

Figure 4 provides a detailed examination of the system temperature’s dependency on the fast diabatic 
return time (t34) and the dwelling time (tdwell), which is the duration which the system interacts with phonons 
before initiating the next cooling cycle. These results highlight the critical role of the fast diabatic return time 
and the dwelling time in achieving and maintaining effective cooling in DQD systems. Both panels (a) and 
(b) assume a bath temperature (T0) of 1 K and a detuning energy (𝜖(𝑡1) + 𝑈) of approximately -20 μeV. 
Panel (a) illustrates the system temperature as a function of the fast diabatic return time (t34) for two different 
dwelling times: tdwell=10 ns (solid line) and tdwell=1 μs (dotted line). When tdwell=10 ns, the system temperature 
remains between 10 mK and 20 mK over a wide range of t34 from 1 ns to 20 μs. However, for tdwell=1 μs, 
the system temperature increases to a range of 40 mK to 50 mK over a similar range of t34. This indicates 
that longer dwelling times can lead to higher system temperatures, highlighting the importance of optimizing 
tdwell for effective cooling. Panel (b) depicts the system temperature as a function of the dwelling time (tdwell) 
for two different fast diabatic return times: t34=10 ns (solid line) and t34=1 μs (dotted line). The temperature 
increases with tdwell, as expected, and saturates at approximately 1 K (the bath temperature) when tdwell 
approaches 100 μs. In practice, the dwelling time should be optimized to be short enough to maintain a low 
system temperature, yet long enough to allow the spins to interact and effectively filter phonons through 
absorption. 
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Figure 4: (a) System temperature versus fast diabatic return time t34 and (b) system temperature versus dwelling 
time tdwell, which is the duration when the system interacts with phonons before starting the next cooling cycle. (a) 
shows the results for tdwell=10 ns (solid line) and tdwell=1 μs (dotted line). The system temperature for tdwell=10 ns 
ranges between 10 mK and 20 mK over a wide range of fast diabatic return times from 1 ns to 20 μs. For tdwell=1 
μs, the system temperature increases to between 40 mK and 50 mK over a similar range of t34. (b) shows the results 
for t34=10 ns (solid line) and t34=1μs (dotted line). The temperature increases with tdwell as expected, saturating at 
approximately 1 K when tdwell≈100 μs. Both panels (a) and (b) assume T0=1 K and ϵ(t1) + U ≈ −20 μeV. 

Clarifying Energy Conservation During Gate Voltage Transitions  
The key issue with energy conservation in this system is understanding where the energy goes when 

the gate voltage transitions. It might initially be thought that the transition releases energy in the form of 
photons or phonons. However, during the transition from ∣S(0,2)⟩ at 𝜖(𝑡2) to ∣S(0,2)⟩ at 𝜖(𝑡1), there is no 
charge transfer. Given the lack of charge transfer between the quantum dots, these hypotheses are 
incorrect. 

The correct explanation is that the energy is conserved by being returned to the power supply. The 
gate and the QD can be modeled as a capacitor. The power supply provides energy to increase the 
electrostatic energy of the holes when the gate voltage transitions the system from 𝜖(𝑡1) to 𝜖(𝑡2). This 
increase is more pronounced for the ∣S(0,2)⟩ state, as shown in Figure 1b. The energy is returned to the 
power supply when the gate voltage switches back to negative. 

Additionally, microwave absorption during time t23 adds energy to the system by increasing the 
population fraction in the ∣S(0,2)⟩ state. Consequently, when the voltage switches back to negative, more 
energy is returned to the power supply than was initially provided, resulting in a lower total energy of the 
system. This work, done by the power supply and microwave radiation, is equal to ∑ [𝑝𝑖(𝑡1) − 𝑝𝑖(𝑡4)]𝑖=1,2,6 . 

Furthermore, one might consider that changes in the wave function distribution in the QD due to voltage 
changes could lead to photon radiation. However, this contribution depends on the rate at which the gate 
voltage changes. Since the energy difference between the two states is fixed, the released energy does 
not depend on the rate of gate voltage change and therefore cannot account for the observed energy 
conservation. 

Practical Considerations 
For practical implementation of the accelerated adiabatic transition, the ideal pulse shape derived from 

the protocol can be discretized into a series of linear ramps to mimic experimentally feasible pulses. 

The second consideration is for microwave excitation at time t2. At a detuning of  
𝜖(𝑡2) + 𝑈 = 55.8 μeV and B=0.3 T, the energy difference between ∣S(1,1)⟩ and ∣S(0,2)⟩ is 41 µeV, requiring 
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a microwave excitation frequency of 10 GHz for the ∣S(1,1)⟩ to ∣S(0,2)⟩ transition. Increasing the detuning 
energy at time t2 results in a higher energy difference. Therefore, the system can be designed by adjusting 
𝜖(𝑡2) to match the available microwave sources in the laboratory. Other parameters, such as the magnetic 
field and geometrical dimensions of the dots, would also affect the required microwave frequency. These 
adjustments are crucial for ensuring the efficient operation of the cooling loop within the experimental setup. 

Another practical consideration is the sensitivity of the energy levels to the DQD parameters. Key 
parameters include 𝜆1, 𝜆2, 𝑡𝑁, 𝑔∗, and 𝜇𝐵. The energy levels are significantly more sensitive to the values 
𝑔∗, 𝑡𝑁, and 𝜇𝐵 than 𝜆1 and 𝜆2 . The dots' separation 𝑑 is usually a multiple of the extent of the wavefunction 
𝑙. Considering 𝑑 = 2𝑙, the overlap parameter is 𝑆~0.14, and 𝜆1 𝜆2⁄ ~0.2. This indicates that the transition 
between different charge configurations, |𝑇±(1,1)⟩ and |𝑆(0,2)⟩, due to SOC is more probable compared to 
the transition between |𝑇±(1,1)⟩ and |𝑆(1,1)⟩. For materials with strong SOC, like GaAs, this ratio is about 
10−2, and without loss of generality, one can ignore the effects of the spin-flip tunneling matrix element 𝜆1.  

As an illustration, Figure 5 demonstrates how the system temperature varies with 𝜆2 for two different 
values of 𝜆1: 0.015𝜆2 and 0.2𝜆2. The system temperature remains relatively stable across a wide range of 𝜆2. 
However, the temperature increases significantly when 𝜆2 exceeds the spin-conserved tunneling energy tN, 
which can occur under very large SOC.  

 
Figure 5: System temperature as a function of 𝜆2 for two different values of 𝜆1 =  0.2𝜆2 and 0.015𝜆2. Assuming 
the extension of the wavefunction 𝑙 is 25 nm, the corresponding distances between the QDs 𝑑 are 50 nm and 
75 nm. The system temperature remains relatively stable over a wide range of 𝜆2. However, at very high 
values of 𝜆2, where spin-flip tunneling exceeds spin-conserved tunneling, the system temperature increases 
with 𝜆2. The system temperature shows little sensitivity to changes in 𝜆1.  

Another practical consideration is the importance of the accelerated adiabatic transition in achieving 
the predicted low temperatures. Given that the energy states can be very close to each other depending 
on the detuning energy, achieving complete adiabatic transitions might be challenging in practice. Figure 6 
illustrates the system temperature as a function of detuning energy at t1, considering the population transfer 
from states ∣1⟩, ∣2⟩, ∣3⟩, and ∣4⟩ to states ∣5⟩, ∣6⟩, ∣7⟩, and ∣8⟩ via two different paths: accelerated adiabatic 
transfer and complete population transfer to ∣7⟩ (∣T+(1,1)⟩). The path where the population is transferred to 
∣7⟩ results in a higher system temperature; however, this increase is not significant. Consequently, the 
accelerated adiabatic transition is not strictly necessary for the cooling loop to function and can be relaxed 
without a substantial loss in the achievable low temperature. 
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Figure 6: System temperature versus detuning energy at t1 assuming the population is transferred from 
states ∣1⟩, ∣2⟩, ∣3⟩, and ∣4⟩ to ∣5⟩, ∣6⟩, ∣7⟩, and ∣8⟩ via two different paths: accelerated adiabatic transfer, and 
all population transfer to ∣7⟩. The second path, where all the population is transferred to ∣7⟩ (∣T+(1,1)⟩), results 
results in a higher system temperature; however, the difference is not significant. Therefore, the accelerated 
adiabatic transition is not strictly necessary for the cooling loop to function and can be relaxed without a 
substantial loss in the achievable low temperature. 

This behavior occurs because, at time t3, regardless of the initial population distribution among states 
∣5⟩, ∣6⟩, ∣7⟩, and ∣8⟩, microwave radiation resonant with the energy difference between states ∣6⟩ and ∣8⟩ 
induces Rabi oscillations, causing the population to shift from ∣6⟩ to ∣8⟩. Concurrently, population transfer 
occurs from ∣5⟩ to ∣6⟩ via spontaneous absorption and from ∣7⟩ to ∣6⟩ via spontaneous emission. These 
interactions continuously pump the population from ∣5⟩ and ∣7⟩ into ∣6⟩ and from ∣6⟩ to ∣8⟩. As the Rabi 
oscillations proceed, states ∣5⟩ and ∣7⟩ become completely depopulated, and the population oscillates 
between ∣6⟩ and ∣8⟩ in resonance with the microwave radiation. This dynamic effectively drives the 
population to ∣8⟩ regardless of the initial population distribution, explaining why the different paths result in 
similar final system temperatures. 

The lowest achievable temperature may vary with different values of magnetic field (B), as the cooling 
effect arises from the interplay of relative energy level spacings that influence the thermal excitation rate. 
Figure 7 presents a contour map of the system temperature as a function of the magnetic field and detuning 
energy at time t1. A minimum temperature of 2 mK is achievable under optimal parameters. Each 
temperature corresponds to a specific range of magnetic field and detuning energy (ϵ(t1) + U). For instance, 
to achieve a temperature of 2 mK, the detuning energy can range from near zero to -50 µeV, with the 
magnetic field between near zero and 1 T. As the temperature increases, these constraints become more 
relaxed, providing greater flexibility for experimental design. 

It is important to note that some points in the contour map may not correspond to the pure states shown 
in Figure 1 at time t1. Therefore, the optimal detuning energy and magnetic field must be determined based 
on the specific parameters of the DQD system. The lowest achievable temperature is ultimately determined 
by the competition between state population changes due to thermal excitation and microwave-induced 
state depopulation. Consequently, in practice, the DQD parameters must be carefully considered, and the 
energy levels must be measured or accurately calculated when designing the cooling loop. 
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Figure 7: Contour map of the system temperature as a function of the magnetic field and detuning energy 
at time t1. A minimum temperature of 2 mK is achievable under optimal parameters. Each temperature 
corresponds to a specific range of magnetic field and detuning energy (ϵ(t1)+U). For instance, to achieve 
a temperature of 2 mK, the detuning energy can range from near zero to -50 µeV, with the magnetic field 
between near zero and 1 T. 

Another important consideration is the hole spin phase shift caused by interactions with phonons, 
particularly during the thermal transition from states ∣6⟩ to ∣8⟩. In this transition, a hole tunnels between the 
left and right dots, and interacts with a phonon field via the following Hamiltonian: 

𝐻ℎ−𝑝ℎ = ∑[(𝛼𝑞⃗ |𝑆(1,1)⟩⟨𝑆(1,1)| + 𝛽𝑞⃗ |𝑆(0,2)⟩⟨𝑆(0,2)|)(𝑎−𝑞⃗ + 𝑎𝑞⃗ 
†)]

𝑞⃗ 

 

where 𝑎𝑞⃗ 
† is creation operator for a phonon of mode 𝑞 , and 𝛼𝑞⃗  and 𝛽𝑞⃗  are hole-phonon matrix elements.  In 

general, the hole-phonon coupling can be asymmetric (𝛼𝑞⃗ ≠ 𝛽𝑞⃗ ). The hole-phonon interaction locally 
changes the energy of the hole, depending on whether the hole is in the left dot or in the right. During 
tunneling, hole’s wave function experiences an additional phase shift due to this coupling. This phase shift 
is zero if the coupling is identical in both dots (𝛼𝑞⃗ = 𝛽𝑞⃗ ). In the case of non-identical coupling, the phase 
shift depends on the state of the phonon field (𝑒𝑖𝑞⃗ .𝑑  with |𝑑 | = 𝑑, the separation of QDs). In our model 
calculations this effect can be practically compensated by adjusting the microwave pulse width to ensure 
p6 is minimized and p8 is maximized at the end of the microwave pulse. 

Additionally, the dwelling time between cycles is a crucial parameter. This time must be optimized so 
that the DQD has sufficient time to absorb specific phonons, yet remains short enough to prevent the local 
environment around the DQD from becoming isothermal with the rest of the lattice. The appropriate duration 
depends on factors such as the material properties, operating temperature, and the area intended for local 
cooling to effectively manage the nearby computational spin qubits. 

The interaction of phonons with the charge and spin in the DQD is critical for understanding the DQD’s 
effectiveness in filtering local phonons. Phonon interactions with the DQD impact the energy transfer 
efficiency and overall cooling performance of the system. In-depth studies are needed to elucidate the 
precise mechanisms by which the DQD selectively absorbs and filters phonons, thereby reducing thermal 
noise around the computational qubits. Understanding these interactions is essential for refining the cooling 
technique and ensuring its practical application in large-scale quantum computing systems. 

In cooling systems, quantum correlations and entanglement in the eigenstates of the Hamiltonian can 
negatively impact the achievement of desired temperatures. For instance, in spin-star cooling systems, the 
Heisenberg interaction between a central spin and surrounding ancilla qubits includes a transverse 
component, leading to entanglement between the central and ancilla qubits. This entanglement generation 

ϵ(t1) + U (μeV) 

T(mK) 



is detrimental to the cooling process.9 Conversely, when qubit interactions follow the Ising model, the 
ground state and all excited states of the spin-star system are factorized, resulting in negligible 
entanglement. Consequently, the minimum achievable temperature in the Ising model is lower than that in 
the Heisenberg model. 

Therefore, it is pertinent to examine entanglement behavior in the context of our DQD cooling system. 
Quantum Fisher Information (QFI), a measure of multipartite entanglement,15 has recently been studied for 
QDs with a universal Hamiltonian.16 As demonstrated in [16], exchange interactions and confinement 
effects can induce unexpected entanglement within the system, which may influence the cooling 
mechanism. Understanding these entanglement dynamics will be valuable for refining our cooling approach 
and enhancing its effectiveness. 

Conclusion 
This paper presents a novel cooling mechanism for spin qubits in gate-defined quantum dots using 

microwave-induced state depopulation and phonon filtering to achieve local temperatures as low as 2 mK 
at a bath temperature of 1 K. The proposed system leverages fast cyclic detuning of quantum dot potentials 
and Rabi oscillations to efficiently transfer thermal populations to the ground state, surpassing natural 
thermal transition rates. By employing a combination of adiabatic and diabatic transitions, along with 
resonant microwave pulses, the cooling cycle effectively reduces the system's temperature through 
continuous depopulation of excited states. 

Numerical calculations have demonstrated the feasibility of achieving these low local temperatures, 
highlighting the significant influence of detuning energy, magnetic field strength, and diabatic return time 
on the cooling performance. This approach addresses the critical gap in effectively cooling interacting multi-
qubit systems, particularly those based on spin qubits in quantum dots. The enhanced cooling capability at 
higher operational temperatures facilitates the integration of control electronics and paves the way for more 
practical and scalable quantum computing systems. 
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