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Abstract
Adapting to a priori unknown noise level is a very
important but challenging problem in sequential
decision-making as efficient exploration typically
requires knowledge of the noise level, which is
often loosely specified. We report significant
progress in addressing this issue for linear ban-
dits in two respects. First, we propose a novel
confidence set that is ‘semi-adaptive’ to the un-
known sub-Gaussian parameter σ2

∗ in the sense
that the (normalized) confidence width scales with√
dσ2

∗ + σ2
0 where d is the dimension and σ2

0 is
the specified sub-Gaussian parameter (known)
that can be much larger than σ2

∗. This is a sig-
nificant improvement over

√
dσ2

0 of the standard
confidence set of Abbasi-Yadkori et al. (2011),
especially when d is large or σ2

∗ is small. We
show that this leads to an improved regret bound
in linear bandits. Second, for bounded rewards,
we propose a novel variance-adaptive confidence
set that has much improved numerical perfor-
mance upon prior art. We then apply this con-
fidence set to develop, as we claim, the first prac-
tical variance-adaptive linear bandit algorithm via
an optimistic approach, which is enabled by our
novel regret analysis technique. Both of our confi-
dence sets rely critically on ‘regret equality’ from
online learning. Our empirical evaluation in di-
verse Bayesian optimization tasks shows that our
proposed algorithms demonstrate better or compa-
rable performance compared to existing methods.

1. Introduction
In linear bandits (Abe & Long, 1999; Auer, 2002; Dani
et al., 2008; Abbasi-Yadkori et al., 2011), the learner faces
the challenge of making judicious sequential decisions with
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observed features so that the rewards obtained from those
decisions would be maximized.1 Specifically, at each time
step t = 1, 2, . . . , n, the learner is given an arm set Xt ⊂ Rd
and chooses an arm xt ∈ Xt to observe a reward

yt = ⟨xt, θ∗⟩+ ηt, (1)

where θ∗ ∈ Rd is unknown, ηt | Ft−1 is a zero-
mean stochastic noise, and Ft−1 := σ(x1, y1, . . . , xt−1,
yt−1, xt). The goal is to maximize the cumulative reward∑n
t=1 yt. The standard theoretical performance measure is

cumulative pseudo-regret (or simply ‘regret’) defined as

Regn :=
n∑
t=1

⟨xt,∗, θ∗⟩ − ⟨xt, θ∗⟩, (2)

where xt,∗ = argmaxx∈Xt
⟨x, θ∗⟩ is the arm with the high-

est mean reward. The significance of this problem lies in
its wide applicability, ranging from recommendation sys-
tems (Li et al., 2010) to online advertising (Avadhanula et al.,
2021) where the learner must balance between exploration
(acquiring information about the model) and exploitation
(pulling the arm estimated to give high reward).

A critical aspect of the linear bandit problem is the fact that
an algorithm requires prior knowledge of the noise level
(or an upper bound of it) and that its performance critically
depends on the specified noise level rather than the actual
noise level. In this paper, we make significant progress in
addressing this issue by proposing two algorithms that can
semi or fully adapt to the actual noise level in two different
setups.

The first setup is when the noise ηt | Ft−1 is σ2
∗-sub-

Gaussian where the sub-Gaussian parameter specified to
the algorithm is σ2

0 that can be much larger than σ2
∗. We

propose a novel linear bandit algorithm called LOSAN (Lin-
ear Optimism with Semi-Adaptivity to Noise). The critical
ingredient for this algorithm is a novel confidence set whose
(normalized) confidence width contains online variance es-
timators and is no larger than Õ(

√
dσ2

∗ + σ2
0) with high

probability where Õ hides polylogarithmic factors. This is
no worse than Õ(

√
dσ2

0 + σ2
0) of the standard confidence

1The implementation of our proposed methods is available at
https://github.com/jungtaekkim/LOSAN-LOFAV.
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set of Abbasi-Yadkori et al. (2011), and in fact our confi-
dence set can be significantly smaller when σ2

0 is largely
over-specified. LOSAN leverages our novel confidence
set to perform optimistic exploration, which we prove to
have a regret bound of Õ(σ0

√
dn+ σ∗d

√
n). This bound,

compared to the state-of-the-art bound of Õ(σ0d
√
n), effec-

tively achieves a factor of
√
d improvement when σ2

∗ ≪ σ2
0 .

We present our confidence set and LOSAN in Section 2.

The second setup is the case of bounded noise; i.e., ∀t, ηt ∈
[−R,R] almost surely for some R ≥ 0. Among the recent
studies reporting regret bounds that adapt to the unknown
variance σ2

t of the noise ηt (Zhang et al., 2021; Kim et al.,
2022; Xu et al., 2023; Zhao et al., 2023a), the seminal
work of Zhao et al. (2023a) proposed an algorithm called
SAVE and proved a regret bound of Õ(d

√
R2 +

∑n
t=1 σ

2
t ),

which is unimprovable in general as it matches the op-
timal worst-case regret (Lattimore & Szepesvári, 2020).
Note that this rate is orderwise never worse than exist-
ing regret bounds with the sub-Gaussian assumption like
OFUL (Abbasi-Yadkori et al., 2011) that achieves d

√
R2n.

However, SAVE follows the SupLinRel (Auer, 2002) style
whose numerical performance is bad compared to other
approaches such as optimistic (Dani et al., 2008) or posterior
sampling (Agrawal & Goyal, 2013) strategies since it builds
confidence bounds based on a small subset of samples only.
Furthermore, their algorithm adapts to the variance that is
unknown yet fixed deterministically before the bandit game
starts. This severely limits its applicability. For example,
such a setting cannot incorporate the environment where the
variance at time t changes as a function of the chosen arm
at time t or the past behavior of the learner.

To overcome these limitations, we propose a novel confi-
dence set that not only removes the limiting assumption on
the noise discussed above but also significantly improves the
numerical performance. We then propose a novel optimistic-
style linear bandit algorithm called LOFAV (Linear Opti-
mism with Full Adaptivity to Variance) that computes the
confidence set with all the available samples rather than a
small subset of them. Our analysis shows that LOFAV en-
joys the same order of regret as SAVE, which is optimal up
to logarithmic factors. LOFAV can be implemented with the
computational complexity of Õ((d2 maxnt=1 |Xt|)n), which
is the same as SAVE and is within a logarithmic factor of
that of the standard algorithm OFUL (Abbasi-Yadkori et al.,
2011). We present our confidence set, LOFAV, and their
analysis in Section 3.

Finally, we empirically validate the performance of both
of our algorithms in synthetic experiments and the bench-
marks widely used in the Bayesian optimization community
including NATS-Bench (Dong et al., 2021). In this em-
pirical analysis, our algorithms yield better or comparable
performance compared to OFUL and potentially the simple

discrete Bayesian optimization strategy (Garrido-Merchán
& Hernández-Lobato, 2020). We present our empirical re-
sults in Section 4, discuss related work in Section 5, and
conclude our paper with exciting future research directions
in Section 6.

Preliminaries. Throughout, we assume that both the con-
fidence set and bandit algorithms have prior knowledge of
S such that ∥θ∗∥ ≤ S. Note that techniques employed
in Gales et al. (2022) can be readily applied to remove
this assumption with only a constant factor inflation in
the leading term of

√
n in the regret bound and a poly-

nomial factor in the lower order term. We assume that
Xt ⊆ {x ∈ Rd : ∥x∥2 ≤ 1}. For a vector x, we
define ∥x∥ := ∥x∥2 as the euclidean norm. We define
∥x∥V :=

√
x⊤V x where V is a positive semi-definite ma-

trix. We use a ≲ b to denote that there exists an absolute con-
stant c > 0 such that a ≤ cb. We use Õ as the big-O notation
that omits polylogarithmic factors. Let a ∨ b := max{a, b}
and a ∧ b := min{a, b}. Define ln ln(x) := ln ln(e ∨ x)
and [a..b] := {a, a+ 1, . . . , b}.

2. Semi-Adaptation for Sub-Gaussian Noise
In this section, we assume the standard linear bandit setup
with the reward model of (1) where the conditional noise ηt |
Ft−1 satisfies the following assumption, which is standard
in linear bandits.

Assumption A1. The noise ηt | Ft−1 is σ2
∗-sub-Gaussian,

∀t. The algorithm has a prior knowledge of σ2
0 such that

σ2
∗ ≤ σ2

0 .

We first introduce our confidence set. Our intuition comes
from the standard FTRL (Follow-The-Regularized-Leader)
regret equality (Orabona, 2023, Lemma 7.1) (restated
in Lemma C.7). For the case of the squared loss ℓ(θ) =
1
2 (x

⊤
t θ − yt)

2 with the standard online ridge regression
estimator θt = argminθ

∑t
s=1 ℓ(θ) +

λ
2 ∥θ∥

2, the regret
equality implies

t∑
s=1

ℓs(θs−1)− ℓs(θ
∗) =

λ

2
∥θ∗∥2 +

t∑
s=1

ℓs(θs−1)∥xs∥2V −1
s

− 1

2
∥θt − θ∗∥2Vt

,

where

Vt := λI +
t∑

s=1

xsx
⊤
s .

The negative term on the RHS is often not useful and thus ig-
nored in online learning. However, this term exactly appears
in confidence sets for linear bandits such as the standard
self-normalized confidence set (SNCS) (Abbasi-Yadkori
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et al., 2011). Using the fact that
∑t
s=1 ℓs(θs−1)− ℓs(θ∗) ≥

−σ2
∗ ln(1/δ) with high probability (see Lemma C.8), which

we call the ‘negative regret bound’, we obtain

1

2
∥θt − θ∗∥2Vt

≤ λ

2
∥θ∗∥2

+
t∑

s=1

ℓs(θs−1)∥xs∥2V −1
s︸ ︷︷ ︸

=:At

+σ2
∗ ln(

1

δ
) .

One can bound ∥θ∗∥ ≤ S and use Assumption A1 to bound
σ2
∗ ≤ σ2

0 . One can further try to upper bound At to con-
struct a confidence set. Indeed, this is the approach taken
by Dekel et al. (2012) for online selective sampling (with
minor differences) where they assume bounded noise; i.e.,
ηt | Ft−1 ∈ [0, 1] almost surely. This means that we have
σ2
0 = 1/4. This allows them to control ℓs(θs−1) loosely

such that At ≤ Āt := O(σ2
0d ln(t)) and construct a confi-

dence set{
θ ∈ Rd :

1

2
∥θt − θ∥2Vt

≤ λ

2
S2 + Āt + σ2

0 ln(
1

δ
)
}
.

While details differ, this is the essence of Dekel et al. (2012).
However, this does not provide an improvement over SNCS.
In another work of Jun et al. (2017), a slightly different
technique of online-to-confidence-set conversion (see Sec-
tion 5 for details) also introduces a term like the second term
above; they use a union bound over the time steps to control
At ≤ O(σ2

0Sd ln
2(t)), which leads to an even looser bound

than SNCS.

Departing from prior work, we propose to keep At as is,
which motivates the following confidence set:{
θ ∈ Rd :

1

2
∥θt − θ∥2Vt

≤ λ

2
S2 +At + σ2

0 ln(
1

δ
)
}
. (3)

The benefit is the following observation: If ℓs(θs−1) ≈
ℓs(θ

∗), then At = O(σ2
∗d ln(t)) with high probability.

Then, we can have a confidence set whose (normalized)
confidence width (i.e., the upper bound on ∥θt − θ∥Vt

) is
of order O (

√
dσ2

∗ + σ2
0) rather than O(

√
dσ2

0) of SNCS.
Note that the assumption of ℓs(θs−1) ≈ ℓs(θ

∗) is sensi-
ble since for large enough s, the loss of θs−1 should be
sufficiently similar to the true parameter θ∗.

However, our intuition does not easily lead to a confidence
set whose radius is

√
dσ2

∗ + σ2
0 for technical reasons that

we omit here. Still, one can see that the proposed confidence
set above cannot be strictly better than SNCS. The reason
is that At contains ℓ1(θ̂0) = ℓ1(0) = y21/2, which can be
Ω(B2) where B = maxtmaxx∈X1

|⟨x, θ∗⟩| that can be as
large as S. Such a dependence does not appear in SNCS
(note the factor S can be canceled out by setting a large λ),
and thus (3) cannot be strictly better than SNCS. Instead,

we found that an added assumption of ∥xs∥2V −1
s

≤ 1
2 helps

attain the desired inequality (Lemma C.10):

At ≲
t∑

s=1

ℓs(θ
∗)D2

s + λS2 + σ2
0 ln(1/δ) .

While the tools proposed by Zhao et al. (2023a) can be
used to satisfy ∥xs∥2V −1

s
≤ 1

2 . However, this requires using
weighted ridge regression, which changes the left-hand side
1
2∥θt − θ∥2Vt

of the constraint now involves Vt that consists
of the weighted versions of {xs}ts=1, which will block us
from applying the standard elliptical potential lemma (e.g.,
Abbasi-Yadkori et al. (2011, Lemma 11)) from the existing
analysis technique. That is, even if we can achieve the
target confidence width, the regret analysis must be done
differently to accommodate the change. Therefore, both our
confidence set and the regret analysis are our novelty.

Proposed confidence set. Departing from the standard
ridge regression, we use a weighted ridge regression esti-
mator inspired by Zhao et al. (2023a). Define the weight
wt:

wt = 1 ∧ 1

∥xt∥Σ−1
t−1

∈ (0, 1],

where Σt = λI +
∑t
s=1 w

2
sxsx

⊤
s . Since ∥wtxt∥2Σ−1

t−1

≤ 1,

using Woodbury matrix identity, we obtain

D2
t := ∥wtxt∥2Σ−1

t
≤ 1

2
,

which will be the key property that enables our semi-
adaptive bound. The weighted ridge regression estimator
we use is then defined as

θ̂t = argmin
θ

t∑
s=1

w2
sℓs(θ) +

λ

2
∥θ∥22,

where ℓs(θ) := 1
2 (x

⊤
s θ − ys)

2 is the squared loss. Equiva-
lently, one can assume the noise model of

wtyt = ⟨wtxt, θ∗⟩+ wtηt,

and write down the weighted estimator as

θ̂t = argmin
θ

t∑
s=1

ℓws (θ) +
λ

2
∥θ∥22,

where ℓws (θ) :=
1
2 (wsx

⊤
s θ − wsys)

2 = w2
sℓ(θ).

We then construct the following confidence set

Csemi
t = {θ ∈ Rd :

1

2
∥θ̂t − θ∥2Σt

≤ λ

2
S2+

t∑
s=1

ℓws (θ̂s−1)D
2
s+σ

2
0 ln(1/δ) =: γt},

(4)
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Algorithm 1 LOSAN (Linear Optimism with Semi-
Adaptivity to Noise)

1: Input: norm bound S, sub-Gaussian parameter σ2
0

2: for t = 1, 2, . . . do
3: Observe the arm set Xt.
4: Pull xt = argmaxx∈Xt

maxθ∈Csemi
t−1

⟨x, θ⟩ where
Csemi
t−1 is defined in (4) and

max
θ∈Csemi

t−1

⟨x, θ⟩ = ⟨x, θ̂t−1⟩+
√
2γt−1∥x∥Σ−1

t−1
.

5: Receive reward yt.
6: end for

and show that the confidence set is time-uniformly valid
as follows. Throughout, all the proofs are deferred to the
appendix.
Theorem 2.1. Take Assumption A1. Then,

P(∀t ≥ 1, θ∗ ∈ Csemi
t ) ≥ 1− δ.

We show later (Appendix A) that, with high probability,

γt = O

(
λS2 + σ2

∗d ln(1 +
t

dλ
) + σ2

0 ln(1/δ)

)
,

which shows an orderwise improvement upon SNCS that
has O

(
λS2 + σ2

0d ln(1 +
t
dλ ) + σ2

0 ln(1/δ)
)
. The gap be-

comes much larger when σ2
∗ ≪ σ2

0 or even σ2
∗ = 0.

Proposed bandit algorithm. We are now ready to present
our algorithm, which follows the optimistic approach (Dani
et al., 2008; Abbasi-Yadkori et al., 2011) with our confi-
dence set Csemi

t , which pulls the arm with the largest upper
confidence bound. The full pseudo-code is presented in
Algorithm 1.
Theorem 2.2. Let B = max∞t=1 maxx∈Xt |⟨x, θ∗⟩|. Under
Assumption A1, Algorithm 1 with λ = σ2

0/S
2 satisfies that,

with probability at least 1−O(δ), ∀n ≥ 1,

Regn ≲ σ∗d
√
n+ σ0

√
dn ln(1/δ) + dB,

where we omit polylog(d, n, S, σ2
0) factors.

Theorem 2.2 shows an improvement upon the state-of-the-
art regret bound of σ0d

√
n ln(1/δ) + dB which is reported

in Lattimore & Szepesvári (2020, Exercise 19.3). When
the sub-Gaussian parameter is largely over-specified (i.e.,
σ2
0 ≫ σ2

∗), our algorithm achieves a factor of
√
d improve-

ment, which is significant when d is not too small. To our
knowledge, our confidence set and LOSAN are the first ones
to achieve the semi-adaptivity under the sub-Gaussian noise
assumption.

3. Full Adaptation to Bounded Noise
In this section, we turn to the bounded noise case. Specifi-
cally, we assume the model of (1) with the following noise

assumption.

Assumption A2. The reward noise ηt satisfy ηt ∈ [−R,R]
for some R ≥ 0 with probability 1 for every t. The algo-
rithm has a priori knowledge of R.

Of recently proposed studies on variance-adaptive linear
bandits (see Section 5 for more discussion), Zhao et al.
(2023a) for the first time proposed an algorithm called SAVE
that enjoys Õ(d

√
(R2 +

∑n
t=1 σ

2
t )) with polynomial time

and space complexity. In fact, its space and time com-
plexity is of the same order (up to logarithmic factors) as
the standard linear bandits such as OFUL (Abbasi-Yadkori
et al., 2011), which is O(d2 maxnt=1 |Xt|n) time complex-
ity and O(d2) space complexity. SAVE has improved both
the regret bound (a factor of

√
d) and the time complexity

(exponential to polynomial) upon the previous state-of-the-
art Kim et al. (2022).

However, SAVE is inherently based on SupLinRel (Auer,
2002) or SupLinUCB (Chu et al., 2011), which maintains
L disjoint buckets of the observed samples. Since each
estimator θ̂ℓ is computed from the samples from ℓ-th bucket
only, SupLinRel-style algorithms are usually an order of
magnitude worse than the standard algorithmic frameworks
such as optimistic approach (Abbasi-Yadkori et al., 2011)
or posterior sampling approach (Agrawal & Goyal, 2013).

Is it possible to achieve the same order of regret bound and
computational complexity without wasting samples? We
answer this question in the affirmative by developing an
optimistic-style algorithm. As is usual, we first need to
construct a confidence set for the unknown parameter θ∗.
While one can leverage the existing confidence set used for
SAVE, it works under the assumption where the conditional
variance of ηt | Ft−1 at time t is fixed ahead of time before
the bandit game starts. That is, they assume that there exists
a sequence of deterministic values σ̄2

1 , . . . , σ̄
2
n such that

∀t ∈ [n], (σ2
t | Ft−1) = σ̄2

t . (5)

We found this unrealistic as it can only deal with the noise
that varies only as a function of the time step t (e.g., a sea-
sonal effect of the customers’ behavior in recommendation
systems). For example, such an assumption cannot effec-
tively capture the case where the noise variance changes as
a function of the specific arm being pulled. Furthermore, we
have found that the variance-adaptive confidence set used in
SAVE is quite loose, which requires a lot of samples until
outperforms even SNCS; see Figure 1.

Motivated by the limitations of the sample-inefficiency of
the prior art, we propose a novel confidence set and bandit al-
gorithm that remove the limited assumption on the variance
and exhibit much improved numerical performance. Our
proposed confidence set computes L estimators and builds
a confidence set as an intersection of L base confidence sets.
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Figure 1. The green line (very small) represents our confidence
set Cfull

t and the orange area represents the confidence set of Zhao
et al. (2023a), which is also implemented as an intersection of L
confidence sets like ours. We use n = 500,000 samples, d = 2,
L = 9, and σ2

t = 0.1, ∀t. With θ∗ = (1, 0), the upper confidence
bound on the mean reward of the arm x = (1, 0) is 1.01 with our
method while it is 7.66 with their method and 1.05 with SNCS.

Inspired by the base confidence set of SAVE (Zhao et al.,
2023a), we construct our base confidence sets by leveraging
weighted ridge regression estimators, but with a critical dif-
ference that (i) we leverage the regret equality (Lemma C.7),
which results in a significantly tightened confidence set (see
Figure 1 for numerical results) and (ii) we use an exponen-
tial cover to remove the restrictive assumption (5) and adapt
to any conditional variance, and (iii) compute a set of sec-
ondary estimator that will be the center of our confidence
ellipsoid.

Proposed confidence set. Fix L ∈ N+ and let ℓ ∈ [L].
We let ρℓ = 2−ℓ and set the regularization parameter λℓ =
R2

S2 ρ
2
ℓ . We set the weights

ws,ℓ = 1 ∧ ρℓ
∥xs∥Σ−1

s−1,ℓ

,

where

Σt,ℓ = λℓI +
t∑

s=1

w2
s,ℓxsx

⊤
s . (6)

The weight ensures that ∥wt,ℓxt∥Σ−1
t−1,ℓ

≤ ρℓ. Define

ℓws,ℓ(θ) := w2
s,ℓℓs(θ) and ℓws,ℓ(θ; θ

′) =
w2

s,ℓ

2 (x⊤s (θ − θ′))2.
We then compute the weighted ridge regression estimator:

θ̂t,ℓ = argmin
θ
Lt,ℓ(θ),

where

Lt,ℓ(θ) =
t∑

s=1

ℓws,ℓ(θ) +
λℓ
2
∥θ∥22 .

We then compute our secondary estimators as follows:

Kt,ℓ(θ) :=
t∑

s=1

ℓws,ℓ(θ) +
t∑

s=1

ℓws,ℓ(θ; θ̂s−1) +
λℓ
2
∥θ∥2,

θ̄t,ℓ := argmin
θ
Kt,ℓ(θ), (7)

With Σt,ℓ := λℓI + 2
∑t
s=1 w

2
s,ℓxsx

⊤
s , we define our confi-

dence set as an intersection of confidence ellipsoids centered
at θ̄t,ℓ as follows:

Cfull
t := ∩Lℓ=1Cfull

t,ℓ , (8)

where

∀ℓ ∈ [L], Cfull
t,ℓ =

{
θ ∈ Rd :

1

2
∥θ − θ̄t,ℓ∥2Σt,ℓ

≤ βt,ℓ

}
,

and βt,ℓ is defined based on its previous version βt−1,ℓ.
Specifically, with D2

t,ℓ := ∥wt,ℓxt∥2Σ−1
t,ℓ

,

βt,ℓ :=Lt,ℓ(θ̂t,ℓ)−Kt,ℓ(θ̄t,ℓ)+
λℓ
2
S2+

t∑
s=1

ℓws,ℓ(θ̂s−1,ℓ)D
2
s,ℓ

+

√
8ρ2ℓ β̄t−1,ℓ

(∑t
s=1 ℓ

w
s,ℓ(θ̂s−1) +R2 ln(2L/δ)

)
ξt,ℓ

+ 2kt,ℓρℓR
√

2β0,ℓξt,ℓ, (9)

where β̄t−1,ℓ := maxt−1
s=0 βs,ℓ, β0,ℓ := λℓ

2 S
2, ξt,ℓ :=

ln(
√
π(t+ 1) · 6.8L·kt,ℓ ln2(1+kt,ℓ)

δ ), and kt,ℓ := 1 ∨
⌈log2(

√
β̄t−1,ℓ/β0,ℓ)⌉.

Our confidence set enjoys the following correctness guaran-
tee.

Theorem 3.1. Under Assumption A2, we have

P(∀t ≥ 1, θ∗ ∈ Cfull
t ) ≥ 1− δ.

As one will see from the proof, the introduction of the
secondary estimator θ̄t,ℓ is a nonessential part of the theo-
retical guarantee as it only helps the numerical tightness.
The secondary estimator only appears during the attempt
to write down the confidence set as a canonical quadratic
form – such an estimator also appears for the same reason
in Abbasi-Yadkori et al. (2012). One can easily see that it is
possible to use θ̂t,ℓ directly with a slightly looser confidence
set.

We later show that (Lemma B.2)

βt,ℓ ≤ β̄t,ℓ = Õ(ρ2ℓ(R
2 +

t∑
s=1

σ2
s) ln

2(t/δ)) ,

which scales with the conditional variances as desired and
matches the order of the confidence set of Zhao et al.
(2023a). Note that due to the particular weights being used,
each confidence set ℓ is tight in certain regimes only – this
is the reason why we take an intersection over L of them.
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Algorithm 2 LOFAV (Linear Optimism with Full Adaptivity
to Variance)

1: Input: norm bound S, time horizon n, the number of
levels L

2: for t = 1, 2, . . . , n do
3: Observe the arm set Xt.
4: Pull xt = argmaxx∈Xt

maxθ∈Cfull
t−1

⟨x, θ⟩ where

max
θ∈Cfull

t−1

⟨x, θ⟩=min
ℓ∈[L]

⟨x, θ̄t−1,ℓ⟩+
√
2βt−1,ℓ∥x∥Σ−1

t−1,ℓ
.

and Cfull
t−1, θ̄t−1,ℓ, βt−1,ℓ, and Σt−1,ℓ are defined

in (8), (6), (7), and (9), respectively.
5: Receive reward yt.
6: end for

Proposed bandit algorithm. Equipped with our im-
proved confidence set, we construct an OFUL-style al-
gorithm, which we call LOFAV (Linear Optimism with
Full Adaptivity to Variance); see Algorithm 2. The
time and space complexity is the same as OFUL, i.e.,
O(d2nmaxnt=1 |Xt|), up to logarithmic factors when set-
ting L = O(ln(n/d)) as suggested in Theorem 3.2 below.
For efficient implementation, one needs to maintain suffi-
cient statistics for the estimators θ̂t,ℓ and θ̄t,ℓ, and update
the inverse of the covariance matrices Σ−1

t,ℓ and Σ
−1

t,ℓ using
the matrix inversion lemma. Evaluating the loss functions
such as Lt,ℓ(θ̂t,ℓ) can be done incrementally as well by
expanding the square and extracting sufficient statistics.

We report our regret analysis result in Theorem 3.2 below,
which attains the optimal variance-adaptive regret bound up
to logarithmic factors.

Theorem 3.2. Under Assumption A2, Algorithm 2 with
δ ∈ (0, 1/2] and L = 1 ∨ ⌈ 1

2 log2(n/d)⌉ achieves, with
probability at least 1− δ,

Regn ≲ d

√√√√(R2 +
n∑
t=1

σ2
t

)
ln2
(1
δ

)
+ dB,

where we omit polylog(d, n, S,R) factors.

The regret analysis is challenging since, unlike SAVE and
other variance-adaptive algorithms such as LinNATS (Xu
et al., 2023), LOFAV does not perform the stratification of
the arms that provides an easy control of how many samples
fall in each bucket, which is directly related to the regret
in a systematic manner. That is, each bucket ℓ is explicitly
associated with a particular instantaneous regret bound of
order 2−ℓ). We overcome this difficulty by turning to the
peeling-based regret analysis (Kim et al., 2022; He et al.,
2021), which provides a strong control on the instantaneous
regret when used with the elliptical potential ‘count’ lemma
(Kim et al., 2022) that we restate in Lemma C.2.
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Figure 2. Results of synthetic experiments with LOSAN and LO-
FAV. To fairly compare our algorithms to OFUL, we perform each
experiment over 50 rounds where S = 1.0, d = 32, |Xt| = 128,
and σ0 or R = 1.0.

Practical version. The performance of LOFAV can be
further improved by adding extra L confidence sets without
further splitting the target failure rate δ. This is because
there is an event being assumed in the proof of confidence
set Cfull

t that automatically implies a semi-adaptive style
confidence set (one set for each ℓ ∈ [L]). The reason why it
helps is that there are extra logarithmic factors and constants
in Cfull

t , which can only be overcome after observing a large
number of samples. Equipping LOFAV with semi-adaptive
style confidence sets helps avoid excessive exploration for
the small-sample regime. We provide a precise description
of this modification in Appendix D.

Anytime version. The current version of LOFAV requires
knowledge of the time horizon n. This can be easily lifted
by changing the union bound over L confidence sets into
a union bound over N+. Specifically, one can divide the
failure rate δ into {δℓ}∞ℓ=1 such that

∑∞
ℓ=1 δℓ = δ; e.g.,

δℓ =
δ
ℓ2 · 6

π2 . The algorithm needs to maintain only Lt =
Θ(ln(t/d)) confidence sets up to time step t.

4. Experiments
We conduct several experiments with two noise types, i.e.,
the sub-Gaussian and bounded noises, to verify the theoreti-
cal analysis of our algorithms. First, synthetic experiments
are tested to show empirical results of our methods and
OFUL in terms of cumulative regrets. Second, the exper-
iments of Bayesian optimization, i.e., simple benchmark
functions and neural architecture search benchmarks, are
carried out to compare our algorithms to OFUL and sim-
ple Bayesian optimization algorithms. Unless noted other-
wise, we perform each experiment with 50 random trials.
Moreover, the sample mean and the standard error of the
sample are depicted in Figures 2 to 5. For sub-Gaussian
and bounded noises, we assume that the true noises are
sampled from the distributions with σ2

∗ = 0.012 (Guassian)
and σ2

t = 0.012 (η ∼ Uniform{−0.01, 0.01}) respectively.
For LOFAV, we implement a practical version discussed
in Section 3.
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Figure 3. Bayesian optimization results of LOSAN with random Fourier features and sub-Gaussian noises for four benchmark functions.
We perform each experiment over 50 rounds where S = 1.0, d = 128, |Xt| = 512, and σ0 = 1.0.
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Figure 4. Bayesian optimization results of LOFAV with random Fourier features and bounded noises for four benchmark functions. We
perform each experiment over 50 rounds where S = 1.0, d = 128, |Xt| = 512, and R = 1.0.

4.1. Synthetic Experiments

To generate synthetic experiments, we sample an unknown
parameter θ∗ and an arm set Xt from multivariate normal
distributions with zero mean and unit variance and then
normalize them in order to locate them on a hypersphere of
radius S. As presented in Figure 2, our methods LOSAN
and LOFAV exhibit better performance in terms of cumula-
tive regrets than OFUL. We perform a more comprehensive
experiments in Appendix E.

4.2. Application to Bayesian Optimization

We expand the application of our linear bandit models to
Bayesian optimization (Garnett, 2023). Along with OFUL,
we compare our methods to simple Bayesian optimization
algorithms with Gaussian process regression (Rasmussen &
Williams, 2006) and either expected improvement acquisi-
tion function (Jones et al., 1998) or Gaussian process upper
confidence bound (Srinivas et al., 2010). For the Gaussian
process regression, we use a linear kernel where kernel pa-
rameters are sought by marginal likelihood maximization.
We select this linear kernel for fair comparison to linear
bandit models. Multi-start L-BFGS-B (Byrd et al., 1995) is
utilized in the process of acquisition function optimization.
To deal with a fixed number of arms with Bayesian opti-
mization, we modify the standard Bayesian optimization

algorithm to choose the nearest arm after determining the
next point through Bayesian optimization (Garrido-Merchán
& Hernández-Lobato, 2020).

For LOSAN, LOFAV, OFUL, and Bayesian optimization ap-
proaches, we make use of random Fourier features (Rahimi
& Recht, 2007) in order to solve Bayesian optimization prob-
lems using linear models or Gaussian process regression
with the linear kernel. Each original point is transformed
into a 128-dimensional random feature following the work
by Rahimi & Recht (2007). Other configurations for these
algorithms are the same as the configurations used in Sec-
tion 4.1. For arm selection, we uniformly sample a fixed
number of arms from a specific search space depending on
benchmarks. Moreover, instead of cumulative regret, we use
simple regret as the performance measure in the experiments
of Bayesian optimization tasks where the simple regret at
time t is set to be the best instantaneous regret until t.

Benchmark functions. We test four benchmark functions:
Beale, Branin, Three-Hump Camel, and Zakharov 4D func-
tions. As illustrated in Figures 3 and 4, our LOSAN and
LOFAV are better than OFUL and Bayesian optimization.

NATS-Bench. We utilize NATS-Bench (Dong et al.,
2021), which is a set of benchmarks on neural architecture
search (Zoph & Le, 2017), in order to examine our algo-
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Figure 5. Bayesian optimization results of LOSAN and LOFAV with random Fourier features and sub-Gaussian or bounded noises for
NATS-Bench. We perform each experiment over 50 rounds where S = 1.0, d = 128, |Xt| = 512, and σ0 or R = 1.0.

rithms and baseline methods. We employ the size search
space of NATS-Bench for CIFAR-100 and ImageNet-16-
120. Since the number of possible architecture candidates,
i.e., 32,768, is significantly greater than the number of arms
often used in the linear bandits, we sample 512 arms from
the continuous space of the size search space. Figure 5
demonstrates that there is no single method that dominates
the rest. LOSAN shows comparable results for CIFAR-100
(sub-Gaussian) and ImagenNet (sub-Gaussian).

5. Related Work
Heteroscedastic linear bandits. For the sub-Gaussian
noise, Kirschner & Krause (2018) first considered the linear
bandit problem where the noise at time t is assumed to be
σ2
t -sub-Gaussian where σ2

t is known to the learner. Zhou
et al. (2021) and Zhou & Gu (2022) consider the setup
where the noise σ2

t is known only after the learner chooses
the arm at time t.

For the bounded noise setup ηt ∈ [−1, 1] (often appear
as rewards being bounded), the seminal work of Zhang
et al. (2021) proposes a linear bandit algorithm called
VOFUL whose regret bound was shown to be adaptive
to the unknown variances {σ2

t }nt=1. They achieved a re-
gret upper bound of order d4.5

√
1 +

∑n
t=1 σ

2
t + d5. Kim

et al. (2022) then improved the regret bound of VOFUL to
d1.5

√
1 +

∑n
t=1 σ

2
t + d2. However, VOFUL has an expo-

nential time complexity. Zhao et al. (2023a) has made a
breakthrough by achieving the optimal variance-adaptive
worst-case regret bound of d

√
1 +

∑n
t=1 σ

2
t +dwith a com-

putationally efficient algorithm called SAVE. However, as
detailed in Section 3, SAVE makes a limiting assumption
on the variance, and the algorithm is not practical. Our
algorithm LOFAV overcomes these two limitations, which
we claim to be the first practical variance-adaptive algo-
rithm. Xu et al. (2023) further extends SAVE to a Thomp-
son sampling style algorithm, which adds an extra factor of√
d in the regret bound – this is known to be unavoidable

for linear Thompson sampling style algorithms (Hamidi &

Bayati, 2020). Unfortunately, they also use the inefficient
SupLinRel-style algorithm. This also means that their time
complexity per round w.r.t. the arm set size |Xt| scales with
d2|Xt| rather than d|Xt| of the standard linear Thompson
sampling Agrawal & Goyal (2013), which is one of the main
benefits of linear Thompson sampling.

Improved confidence sets. Recently, there have been
quite a few studies that improve confidence sets for lin-
ear models upon the standard self-normalized confidence
set (SNCS) (Abbasi-Yadkori et al., 2011, Theorem 2).
Emmenegger et al. (2023) propose a novel confidence set
construction based on weighted sequential likelihood ratio
tests, which is empirically shown to be tighter than SNCS.
However, the analysis does not show a tighter bound than
SNCS due to an extra factor of S (the bound on ∥θ∗∥2),
which requires further investigation. Flynn et al. (2023)
propose a novel adaptive martingale mixture to construct an
improved confidence set that is both numerically and prov-
ably tighter than SNCS. However, the degree of tightness
was not precisely quantified as an orderwise improvement.
In stark contrast, our confidence set for LOSAN enjoys an
improvement that is precisely quantified in terms of the true
noise level σ2

∗ and the specified noise level σ2
0 . We are not

aware of any comparable results in prior work.

Confidence sets via online learning regret bounds. In
one way or another, regret bounds of online learning (OL)
algorithms play an important role in constructing or analyz-
ing novel confidence bounds or sets. The seminal work of
Rakhlin & Sridharan (2017) makes a strong case by showing
that the existence of an OL regret bound implies a confi-
dence bound. For (generalized) linear models, we have
found that there have been three types of results that lever-
age OL regret bounds to construct confidence sets. The first
is to construct a confidence set by running a specific OL
algorithm (e.g., online Newton step (Hazan et al., 2007))
and leverage its regret bound to quantify the confidence
width, which relies critically on a negative term in the regret
bound (Dekel et al., 2012; Crammer & Gentile, 2013; Gen-
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tile & Orabona, 2014; Zhang et al., 2016). The second is
the so-called online-to-confidence-set conversion (Abbasi-
Yadkori et al., 2012; Jun et al., 2017), which constructs a
confidence set by regressing on the prediction made by run-
ning an OL algorithm A whose confidence width becomes
a function of the regret bound of A. The advantage of this
method is that we are not married to those OL algorithms
that have a particular negative term in the regret bound,
which provides more flexibility. The third is the so-called
regret-to-confidence-set conversion (Lee et al., 2024), which
constructs a confidence set with the maximum likelihood
estimator but characterizes the confidence width with an
achievable OL regret bound. Similar to Rakhlin & Sridha-
ran (2017), this technique only requires the existence of a
regret bound achieved by an online learner, and thus one can
even use the regret bounds of computationally intractable
OL algorithms such as those in Mayo et al. (2022). Interest-
ingly, the role of OL regret bounds here is solely an analysis
tool, perhaps providing a shortcut to otherwise complicated
analysis. Our confidence set for LOSAN belongs to the
first technique above since we leverage the negative term
in the regret bound directly. In this regard, we remark that
Emmenegger et al. (2023) also use OL regret bounds for the
analysis of their confidence set algorithm.

6. Conclusion
Our advances in noise-adaptive confidence sets and appli-
cations to linear bandits and Bayesian optimization open
up numerous exciting future directions. First, investigat-
ing whether similar variance-adaptive worst-case regret
bounds are possible in more generic hypothesis classes
and various noise models is an open question. Second,
the weighted ridge regression considered in this paper com-
putes the weights in a sequential manner. It would be in-
teresting to study if there exists a batch counterpart of the
weights, which could be more useful for the fixed design
case. Finally, it would be interesting to develop a Thompson
sampling version of the variance-adaptive algorithm whose
time complexity w.r.t. the arm set size |Xt| is O(d|Xt|) per
iteration.
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A. Details for Semi-Adaptation
For convenience, we introduce the following model assumption, which helps us use simpler notations for both Section A
and B.

Assumption A3. Let {(zt ∈ Rd, ut ∈ R)}∞t=1 be a sequence of feature vectors and observed labels. Let Ft =
σ(z1, u1, . . . , zt, ut, zt+1). Assume that ut = z⊤t θ

∗ + νt where νt | Ft−1 is σ2
∗-sub-Gaussian (i.e., ∀λ ∈ R,E[exp(λνt) |

Ft−1] ≤ eλ
2σ2/2). Let σ2

t = E[ν2t | Ft−1]. Let Lt(θ) =
∑t
s=1 fs(θ) +

λ
2 ∥θ∥

2 where fs(θ) = 1
2 (z

⊤
s θ − us)

2 and define

θ̂t = argmin
θ
Lt(θ) and Σt = λI +

t∑
s=1

zsz
⊤
s .

Specifically, the model assumption in Section 2 can be reduced to Assumption A3 by setting zt = wtxt, ut = wtyt,
νt = wtηt, fs(θ) = ℓws (θ) with the same sub-Gaussian parameter σ2

∗. With this, other notations like θ̂t−1, Σt =

λI +
∑t
s=1 w

2
sxsx

⊤
s = λI +

∑t
s=1 zsz

⊤
s , and D2

s = ∥wtxt∥2Σ−1
t

= ∥zt∥2Σ−1
t

remain the same. Throughout this section,
we use this set of notations to avoid clutter.

A.1. Proof of the Confidence Set (Theorem 2.1)

Let rs := z⊤s (θ̂s−1 − θ∗). The regret equality of FTRL (Lemma C.7) states that

1

2
∥θ̂t − θ∗∥2Σt

=
λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s +

t∑
s=1

fs(θ
∗)− fs(θ̂s−1) .

The negative regret bound (Lemma C.8) implies that, with probability at least 1− δ,

∀t ≥ 1,
t∑

s=1

(fs(θ
∗)− fs(θ̂s−1)) ≤ σ2

∗ ln(1/δ) .

12
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Thus, we have

∀t ≥ 1,
1

2
∥θ̂t − θ∗∥2Σt

≤ λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s + σ2

∗ ln(1/δ)

≤ λ

2
S2 +

t∑
s=1

fs(θ̂s−1)D
2
s + σ2

0 ln(1/δ) . (Assumption A1)

Therefore, it is easy to see that with probability at least 1− δ,

∀t ≥ 1, θ∗ ∈ Csemi
t .

This concludes the proof of Theorem 2.1.

A.2. Analysis of the (Normalized) Confidence Width √
γ
t

Proposition A.1. With probability at least 1− 3δ,

γt ≲ λS2 + σ2
∗d ln

(
1 +

t

dλ

)
+ σ2

0 ln(1/δ) .

Proof. By Lemma C.10, we have, with probability at least 1− 2δ,

t∑
s=1

fs(θ̂s−1)D
2
s ≤

3

2
λ∥θ∗∥22 + 3

t∑
s=1

fs(θ
∗)D2

s + 10σ2
∗ ln(1/δ) .

Thus,

γt ≲ λS2 + 3
t∑

s=1

fs(θ
∗)D2

s + σ2
0 ln(1/δ) . (σ2

∗ ≤ σ2
0)

It remains to study how
∑t
s=1 fs(θ

∗)D2
s scales.

Since νs is σ2
∗-sub-Gaussian, ν2s is (v = 2σ4

∗,c = 2σ2
∗)-subgamma Boucheron et al. (2013, Section 2.4). Then, we can use

the concentration of subgamma random variables Boucheron et al. (2013, Theorem 2.3) to obtain

t∑
s=1

fs(θ
∗)D2

s =
t∑

s=1

ν2sD
2
s

≤
t∑

s=1

σ2
∗D

2
s +

√√√√4σ4
∗

t∑
s=1

D4
s ln(1/δ) + 2σ2

∗ ln(1/δ)

(a)

≤ σ2
∗ · d ln(1 +

t

dλ
) + σ2

∗

√
4d ln(1 +

t

dλ
) ln(1/δ) + 2σ2

∗ ln(1/δ)

≤ 2σ2
∗ · d ln(1 +

t

dλ
) + 3σ2

∗ ln(1/δ)

where (a) is by D4
s ≤ D2

s (since D2
s ≤ 1) and the standard elliptical potential lemma (see Lemma C.1). This concludes the

proof.

A.3. Regret Analysis (Proof of Theorem 2.2)

Define the event

E1 := {∀t ≥ 1, θ∗ ∈ Ct} .

Let regt = ⟨x∗t , θ∗⟩ − ⟨xt, θ∗⟩ where x∗t = argmaxx∈Xt⟨x, θ∗⟩. The following lemma is standard in linear bandit analysis.

13
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Lemma A.2. Let θ̃t = argmaxθ∈Ct
⟨xt, θ⟩. Under the event E1,

regt ≤ ∥xt∥Σ−1
t−1

√
8γn .

Proof. We have

regt ≤ ⟨xt, θ̃t − θ∗⟩ (def’n of xt)

≤ ∥xt∥Σ−1
t−1

∥θ̃t − θ∗∥Σt−1
(Cauchy-Schwarz)

≤ ∥xt∥Σ−1
t−1

(∥θ̃t − θ̂t−1∥Σt−1
+ ∥θ̂t−1 − θ∗∥Σt−1

) (triangle inequality)

≤ ∥xt∥Σ−1
t−1

√
8γt−1 (by E1)

≤ ∥xt∥Σ−1
t−1

√
8γn . (monotonicity)

For the regret analysis, using the fact that regt ≤ 2B,
n∑
t

regt ≤
n∑
t=1

1{wt ̸= 1} 2B +
n∑
t=1

1{wt = 1} regt .

For the first term,
n∑
t=1

1{wt ̸= 1} 2B = 2B
n∑
t=1

1
{
wt ̸= 1, ∥wtxt∥2Σ−1

t−1
= 1
}

(def’n of wt)

≤ 2B

n∑
t=1

1
{
∥wtxt∥2Σ−1

t−1
≥ 1
}

≤ 6B · d ln
(
1 +

2

λ

)
. (by EPC (Lemma C.2))

For the second term,
n∑
t=1

1{wt = 1} regt ≤
n∑
t=1

1{wt = 1} ∥xt∥Σ−1
t−1

√
8γn

=
n∑
t=1

1{wt = 1} ∥wtxt∥Σ−1
t−1

√
8γn

≤
√
8γn

√√√√n
n∑
t=1

∥wtxt∥2Σ−1
t−1

≤
√
8γn

√
n2d ln(1 +

n

dλ
)

where the last line is due to the elliptical potential lemma (Abbasi-Yadkori et al., 2011, Lemma 11) and the fact that
∥wtxt∥2Σ−1

t−1
≤ 1 by the definition of wt. Applying Proposition A.1 and noting that the event E1 happens with probability at

least 1− δ conclude the proof.

B. Details for Full Adaptation
B.1. Proof of Theorem 3.1

The confidence set is an intersection of Ct,ℓ’s. Therefore, it suffices to prove that the confidence set Ct,ℓ contains θ∗ with
probability at least 1− δ

L . This is a direct consequence of Theorem B.1 below where we set zt = wt,ℓxt, ut = wt,ℓyt, and
λ = λℓ, and replace δ with δ/(2L). Then, fs(θ) = ℓws,ℓ(θ) and other symbols becomes just a matter of adding the extra
subscript ℓ (e.g., D2

s = D2
s,ℓ, ξt = ξt,ℓ, kt = kt,ℓ, βt = βt,ℓ, θ̂t = θ̂t,ℓ, etc.)

14
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Theorem B.1. Take Assumption A3 with the added assumption of νt ∈ [−R,R]. Define

Kt(θ) =
t∑

s=1

fs(θ) +
t∑

s=1

1

2
(z⊤s (θ − θ̂s−1))

2 +
λ

2
∥θ∥2

and θ̄t = argmin
θ
Kt(θ) .

Furthermore, define Σt = 2
∑t
s=1 zsz

⊤
s + λI .

Let D2
s := ∥zs∥2Σ−1

s
and define βt recursively as follows:

βt = Lt(θ̂t)−Kt(θ̄t) +
λ

2
S2 +

t∑
s=1

fs(θ̂s−1)D
2
s + ρ

√
β̄t−1

√√√√8
( t∑
s=1

fs(θ̂s−1) +R2 ln(1/δ)
)
ξt + 2ktρR

√
2β0ξt

where β̄t−1 = maxt−1
s=1 βs, β0 = λ

2S
2, ξt := ln(

√
π(t+ 1) · 3.4·kt ln2(1+kt)

δ ) with kt = 1∨ ⌈log2(
√
β̄t−1/β0)⌉. Define the

confidence set

Ct =
{
θ ∈ Rd :

1

2
∥θ − θ̄t∥2Σt

≤ βt

}
.

Assume ∀s ≥ 1, D2
s ≤ ρ2 for some ρ2 > 0. Then,

P(∀t ≥ 1, θ∗ ∈ Ct) ≥ 1− 2δ

Proof. This proof is inspired by Zhao et al. (2023b), but details differ since we leverage the regret equality (Lemma C.7),
which helps shorten the proof and provides a numerically tight derivation.

To describe the plan, we will show M̄2
t := 1

2∥θ∗ − θ̄t∥2Σt
≤ βt, ∀t ≥ 0 under an event E1 (defined below) that holds with

probability at least 1− δ. For this, we use induction. Define Is = 1
{
M̄2
s ≤ βs

}
and let Īs = 1− Is.

First, we show the base case of I0 = 1. This is trivial since M̄2
0 = 1

2∥θ∗∥2λI ≤ λ
2S

2 = β0. It remains to prove that, assuming
I0 = · · · = It−1 = 1, we have It = 1.

So, let us assume the inductive hypothesis I0 = · · · = It−1 = 1. Define rt = z⊤t (θ̂t−1 − θ∗), which implies that
fs(θ̂s−1)− fs(θ

∗) = 1
2r

2
s − rsνs. Recall the regret equality (Lemma C.7):

M2
t :=

1

2
∥θ∗ − θ̂t∥

2

Σt
=
λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s −

t∑
s=1

(
fs(θ̂s−1)− fs(θ

∗)
)

=
λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s +

t∑
s=1

(−1

2
r2s) +

t∑
s=1

rsνs

=⇒ M2
t +

t∑
s=1

1

2
r2s ≤

λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s +

t∑
s=1

rsνs .

Note that

t∑
s=1

rsνs =
t∑

s=1

Is−1rsνs +
t∑

s=1

Īs−1rsνs =
t∑

s=1

Is−1rsνs (inductive hypothesis)

We assume the event in Corollary C.5 with

• bk = 2kρR
√
2β0.

• Xs = Is−1rsνs ,
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which holds with probability at least 1− δ. Recall that kt = 1∨ ⌈log2(
√
β̄t−1/β0)⌉, which means that kt = min{k ∈ N+ :

bk ≥ ρR
√
2β̄t−1}. Then, since

|Xs| ≤ RIs−1|rs| ≤ R∥zs∥Σ−1
s−1

∥θ̄s−1 − θ∗∥Σs−1
(Cauchy-Schwarz)

≤ R∥zs∥Σ−1
s−1

√
2βs−1 (Is−1 = 1)

≤ Rρ
√
2βs−1 (assumption in the theorem)

≤ Rρ

√
2β̄t−1 ≤ bkt .

Thus, we have (Xs)bk = Xs, ∀s ∈ [t], so we have

∀t ≥ 1,
t∑

s=1

Is−1rsνs ≤

√√√√2
t∑

s=1

Is−1r2sν
2
s ξt + 2ktρR

√
2β0ξt . (10)

Note that, with a similar derivation as the bound on |Xs|, we have

Is−1r
2
s ≤ 2ρ2β̄t−1 .

Then, using Lemma C.8, with probability at least 1− δ, we have

∀t ≥ 1,

t∑
s=1

ν2s =

t∑
s=1

2fs(θ
∗) = 2

t∑
s=1

fs(θ̂s−1) + 2

t∑
s=1

fs(θ
∗)− fs(θ̂s−1) ≤ 2

t∑
s=1

fs(θ̂s−1) + 2R2 ln(1/δ) .

Thus,

M2
t +

t∑
s=1

1

2
r2s ≤

λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s +

√√√√8ρ2β̄t−1

( t∑
s=1

fs(θ̂s−1) +R2 ln(1/δ)

)
ξt + 2ktρR

√
2β0ξt =: βt .

Recall that Lt(θ) =
∑t
s=1 fs(θ) +

λ
2 ∥θ∥

2. Since M2
t = Lt(θ

∗) − Lt(θ̂t) (verify this with Taylor’s theorem), the LHS
above can be rewritten as

t∑
s=1

fs(θ
∗) +

λ

2
∥θ∗∥2 − Lt(θ̂t) +

t∑
s=1

1

2
(z⊤s (θ̂s−1 − θ∗))2

= Kt(θ
∗)− Lt(θ̂t)

= Kt(θ
∗)−Kt(θ̄t) +Kt(θ̄t)− Lt(θ̂t)

=
1

2
∥θ∗ − θ̄t∥2Σt

+Kt(θ̄t)− Lt(θ̂t)

Rearranging the terms and using the bound ∥θ∗∥2 ≤ S2 prove It = 1, which completes the inductive proof.

Next, we find a nondecreasing upper bound on βt that directly depends on the true variances {σ2
s}ts=1.

Lemma B.2. Take the assumptions of Theorem B.1. Suppose λ = R2

S2 ρ
2λ0 for some absolute constant λ0 > 0. Then, with

probability at least 1−O(δ),

∀t ≥ 1, β̄t ≤ β∗
t := cρ2(R2 +

t∑
s=1

σ2
s) ln

2(t/δ)

for some absolute constant c > 0.
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Proof. Using the definition of kt, we have

βt ≤ Lt(θ̂t)−Kt(θ̄t)

+
λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s +

√√√√8ρ2β̄t−1

( t∑
s=1

fs(θ̂s−1) +R2 ln(1/δ)

)
ξt + ρR

√
8β̄t−1ξt .

First, we notice that we can easily bound the first two terms in βt:

Lt(θ̂t)−Kt(θ̄t) ≤ Lt(θ̄t)−Kt(θ̄t) ≤ 0 .

Furthermore,

2ktρ
√

2β0ξt ≤ ρ

√
8β̄t−1ξt .

Let At =
∑t
s=1 fs(θ̂s−1). We use D2

s ≤ ρ2 and the Fenchel-Young inequality xy ≤ 1
2ax

2 + a
2y

2, ∀a > 0 to obtain

βt ≤
λ

2
S2 + ρ2At + 8ρ2(At +R2 ln(1/δ))ξt +

1

4
β̄t−1 + 8ρ2R2ξ2t +

1

4
β̄t−1

≤ cλS2 + cρ2ξt(At +R2ξt) +
1

2
β̄t−1

for some absolute constant c > 0.

Let ξ = ln(1/δ). We bound At with probability at least 1−O(δ) as follows:

At =
t∑

s=1

fs(θ
∗) +

t∑
s=1

(fs(θ̂s−1)− fs(θ
∗))

≲
t∑

s=1

σ2
s +

t∑
s=1

r2s +R2ξ (Lemma C.12 and Lemma C.9)

≲
t∑

s=1

σ2
s + λS2 + ρ2

∑
s

ν2s +R2ξ (Lemma C.11; D2
s ≤ ρ2)

≲
t∑

s=1

σ2
s + λS2 +R2ξ . (Lemma C.12; ρ2 ≤ 1)

Thus, there exists an absolute constant c1, c2 > 0 such that, letting Qt = λS2 +R2 +
∑t
s=1 σ

2
s ,

βt ≤ c1λS
2 + c1ρ

2ξ2tQt +
1

2
β̄t−1

≤ c2λS
2 + c2ρ

2Qt

(
ln2(t/δ) + ln ln

2
(
√
β̄t−1/β0)

)
︸ ︷︷ ︸

=: β′
t

+
1

2
β̄t−1

for some absolute constant c2 > e. We define β′
0 = λ

2S
2. Note that β′

t can be compactly written as

β′
t = at + bt ln ln

2
(
√
β̄t−1/β0)

where

at := c2(λS
2 + ρ2Qt ln

2(t/δ))

bt := c2ρ
2Qt .

17



Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization

Let

β†
t = at + 2bt(e+ ln ln

2
(2at/β0) + ln ln

2
(2bt/β0)) .

Note that β′
t ≤ β†

t and that β†
t is a nondecreasing function of t.

We claim that βt ≤ 2β†
t , ∀t ≥ 0. We use induction. First, we trivially have β0 = λ

2S
2 ≤ β†

0 using c2 ≥ e.

For the general case, assume βt−1 ≤ 2β∗
t−1. If β̄t−1 ≤ e2β0, then the ln ln

2
(·) term is 0, so we trivially have that β′

t ≤ β†
t

and thus

βt ≤ β†
t +

1

2
β̄t−1 ≤ β†

t + β†
t−1 ≤ 2β†

t .

If β̄t−1 > e2β0, then we use Lemma C.6 with x = β̄t−1/β0, a = at/β0, and b = bt/β0 to derive

a+ b ln2 ln(
√
β̄t−1/β0) ≤ a+ b ln2 ln(β̄t−1/β0) (β̄t−1/β0 ≥ e2 ≥ 1)

≤ β̄t−1/β0 . (Lemma C.6; β̄t−1/β0 ≥ e2 ≥ e)

Thus,

β′
t = at + bt ln ln

2
(
√
β̄t−1/β0)

≤ β̄t−1 ≤ β†
t−1 ≤ β†

t ,

which implies βt ≤ 2β†
t . Observing ∀s ∈ [t], βs ≤ 2β†

s =⇒ β̄t ≤ 2β†
t concludes the claim.

Finally, we need to show that β†
t ≤ β∗

t . First, note that bt ≲ at, so ln ln
2
(2bt/β0) ≤ ln ln

2
(2at/β0). Furthermore,

using the fact that σ2
s ≤ R2, one can show that at/β0 ≲ 1 + t

λ0
≲ t ln2(t/δ) since λ0 is an absolute constant. Thus,

bt(e + ln ln
2
(2at/β0)) ≲ ρ2Qt ln ln

2
(t ln2(t/δ)) ≲ λS2 + ρ2Qt ln

2(t/δ) ≲ at. This implies that β†
t ≲ at, and one can

easily show that at ≲ β∗
t .

B.2. Proof of Theorem 3.2

By Lemma B.2, we have that βt,ℓ ≤ β∗
t,ℓ = cρ2ℓ(R

2 +
∑t
s=1 σ

2
s)ψ

2
t where ψ2

t = ln2(t/δ). Defining β∗
t,0 = cψ2

t (R
2 +∑t

s=1 σ
2
s), we can write down

β∗
t,ℓ = 2−2ℓβ∗

t,0 .

Define t′ = t− 1 and θ̃t,ℓ = argmaxθ∈Ct′,ℓ⟨xt, θ⟩. Define regt := ⟨xt,∗ −xt, θ
∗⟩, which is the instantaneous regret at time

t. We first show the elementary bound that is useful throughout:

regt := ⟨xt,∗ − xt, θ
∗⟩ (xt,∗ := maxx∈Xt

⟨x, θ∗⟩)
≤ min
ℓ∈[ℓ∗+1..L]

⟨xt, θ̃t,ℓ − θ∗⟩

= min
ℓ∈[ℓ∗+1..L]

⟨xt, θ̃t,ℓ − θ̄t′,ℓ + θ̄t′,ℓ − θ∗⟩

≤ min
ℓ∈[ℓ∗+1..L]

√
8∥xt∥Σ−1

t′,ℓ

√
β∗
t′,ℓ

≤ min
ℓ∈[ℓ∗+1..L]

√
8∥xt∥Σ−1

t′,ℓ
2−ℓ
√
β∗
n,0 . (Σt′,ℓ ⪰ Σt′,ℓ; monotonicity of β∗

t,0)

Also note the trivial upper bound: regt ≤ 2B.

We classify the time steps [n] into the following three:

• T1 := {t ∈ [n] : regt >
√
8β∗

n,0}
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• T2 := {t ∈ [n] : regt ≤ 2−2L
√
8β∗

n,0}
• T3 :=

{
t ∈ [n] : ∃ℓ ∈ [1..L] s.t. regt ∈

(
2−2ℓ

√
8β∗

n,0, · 2−2(ℓ−1)
√

8β∗
n,0

]}
.

Hereafter, we define Σt,ℓ[T ] := λℓI +
∑
s∈[t]∩T w

2
s,ℓxsx

⊤
s .

Case 1. t ∈ T1
We have √

8β∗
n,0 < regt ≤ ∥xt∥Σ−1

t′,1
2−1
√
8β∗

n,0 =⇒ ∥xt∥Σ−1

t′,1
≥ 2 .

This means that 2−1

∥xt∥Σ
−1
t′,1

≤ 1
4 , so wt,1 < 1. Then, we have ∥wt,1xt∥Σ−1

t′,1
= 1

2 . Thus, using regt ≤ 2B,

∑
t∈T1

regt ≤
∑
t∈T1

1

{
∥wt,1xt∥Σ−1

t′,1
=

1

2

}
2B

≤
∑
t∈T1

1

{
∥wt,1xt∥Σ−1

t′,1[T1]
≥ 1

2

}
2B

≲ Bd ln(1 +
S2

R2
) . (EPC (Lemma C.2))

Case 2. t ∈ T2
Since regt ≤ 2−2L

√
8β∗

n,0, ∑
t∈T2

regt ≤
∑
t∈T2

2−2L
√

8β∗
n,0 ≤ n · 2−2L

√
8β∗

n,0 .

Case 3. t ∈ T3
Define T3,ℓ = {t ∈ T3 : ℓt = ℓ}. Note that

2−2ℓ
√
8β∗

n,0 < regt ≤ ∥xt∥Σ−1

t′,ℓ
2−ℓ
√
8β∗

n,0 =⇒ 2−ℓ ≤ ∥xt∥2Σ−1

t′,ℓ

=⇒ wt,ℓ =
2−ℓ

∥xt∥Σ−1

t′,ℓ

. (11)

That is, wt,ℓ can be written without ‘∧1’ from its definition. Using this,

∑
t∈T3

regt =
L∑
ℓ=1

∑
t∈T3,ℓ

regt

=
L∑
ℓ=1

∑
t∈T3,ℓ

1

{
∥wt,ℓxt∥Σ−1

t′,ℓ
= 2−ℓ

}
regt (by (11))

≤
L∑
ℓ=1

∑
t∈T3,ℓ

1

{
∥wt,ℓxt∥Σ−1

t′,ℓ
= 2−ℓ

}
2−2(ℓ−1)

√
8β∗

n,0 (t ∈ T3,ℓ)

≤
L∑
ℓ=1

∑
t∈T3,ℓ

1

{
∥wt,ℓxt∥Σ−1

t′,ℓ[T3,ℓ]
≥ 2−ℓ

}
2−2(ℓ−1)

√
8β∗

n,0

=
L∑
ℓ=1

22ℓd ln
(
1 +

22ℓS2

R2

)
2−2(ℓ−1)

√
8β∗

n,0 (EPC (Lemma C.2))

≲ L · d ln
(
1 +

4LS2

R2

)√
β∗
n,0 .
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Altogether, we have
n∑
t=1

regt ≲ Bd ln

(
1 +

S2

R2

)
+
(
n2−2L + L · d ln

(
1 +

4LS2

R2

))√
β∗
n,0 .

Using the definition L = 1 ∨ ⌈ 1
2 log2(n/d)⌉,

Regn ≲ ln(n/d) · d

√√√√(R2 +
n∑
t=1

σ2
t

)
ln2(n/δ) +Bd ln(1 +

S2

R2
) .

C. Utility Lemmas
The following lemma is the well known elliptical potential lemma from linear algebra.
Lemma C.1. (Elliptical potential lemma; e.g., Hazan et al. (2007, Lemma 11)) Let x1, . . . , xt ∈ Rd be a sequence of
vectors with ∥xs∥2 ≤ X, ∀s ∈ [t] for some X > 0. Let Vt = λI +

∑t
s=1

∑t
s=1 xsx

⊤
s for some τ > 0. Let |A| be the

determinant of the matrix A. Then,
t∑

s=1

∥xs∥2V −1
s

≤ ln

( |Vt|
|λI|

)
and ln

(
|Vt|
|λI|

)
≤ d ln

(
1 + X2t

dλ

)
.

Proof. The following is a well-known identity (e.g., see the proof of Abbasi-Yadkori et al. (2011, Lemma 11)) :
t∑

s=1

ln(1 + ∥xt∥2V −1
t−1

) = ln

( |Vt|
|λI|

)
.

We now lower bound the left-hand side above. Letting D2
s = ∥xs∥2V −1

s
, we have

t∑
s=1

ln(1 + ∥xs∥2V −1
s−1

) =
t∑

s=1

ln
(
1 +

D2
s

1−D2
s

)
(Woodbury matrix identity)

=

t∑
s=1

ln
( 1

1−D2
s

)
≥

t∑
s=1

D2
s . (ln(1 + x) ≤ x, ∀x)

The following lemma is a simplified version of the elliptical potential count lemma (Kim et al., 2022, Lemma 4) by using
ln(1 + x) ≥ ln(2)x, ∀x ∈ [0, 1], which is a generalization of Lattimore & Szepesvári (2020, Exercise 19.3).
Lemma C.2. (Elliptical potential count; Kim et al. (2022, Lemma 4) and Lattimore & Szepesvári (2020, Exercise 19.3)) Let
x1, . . . , xt ∈ Rd be a sequence of vectors with ∥xs∥2 ≤ X, ∀s ∈ [t] for some X > 0. Let Vt = λI +

∑t
s=1 xsx

⊤
s for some

λ > 0. Let J = {s ∈ [t] : ∥xs∥2V −1
s−1

≥ L2} for some L2 ≤ 1. Then,

|J | ≤ 3
d

L2
ln

(
1 +

2X2

L2λ

)
.

Lemma C.3. Let (Xt)
∞
t=1 be a sequence of random variables adapted to filtration (Gt)∞t=0. Assume Xt | Gt−1 is σ2

t -sug-
Gaussian. Then, for any a > 0, we have

1− δ ≤ P

∀t ≥ 1,
t∑

s=1

Xs ≤
a

2

t∑
s=1

σ2
s +

1

a
ln(1/δ)

 .
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Proof. Define Mt = exp(a
∑t
s=1Xs − a2

2

∑t
s=1 σ

2
s) and verify that Mt is a supermartingale. Applying Ville’s inequal-

ity (Ville, 1939) concludes the proof.

Lemma C.4. Let (Xt)
∞
t=1 be a sequence of random variables adapted to a filtration (Gt)∞t=1 such that Xt | Gt−1 ∈ [−R,R]

and E[Xt | Gt−1] = 0 almost surely. Then,

1− δ ≤ P
(
∀t ≥ 1, ∀α ∈ [−1/R, 1/R],

t∑
s=1

ln(1 + αXs) ≤ ln
(√π(t+ 1)

δ

))
. (12)

Furthermore, let q(x) := − ln(1−x)−x
x2 and ψt := ln(

√
π(t+ 1)/δ). Then,

1− δ ≤ P
(
∀t ∈ N+, ∀α ∈ [0, 1/R),

∣∣∣ t∑
s=1

Xs

∣∣∣ ≤ q(Rα)α
t∑

s=1

X2
s +

1

α
ψt

)
.

Finally, tuning α implies

1− δ ≤ P
(
∀t ≥ 1,

∣∣∣ t∑
s=1

Xs

∣∣∣ ≤
√√√√2

t∑
s=1

X2
sψt +Rψt

)
.

Proof. To show the third statement, we choose α =
(
R+

√∑t
s=1X

2
s

ψt

)−1

. One can similarly obtain an upper bound on∑t
s=1 −Xs.

The proof of the first statement requires modifying Orabona & Jun (2023, Theorem 1) in two ways: we deal with (i) a
sequence of random variables that are not necessarily i.i.d. and (ii) the range of Xt that is [−R,R] rather than [0, 1].

The rest of the proof requires the background on the coin betting problem; with the full details, refer to Orabona & Jun
(2023). Suppose we have an algorithm A with the initial wealth of W0 = 1. At each time step t, the algorithm A commits
to a betting fraction αt ∈ [−1/R, 1/R] based on the past observations c1, . . . , ct−1 ∈ [−R,R]. Once the coin outcome
ct ∈ [−R,R] is revealed, the wealth of A denoted by Wt becomes Wt = (1 + αtct)Wt−1. Suppose we set ct = Xt. Since
(Wt) forms a nonnegative martingale, we can apply Ville’s inequality (Ville, 1939) to have

1− δ ≤ P
(
∀t ≥ 1, ln(Wt) < ln(1/δ)

)
. (13)

To maximize the wealth, it is natural to choose an algorithm that has a small log-wealth regret w.r.t. the best betting fraction
α ∈ [−1/R, 1/R] in hindsight, which is defined as

Regrett := max
α∈[−1/R,1/R]

t∑
s=1

ln(1 + αXt)− ln(Wt) . (14)

One can construct an efficient A via a reduction of coin betting problem to the two-stock online portfolio problem.
In this problem, an algorithm B starts from wealth W portfolio

0 = 1. At each time step t, the algorithm B determines
the fraction (bt, 1 − bt), which means that it will invest bt fraction of the current wealth W portfolio

t−1 to the first stock
and the rest to the second stock. Then, the price change ratios (wt,1, wt,2) are revealed, and the wealth of B changes:
W portfolio
t = btwt,1W

portfolio
t−1 + (1− bt)wt,2W

portfolio
t−1 .

Similar to Orabona & Jun (2023, Lemma 1), one can easily construct a reduction of coin betting to online portfolio: given a
coin outcome ct ∈ [−ℓ, u], we can set the price change ratio of the first stock and the second stock as wt,1 = 1 + ct

ℓ and
wt,2 = 1− ct

u respectively. The online portfolio algorithm B will then produce the next investment fraction (bt+1, 1− bt+1).
We can then set αt+1 in the coin betting problem as αt+1 = − 1

u + bt+1

(
1
ℓ +

1
u

)
. Performing this conversion at every

iteration t with ℓ = u = R satisfies that Wt = W portfolio
t . This implies that coin betting is a special case of the online

portfolio problem, and the log-wealth regret in online portfolio coincides with the log-wealth regret in coin betting. Our
choice of online portfolio algorithm is universal portfolio equipped with the Dirichlet( 12 ,

1
2 ) prior (Cover & Ordentlich,

1996). This gives the regret bound of Regrett ≤ ln
√
πΓ(t+1)

Γ(t+ 1
2 )

≤ ln(
√
π(t+ 1)).
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Then, the event in (13) implies

ln(1/δ) > ln(Wt) = max
α∈[−1/R,1/R]

t∑
s=1

ln(1 + αXt)− Regrett ≥ max
α∈[−1/R,1/R]

t∑
s=1

ln(1 + αXt)− ln(
√
π(t+ 1))

This completes the proof of (12).

To prove the second statement, assume the event inside the probability probability statement inside (12). We use the
following inequality from Fan et al. (2015, Eq. 4.11):

∀λ ∈ [0, 1), ξ ≥ −1, ln(1 + λξ) ≥ λξ + ξ2(λ+ ln(1− λ)) .

For α ∈ [0, 1/R), we apply this inequality with λ = Rα and ξ = Xs/R to obtain

t∑
s=1

Xs ≤ q(Rα)α
t∑

s=1

X2
s +

1

α
ψt .

Obtaining an upper bound on
∑t
s=1Xs is symmetric to the proof above.

Corollary C.5. Define the clipping operator (x)y = ( y|x| ∧1)x if x ̸= 0 and (x)y = 0 otherwise. Let (bk)∞k=1 be a sequence
of positive integers. Then, under the same setting of Lemma C.4, with probability at least 1− δ,

∀k ∈ N+, ∀t ≥ 1,
t∑

s=1

(Xs)bk − E[(Xs)bk | Gs−1] ≤

√√√√2
t∑

s=1

((Xs)bk − E[(Xs)bk | Gs−1])2ξt,k + bkξt,k

where ξt,k = ln(
√
π(t+ 1) · 3.39·k ln2(1+k)

δ ).

Proof. The statement follows by a simple union bound argument applied to Lemma C.4.

Lemma C.6. Define ln ln(x) := ln ln(e ∨ x) and let ln ln
2
(x) = (ln ln(x))2. Let x ≥ e. Throughout, we take ln ln(x) = 0

for x ≤ e. Then, for a, b > 0,

x ≥ a+ 2b(e+ ln ln
2
(2a) + ln ln

2
(2b)) =⇒ x ≥ a+ b ln2 ln(x) .

Proof. We prove the contraposition:

x < a+ b ln2 ln(x) =⇒ x < a+ 2b(e+ ln ln
2
(2a) + ln ln

2
(2b)) .

If x < a+ be, then the statement follows trivially.

If x ≥ a+ be, then z := x−a
b ≥ e. Then,

z < ln2 ln(bz + a)

≤ ln2 ln(2bz ∨ 2a))

≤ ln ln
2
(2bz) ∨ ln ln

2
(2a)

where the last line can be shown by the case-by-case reasoning on whether 2bz ≥ e or not and whether 2a ≥ e or not.

If 2bz ≥ e, then

ln ln
2
(2bz) ≤ ln2(2 ln(z) ∨ 2 ln(2b))

(a)

≤ ln2(2 ln(z)) + 2 ln2(2) + 2 ln ln
2
(2b) (z ≥ e)
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≤ z

2
+ 1 + ln ln

2
(2b) . (z ≥ e; 2 ln2(2) ≤ 1)

If 2bz < e, then the inequality above is also true, trivially.

The two displays above imply

z < 2(1 + ln ln
2
(2b) + ln ln

2
(2a)) .

Using definition of z concludes the proof.

C.1. Online Ridge Regression

The following regret equality provides an essential tool for analyses in this paper.

Lemma C.7. (Regret Equality; Orabona (2023, Lemma 7.1)) Take Assumption A3 except for the stochastic modeling of ut.
Let Σt = λI +

∑t
s=1 zsz

⊤
s . Then,

t∑
s=1

fs(θ̂s−1)− fs(θ
∗) =

λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)∥zs∥2Σ−1
t

− 1

2
∥θ∗ − θ̂t∥

2

Σt
.

Lemma C.8. Take Assumption A3. Then,

1− δ ≤ P
( t∑
s=1

(fs(θ
∗)− fs(θ̂s−1)) ≤ σ2

∗ ln(1/δ)
)
.

Proof. Let rs := z⊤s (θ̂s−1 − θ∗). We have the following identity.

fs(θ̂s−1)− fs(θ
∗) =

1

2
r2s − rsνs . (15)

Using (15) and the sub-Gaussianity of (νs)ts=1, we can use Lemma C.3 to have that, with probability at least 1− δ,

∀t ≥ 1,
t∑

s=1

fs(θ
∗)− fs(θ̂s−1) ≤

a

2

t∑
s=1

r2sσ
2
∗ +

1

a
ln(1/δ)− 1

2

t∑
s=1

r2s .

Choosing a = 1
σ2
∗

concludes the proof.

Lemma C.9. Take Assumption A3. Then, with probability at least 1− δ,

∀t ≥ 1,
t∑

s=1

(fs(θ̂s−1)− fs(θ
∗)) ≤

t∑
s=1

r2s + σ2
∗ ln(1/δ) .

Proof. Note that, with probability at least 1− δ,

t∑
s=1

(fs(θ̂s−1)− fs(θ
∗)) =

t∑
s=1

1

2
r2s − rsνs

≤
t∑

s=1

1

2
r2s +

a

2

t∑
s=1

r2sσ
2
∗ +

1

a
ln(1/δ)

=

t∑
s=1

r2s + σ2
∗ ln(1/δ) . (choose a = 1/σ2

∗)
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Lemma C.10. Take Assumption A3. If Dt := ∥zt∥2Σ−1
t

≤ 1
2 , ∀t ≥ 1, then with probability at least 1− 2δ,

∀t,
t∑

s=1

fs(θ̂s−1)D
2
s ≤ 10σ2

∗ ln(1/δ) +
3

2
λ∥θ∗∥22 + 4

t∑
s=1

fs(θ
∗)D2

s .

Proof. Let rs := z⊤s (θ̂s−1 − θ∗).

By the regret equality (Lemma C.7), we have

t∑
s=1

1

2
r2s − rsνs =

t∑
s=1

fs(θ̂s−1)− fs(θ
∗) ≤ λ

2
∥θ∗∥2 +

t∑
s=1

fs(θ̂s−1)D
2
s . (16)

Then, using Lemma C.3, with probability at least 1− δ, we have, ∀t ≥ 1,

t∑
s=1

1

2
r2s ≤

1

4

t∑
s=1

r2s + 2σ2
∗ ln(1/δ) +

λ

2
∥θ∗∥2 +

t∑
s

fs(θ̂s−1)D
2
s ,

=⇒ 1

4

t∑
s=1

r2s ≤ 2σ2
∗ ln(1/δ) +

λ

2
∥θ∗∥2 +

t∑
s

fs(θ̂s−1)D
2
s .

Therefore,

t∑
s=1

(fs(θ̂s−1)− fs(θ
∗))D2

s =
t∑

s=1

1

2
r2sD

2
s −

t∑
s=1

rsνsD
2
s

≤ 1

4

t∑
s=1

r2s −
t∑

s=1

rsνsD
2
s (D2

s ≤ 1
2 )

≤
t∑

s=1

rsνs(
1

2
−D2

s) +
λ

4
∥θ∗∥2 + 1

2

t∑
s

fs(θ̂s−1)D
2
s . (by (16))

Using Lemma C.3, with probability at least 1− δ, we have, ∀t ≥ 1,

t∑
s=1

rsνs(
1

2
−D2

s) ≤
ξ

2

t∑
s=1

r2s (
1

2
−D2

s)
2︸ ︷︷ ︸

≤ 1
4

+
σ2
∗
ξ

ln(1/δ)

for some ξ > 0. Thus,

t∑
s=1

(fs(θ̂s−1)− fs(θ
∗))D2

s ≤
ξ

8

t∑
s=1

r2s +
σ2
∗
ξ

ln(1/δ) +
λ

4
∥θ∗∥2 + 1

2

t∑
s

fs(θ̂s−1)D
2
s

≤ (ξ +
1

ξ
)σ2

∗ ln(1/δ) + (ξ + 1)
λ

4
∥θ∗∥2 + (

ξ

2
+

1

2
)

t∑
s=1

fs(θ̂s−1)D
2
s

(use the bound on 1
4

∑
s r

2
s)

=
5

2
σ2
∗ ln(1/δ) +

3

8
λ∥θ∗∥2 + 3

4

t∑
s=1

fs(θ̂s−1)D
2
s (choose ξ = 1

2 )

=⇒
t∑

s=1

fs(θ̂s−1)D
2
s ≤ 10σ2

∗ ln(1/δ) +
3

2
λ∥θ∗∥2 + 4

t∑
s=1

fs(θ
∗)D2

s .
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Lemma C.11. Take Assumption A3. Assume ∥zs∥Σ−1
s−1

≤ 1, ∀s. Then, with probability at least 1− δ

∀t ≥ 1,
t∑

s=1

(z⊤s (θ̂s−1 − θ∗))2 ≤ 8

λ
2
∥θ∗∥2 − 1

2
∥θ∗ − θ̂t∥

2

Σt
+

1

2

t∑
s=1

ν2sD
2
s

+ 16σ2
∗ ln(1/δ) .

Proof. Let rs = z⊤s (θ̂s−1 − θ∗) From the regret equality (Lemma C.7)

1

2

t∑
s=1

r2s −
t∑

s=1

νsrs =
λ

2
∥θ∗∥2 − 1

2
∥θ̂t − θ∗∥2Σt

+
1

2

t∑
s=1

r2sD
2
s −

t∑
s=1

νsrsD
2
s +

1

2

t∑
s=1

ν2sD
2
s

=⇒ 1

2

t∑
s=1

r2s(1−D2
s) =

λ

2
∥θ∗∥2 − 1

2
∥θ̂t − θ∗∥2Σt

+
1

2

t∑
s=1

ν2sD
2
s︸ ︷︷ ︸

=: A

+
t∑

s=1

νsrs(1−D2
s)

where (a) is obtained by tuning the scalar in the exponential martingale carefully.

With Lemma C.3, one can obtain, with probability at least 1− δ,

∀t ≥ 1,

t∑
s=1

νsrs(1−D2
s) ≤

1

4

t∑
s=1

r2s(1−D2
s)

2 + 2σ2
∗ ln(1/δ) .

Thus,

t∑
s=1

r2s(1−D2
s) ≤ 4A+ 8σ2

∗ ln(1/δ)

=⇒
t∑

s=1

r2s ≤ 8A+ 16σ2
∗ ln(1/δ)

where the last line is due to the fact that ∥xs∥Σ−1
s−1

≤ 1 =⇒ D2
s ≤ 1

2 using the Woodbury matrix identity.

Lemma C.12. Take Assumption A3 with the added assumption of νt ∈ [−R,R], ∀t, with probability 1.

1− δ ≤ P
(
∀t ≥ 1,

t∑
s=1

ν2s ≤ 3

2

t∑
s=1

σ2
s +R2 ln(1/δ)

)
.

Proof. Using the standard sub-Gaussian inequality (Lemma C.3) with the fact that ν2s − σ2
s is R2-sub-Gaussian, we have,

with probability at least 1− δ,

∀t ≥ 1,

t∑
s=1

ν2s =

t∑
s=1

σ2
s +

t∑
s=1

(ν2s − σ2
s)

≤
t∑

s=1

σ2
s +

a

2

t∑
s=1

E[(ν2s − σ2
s)

2 | Fs−1] +
R2

a
ln(1/δ)

≤
t∑

s=1

σ2
s +

a

2

t∑
s=1

σ2
s +

R2

a
ln(1/δ)

≤ 3

2

t∑
s=1

σ2
s +R2 ln(1/δ) . (choose a = 1)

Note that the above holds true for every t simultaneously, with probability at least 1− δ.
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D. Implementation Details of LOFAV
For LOFAV, we can define an extra confidence set:

∀ℓ ∈ [L], Cfull
t,L+ℓ :=

{
θ :

1

2
∥θ̂t,ℓ − θ∥2Σt,ℓ

≤ λℓ
2
S2 +

t∑
s=1

ℓws,ℓ(θ̂s−1,ℓ)D
2
s,ℓ +R2 ln(2L/δ) =: γt,ℓ

}
.

Then, change the algorithm so we pull xt = argmaxx∈Xt max
θ∈Cfull

t−1
⟨x, θ⟩ where Cfull

t−1 := ∩2L
ℓ=1Cfull

t−1,ℓ. Specifically,

max
θ∈Cfull

t−1

⟨x, θ⟩ = min
{
min
ℓ∈[L]

⟨x, θ̄t−1,ℓ⟩+
√

2βt−1,ℓ∥x∥Σ−1
t−1,ℓ

, min
ℓ∈[L]

⟨x, θ̂t−1,ℓ⟩+
√
2γt−1,ℓ∥x∥Σ−1

t−1,ℓ

}
.

One can verify easily that

1− δ ≤ P(∀t ∈ [n], θ∗ ∈ Cfull
t )

since the event we need for {Cfull
t,ℓ }2Lℓ=L+1 to be true (i.e., the upper deviation of the negative regret) is already assumed in the

proof of the correctness of {Cfull
t,ℓ }Lℓ=1
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E. Additional Experiments for LOSAN
In this section, we provide additional experiments on toy dataset to verify our theory and identify strengths and weaknesses
of LOSAN.

In addition to OFUL, we accommodate recent advances of confidence sets by using OFUL with the improved confidence set
proposed in Chowdhury et al. (2023, Appendix F), which coincides with the version of AMM-UCB in Flynn et al. (2023,
Appendix C.2). Specifically, instead of the confidence set of OFUL (Abbasi-Yadkori et al., 2011; Lattimore & Szepesvári,
2020), i.e.,

Ct =

θ ∈ Rd : ∥θ − θ̂t∥
2

Vt
≤

√
λS +

√
σ2
0 ln

( |Vt|
|λI|

)
+ 2σ2

0 ln(1/δ)

2


where Vt = λI +
∑t
s=1 xsx

⊤
s , θ̂t = V −1

t X⊤
t yt, Xt ∈ Rt×d is the design matrix, and yt ∈ Rt is the vector of rewards from

time step 1 to t, we use

Ct =
{
θ ∈ Rd : ∥θ − θ̂t∥

2

Vt
≤ λS2 + σ2

0 ln

( |Vt|
|λI|

)
+ 2σ2

0 ln(1/δ)

}
.

We call this variation OFUL-C. We exclude any methods that are computationally more demanding (i.e., orderwise more
computations) than OFUL such as CMM-UCB of Flynn et al. (2023). For all methods, we set λ = 10 · σ

2
0

S2 where σ2
0 is the

specified noise and S is the known upper bound of the norm of the unknown parameter ∥θ∗∥2.

More experiments for LOSAN. We consider a set of hard instances where the suboptimality gap of all the suboptimal
arms is ∆ := 4

√
σ2
0d

2/n as we describe below, which is meant to achieve the worst-case regret bound for OFUL, roughly.
We set d = 20, n = 50,000, σ2

0 = 1.0, and θ∗ = (S, 0, . . . , 0) ∈ Rd. We take a fixed arm set X and use it throughout the
time steps (i.e., Xt = X , ∀t) with |X | = 400. The arm set consists of a single best arm x∗ = 1

S θ
∗ and the rest of the arms

whose suboptimality gap is all equal to ∆. To ensure this, each suboptimal arm x has its first coordinate x(1) as 1− ∆
S and

the other coordinates as a vector (x(2), . . . , x(d)) ∈ Rd−1 uniformly drawn from a sphere of radius
√
1− (1− ∆

S )
2. This

ensures that every arm has a unit Euclidean norm and the suboptimality gap is equal to ∆.

We set the parameter S of all the baseline algorithms as ∥θ∗∥ and the specified noise as σ2
0 = 1. We try ∥θ∥2 ∈ {1, 10} and

σ∗ ∈ {10−1, 10−1/2, 100} and draw the reward noise by ηt ∼ N (0, σ2
∗), which results in total 6 experiments. We repeat

each experiment 20 times and report their average regret along with their twice standard error as the error band in Figure 6
As one can see, LOSAN significantly outperforms all the other methods when the noise is over-specified (see (a-b) and
(d-e)). Interestingly, in the just-specified setting of (c) and (f), LOSAN outperforms OFUL and is on par with LOSAN,
which shows that LOSAN is not only adaptive to the true noise but also numerically tight enough to be competitive with the
state-of-the-art confidence set. Note that, when ∥θ∗∥ is large (∥θ∗∥ = 10), LOSAN is slightly worse than OFUL-C.

A just-specified setting where LOSAN is worse than OFUL and OFUL-C. Note that LOSAN is not without a weakness
in the just-specified setting. We here report a case where LOSAN performs worse than OFUL and OFUL-C and explain why.

The problem instance considered here is an easy problem case in the sense that not many samples are required to have
small regret. This instance has a high signal-noise ratio in the sense that the smallest suboptimality gap ∆min :=
minx∈X ,x ̸=x∗⟨x∗ − x, θ∗⟩, where x∗ is the best arm, is large compared to the noise level σ2

∗. Specifically, we draw θ∗

uniformly at random from a (d = 20)-dimensional sphere of radius 15 (thus ∥θ∗∥ = 15), and each arm is drawn uniformly
at random from the unit sphere. We sample 800 such arms (|X | = 800).

When we created such an instance over 20 trials, we obtained that the average and the standard deviation of ∆min are
approximately 5.38 and 0.84. When considering Gaussian noise with variance σ2

∗ = 1, the value of ∆min is much larger than
σ∗, and thus one can expect that an algorithm could identify the best arm roughly after pulling 20 arms that are sufficiently
linearly independent. Furthermore, ∆max := minx∈X ,x ̸=x∗⟨x∗ − x, θ∗⟩ has the average and the standard deviation of
approximately 24.79 and 0.68. The large value of ∆max implies that the cost of pulling a suboptimal arm can be very large.

We run OFUL, OFUL-C, and LOSAN with 20 trials where each trial samples a fresh θ∗ and an arm set. We report the
resulting regret in Figure 7(a) where the error band is twice the standard error. As one can see, LOSAN is outperformed by
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Figure 6. Toy Experiments with Gaussian noise.
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Figure 7. A case where LOSAN performs worse than baseline method.

both OFUL and OFUL-C. The problem is easy enough that once an algorithm finds the best arm, then it rarely increases the
regret, which means that they have arrived at a regime where the regret is polylogarithmic. While the slope of the regret
after time 1000 is mostly the same for all methods, LOSAN incurs more regret early on.

To inspect the reason, we plot the largest upper confidence bound (UCB), i.e., maxx∈X ,θ∈Ct−1
⟨x, θ⟩), in Figure 7(b). Both

OFUL and OFUL-C drop the value of the largest UCB significantly around t = 20. While LOSAN initially has a tighter
confidence bound at the beginning, its drop of confidence bound happens at a much slower rate during which LOSAN pulls
suboptimal arms more frequently, resulting in high regret. We speculate that such a difference is within a constant factor at
best; we would be very surprised if one can show that LOSAN is orderwise worse than OFUL/OFUL-C (i.e., exist a series
of instances where the difference can be arbitrarily large). Further examination and potential improvement for LOSAN is
left as future work.

As a comparison, the instance used in Figure 6 has ∆min = ∆max, which means that not knowing the best arm has the same
cost, and the bottleneck of the regret is mainly to precisely locate θ∗. On the other hand, the bottleneck in the spherical
instance used here is to quickly figuring out θ∗ very roughly (since that is enough to find the best arm), and any delay in
doing so results in large cost in regret (due to large ∆max).
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