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Abstract

Spin qubits in gate-defined quantum dots are emerging as a leading technology due to their scalability
and long coherence times. However, maintaining these qubits at ultra-low temperatures typically requires
complex cryogenic systems. This paper proposes a novel gate-defined double quantum dot (DQD) cooling
system using microwave-induced state depopulation and phonon filtering to achieve local temperatures
below 10 mK at a bath temperature of 1 K. The system utilizes microwave-induced state depopulation and
phonon filtering, combined with fast cyclic detuning of the quantum dot on-site energies and Rabi
oscillations, to efficiently transfer thermal populations to the ground state, thereby surpassing natural
thermal transition rates. The cooling cycle involves adjusting gate potentials to drive the system through
adiabatic and diabatic transitions, complemented by microwave pulses resonant with specific energy level
differences. This mechanism continuously pumps population from excited states into the ground state,
effectively reducing the system's temperature. Numerical calculations demonstrate the feasibility of
achieving these low local temperatures, with detailed analysis showing the sensitivity of cooling
performance to detuning energy, magnetic field strength, and diabatic return time.

Introduction

Quantum computing promises to revolutionize various fields by solving problems that are intractable
for classical computers. Among the different qubit technologies, spin qubits in gate-defined quantum dots
(QDs) have emerged as a leading candidate due to their scalability and relatively long coherence times.'
These qubits typically operate at sub-100 mK temperatures, which presents a significant challenge for
large-scale integration of control electronics and other components.? There is a substantial technological
interest in increasing their operational temperature to above 1 K, which would facilitate easier integration
and reduce the complexity of cooling systems.® Achieving this would not only simplify the infrastructure but
also enhance the practicality and scalability of quantum computing systems.

Cooling is a critical aspect of quantum computing, particularly for maintaining qubit coherence and
minimizing thermal noise. For gate-defined QD spin qubits, operating at higher temperatures while
maintaining high fidelity is a significant challenge. Traditional methods such as dilution refrigerators are
effective but cumbersome and expensive. Innovations in cooling technologies can thus have profound
implications for the development and deployment of quantum computers.

Over the past several decades, various cooling technologies have been developed for different qubit
systems. Sympathetic cooling for ion traps involves cooling one species of ions using laser cooling and
then transferring the cooling effect to another species through Coulomb interactions.* This technique has
been extended to spatially separated traps using superconducting LC circuits, enabling efficient cooling
over macroscopic distances.® Sideband cooling for superconducting qubits has been demonstrated, where
thermal populations are driven to higher excited states via sideband transitions, followed by relaxation to
the ground state. This method has achieved effective temperatures as low as 3 mK for bath temperatures
ranging from 30 to 400 mK.® Algorithmic cooling leverages quantum algorithms to transfer entropy from
some qubits to others or to the environment, effectively cooling the system. Algorithmic cooling has been
shown to exceed Shannon's bound on data compression and has applications in initializing highly pure
qubits for quantum computation.”8
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Recent advancements propose the use of few-qubit quantum refrigerators for cooling multi-qubit
systems. These systems typically involve a central qubit coupled to several ancilla qubits, using short
interactions to achieve cooling.>'®"" However, these methods are usually applicable for the initialization
stage and do not work for computational qubits during operations. ®'2 Additionally, the number of ancilla
qubits required to achieve sub-100 mK temperatures increases rapidly, leading to greater size and cost for
quantum technology applications.®'® Therefore, there remains a gap in effectively cooling interacting multi-
qubit systems, particularly those based on spin qubits in quantum dots. This work aims to address this gap
by exploring a DQD system as an alternative approach for quantum refrigeration. This new method could
provide a more efficient and practical solution for cooling at higher operational temperatures using a single
DQD, thereby facilitating the integration of control electronics and enhancing the scalability of quantum
computing systems.

Microwave-induced Cooling Mechanism for Double Quantum Dots

We propose leveraging the interplay among state transitions of a double quantum dot, microwave
absorption at resonance, and detuning of the potential of the QDs to design a cooling cycle capable of
reducing the system temperature to the millikelvin range using hole or electron spins. This cycle exploits
the rapid response of hole spin qubits via spin-orbit coupling (SOC) to implement a dual cooling mechanism
involving (i) microwave-induced state depopulation and (ii) phonon filtering (Figure 1). By adjusting gate
potentials, the system is manipulated to drive the thermal population back to the ground state, surpassing
natural thermal transition rates. Additionally, this method uses the energy imbalance induced by microwave
absorption to extract energy from specific phonon modes, significantly lowering the system's energy.
Repeating this process cyclically can achieve temperatures well below the surrounding environment.
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Figure 1: (a) A gate-defied DQD with two HH spins with Zeeman splitting E; and level detuning € = ¢ — €,. Both the
spin-conserving and spin-flipping tunneling are allowed through DQD in the presence of SOC (see the section of
theoretical formalism). The level detuning energy is controlled by the gate potential. (b)The lowest energy levels of
the Hamiltonian H in the plotted energy range. Here, €(t;) and €(t,) are the difference between the on-site energies
at times t1 and t, respectively. Initially, thermal excitations transfer population fractions from the spin ground state
1S(0,2)) to the excited states IT-(1,1)), 1S(1,1)), and [T+(1,1)) according to p; =exp(-Ej’ks To)/Zi[exp(-Ei’ksTo)], where p;
is the population fraction at energy levelE;, and To is the bath temperature. To cool below To, energy is cycled between
two adjacent QDs by detuning from €(t;) to e(t,) using an accelerated adiabatic passage, followed by microwave
absorption and then quickly returning to €(t,) via a fast diabatic path. This process transfers the excited population
to the ground state, cooling the DQD. The microwave signal applied to the DQD at time ¢, induces a transition from
1S(1,1)) to 1S(0,2)). Upon quick returning to €(t,), the system remains at 1S(0,2)) but at a lower energy, effectively
driving the thermal population back to the ground state. This transition must occur faster than the tunneling rate to
prevent charge transfer to |T+(1,1)) or IS(1,1)).

Initially, the system is at a detuning energy €(t). The ground state at this point is 1S(0,2)), with the first
excited state |T-(1,1)), the second excited state 1S(1,1)), and the third excited state at |T+(1,1)) (labeled as
1, 2, 3, and 4, respectively, in Figure 1). The system transitions at time t1 from e(t;) to e(t,) by tuning the
differential potential across the gates. This transition is executed through accelerated adiabatic transitions



over time t12=t>—t1. Consequently, populations p1, p2, ps, and p4 transition to ps, ps, p7, and ps, respectively.
At time t2, a microwave pulse resonant with the energy difference between states |6) and |8) transitions the
ps population to ps. The pulse duration is adjusted so that the entire ps (and ps and p7) population is
transferred to ps at time ts.

At ts, the potential across the gates is quickly returned to the starting voltage, setting e(t,) = e(t,). This
transition must be faster than the tunneling rate to ensure the charge remain in the |S(0,2)) configuration.
Without charge transfer, there is no population transfer to pz, ps, and ps. Consequently, the entire population
is transferred to the ground state 1. This process moves the population in the excited states 2, 3, and 4 to
the ground state 1, leading to cooling of the DQD system.

The second aspect, microwave-induced phonon filtering, happens at the end of the first cycle. At this
time, the DQD is at a lower local temperature compared to the lattice, causing it to absorb phonons to reach
equilibrium with the environment. By cycling the DQD back and forth between the two detuning points, more
phonons are absorbed, effectively filtering the phonons locally where the DQD is situated. Phonons
resonant with the energy difference of states 1 and 2 are expected to be filtered more efficiently. This energy
can be adjusted to match the Zeeman energy splitting of a nearby computational spin qubit. Therefore,
phonons in resonance with the Zeeman energy splitting of the computational qubit can be filtered around
the qubit. Consequently, the cold DQD acts as a filter for specific phonon modes, particularly those resonant
with the energy levels of the spin qubit. By selectively interacting with these local phonon modes, the cold
DQD reduces the effective phonon noise experienced by the spin qubit, enhancing its dephasing time.

The following sections describe the theory and computational results of the proposed DQD cooler.
Theoretical Formalism

We examine a planar DQD system containing two heavy holes (HHs), as depicted in Figure 1(a). The
overall Hamiltonian is expressed as H = Hpop + Hp + Hsoc Where the first term is defined as:

HDQD = Z Z eicfacw +U Z nyn; — ty Z (CZGCRG + Hc)

i=LRo=T1 i=L,R =11
Here, ¢; (for i=L,R) represents the energy levels of the left and right dots, U is the intradot Coulomb
energy (on-site Hubbard interaction), and ty is the spin-conserving tunneling amplitude between adjacent
dots. The operators cw(cl?:,) annihilate (create) a hole with spin o in dot i, and n;, is holes number operator.

A magnetic field B, perpendicular to the plane of the dots, induces a Zeeman splitting. The interaction of
the magnetic field with the HHs in the DQD is given by the following Hamiltonian:

1
Hp = Eg*/J-BB Z (nyr —ny)
i=LR
where g+ is the effective Landé factor and ugis the Bohr magneton. We assume a homogeneous
magnetic field and g factor. The spin-orbit coupling (SOC) is described by:

Hgoc = iaE, (0405 — 0-p3) — B(04p-p+P- + 0_p1D-D4)
The ladder operators are defined as o, = (ax + io-y)/\/f, and the momentum operator p, = p, tip, is

given by p = —ihV +‘§A, where €’ is the effective charge of the hole, c is the speed of light, and A is the

magnetic vector potential. This equation represents the Rashba SOC (a) due to structure inversion
asymmetry, controlled by the effective electric field E, from the accumulation gate, and Dresselhaus SOC
(B) due to bulk inversion asymmetry.

Since we consider a closed system, it is convenient to write the Hamiltonian matrix in the molecular
basis of singlets: [S(1,1)) = (IT,1) = 4,™)/V2, |5(0,2))=0,7l) and |S(2,0)) =|TL1,0), and ftriplets
ITo(1,1)) = (11,4 + |4, ™) /V2, IT-(1,1)) = |4,1), and |T,(1,1)) = |1, T). The nonvanishing spin-flip tunneling
matrix elements are between the polarized triplet states and the double- and single-occupied singlet states
as:

(T2(LD)[Hsoc|S(0,2)) = 2,



(T (LD)|Hsoc|S(2,0)) = 2,
(T (LD|Hsoc|SLD) = 4

where 1, =+/251,. The overlap between the wave functions in each dot is defined as S = (L|R) =
exp (—d?/21%), where d is the distance between dots and [ is the extent of the wave function centered at
each dot. The matrix element 1, also depends on these parameters.

Under a constant magnetic field B, the unpolarized triplet state |T,(1,1)) does not interact with any
other states. The anticrossing between |T, (1,1)) and the singlet states occurs at a detuning near e + U =
—2t3/E, + E,, where ¢ is the detuning energy controlled by the gate potential. Additionally, if the detuning
is sufficiently large (e > —U), the double-occupied singlet state |S(2,0)) is energetically distant and does not
play a role.

To obtain the eigenenergies and eigenvectors of the total Hamiltonian H, we construct its matrix in
the basis |T_(1,1)),|5(0,2)),]1S(1,1)),|5(2,0)}, |T,(1,1)), |T,(1,1)). Considering that € = €z — €, and e, +
€, = 0, the action of H = Hy,, + Hp + Hgoc ON these states are given by:

HITo(1,1)) = HyocTo(1,1)) = 0,

H|T,(1,1)) = E,|T,(1,1)) + 25(1S(0,2)) + [S(2,0))) + A;|S(1,1)),

HIT_(1,1)) = —=E,|T_(1,1)) + 25(1S(0,2)) + [S(2,00)) + A1 [S(1,1)), (1)

HIS(0,2)) = (e + U)IS(0,2)) — V2t |S(1,1)) + A, (IT, (1,1} + |T_ (1, 1)),

HIS(2,0)) = (=€ + U)IS(2,0)) — V2ty|S(1,1)) + 2, (T, (1, 1)) + [T_(1, D)),

HIS(1,1)) = =V2t,(S(0,2)) + 1S(2,0))) + A4, (T, (1L,1)) + [T-(1, 1)),
where we have used:

Hyoel T+ (1,1)) = 25(1S(0,2)) + [S(2,0)) + A3 [S(L,1)),

Heoe | T-(1,1)) = 25(1S(0,2)) + |S(2,0))) + 2;[S(1,1)),

HyoclS(0,2)) = 2,(IT, (1, 1)) + |T-(1, DY),

HyoclS(2,00) = 2, (IT, (1, 1)) + |T-(1, DY),

HyoclS(L,D) = 4, (T, (1,1)) + [T-(1, DY),

The vanishing act of the Hamiltonain on the unpolarized state indicates that this state does not
interact with the other states. Thus, the total Hamiltonian H is a 5 X 5 matrix, and is expressed in the

-E, Ay A A, 0
A, €+U 2t 0 A5
H=| 1 =2ty 0 —V2ty A
A 0 -2ty —€+U X
lo % 2 2,  El

Here, the Zeeman splitting in each quantum dot is given by E, = g*ugB, where g* is the effective g-factor,
ug is the Bohr magneton, and B is the magnetic field. The terms 1 and 15 are the complex conjugates of
A, and A,, respectively. The spin-orbit coupling terms represented by A, and A, capture the spin-flip
tunneling processes between the states. The diagonal terms account for the energy contributions from the
Zeeman effect and the detuning energies, while the off-diagonal elements represent tunneling and SOCs.

For sufficiently small values of SOCs 1, and A,, as indicated by the relations in equation (1), the states
|TJ_r(1,1)) are the eigenstates of the Hamiltonian H, with the eigenenergies +E,. These eigenenergies are
depicted in Figure 1 with the horizontal orange-purple and green-blue lines at E(¢)/E, = +1. Moreover, for
very small values of spin-conserved tunneling energy, the singlet states are also eigenstates of the system:
the doubly occupied singlet states |S(0,2)) and |S(2,0)) with eigenenergies € + U and —e + U, respectively,



and the state |S(1,1)) with a vanishing eigenenergy. In Figure 1, the eigenstate |S(0,2)) is represented by
the off-diagonal blue-green-purple-orange line with E(e)/E, = (¢ + U)/E,, and the eigenstate |S(1,1)) is
represented by the purple-green horizontal line at E, = 0. The eigenenergy —e + U is a diagonal line that is
distant from the other eigenenergies and does not appear in our working energy window.

By turning the SOCs and spin-conserved tunneling energy, states repulsions make deformations in the
energy spectrum. These deformations are seen as three avoided level crossing points, one with 4,-
dependent energy gap appeared at € + U = 0, and two with t,-dependent energy gaps appeared around
the e + U = 0 point, symmetrically.

In the absence of the SOCs, the total Hamiltonian is block diagonal and the diagonalization of the
following Hamiltonian

e+U —/2ty 0
H3ys = _\/EtN 0 —\/EtN ,
0 2ty —e+U

gives the eigenstates of the system. The eigenenergies are obtained as:

1

20 UP+3él+126% 1 Vxz\3

E0=__—__ x1+— ’
2

1
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with E, < E_ < E,. The corresponding eignestates are given in terms of the singlet states as:

2U U?+3e+12t)° —1++/3i (x \/x2)3
- )

|q)0> — - 1 _ 2 (( ( tN)Z Eo(: 2U)> |S~(0 2)) (Eo+€ [) |S(1 1)) + |S(2 0))),
\/<_1+(VEL(')N) E(;(tep_,z )) (EOV;:I\_IU) +1 2
| ) E.\2 E - 2 2 (( 1 (\/’Jtr )2 i(;vz )> 15(0,2)) + (—J;E ) [S(1,1)) +

Here, x; = U(U? + 18ty% — 9¢%), and x, = —4(U? + 3€® + 12t,%)* + 4x,>.

To achieve an adiabatic transfer from the triplet state |T-(1,1)) to the singlet state |S(1,1)) in a DQD
system, the procedure involves designing a detuning pulse that allows the system to evolve along the
instantaneous eigenstate. This process is detailed in reference [14]. The goal is to transition from |T.
(1,1)) to [S(1,1)) by manipulating the detuning €(f) between the quantum dots. The accelerated quasi-
adiabatic protocol has been proposed to achieve high-fidelity state transfer [14]. The protocol adjusts the
detuning €(t) dynamically to maintain adiabatic conditions, minimizing diabatic transitions. In brief, the
adiabatic condition for an N-level system is:

(D0, H ()| (1))

N
c=n)
ki | [Ei(0) = Ex (D]
where |¢,(t)) are the instantaneous eigenstates and E, (t) the corresponding eigenenergies, and C is a
dimensionless constant. By solving the differential equation:
¢ Z [Ei(©) — E ()]
h Lapzi [(Bi(€)| 0H ()| (€))




the time-dependent driving parameter €(f) is obtained, ensuring a constant value of C during the transfer.

The fidelity of the protocol is defined as F = |(S(1,1)|lP(tf))|2, where [¥(¢)) is the finial state achieved
subsequent of the accelerated adiabatic transfer. The protocol shows an ondulatory behavior of fidelity,
tending asymptotically to unity as the total time trincreases. The boundary conditions for the
detuning €(t1) and €(t2) significantly affect the transfer fidelity. Higher fidelities are achieved by increasing
the detuning range Ae=¢(t2)—€(t1) [14].

Thermal and Microwave Excitations

The four states at e(t;) + U are in constant interaction with phonons, leading to thermodynamic
equilibrium at the bath temperature To. The population fraction rate equations in matrix form can be
expressed as:

D1 Wi, =Wy =Wy, W, Wi, Wi P1
i P2| _ Wi, Wy = Waz = Way Wi, W, p2
ac|Ps| Wis Wa3 Wiy =W = W3, W,s pPs3
Pa Wis W4 Wiy Wy — Wy — Wy I1P4

where W;; and W;; are the spontaneous absorption and emission, respectively, between states i and j at
temperature T. Wj can be estimated using thermodynamic relations W;; = Won(Eij) and W;; =
W, (n(E;;) + 1). n(E;;) represents the occupation number of phonons with energy E;; = E; — E; and follows
the Bose-Einstein distribution at temperature T. The negative signs behind the diagonal matrix elements
are an indication of population reduction due to transition. The above set of rate equations is formulated
and solved at times t1 and t4 among states 1), 12), 13), and 14).

During the interval from t3 to t4, between states [6) and [8), there is coherent interaction with the
microwave, causing Rabi oscillations. The Rabi oscillations are characterized by: p,.(t) = cos?(Qt/2) and
pg(t) = sin?(Qt/2), where Q is the Rabi frequency. Their derivatives are: dp4(t)/dt = — Q/2 sin(Qt) and
dpg(t)/dt = Q/2 sin(Qt). There are also spontaneous transitions among all these states, characterized by
Wij. Therefore, the population fraction rate equations in matrix form can be written as:

Ps —Wse — Ws7 — Wsg Wes Ws Wes Ds
i Ps| _ Wse ~Wes — We7 — Wes W76 W Pe
dt |P7 Ws, We7 —Wys — Wy — Wog Ws7 p7
Ps Wsg 0 Wes Wi —Wgs — Wgg — W71 Ps
N 0/2 Sin(ﬂt)
Q/2 sin(Qt)

The negative sign in the second term indicates a trade-off between the population of the states 6 and 8 due
to Rabi oscillations, i.e., following an increase in the population of 8, a reduction in the population of the
state 6 occurs.

Numerical Results

For the numerical calculations, we assume the following parameters: Rabi frequency Q=2 MHz, g*=0.3
(the effective g-factor of HHs in Ge), accelerated adiabatic transition time t12=1 ys, microwave radiation
time t23= 5.25 ys, quantum dot separation d=50 nm, the extent of the wave function [=25 nm, effective mass
m+*=0.36mo, pp = 2.58 X 10723J/T (corresponding to the density of states hole effective mass in Ge),
detuning energy e(t,) = 55.8 ueV — U, U = 2 meV, and spin-conserving tunneling amplitude tx=1 peV. The
spin-flip tunneling matrix element 1,=0.1 peV, and the corresponding value between single-occupied states
IT,(1,1)) and |S(1,1)), M1, is 0.02 peV, calculated as A, = V2exp (—d?/21%)1,. W, is chosen as 50 kHz to fit
the empirical value of the hole spin relaxation time T1. W, = 5 kHz results in a hole spin relaxation time of
200 ps at 20 mK between the excited state |T-(1,1)) and ground state |1S(0,2)) at €(t;) + U = —65 peV. At
this detuning energy, the energy splitting is 50 peV corresponding to typical spin qubits. For consistency,

W, is kept constant for all W;;, and they only differ from each other through n(El-j) term.



Figure 1b is plotted assuming these parameter values and B=0.3 T. However, in the plots presented
in this section, wherever the energy levels change with variables such as the magnetic field and tunneling
matrix elements, the energy levels are calculated accordingly for consistency. The equivalent temperature
T at time t=t4 is calculated by solving this equation for T:

1
Z(t4)_z Ei(ty)exp(= Ei(ty)/ksT) = Z pi(ty)E; (t,)

i=1,2,3,4 i=1,2,3,4
where Z(t,) = X j=12,34 eXp(—E;(ty)/kgT).

Figure 2 illustrates the transient population dynamics of states ps(t), pe(t), p7(t), and ps(t) starting at time tz
with an initial temperature of 1 K during the first cycle of microwave radiation. The Rabi frequency is
assumed to be 2 MHz. At the outset, the population in state ps(t2) is much lower than the other states due
to its higher energy. Microwave radiation, resonant with the energy difference between states |6) and |8),
induces Rabi oscillations, causing the population to shift from |6) to [8). Concurrently, population transfer
occurs from |5) to |6) via spontaneous absorption and from |7) to |6) via spontaneous emission. These
interactions continuously pump the population from |5) and [7) into 16) and from |6) to [8). As Rabi
oscillations proceed, states 15) and |7) become completely depopulated, and the population oscillates
between |6) and |8) in resonance with the microwave radiation. This dynamic effectively drives the system
toward the desired cooling state by manipulating the populations of the energy levels through controlled
microwave interactions.
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Figure 2: Transient population dynamics of states ps (solid blue), ps (dotted black), p7 (solid green), and ps (solid
black) starting at time t2 with an initial temperature of 1 K during the first cycle of microwave radiation. The Rabi
frequency is assumed to be 2 MHz. At the outset, the population in state ps(t2)) is much lower than in the other
states due to its higher energy. Microwave radiation, resonant with the energy difference between states |6) and
I8), induces Rabi oscillations, causing the population to shift from |6) to 18). Concurrently, population transfer
occurs from |5) to |6) via spontaneous absorption and from |7) to |6) via spontaneous emission. These
interactions continuously pump the population from [5) and |7) into 16) and from [|6)| to 18). As the Rabi
oscillations proceed, states [5) and |7) become completely depopulated, and the population oscillates between
|6) and |8) in resonance with the microwave radiation.

Figure 3 provides an analysis of the system temperature and the normalized populations of the ground
state (p1) and first excited state (p2) as functions of the detuning energy €(t,) + U. Panel (a) illustrates the
system temperature at B=0.3 T for three different bath temperatures: To=1 K (solid black line), To=4 K (solid
blue line), and To=10 K (solid red line). At €(t,;) + U = 20 peV and t34=10 ns, the system temperature
reaches 10 mK for To=1 K. As the detuning potential is further reduced, the temperature approaches 2 mK.
When t34 increases from 10 ns to 1 ys, the system temperature rises to 18 mK. For bath temperatures of
To=4 K and To=10 K with tsa=10 ns, the system temperature increases to 15 mK and 26 mK, respectively.
Panel (b) shows the normalized populations of the ground state (p+ in black) and the first excited state (p2
in blue) relative to their equilibrium values at steady state. As the system temperature decreases, the
population of the ground state (p1) increases, while the population of the excited state (p2) decreases. This
analysis emphasizes the sensitivity of the system temperature to the detuning energy and the diabatic
return time, ts4, under varying bath temperatures.
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Figure 3: (a) System temperature and (b) normalized population of the ground state p1 (blue) and the first excited
state p2 (black) at 1 K(solid line) and 10 K (dotted line) with respect to their equilibrium values at steady state versus
detuning energy €(t;) + U. In panel (a), the results are plotted for B=0.3 T at three bath temperatures: To=1 K (solid
black), To=4 K (solid blue), and To=10 K (solid red). The system temperature at e(t,) + U = —20 peV and t3,=10
ns reaches 10 mK for To=1 K and approaches 2 mK as the detuning potential is further reduced. This temperature
increases to 18 mK when t34 rises from 10 ns to 1 us (dotted black line). For To=4 K and 10 K, with t34=10 ns, the
system temperature increases to 15 mK and 26 mK, respectively. Panel (b) shows that as the temperature
decreases, the ground state population increases while the excited state population decreases.

Figure 4 provides a detailed examination of the system temperature’s dependency on the fast diabatic
return time (tss) and the dwelling time (tawei), Which is the duration which the system interacts with phonons
before initiating the next cooling cycle. These results highlight the critical role of the fast diabatic return time
and the dwelling time in achieving and maintaining effective cooling in DQD systems. Both panels (a) and
(b) assume a bath temperature (To) of 1 K and a detuning energy (e(t;) + U) of approximately -20 peV.
Panel (a) illustrates the system temperature as a function of the fast diabatic return time (ts4) for two different
dwelling times: tawer=10 ns (solid line) and tswe=1 us (dotted line). When tqwei=10 ns, the system temperature
remains between 10 mK and 20 mK over a wide range of tss from 1 ns to 20 ys. However, for tgwe=1 ps,
the system temperature increases to a range of 40 mK to 50 mK over a similar range of t34. This indicates
that longer dwelling times can lead to higher system temperatures, highlighting the importance of optimizing
tawen for effective cooling. Panel (b) depicts the system temperature as a function of the dwelling time (tswen)
for two different fast diabatic return times: t34=10 ns (solid line) and t34=1 us (dotted line). The temperature
increases with tswe, as expected, and saturates at approximately 1 K (the bath temperature) when tgyen
approaches 100 ps. In practice, the dwelling time should be optimized to be short enough to maintain a low
system temperature, yet long enough to allow the spins to interact and effectively filter phonons through
absorption.
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Figure 4: (a) System temperature versus fast diabatic return time ts4 and (b) system temperature versus dwelling
time tawen, Which is the duration when the system interacts with phonons before starting the next cooling cycle. (a)
shows the results for tawe1=10 ns (solid line) and taweri=1 ps (dotted line). The system temperature for tawei=10 ns
ranges between 10 mK and 20 mK over a wide range of fast diabatic return times from 1 ns to 20 ps. For tgwei=1
us, the system temperature increases to between 40 mK and 50 mK over a similar range of ts4. (b) shows the results
for t34=10 ns (solid line) and tss=1us (dotted line). The temperature increases with tqwer as expected, saturating at
approximately 1 K when tawer=100 ps. Both panels (a) and (b) assume To=1 Kand €(t,;) + U = —20 peV.

Clarifying Energy Conservation During Gate Voltage Transitions

The key issue with energy conservation in this system is understanding where the energy goes when
the gate voltage transitions. It might initially be thought that the transition releases energy in the form of
photons or phonons. However, during the transition from [S(0,2)) at e(t,) to 1S(0,2)) at (t,), there is no
charge transfer. Given the lack of charge transfer between the quantum dots, these hypotheses are
incorrect.

The correct explanation is that the energy is conserved by being returned to the power supply. The
gate and the QD can be modeled as a capacitor. The power supply provides energy to increase the
electrostatic energy of the holes when the gate voltage transitions the system from €(t;) to €(t;). This
increase is more pronounced for the |S(0,2)) state, as shown in Figure 1b. The energy is returned to the
power supply when the gate voltage switches back to negative.

Additionally, microwave absorption during time tzs adds energy to the system by increasing the
population fraction in the |S(0,2)) state. Consequently, when the voltage switches back to negative, more
energy is returned to the power supply than was initially provided, resulting in a lower total energy of the
system. This work, done by the power supply and microwave radiation, is equal to X;_; , ¢[p;(t;) — p;(t,)].

Furthermore, one might consider that changes in the wave function distribution in the QD due to voltage
changes could lead to photon radiation. However, this contribution depends on the rate at which the gate
voltage changes. Since the energy difference between the two states is fixed, the released energy does
not depend on the rate of gate voltage change and therefore cannot account for the observed energy
conservation.

Practical Considerations

For practical implementation of the accelerated adiabatic transition, the ideal pulse shape derived from
the protocol can be discretized into a series of linear ramps to mimic experimentally feasible pulses.

The second consideration is for microwave excitation at time t.. At a detuning of
€(t,) + U = 55.8 neV and B=0.3 T, the energy difference between |S(1,1)) and 1S(0,2)) is 41 peV, requiring



a microwave excitation frequency of 10 GHz for the |S(1,1)) to IS(0,2)) transition. Increasing the detuning
energy at time t2 results in a higher energy difference. Therefore, the system can be designed by adjusting
€(t,) to match the available microwave sources in the laboratory. Other parameters, such as the magnetic
field and geometrical dimensions of the dots, would also affect the required microwave frequency. These
adjustments are crucial for ensuring the efficient operation of the cooling loop within the experimental setup.

Another practical consideration is the sensitivity of the energy levels to the DQD parameters. Key
parameters include A4, 1,, ty, g, and ug. The energy levels are significantly more sensitive to the values
g%, ty, and ug than 4, and 1, . The dots' separation d is usually a multiple of the extent of the wavefunction
I. Considering d = 21, the overlap parameter is S~0.14, and A,/1, ~0.2. This indicates that the transition
between different charge configurations, [T (1,1)) and |5(0,2)), due to SOC is more probable compared to
the transition between [T, (1,1)) and |S(1,1)). For materials with strong SOC, like GaAs, this ratio is about
1072, and without loss of generality, one can ignore the effects of the spin-flip tunneling matrix element A,.

As an illustration, Figure 5 demonstrates how the system temperature varies with 1, for two different
values of 1,:0.0151, and 0.21,. The system temperature remains relatively stable across a wide range of 1,.
However, the temperature increases significantly when 1, exceeds the spin-conserved tunneling energy tx,
which can occur under very large SOC.
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Figure 5: System temperature as a function of 4, for two different values of 1, = 0.21, and 0.0151,. Assuming
the extension of the wavefunction [ is 25 nm, the corresponding distances between the QDs d are 50 nm and
75 nm. The system temperature remains relatively stable over a wide range of 1,. However, at very high
values of 1,, where spin-flip tunneling exceeds spin-conserved tunneling, the system temperature increases
with 1,. The system temperature shows little sensitivity to changes in 2, .

Another practical consideration is the importance of the accelerated adiabatic transition in achieving
the predicted low temperatures. Given that the energy states can be very close to each other depending
on the detuning energy, achieving complete adiabatic transitions might be challenging in practice. Figure 6
illustrates the system temperature as a function of detuning energy at t1, considering the population transfer
from states |1), 12), 13), and |4) to states |5), 16), |7), and |8) via two different paths: accelerated adiabatic
transfer and complete population transfer to [7) (IT+(1,1))). The path where the population is transferred to
I7) results in a higher system temperature; however, this increase is not significant. Consequently, the
accelerated adiabatic transition is not strictly necessary for the cooling loop to function and can be relaxed
without a substantial loss in the achievable low temperature.
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Figure 6: System temperature versus detuning energy at t1 assuming the population is transferred from
states [1), 12), 13), and |4) to |5), I6), |7), and 18) via two different paths: accelerated adiabatic transfer, and
all population transfer to |7). The second path, where all the population is transferred to [7) (1T+(1,1))), results
results in a higher system temperature; however, the difference is not significant. Therefore, the accelerated
adiabatic transition is not strictly necessary for the cooling loop to function and can be relaxed without a
substantial loss in the achievable low temperature.

This behavior occurs because, at time t3, regardless of the initial population distribution among states
[5), 16), 17), and |8), microwave radiation resonant with the energy difference between states |6) and |8)
induces Rabi oscillations, causing the population to shift from |6) to |8). Concurrently, population transfer
occurs from [5) to |6) via spontaneous absorption and from |7) to |6) via spontaneous emission. These
interactions continuously pump the population from |5) and |7) into |6) and from [6) to 18). As the Rabi
oscillations proceed, states 15) and |7) become completely depopulated, and the population oscillates
between |6) and |8) in resonance with the microwave radiation. This dynamic effectively drives the
population to 18) regardless of the initial population distribution, explaining why the different paths result in
similar final system temperatures.

The lowest achievable temperature may vary with different values of magnetic field (B), as the cooling
effect arises from the interplay of relative energy level spacings that influence the thermal excitation rate.
Figure 7 presents a contour map of the system temperature as a function of the magnetic field and detuning
energy at time ti. A minimum temperature of 2 mK is achievable under optimal parameters. Each
temperature corresponds to a specific range of magnetic field and detuning energy (e(t,) + U). For instance,
to achieve a temperature of 2 mK, the detuning energy can range from near zero to -50 peV, with the
magnetic field between near zero and 1 T. As the temperature increases, these constraints become more
relaxed, providing greater flexibility for experimental design.

It is important to note that some points in the contour map may not correspond to the pure states shown
in Figure 1 at time t1. Therefore, the optimal detuning energy and magnetic field must be determined based
on the specific parameters of the DQD system. The lowest achievable temperature is ultimately determined
by the competition between state population changes due to thermal excitation and microwave-induced
state depopulation. Consequently, in practice, the DQD parameters must be carefully considered, and the
energy levels must be measured or accurately calculated when designing the cooling loop.
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Figure 7: Contour map of the system temperature as a function of the magnetic field and detuning energy
at time t1. A minimum temperature of 2 mK is achievable under optimal parameters. Each temperature
corresponds to a specific range of magnetic field and detuning energy (e(t1)+U). For instance, to achieve
a temperature of 2 mK, the detuning energy can range from near zero to -50 peV, with the magnetic field
between near zeroand 1 T.

Another important consideration is the hole spin phase shift caused by interactions with phonons,
particularly during the thermal transition from states |6) to |8). In this transition, a hole tunnels between the
left and right dots, and interacts with a phonon field via the following Hamiltonian:

Hioon = ) [(@gISCLDNSALD] + B71S 02N 0.2 (g +a})]
q

where aj; is creation operator for a phonon of mode ¢, and a; and f8; are hole-phonon matrix elements. In

general, the hole-phonon coupling can be asymmetric (a; # ;). The hole-phonon interaction locally
changes the energy of the hole, depending on whether the hole is in the left dot or in the right. During
tunneling, hole’s wave function experiences an additional phase shift due to this coupling. This phase shift
is zero if the coupling is identical in both dots (az = 5). In the case of non-identical coupling, the phase

shift depends on the state of the phonon field (ei‘f-‘i with |£i| = d, the separation of QDs). In our model
calculations this effect can be practically compensated by adjusting the microwave pulse width to ensure
p6 is minimized and p8 is maximized at the end of the microwave pulse.

Additionally, the dwelling time between cycles is a crucial parameter. This time must be optimized so
that the DQD has sufficient time to absorb specific phonons, yet remains short enough to prevent the local
environment around the DQD from becoming isothermal with the rest of the lattice. The appropriate duration
depends on factors such as the material properties, operating temperature, and the area intended for local
cooling to effectively manage the nearby computational spin qubits.

The interaction of phonons with the charge and spin in the DQD is critical for understanding the DQD’s
effectiveness in filtering local phonons. Phonon interactions with the DQD impact the energy transfer
efficiency and overall cooling performance of the system. In-depth studies are needed to elucidate the
precise mechanisms by which the DQD selectively absorbs and filters phonons, thereby reducing thermal
noise around the computational qubits. Understanding these interactions is essential for refining the cooling
technique and ensuring its practical application in large-scale quantum computing systems.

In cooling systems, quantum correlations and entanglement in the eigenstates of the Hamiltonian can
negatively impact the achievement of desired temperatures. For instance, in spin-star cooling systems, the
Heisenberg interaction between a central spin and surrounding ancilla qubits includes a transverse
component, leading to entanglement between the central and ancilla qubits. This entanglement generation



is detrimental to the cooling process.® Conversely, when qubit interactions follow the Ising model, the
ground state and all excited states of the spin-star system are factorized, resulting in negligible
entanglement. Consequently, the minimum achievable temperature in the Ising model is lower than that in
the Heisenberg model.

Therefore, it is pertinent to examine entanglement behavior in the context of our DQD cooling system.
Quantum Fisher Information (QFI1), a measure of multipartite entanglement,'® has recently been studied for
QDs with a universal Hamiltonian.'® As demonstrated in [16], exchange interactions and confinement
effects can induce unexpected entanglement within the system, which may influence the cooling
mechanism. Understanding these entanglement dynamics will be valuable for refining our cooling approach
and enhancing its effectiveness.

Conclusion

This paper presents a novel cooling mechanism for spin qubits in gate-defined quantum dots using
microwave-induced state depopulation and phonon filtering to achieve local temperatures as low as 2 mK
at a bath temperature of 1 K. The proposed system leverages fast cyclic detuning of quantum dot potentials
and Rabi oscillations to efficiently transfer thermal populations to the ground state, surpassing natural
thermal transition rates. By employing a combination of adiabatic and diabatic transitions, along with
resonant microwave pulses, the cooling cycle effectively reduces the system's temperature through
continuous depopulation of excited states.

Numerical calculations have demonstrated the feasibility of achieving these low local temperatures,
highlighting the significant influence of detuning energy, magnetic field strength, and diabatic return time
on the cooling performance. This approach addresses the critical gap in effectively cooling interacting multi-
qubit systems, particularly those based on spin qubits in quantum dots. The enhanced cooling capability at
higher operational temperatures facilitates the integration of control electronics and paves the way for more
practical and scalable quantum computing systems.
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