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Abstract
Let f(θ,X1), . . . , f(θ,Xn) be a sequence of random elements, where f is a fixed scalar function,
X1, . . . , Xn are independent random variables (data), and θ is a random parameter distributed ac-
cording to some data-dependent posterior distribution Pn. In this paper, we consider the problem
of proving concentration inequalities to estimate the mean of the sequence. An example of such a
problem is the estimation of the generalization error of some predictor trained by a stochastic algo-
rithm, such as a neural network, where f is a loss function. Classically, this problem is approached
through a PAC-Bayes analysis where, in addition to the posterior, we choose a prior distribution
which captures our belief about the inductive bias of the learning problem. Then, the key quantity
in PAC-Bayes concentration bounds is a divergence that captures the complexity of the learning
problem where the de facto standard choice is the Kullback-Leibler (KL) divergence. However, the
tightness of this choice has rarely been questioned.

In this paper, we challenge the tightness of the KL-divergence-based bounds by showing that
it is possible to achieve a strictly tighter bound. In particular, we demonstrate new high-probability
PAC-Bayes bounds with a novel and better-than-KL divergence that is inspired by Zhang et al.
(2022). Our proof is inspired by recent advances in regret analysis of gambling algorithms, and its
use to derive concentration inequalities. Our result is first-of-its-kind in that existing PAC-Bayes
bounds with non-KL divergences are not known to be strictly better than KL. Thus, we believe our
work marks the first step towards identifying optimal rates of PAC-Bayes bounds.
Keywords: Concentration inequalities, PAC-Bayes, change-of-measure, confidence sequences,
coin-betting.

1. Introduction

We study the standard model of statistical learning, where we are given a set of independent observa-
tions X1, . . . , Xn ∈ X , and we have access to a measurable parametric function f : Θ×X → [0, 1].
In particular, we are interested in estimating the mean of f when its first parameter θ is a random
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parameter drawn from a distribution chosen by an algorithm based on data (typically called the
posterior Pn). In other words, our goal is to estimate the mean1∫

E[f(θ,X1)] dPn(θ) .

In many learning scenarios, f(θ,Xi) is interpreted as a composition of a loss function and a pre-
dictor evaluated on example Xi, given the parameter θ ∼ Pn. Often, this problem is captured by
giving bounds on the generalization error (sometimes called generalization gap)∫

∆n(θ) dPn(θ), where ∆n(θ) =
1

n

n∑
i=1

(f(θ,Xi)− E[f(θ,X1)]) .

To have a sharp understanding of the behavior of the generalization error, it is often desirable
to have bounds that hold with high probability over the sample. At the same time, standard tools
for this task, such as concentration inequalities (for instance, Chernoff or Hoeffding inequalities)
are not applicable here, since Pn itself depends on the sample and can be potentially supported on
infinite sets (which precludes the use of union bounds). In the particular setting of a randomized
prediction discussed here, studying such bounds was a long topic of interest in the PAC-Bayes
analysis (Shawe-Taylor and Williamson, 1997; McAllester, 1998). PAC-Bayes bounds typically
require an additional component called the prior distribution over parameter space, which captures
our belief about the inductive bias of the problem. Then, for any data-free prior distribution P0, a
classical result holds with a probability at least 1 − δ (for a failure probability δ ∈ (0, 1)) over the
sample simultaneously for all choices of data-dependent posteriors Pn:

∫
∆n(θ) dPn(θ) = O


√

DKL(Pn, P0) + ln
√
n
δ

n

 as n → ∞ . (1)

While such a bound is uniform over all choices of Pn, it does scale with the KL divergence between
them, DKL(Pn, P0) =

∫
ln(dPn/ dP0) dPn, which can be thought of as a measure of complexity

of the learning problem. Over the years, PAC-Bayes bounds were developed in many ever tighter
variants, such as the ones for Bernoulli losses (Langford and Caruana, 2001; Seeger, 2002; Mau-
rer, 2004), exhibiting fast rates given small loss variances (Tolstikhin and Seldin, 2013; Mhammedi
et al., 2019), data-dependent priors (Rivasplata et al., 2020; Awasthi et al., 2020), and so on. How-
ever, one virtually invariant feature remained: high probability PAC-Bayes bounds were always
stated using the KL-divergence. The reason is that virtually all of these proofs were based on the
Donsker-Varadhan change-of-measure inequality2 (essentially arising from a relaxation of a varia-
tional representation of KL divergence) (Donsker and Varadhan, 1975).

Recently, several works have looked into PAC-Bayes analyses arising from the use of different
change-of-measure arguments (Bégin et al., 2016; Alquier and Guedj, 2018; Ohnishi and Honorio,
2021), allowing to replace KL divergence with other divergences such as χ2 or Hellinger, however
these results either did not hold with high probability or involved looser divergences (such as χ2).

1. Throughout, the integration
∫
≡

∫
Θ

is always understood w.r.t. θ ∈ Θ while the expectation E is always w.r.t. data.
2. For any measurable F , and any Pn, P0, the inequality states that

∫
F dPn ≤ DKL(Pn, P0) + ln

∫
eF dP0.

2
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In this work, we propose an alternative change-of-measure analysis and show, to the best of our
knowledge, the first high-probability PAC-Bayes bound that involves a divergence tighter than the
KL-divergence.

Our analysis is inspired by a recent observation of Zhang et al. (2022), who pointed out an
interesting phenomenon arising in regret analysis of online algorithms (Cesa-Bianchi and Orabona,
2021): They focused on a classical problem of learning with experts advice (Cesa-Bianchi and
Lugosi, 2006), where the so-called parameter-free regret bounds scale with

√
DKL between the

competitor distribution over experts and the choice of the prior (Luo and Schapire, 2015; Orabona
and Pál, 2016). In particular, their analysis improves over parameter-free rates replacing

√
DKL

with a divergence with the shape

DZCP(Pn, P0; c) =

∫ ∣∣∣∣dPn

dP0
(θ)− 1

∣∣∣∣
√√√√ln

(
1 + c2

∣∣∣∣dPn

dP0
(θ)− 1

∣∣∣∣2
)
dP0(θ), (2)

where c is a parameter.3 We call it Zhang-Cutkosky-Paschalidis (ZCP) divergence. Interestingly,
the ZCP divergence enjoys the following upper bound (Theorem 2):

DZCP ≲
√

DKL DTV +DTV, (3)

where DTV(Pn, P0) =
1
2

∫
| dPn − dP0| is the Total Variation (TV) distance. Since DTV ≤ 1 for

any pair of distributions, DZCP is orderwise tighter4 than
√
DKL and we show in Section 4.1 that in

some cases the gain can be substantial.
In this paper, we develop a novel and straightforward change-of-measure type analysis that leads

to PAC-Bayes bounds with the ZCP divergence, avoiding the regret analysis of Zhang et al. (2022)
altogether.

Our contributions Our overall contribution is to show a surprising result that the choice of the
KL divergence as the complexity measure in PAC-Bayes bounds is suboptimal, which tells us that
there is much room for studying optimal rates of PAC-Bayes bounds.

Specifically, we show that the KL divergence of existing PAC-Bayes bounds can be strictly
improved using a different, better divergence. We achieve it through two main results. Our first
result is a PAC-Bayes bound (Theorem 8)

∫
∆n(θ) dPn(θ) ≤

√
2DZCP(Pn, P0;

√
2n/δ) + 2 +

√
ln 2

√
n

δ√
n

,

which readily improves upon Eq. (1), since by upper-bounding a ZCP-divergence we have

∫
∆n(θ) dPn(θ) = O

(√
DKL(Pn, P0)DTV(Pn, P0) + ln

√
n
δ

n

)
as n → ∞ . (4)

3. There is one minor difference that the original divergence appeared in Zhang et al. (2022) has√
ln(1 + |dPn

dP0
(θ)− 1|) instead of

√
ln(1 + c2|dPn

dP0
(θ)− 1|2).

4. See Section 4 for a detailed explanation of orderwise tightness.
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Our second contribution is a bound that extends to regimes beyond 1/
√
n rate, such as fast

rates of order 1/n when the sample variance of f is small. Here, we consider variants of empiri-
cal Bernstein inequality and a bound on ‘little-kl’ (a bound for binary or bounded f(); defined in
Section 3), see Section 5.1. In fact, instead of deriving individual bounds separately, we first show
a generic bound that can be relaxed to obtain these styles of bounds. This technique of obtaining
a generic bound is inspired by the recent advances for obtaining concentration inequalities through
the regret analysis of online betting algorithms (Jun and Orabona, 2019; Orabona and Jun, 2024).
In particular, we consider the expected optimal log wealth (denoted by lnW∗

n) of an algorithm that
bets on the outcomes f(θ,Xi) − E[f(θ,X1)]. Then, using a regret bound of the betting algorithm
(which is only required for the proof; one does not need to this algorithm), we obtain concentration
inequalities from upper bounds on

∫
·dPn of

lnW∗
n(θ) = max

β∈[−1,1]
ln

n∏
i=1

(
1 + β(f(θ,Xi)− E[f(θ,X1)])

)
.

Recently, Jang et al. (2023) have used this technique to control
∫
lnW∗

n(θ)dPn in terms of KL
divergence, and used various lower bounds on the logarithm to recover many known PAC-Bayes in-
equalities, such as PAC-Bayes Bernstein inequality and others. As an illustrative example, consider
the simple inequality ln(1 + x) ≥ x − x2 for |x| ≤ 1/2: If one can show that

∫
lnW∗

n(θ)dPn ≤
bound(δ, n, Pn, P0), then the above implies that max|β|≤1/2{β∆n − β2n} ≤ bound(δ, n, Pn, P0)

and so we can optimally tune β to obtain
∫
∆n(θ)dPn ≤

√
bound(δ, n, Pn, P0)/n, which recov-

ers a familiar bound in the shape of Eq. (1). A more fine-grained analysis leads to an empirical
Bernstein type inequality (see Corollary 14). This suggests that the optimal log wealth lnW∗

n is the
fundamental quantity that unifies various existing types of concentration bounds such as Hoeffding,
Bernoulli-KL, and empirical Bernstein inequalities.

Using the above concept of optimal log wealth, we show (see Eq. (5)) that there exists a universal
constant c > 0, such that almost surely for all distributions P (possibly data-dependent ones),

lim sup
n→∞

∫
lnW∗

n(θ)dP (θ)

ln3/2(n)
≤ c

(
1 +

√
DKL(P, P0)DTV(P, P0)

(
1 +

√
DKL(P, P0)

))
.

We state this asymptotic bound in terms of the upper bound on the ZCP divergence. However,
compared to Eq. (4), this bound is more versatile as it can be used to obtain an empirical Bernstein
inequality. That is, we show later that it implies

lim sup
n→∞

∣∣∫ ∆n(θ) dP
∣∣2

1
n

(∣∣∫ ∆n(θ) dP
∣∣+ V̂ (P )

)
· ln3/2(n)

≤ c
(
1 +

√
DKL DTV

(
1 +

√
DKL

))
,

where V̂ (P ) is the empirical variance averaged over P . While it comes with an additional depen-
dency on

√
DKL, we show later in Section 4 that is still never worse than existing KL-based bounds

yet enjoys orderwise better bounds in some instances.

2. Additional related work

PAC-Bayes PAC-Bayes has been a long-lasting topic of interest in statistical learning (Shawe-
Taylor and Williamson, 1997; McAllester, 1998; Catoni, 2007), with a considerably interest in both
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theory and applications; see Alquier (2024) for a comprehensive survey. Over the years, most of the
PAC-Bayes literature was concerned with tightening Eq. (1) by using more advanced concentration
inequalities and making assumptions about data-generating distributions. A notable improvement is
a bound that switches to the rate 1/n for a sufficiently small sample variance (Tolstikhin and Seldin,
2013), an empirical Bernstein inequality, which was further improved by Mhammedi et al. (2019).
Fast rates where also noticed in other bounds, which are useful in situations when losses are suffi-
ciently small (Catoni, 2007; Yang et al., 2019). Several results have also relaxed the independence
assumption in PAC-Bayes analysis through martingale conditions (Seldin et al., 2012; Kuzborskij
and Szepesvári, 2019; Haddouche and Guedj, 2023; Lugosi and Neu, 2023). Finally, a recent surge
of practical interest in PAC-Bayes was stimulated by its ability to yield numerically non-vacuous
generalization bounds for deep neural networks (Dziugaite and Roy, 2017; Pérez-Ortiz et al., 2021;
Dziugaite et al., 2021).

All of these results, similarly as the classical ones, involve the KL divergence, which is consid-
ered as the de facto standard divergence to be used for PAC-Bayes bounds. Our paper indicates that
this standard KL-based bound is in fact suboptimal by showing that there exists a new divergence
that is never worse than KL orderwise while showing strict improvements in special cases.

Other divergences and connection to change-of-measure inequalities The focus of this pa-
per is on the ‘complexity’ term, or divergence between the posterior and prior distributions over
parameters. Several works have dedicated some attention to this topic and obtained bounds with
alternative divergences. Alquier and Guedj (2018) studied the setting of unbounded losses and de-
rived PAC-Bayes bounds with χ2 divergence instead of KL divergence, however at the cost of a
high probability guarantee: their bound scales with 1/δ rather than ln(1/δ). In another notable
work, Ohnishi and Honorio (2021) proved a suite of change-of-measure inequalities distinct from
the usual Donsker-Varadhan inequality. Their method is based on a tighter variational representa-
tion of f -divergences developed by Ruderman et al. (2012), which in turn improves upon Nguyen
et al. (2010). The variational representation arises from the use the Fenchel-Young inequality with
respect to f under the integral operator. For example, for some measurable function F , we have∫

dP
dQ · FdQ ≤

∫ (
f(dPdQ) + f⋆(F )

)
dQ where f⋆ is a convex conjugate of f . In this paper, we

focus on a particular f , whose convex conjugate is a function f⋆(y) = δ exp(y2/(2n)). In fact,∫
f(dPdQ − 1)dQ then gives rise to the ZCP divergence.

Interestingly, the function of a shape y 7→ exp(y2/2) appears in several other contexts. In
the online learning literature this function, identified as the potential function or the dual of the
regularizer, is used in the design and analysis of the so-called parameter-free algorithms, both for
learning with expert advice (Chaudhuri et al., 2009; Luo and Schapire, 2015; Koolen and Van Erven,
2015; Orabona and Pál, 2016) and for online convex optimization (Orabona and Pál, 2016).

Chu and Raginsky (2023) also derived an interesting generalization error bound using the Fenchel-
Young inequality in the Lp-Orlicz norm. In their analysis they focus on the function f⋆(y) =
exp(yp), with the majority of their results obtained with p = 2. Albeit their analysis commences
from the Fenchel-Young inequality, later on it is simplified through the use of the inverse function
f−1 instead of the dual f⋆, resulting in a looser upper bound, ultimately leading back to the KL
divergence.

Concentration from coin-betting Our paper occasionally relies on the coin-betting formalism
(see Section 3.1), which goes back to Ville (1939) and the Kelly betting system (Kelly, 1956).
The coin-betting formalism can be thought of as a simple instance of the Universal Portfolio the-
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ory (Cover, 1991). The idea of showing concentration inequalities using regret of online betting
algorithms was first investigated by Jun and Orabona (2019) who established new (time-uniform)
concentration inequalities. Their work was heavily inspired by Rakhlin and Sridharan (2017) who
showed the equivalence between the regret of generic online linear algorithms and martingale tail
bounds. However, the idea of linking online betting to statistical testing, but without the explicit use
of regret analysis, goes back at least to Cover (1974) and more recently to Shafer and Vovk (2001).

3. Definitions and preliminaries

For two nonnegative valued functions f, g, we use f ≲ g to indicate that there exists a constant
C > 0 such that f ≤ C polylog(g)g holds uniformly over all arguments. We denote by (x)+ =
max{x, 0}.

Let P and Q be probability measures over Θ, such that P is absolutely continuous with respect
to Q. For a convex function f : [0,∞) → (−∞,∞] such that f(x) is finite for all x > 0, f(1) = 0,
and f(0) = limx→0+ f(x) (possibly infinite), the f -divergence between P,Q is defined as

Df (P,Q) =

∫
Θ
f

(
dP

dQ

)
dQ .

We will encounter several f -divergences such as the KL-divergence DKL = Df with f(x) =
x ln(x), the TV-distance DTV = Df with f(x) = |x − 1|/2, and the ZCP-divergence DZCP = Df

with f(x) = |x − 1|
√

ln(1 + c2|x− 1|2). We will call the KL divergence between Bernoulli
distributions a ‘little-kl’ denoted by kl(p, q) = p ln(p/q)+(1−p) ln((1−p)/(1−q)) for p, q ∈ [0, 1].

We will also encounter a Rényi divergence of order α ∈ (0, 1)∪ (1,∞), defined as Dα(P,Q) =
1

α−1 ln
∫
dP (θ)αdQ(θ)1−α, which has many interesting connections to f -divergences, as discussed

by Van Erven and Harremos (2014). For instance, limα→1Dα = DKL.
If a set X is uniquely equipped with a σ-algebra, the underlying σ-algebra will be denoted by

Σ(X ). We formalize a ‘data-dependent distribution’ through the notion of probability kernel (see,
e.g., Kallenberg, 2017), which is defined as a map K : X n ×Σ(Θ) → [0, 1] such that for each B ∈
Σ(Θ) the function s 7→ K(s,B) is measurable and for each s ∈ X n the function B 7→ K(s,B) is
a probability measure over Θ. We write K(X n,Θ) to denote the set of all probability kernels from
X n to distributions over Θ. In that light, when P ∈ K(X n,Θ) is evaluated on S ∈ X n we use the
shorthand notation Pn = P (S).

3.1. Coin-betting game, regret, and Ville’s inequality

The forthcoming analysis is intimately connected to the derivation of concentration inequalities
through regret analysis of online gambling algorithms, following Jun and Orabona (2019); Orabona
and Jun (2024). Here, we briefly introduce the required notions and definitions.

We consider a gambler playing a betting game repetitively. This gambler starts with initial
wealth W0 = 1. In each round t, the gambler bets |xt| money on the outcome xt, observes a
‘continuous coin’ outcome ct ∈ [−1, 1], which can even be adversarially chosen. At the end of the
round, the gambler earns xtct, so that if we define the wealth of the gambler at time t as Wt,

Wt = Wt−1+ctxt = 1 +

t∑
s=1

csxs .

6
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We also assume the gambler cannot use any loans in this game, meaning Wt ≥ 0 and xt ∈
[−Wt−1,Wt−1].

This coin-betting game is one of the representative online learning problems. Therefore, com-
paring the difference in wealth with a fixed strategy, as in online betting, is a natural objective. In
particular, for each β ∈ [−1, 1], let Wt(β) be the wealth when the gambler bets βWt−1(β) in round
t with the same initial wealth condition W0(β) = 1. So, we have

Wt(β) = Wt−1(β) + ctβWt−1(β) =
t∏

s=1

(1 + csβ) .

We denote W∗
n = maxβ∈[−1,1] Wn(β) the maximum wealth a fixed betting strategy can achieve,

and define the regret of the betting algorithm as

Regretn =
W∗

n

Wn
.

It is well-known that it is possible to design optimal online betting algorithms with regret bounds
that are polynomial in n (Cesa-Bianchi and Lugosi, 2006, Chapters 9 and 10).

If the coin outcomes have conditional zero mean, it is intuitive that any online betting algorithm
should not be able to gain any money. Indeed, the wealth remains 1 in expectation (i.e., E[Wt] = 1),
so Wt forms a nonnegative martingale and thus follows a very useful time-uniform concentration
bound known as Ville’s inequality.

Theorem 1 (Ville’s inequality (Ville, 1939, p. 84)) Let Z1, . . . , Zn be a sequence of non-negative
random variables such that E[Zi | Z1, . . . , Zi−1] = 0. Let Mt > 0 be Σ(Z1, . . . , Zt−1)-measurable
such that M0 = 1, and moreover assume that E[Mt | Z1, . . . , Zt−1] ≤ Mt−1. Then, for any
δ ∈ (0, 1], P

{
maxtMt ≥ 1

δ

}
≤ δ.

Ville’s inequality will be the main tool to leverage regret guarantees to construct our concentration
inequalities.

4. The ZCP Divergence

Here, we look deeper into properties of the ZCP divergence defined in Eq. (2). First, note that
ZCP-divergence is an f -divergence with f(x) = |x − 1|

√
ln(1 + c2 |x− 1|2) for x ∈ R≥0 and

some parameter c ≥ 0. The main interesting property of this divergence is that it is controlled
simultaneously by KL-divergence and TV distance, namely:

Theorem 2 For any pair P,Q ∈ M1(Θ), and any c ≥ 0, we have

DZCP(P,Q; c) ≤ 2
√
2DTV(P,Q)DKL(P,Q) + 2

√
ln(2 + 2c)DTV(P,Q) .

Note that this control only incurs an additive logarithmic cost in c (recall that DTV ≤ 1). The above
is a direct consequence of Lemma 3 and Lemma 4, both shown the Appendix (Section C.1 and
Section C.2).

Lemma 3 Under conditions of Theorem 8, for any c ≥ 0,

DZCP(P,Q; c) ≤ DZCP(P,Q; 1) + 2
√

ln(2 + 2c)DTV(P,Q) .

7
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Lemma 4 For any pair P,Q ∈ M1(Θ),

DZCP(P,Q; 1) ≤
√
8DTV(P,Q)DKL(P,Q) .

From Theorem 2 we can see that DZCP is orderwise tighter than
√
DKL in the sense that for any

P,Q, we have that

DZCP(P,Q; c)DTV(P,Q) ≤ 2(
√
2 +

√
ln(2 + 2c))

√
DKL(P,Q) .

On the other hand, as we show below, there exist an infinite number of sequences of probability
distributions (Pi, Qi) such that limi→∞ DKL(Pi, Qi) = ∞ and lim supi→∞ DZCP(Pi, Qi; c) < ∞.
Thus, DZCP is at most both a multiplicative and an additive constant away from

√
DKL in all regimes,

but the gain can be arbitrarily large, especially when Pinsker’s inequality is not tight.

4.1. Advantage over KL Divergence in Discrete Cases

We now show that the ZCP divergence can be arbitrarily smaller than the KL divergence. As we can
tell from Lemma 4, it will be enough to upper bound the product of KL divergence and TV distance
to demonstrate the advantage. We first consider a basic instance of two Bernoulli random variables,
with proof provided in Section C.3:

Proposition 5 Let P and Q be Bernoulli distributions with success probabilities p and q respec-
tively, and moreover assume that q = p/a for some free parameter a ≥ 1. Choosing:

• a = e
1
p2 , we have DKL(P,Q) ·DTV(P,Q) ≤ 1− 1

e while 1
p − 1

e ≤ DKL(P,Q) ≤ 1
p ;

• a = e
1

p3/2 , we have DKL(P,Q)
√

DTV(P,Q) ≤
√
1− 1

e while 1√
p −

1
e ≤ DKL(P,Q) ≤ 1√

p .

Multivariate instances The proof of Proposition 5 can be easily extended to any pair of distribu-
tions with a finite support:

Proposition 6 Let P = (p1, . . . , pd) and Q = (q1, . . . , qd) be probability distributions, where d is
even without loss of generality, and probability weights are set as

pi =

p for i ∈ {1, . . . , d2}
1− pd

2
d/2 for i ∈ {d

2 + 1, . . . , d}
, qi =


p
a for i ∈ {1, . . . , d2}
1− pd

2a
d/2 for i ∈ {d

2 + 1, . . . , d}

where u > 0 is a free parameter, p = d−1−u, and a = exp(d
3
2
u). Then, for a sufficiently large d,

DKL(P,Q) = Θ
(
d p ln(a)

)
= Θ(d

u
2 ) ,

DTV(P,Q) = Θ (d p) = Θ(d−u) ,

DZCP(P,Q) = Θ
(
d p
√
ln(a)

)
= Θ(d−

1
4
u) ,√

DKL(P,Q) ·DZCP(P,Q) = Θ(1) .

Observe that DZCP(P,Q) = Θ(d−
1
4
u) is strictly smaller than DKL(P,Q) = Θ(d

u
2 ). Moreover, one

could also check that
√
DKL ·DZCP = Θ(1) while DKL(P,Q) = Θ(d

u
2 ).
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4.2. Advantage over KL Divergence in the Mixture of Gaussian Case

Now we consider a continuous case. In particular, we have the following Gaussian instance, with
proof provided in Section C.4.

Proposition 7 Let A = N (µ, σ2
1) and B = N (µ, σ2

2). Let P be a Gaussian mixture P = pA +
(1− p)B for p ∈ [0, 1] and let Q = B.

• Choosing σ2
σ1

= p, we have DKL(P,Q) ≥ 1
2p − 1.3, while DTV(P,Q) ·DKL(P,Q) ≤ 1

2 .

• Choosing σ2
σ1

= p
3
4 , we have DKL(P,Q) ≥ 1

2
√
p−1.22, while DKL(P,Q)·

√
DTV(P,Q) ≤ 1

2 .

5. Main results

We first present a Hoeffding-type inequality that involves DZCP, which is proved in Section 7.

Theorem 8 (Hoeffding-type ZCP inequality) Let δ ∈ (0, 1). Then, for any P0 ∈ M1(Θ), with
probability at least 1− 2δ, simultaneously for all n ∈ N, Pn ∈ K(X n,Θ), we have

∫
∆n(θ) dPn(θ) ≤

√
2DZCP

(
Pn, P0;

√
2n
δ

)
+ 2 + 2

√
ln 2

√
n

δ√
n

.

As shown in Eq. (4) the bound is orderwise never worse than the classical KL-based one and in Sec-
tion 4 we show instances where thanks to ZCP divergence it enjoys an improved order. Moreover,
Theorem 8 holds uniformly over n ∈ N unlike most classical bounds which only hold for a fixed n.

Remark 9 It is possible to obtain a similar inequality by combining the regret guarantee in Zhang
et al. (2022) and the recently proposed online-to-PAC framework of Lugosi and Neu (2023) that
obtains PAC bounds from the regret of online learning algorithms. Both approaches are valid and
we believe both proof methods have their distinct advantages. In particular, we believe that our
proof method is more direct and more flexible. Indeed, we show below how to bound the integral of
the log optimal wealth, a case that is not covered by the framework in Lugosi and Neu (2023) and
that allows to recover various known types of inequalities such as the ‘little-kl’ and the empirical
Bernstein’s inequality.

Next, we demonstrate a generalized inequality, which extends beyond the Hoeffding regime of
1/
√
n rate. In Section 3.1 we introduced a notion of max-wealth of a betting algorithm. To state the

following result, we parameterize the max-wealth by θ:

W∗
n(θ) = max

β∈[−1,1]

n∏
i=1

(
1 + β(f(θ,Xi)− E[f(θ,X1)])

)
.

The central quantity in the coming result will be the expected maximal log-wealth
∫
lnW∗

n(θ) dPn(θ)
— it was recently shown by Jang et al. (2023) that through lower-bounding lnW∗

n term we can ob-
tain many known PAC-Bayes bounds. To this end, our second main result, shown in Section A,
gives a bound on the expected maximal log-wealth:

9
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Theorem 10 (Log-wealth ZCP inequality) Let δ ∈ (0, 1). Then, for any α ∈ (0, 1) and for any
P0 ∈ M1(Θ), with probability at least 1− 2δ, simultaneously over n ∈ N \ {1}, Pn ∈ K(X n,Θ),

∫
lnW∗

n(θ)dPn(θ) ≤
1√
2

√
ln

(
4n2

δ

)
+

α

α− 1
ln(n) +Dα(Pn, P0)DZCP

(
Pn, P0;

√
2n2.5

δ

)
+ ln

(
2e2

√
n
(
1 +

4n2

δ

))
+

δ

n(n+ 1)
.

Note that in addition to ZCP-divergence, now the bound now also depends on the Rényi divergence
Dα() and its order α can be choosen freely. In particular, in the next corollary we show that asymp-
totically, when α is tuned based on n, the Rényi divergence can be replaced by the KL divergence.

Corollary 11 Fix P0 ∈ M1(Θ). Then, under the conditions of Theorem 10, with probability one
for all P ∈ M1(Θ),

lim sup
n→∞

∫
lnW∗

n(θ)dP (θ)√
2 ln(n) ln(en) ln(1 +

√
2n4.5)

≤ 2 +
(
2 +

√
DKL(P, P0)

)
(DZCP(P, P0; 1) +DTV(P, P0)) .

A simple consequence of the above, when combined with Lemma 4, is that there exists an absolute
constant c > 0 such that with probability one

lim sup
n→∞

∫
lnW∗

n(θ)dP (θ)

ln3/2(n)
≤ c

(
1 +

√
DKL(P, P0)DTV(P, P0)

(
1 +

√
DKL(P, P0)

))
. (5)

In comparison, Jang et al. (2023) obtained the bound∫
lnW∗

n(θ) dPn(θ) = O
(
DKL(Pn, P0) + ln

n

δ

)
,

which is looser than the bound in Eq. (5) in terms of dependence on divergence terms, since
DKL(Pn, P0) is orderwise at least DKL(Pn, P0)

√
DTV(Pn, P0) ≥

√
DKL(Pn, P0)DZCP.

Remark 12 Comparing this result to our Hoeffding-style bound (Theorem 8) is nontrivial since the
left-hand side is written in a different form. To make a clear comparison, we defer this discussion to
remark 15 below, but in summary our optimal log wealth bound leads to a factor of D1/4

TV (Pn, P0)
looser one compared to Theorem 8.

Remark 13 The proof of Theorem 10 is highly non-trivial and there are a few approaches one might
think of that fail. For example, we can successfully upper bound

∫ √
lnW∗

n(θ) dPn(θ) but then we
cannot obtain an empirical Bernstein inequality because we need a bound like

∫ √
lnW∗

n(θ) dPn(θ)

≥
√∫

lnW∗
n(θ) dPn(θ) yet this inequality is the opposite direction of Jensen’s inequality. Alterna-

tively, we can upper bound
∫
(n∆n(θ))

2 dPn(θ) but then the empirical variance terms will appear
integrated with respect to the prior instead of the posterior.

10
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5.1. Recovering variants of other known bounds with new divergence

As we anticipated, inequality in Theorem 10 can be relaxed to obtain various known PAC-Bayes
bounds. First, this was observed by Jang et al. (2023), who derived a bound on

∫
lnW∗

n(θ) dPn(θ)
featuring KL-divergence. By applying similar lower bounding techniques as in their work, in the
following we state ZCP versions of known PAC-Bayes bounds. Let the complexity term be

Compn(α) = (r.h.s. in Theorem 10) ≲
√

α

α− 1
+DαDZCP + 1 .

By following the same reasoning as in Corollary 11 one can state asymptotic versions of the relaxed
bounds, which for a universal constant c > 0, will manifest

Compn

(
1 + 1

ln(n)

)
ln3/2(n)

→ c

(
1 +

√
DKL DTV

(
1 +

√
DKL

))
as n → ∞ .

Empirical Bernstein inequality First, we recover an empirical Bernstein-type inequality (Tol-
stikhin and Seldin, 2013), where the bound switches to the ‘fast rate’ 1/n when the sample variance
is sufficiently small. In particular, in Corollary 14 we show:

Corollary 14 Under the conditions of Theorem 10, for any α ∈ (0, 1), we have, with probability
at least 1− 2δ, simultaneously over every n ∈ N \ {1} and Pn ∈ K(X n,Θ),

∣∣∣∣∫ ∆n(θ) dPn

∣∣∣∣ ≤
√

2Compn(α) V̂ (Pn)

(
√
n− (2/

√
n) Compn(α))+

+
2Compn(α)(

n− 2Compn(α)
)
+

,

where V̂ (P ) = 1
n(n−1)

∑
i<j

∫
(f(θ,Xi)− f(θ,Xj))

2 dP (θ) is the expected sample variance.
Furthermore, there exists an absolute constant c > 0 such that with probability one, for all

P ∈ M1(Θ),

lim sup
n→∞

∣∣∫ ∆n(θ) dP
∣∣2

1
n

(∣∣∫ ∆n(θ) dP
∣∣+ V̂ (P )

)
· ln3/2(n)

≤ c
(
1 +

√
DKL DTV

(
1 +

√
DKL

))
.

We defer the proof to Section C.5.

Remark 15 When the sample variance is sufficiently large, that is larger than
∣∣∫ ∆n(θ) dPn

∣∣, the
bound above provides a comparison point with our own Hoeffding style bound (Theorem 8) w.r.t.
the complexity term, which scales with DZCP(Pn, P0). Ignoring the fact that the bound above is
asymptotic, we note that the bound in Corollary 14 scales with

√
DKL DTV ·

√
DKL, and so√

DKL DTV ·
√

DKL ≥
√

DKL DTV ·
√
DKL DTV ≥ DZCP .

Note that there is a factor of D1/2
TV gap. Investigating if it can be removed is left as future work.

11
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Bernoulli KL-divergence (Langford-Caruana / Seeger / Maurer) bound Finally, we consider a
tighter inequality for the specific case of Bernoulli f (e.g., Bernoulli losses). This is a well-studied
setting in the PAC-Bayes literature (Langford and Caruana, 2001; Seeger, 2002; Maurer, 2004).
In this case we are bounding the KL divergence between Bernoulli distributions denoted by kl().
One can observe that the bound on kl() is tighter than Hoeffding-type bounds due to Pinsker’s
inequality. In such a case, denoting sample average and mean respectively as p̂θ = (f(θ,X1) +
· · ·+ f(θ,Xn))/n and pθ = E[f(θ,X1)], we have

Corollary 16 Under the conditions of Theorem 10, for any α ∈ (0, 1), we have, with probability
at least 1− 2δ, simultaneously over every n ∈ N \ {1} and Pn ∈ K(X n,Θ),

kl

(∫
p̂θ dPn(θ),

∫
pθ dPn(θ)

)
≤ Compn(α)

n
.

Furthermore, there exists an absolute constant c > 0 such that with probability one, for all P ∈
M1(Θ),

lim sup
n→∞

kl
(∫

p̂θ dP (θ),
∫
pθ dP (θ)

)
1
n · ln3/2(n)

≤ c
(
1 +

√
DKL DTV

(
1 +

√
DKL

))
.

The proof of Corollary 16 closely follows that of Jang et al. (2023, Proposition 3 in Sec. A.2).

6. Conclusions

In this paper we derived, to the best of our knowledge, a first high-probability PAC-Bayes bound
with the ZCP divergence. This divergence is never worse than the KL divergence orderwise and
it enjoys a strictly better scaling in some instances. In the concentration regime 1/

√
n for the

deviation
∫
∆n(θ) dPn(θ), the new bound scales with DZCP ≲

√
DKL DTV instead of ≲

√
DKL. In

other regimes, such as the Bernstein regime, the bound asymptotically scales with
√√

DKL DZCP,
which can be analyzed to be a factor of D1/4

TV worse than our Hoeffding-style bound. Both proofs
rely on a novel change-of-measure argument with respect to x 7→ ex

2/2 potential which might be of
an independent interest.

A tantalizing open problem is whether our bounds can be further improved. It would be inter-
esting to see if it is possible to establish some (Pareto) optimalities for PAC-Bayes bounds.

7. Proof of Theorem 8: McAllester/Hoeffding-type bound

First, we need the following lemmas.

Lemma 17 (Orabona (2019, Lemma 9.7)) Let F (x) = b ex
2/(2a) for a, b > 0 and let F ⋆ be its

convex conjugate. Then, we have F ⋆(y) ≤ |y|
√

a ln
(
1 + ay2

b2

)
− b.

Theorem 18 (Cesa-Bianchi and Lugosi (2006)) For any sequence of ci ∈ [−1, 1], there exists an
online algorithm that selects in βi ∈ [−1, 1] with knowledge of c1, . . . , ct−1 such that for all n it
uniformly guarantees

n∏
i=1

(1 + βici) ≥
1√

2(n+ 1)
max

β∈[−1,1]

n∏
i=1

(1 + βci) .

12
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The following lemma is shown in the appendix.

Lemma 19 For any c1, . . . , cn ∈ [−1, 1], we have

max
β∈[−1,1]

n∏
i=1

(1 + βci) ≥ exp

(∑n
i=1 ci

)2
4n

 .

Finally, we will need a time-uniform version of Hoeffding’s inequality (Orabona and Jun, 2024),
(Jang et al., 2023, Sec. A.1), (Orabona, 2019, Sec. 12.7):

Proposition 20 Let Y1, . . . , Yn ∈ [0, 1] be independent random variables. Then, for any δ ∈ (0, 1],
with probability at least 1− δ, for all n ∈ N simultaneously,∣∣∣ n∑

i=1

(Yi − E[Yi])
∣∣∣ ≤ 2

√
n ln

2
√
n

δ
.

Now we proceed with the proof of Theorem 8. Throughout the proof it will be convenient to work
with unnormalized gap (instead of normalized one, ∆):

∆̄(θ) =

n∑
i=1

∆̄(θ, i) , ∆̄(θ, i) = f(θ,Xi)− E[f(θ,X1)] .

Consider a change-of-measure decomposition∫
∆̄(θ) dPn(θ) ≤

∫
∆̄(θ) ·

(
dPn

dP0
(θ)− 1

)
dP0(θ)︸ ︷︷ ︸

(i)

+

∫
∆̄(θ) dP0(θ)︸ ︷︷ ︸

(ii)

and note right away that by the fact that term (ii) can be controlled by Proposition 20 since∫
(f(θ,Xi) dP0 ∈ [0, 1]. Namely, with probability at least 1− δ, simultaneously for all n ∈ N,

(ii) =

∫
∆̄(θ) dP0(θ) ≤ 2

√
n ln

2
√
n

δ
.

We turn our attention to term (i). By Fenchel-Young inequality, for a convex conjugate F ⋆ : R → R,

(i) ≤
∫

F (∆̄(θ)) dP0(θ) +

∫
F ⋆

(
dPn

dP0
(θ)− 1

)
dP0(θ) . (6)

Now, we will make a particular choice of F () by using Lemma 17, choosing a = 2n, and leaving
b to be tuned later: F (∆̄(θ)) = b exp

(
∆̄2(θ)
4n

)
. Throughout the rest of the proof we will con-

trol the above. In particular, we make a key observation that the above term is controlled by the
maximal wealth achievable by some online algorithm and using its regret bound we can argue that∫
F (∆̄2(θ)) dP0(θ) concentrates well. In particular, we will need Lemma 19 (shown in the ap-

pendix), which is then combined with the regret bound of Theorem 18. Let Bi−1(θ) be a prediction
of a betting algorithm after observing ∆̄(θ, 1), . . . ∆̄(θ, i− 1), and define its wealth at step n as

Wn(θ) =

n∏
i=1

(1 +Bi−1(θ) ∆̄(θ, i)) . (7)

13
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Then, wealth is related to the max-wealth through Theorem 18, W∗(θ) ≤
√
2(n+ 1) Wn(θ). The

final bit to note that
∫
Wn(θ) dP0(θ) is a martingale, that is5

En−1

∫
Wn(θ) dP0(θ) =

∫
En−1Wn(θ) dP0(θ) =

∫
Wn−1(θ) dP0(θ), (8)

where we used Fubini’s theorem to exchange E and
∫

. This fact allows us to use Ville’s inequality
(Theorem 1). So, we obtain

∫
F (∆̄(θ)) dP0(θ) ≤ b

∫
exp

 n∑
i=1

ln(1 +Bi−1(θ) ∆̄(θ, i)) + ln
√

2(n+ 1)

 dP0(θ)

= b
√

2(n+ 1)

∫
Wn(θ) dP0(θ) ≤ b

√
2(n+ 1)

δ
(By Ville’s inequality)

=
√

2(n+ 1) ≤ 2
√
n . (Tuning b = δ)

That said, using Lemma 17 and the above provide a bound on Eq. (6) that is

(i) ≤ 2
√
n+

√
2n

∫ ∣∣∣∣dPn

dP0
(θ)− 1

∣∣∣∣
√√√√ln

(
1 +

2n

δ2

(
dPn

dP0
(θ)− 1

)2
)
dP0(θ)− δ

= 2
√
n+

√
2nDZCP

(
Pn, P0;

√
2n

δ

)
− δ .

Completing the bound and dividing it though by n completes the proof.
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L. Bégin, P. Germain, F. Laviolette, and J.-F. Roy. PAC-Bayesian bounds based on the rényi di-
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Appendix A. Proof of Theorem 10: Bound on log-wealth

Recall that Wn(θ) is wealth of a betting algorithm as defined in Eq. (7). In the following we
will work with its truncated counterpart, that is W1

n(θ) = 1 ∨ Wn(θ) which satisfies W1
n(θ) ≤

1 +Wn(θ).
The proof is similar to that of Theorem 8, however it has a different structure than the usual

PAC-Bayes bounds and we believe it might be interesting on its own. Here, we are working with
lnW1

n(θ) instead of ∆(θ). As in the proof of Theorem 8 we apply Fenchel-Young, but with a family
of functions, Fθ(x) = exp(x

2

2a ), and we will choose a different a for each θ, that is, a = lnW1
n(θ)/2,

which will lead to the term lnW1
n(θ) as a part of the divergence. Then, the main idea of this proof is

to control the lnW1
n(θ) term in the divergence using the fact that lnW1

n(θ) is often small. Therefore
we condition on the event when it is small and the remaining part we control pessimistically, i.e.,
lnW2 ≤ n. Lemma 21 tells us when lnW is small.

Lemma 21 Let Q ∈ M1(Θ) be independent from data. Then, for any δ ∈ (0, 1) and any t > 0,

P
{
PQ

(
W1

n(θ) ≥ t
)
<

2

tδ

}
≥ 1− δ .

Proof For every θ ∈ Θ, Markov’s inequality implies that

PQ{W1
n(θ) ≥ t} ≤

EQW1
n(θ)

t
.

Furthermore, another application of Markov’s inequality (with respect to data) implies that

P
{
EQW1

n(θ) ≥
2

δ

}
≤ δ

2
EEQW1

n(θ) ≤
δ

2
EEQ[1 +Wn(θ)] = δ,

where we have used the fact that EEQWn(θ) = EQ EWn(θ) by Fubini’s theorem and EWn(θ) =
1 (see Proposition 22). We conclude the proof by chaining the two displays above:

1− δ ≤ P
{
EQW1

n(θ) <
2

δ

}
≤ P

{
tPQ(W

1
n(θ) ≥ t) <

2

δ

}
.

Proposition 22 For a fixed θ, EWn(θ) = 1.

Proof Denote Wn ≡ Wn(θ) and note that Wn =
∏n

i=1(1+Bi−1Zi) = (1+Bn−1Zn)Wn−1 where
(Zi)

n
i=1 are zero-mean independent random variables and a random variable Bi−1 depends only on

(Zj)
i−1
j=1. Hence, E[Wn] = E[1 +Bn−1Zn | Z1, . . . , Zn−1]E[Wn−1] = E[Wn−1] = · · · = 1.
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Consider the following decomposition w.r.t. a free parameter t > 0 to be tuned later:∫
lnWn(θ) dPn(θ) ≤

∫
lnW1

n(θ) dPn(θ)

=

∫
ln(W1

n(θ)) ·
(
dPn

dP0
(θ)

)
dP0(θ)

=

∫
ln(W1

n(θ)) ·
(
dPn

dP0
(θ)

)
1
{
W1

n(θ) > t
}
dP0(θ)

+

∫
ln(W1

n(θ)) ·
(
dPn

dP0
(θ)

)
1
{
W1

n(θ) ≤ t
}
dP0(θ)

≤ n

∫ (
dPn

dP0
(θ)

)
1
{
W1

n(θ) > t
}
dP0(θ)︸ ︷︷ ︸

(i)

+

∫
ln(W1

n(θ)) ·
(
dPn

dP0
(θ)− 1

)
1
{
W1

n(θ) ≤ t
}
dP0(θ)︸ ︷︷ ︸

(ii)

+

∫
ln(W1

n(θ))1
{
W1

n(θ) ≤ t
}
dP0(θ)︸ ︷︷ ︸

(iii)

,

where to get (i) we have upper bounded lnW1
n(θ) with the pessimistic upper bound ln(1+2n) ≤ n.

Bounding (iii). We note right away that by the fact that
∫
Wn(θ) dP0 is a martingale (see Eq. (8)),

we can use Ville’s inequality (Theorem 1) to have

(iii) ≤
∫

lnW1
n(θ) dP0(θ) ≤ ln

(∫
W1

n(θ) dP0(θ)

)
(Jensen’s inequality)

≤ ln

(
1 +

∫
Wn(θ) dP0(θ)

)
≤ ln

(
1 +

1

δ

)
. (Ville’s inequality; w.p. ≥ 1− δ)

Now we handle remaining terms (i) and (ii).

Bounding (i). For the term (i), we have

(i) = n

∫ (
dPn

dP0
(θ)

)
1
{
W1

n(θ) > t
}
dP0(θ)

(a)

≤ n

(
PP0

(
W1

n(θ) > t
))1− 1

α

(∫ ∣∣∣∣dPn

dP0
(θ)

∣∣∣∣α dP0(θ)

) 1
α

︸ ︷︷ ︸
Iα

(α > 1)

≤ nIα(
tδ/2

)1− 1
α

, (By Lemma 21; w.p. ≥ 1− δ)

where step (a) comes by Hölder’s inequality.
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Bounding (ii). By Fenchel-Young inequality, for a family of convex F ⋆
θ : R → R,

(ii) =

∫
ln(W1

n(θ)) ·
(
dPn

dP0
(θ)− 1

)
1
{
W1

n(θ) ≤ t
}
dP0(θ)

≤
∫

Fθ(ln(W
1
n(θ))) dP0(θ) +

∫
F ⋆
θ

(
dPn

dP0
(θ)− 1

)
1
{
W1

n(θ) ≤ t
}
dP0(θ) .

We use Lemma 17, choosing a = ln(W1
n(θ))/2 and b = δ to have

Fθ(ln(W
1
n(θ))) = δ exp

(
ln2(W1

n(θ))

ln(W1
n(θ))

)
= δ W1

n(θ)

and so∫
Fθ(ln(W

1
n(θ))) dP0(θ) = δ

∫
W1

n(θ) dP0(θ) ≤ δ + δ

∫
Wn(θ) dP0(θ) ≤ 1 + δ,

where the last inequality is a consequence of Ville’s inequality. Finally, we complete the bound on
(ii) by having a chain of inequalities on∫
F ⋆

(
dPn

dP0
(θ)− 1

)
1
{
W1

n(θ) ≤ t
}
dP0(θ)

(b)

≤
∫ ∣∣∣∣dPn

dP0
(θ)− 1

∣∣∣∣
√√√√1

2
ln(W1

n(θ)) ln

(
1 +

ln(W1
n(θ))

2δ2

(
dPn

dP0
(θ)− 1

)2
)
1
{
W1

n(θ) ≤ t
}
dP0(θ)

≤
√

ln(t)

2

∫ ∣∣∣∣dPn

dP0
(θ)− 1

∣∣∣∣
√√√√ln

(
1 +

ln(W1
n(θ))

2δ2

(
dPn

dP0
(θ)− 1

)2
)
dP0(θ)

≤
√

ln(t)

2
DZCP

(
Pn, P0;

√
n

2δ2

)
,

where (b) comes by Lemma 17 and where we once more used a bound lnW1
n(θ) ≤ n.

Tuning t and completing the proof. Putting all together, we have∫
lnWn(θ) dPn(θ) ≤

√
ln(t)

2
DZCP

(
Pn, P0;

√
n

2δ2

)
+

nIα(
tδ/2

)1− 1
α

+ ln

(
1 +

1

δ

)
+ 1 + δ .

and setting t = 2
δ (nIα)

1

1− 1
α we obtain∫

lnWn(θ) dPn(θ)

≤ 1√
2

√
ln

(
2

δ

)
+

α

α− 1
ln (nIα)DZCP

(
Pn, P0;

√
n

2δ2

)
+ ln

(
1 +

1

δ

)
+ 2 + δ

≤ 1√
2

√
ln

(
2

δ

)
+

α

α− 1
ln(n) +Dα(Pn, P0)DZCP

(
Pn, P0;

√
n

2δ2

)
+ ln

(
1 +

1

δ

)
+ 2 + δ .

Now we make this bound to hold uniformly over n ∈ N \ {1}. In particular, denoting by bound(δ)
the r.h.s. of the inequality in the above, we have that P{

∫
lnWn(θ) dPn(θ) > bound(δ)} ≤ 2δ

(note that 2δ comes by applying a union bound since we used Lemma 21 and Ville’s inequality).
Now, to make this bound uniform over n we apply a union bound over a set n ∈

⋃∞
i=2[i] = N\{1},
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that is

P

{
∃n ∈ N \ {1} :

∫
lnWn(θ) dPn(θ) > bound

(
δ

n(n+ 1)

)}

≤
∑
n≥2

P

{∫
lnWn(θ) dPn(θ) > bound

(
δ

n(n+ 1)

)}
≤

∑
n∈N\{1}

2δ

n(n+ 1)
≤ δ .

Finally we apply a regret bound (Theorem 18) to lower bound
∫
lnWn(θ) dPn(θ) with

∫
lnW∗

n(θ) dPn(θ)
(the regret ln(

√
2(n+ 1)) appears at the r.h.s.). Eventually we get∫

lnW∗(θ)dPn(θ)

≤ 1√
2

√
ln

(
2n(n+ 1)

δ

)
+

α

α− 1
ln(n) +Dα(Pn, P0)DZCP

(
Pn, P0;

√
n(n(n+ 1))2

2δ2

)
+ ln

(
1 +

n(n+ 1)

δ

)
+ ln(

√
2(n+ 1)) + 2 +

δ

n(n+ 1)

≤ 1√
2

√
ln

(
4n2

δ

)
+

α

α− 1
ln(n) +Dα(Pn, P0)DZCP

(
Pn, P0;

√
2n2.5

δ

)
+ ln

(
2e2

√
n
(
1 +

4n2

δ

))
+

δ

n(n+ 1)
.

The proof is now complete.
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Appendix B. Proof of Corollary 11: Asymptotic behaviour of expected log-wealth
bound

Fix P0 ∈ M1(Θ). Let K =
⋃∞

n=1K(X n,Θ). Consider Theorem 10 with δ = 1/n2 and α = αn :=
1 + 1

ln(n) :∫
lnW∗(θ)dPn(θ)

≤ 1√
2

√
ln(2n4) + ln(n) ln(en) +Dαn(P, P0)DZCP

(
P, P0;

√
2n4.5

)
+ ln

(√
n
(
1 + 4n4

))
+ ln(2e2) +

1

n3(n+ 1)

≤
√

ln(2n4) + ln(n) ln(en) +Dαn(P, P0)

(
DZCP(P, P0; 1)√

2
+

√
2 ln(2 + 2

√
2n4.5)DTV(P, P0)

)
+ ln

(√
n
(
1 + 4n4

))
+ ln(2e3)

where we applied Lemma 3 to get the second inequality.

Thus, abbreviating Fn(P ) =
∫
lnW ∗

n(θ) dP (θ) and a right-hand side in the above by Bn(P, P0)
we have that

P
(
∃P ∈ K : Fn(P ) > Bn(P, P0)

)
≤ 1

n2

Introduce

L(n) =

√
2 ln(n) ln(en) ln(2 + 2

√
2n4.5)

and note that L(n) is a dominating log-term in Bn(P, P0) for n ≥ 25, and so using subadditivity of√
· and some basic calculus gives

Bn(P, P0)

L(n)
≤ 2 +

(
2 +

√
Dαn(P, P0)

)
(DZCP(P, P0; 1) +DTV(P, P0))︸ ︷︷ ︸

=:An(P,P0)

.

So,

P
(
∃P ∈ K :

Fn(P )

L(n)An(P, P0)
> 1

)
≤ P

(
∃P ∈ K :

Fn(P )

L(n)An(P, P0)
>

Bn(P, P0)

L(n)An(P, P0)

)
≤ 1

n2
.

Now verify that
∞∑

n=25

P
(
∃P ∈ K :

Fn(P )

L(n)An(P, P0)
> 1

)
< ∞

and by the Borel-Cantelli lemma

P

(
∩∞
n=1 ∪∞

m=n ∪P∈K

{
Fm(P )

L(m)Am(P, P0)
> 1

})
= 0 .

22



BETTER-THAN-KL PAC-BAYES BOUNDS

Note that we have

∪P∈K ∩∞
n=1 ∪∞

m=n

{ Fm(P )

L(m)Am(P, P0)
> 1
}

=⇒ ∩∞
n=1 ∪∞

m=n ∪P∈K

{ Fm(P )

L(m)Am(P, P0)
> 1
}

.

Thus,

P
(
∃P ∈ K :

Fn(P )

L(n)An(P, P0)
> 1 i.o.

)
= 0

which implies that

P
(
∀P ∈ K : lim sup

n→∞

Fn(P )

L(n)An(P, P0)
≤ 1

)
= 1

Now consider the property of lim sup which states that for bounded real sequences (an)n≥1, (bn)n≥1,
lim sup anbn = b lim sup an whenever limn→∞ bn = b. Assuming for now that (An(P, P0))n is
bounded we have

lim sup
n→∞

Fn(P )

L(n)An(P, P0)
=

(
1

limn→∞ An(P, P0)

)
lim sup
n→∞

Fn(P )

L(n)

which means that

P
(
∀P ∈ K : lim sup

n→∞

Fn(P )

L(n)
≤ lim

n→∞
An(P, P0)

)
= 1 .

Finally, we look at the limit of An. Since P is absolutely continuous with respect to P0, DKL(P, P0) <
∞ and the same hold for DZCP. Using the fact that limn→∞ Dαn(P, P0) = limα→1 Dα(P, P0) =
DKL(P, P0), we have

lim
n→∞

An = 2 +
(
2 +

√
DKL(P, P0)

)
(DZCP(P, P0; 1) +DTV(P, P0)) .

The proof is now complete.
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Appendix C. Other omitted proofs

C.1. Proof of Lemma 3

The proof relies on the following lemma:

Lemma 23 For every x ∈ R and c ≥ 0, we have

ln(1 + cx2) ≤ ln(1 + x2) + ln(2 + 2c)

Proof If cx2 ≥ 1, then we have

ln(1 + cx2) ≤ ln(2cx2) = ln(x2) + ln(2c) ≤ ln(1 + x2) + ln(2c) .

Otherwise, we have

ln(1 + cx2) ≤ ln(2) ≤ ln(1 + x2) + ln(2) .

In either case, we have

ln(1 + cx2) ≤ ln(1 + x2) + ln(2 ∨ 2c) ≤ ln(1 + x2) + ln(2 + 2c) .

Using the lemma above, we obtain

DZCP(P,Q; c)

=

∫ ∣∣∣∣dPdQ(θ)− 1

∣∣∣∣
√√√√ln

(
1 + c2

(
dP

dQ
(θ)− 1

)2
)
dQ(θ)

≤
∫ ∣∣∣∣dPdQ(θ)− 1

∣∣∣∣
√√√√ln

(
1 +

∣∣∣∣dPdQ(θ)− 1

∣∣∣∣2
)
dQ(θ) +

√
ln(2 + 2c)

∫ ∣∣∣∣dPdQ(θ)− 1

∣∣∣∣ dQ(θ)

= DZCP(P,Q; 1) + 2
√

ln(2 + 2c)DTV(P,Q) .
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C.2. Proof of Lemma 4

One can see that ∀x ∈ R, ln(1 + x2) ≤ ln(1 + 2|x|+ x2) ≤ ln((1 + |x|)2) = 2 ln(1 + |x|). Using

DZCP(P,Q; 1) =

∫
Θ

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣
√√√√ln

(
1 +

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣2
)
dQ(θ)

≤
√
2

∫
Θ

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣
√
ln

(
1 +

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣) dQ(θ)

(a)

≤

√
2

∫
Θ

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣ dQ(θ) ·
∫
Θ

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣ ln(1 +∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣) dQ(θ)

=

√
2

∫
Θ

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣ dQ(θ) ·Df1(P,Q) (f1(x) = |x− 1| ln(1 + |x− 1|))

(b)

≤

√
2

∫
Θ

∣∣∣∣dP (θ)

dQ(θ)
− 1

∣∣∣∣ dQ(θ) · 2Df2(P,Q) (f2(x) = 1− x+ x ln(x))

=
√

4DTV(P,Q) · 2DKL(P,Q),

where (a) follows by Cauchy-Schwartz inequality and (b) is by Zhang et al. (2022, Lemma C.1).

C.3. Proof of Proposition 5

First, consider setting a = exp(1/p2). In this way, we have that the total variation is

1/2(|p− q|+ |1− p− (1− q)|) = |p− q| = p(1− 1/a) .

On the other hand, the KL divergence is

p ln
p

q
+ (1− p) ln

1− p

1− q
= p ln a+ (1− p) ln

1− p

1− p/a
.

Observe that the second term is non-positive and we have

(1− p) ln
1− p

1− p/a
= (1− p) ln(1− p)− (1− p) ln(1− p/a) ≥ (1− p) ln(1− p) ≥ − exp(−1) .

Hence, we have that p ln a− exp(−1) ≤ DKL(P,Q) ≤ p ln a. We now consider the two cases:

• Setting a = exp(1/p2), we have DKL(P,Q) · DTV(P,Q) ≤ 1 − 1
a = 1 − exp(−1/p2) ≤

1− exp(−1) while 1/p− exp(−1) ≤ DKL(P,Q) ≤ 1/p.

• Setting a = exp(1/p3/2), we have

DKL(P,Q) ·
√

DTV(P,Q) ≤
√
1− 1

a

=
√
1− exp(−1/p3/2)

≤
√

1− exp(−1)

while 1/
√
p − exp(−1) ≤ DKL(P,Q) ≤ 1/

√
p Note that we could also use this setting for

the case above as well.

25



KUZBORSKIJ JUN WU JANG ORABONA

C.4. Proof of Proposition 7

Case 1: From (Nielsen and Sun, 2018) we have that the TV distance is bounded as DTV(P,Q) ≤
1
2 · 2p = p. On the other hand, from the convexity of KL divergence, we have that

DKL(P,Q) ≤ pDKL(A,B) + (1− p)DKL(B,B) = pDKL(A,B) .

Now, for Gaussians we have that

DKL(A,B) = ln
σ2
σ1

+
σ2
1

2σ2
2

− 1

2

and in particular choosing σ2 = pσ1, DKL(A,B) = ln(p) + 1
2p2

− 1
2 , which in turn implies that

DKL(P,Q) ≤ pDKL(A,B) = p(ln p+ 1
2p2

− 1
2) ≤

1
2p . Thus DTV(P,Q) ·DKL(P,Q) ≤ 1

2 . On the
other hand, we have that

DKL(P,Q) =

∫
dP ln

p dA+ (1− p) dB

dB

=

∫
dP ln

(
p dA

dB
+ (1− p)

)
= ln(1− p) +

∫
dP ln

(
p dA

(1− p) dB
+ 1

)
= ln(1− p) +

∫
(p dA+ (1− p) dB) ln

(
p dA

(1− p) dB
+ 1

)
≥ ln(1− p) +

∫
p dA ln

(
p dA

(1− p) dB
+ 1

)
≥ ln(1− p) +

∫
p dA ln

p dA

(1− p) dB

= ln(1− p) + pDKL(A,B) + p ln
p

1− p

= ln(1− p) + p ln(p) +
1

2p
− p

2
+ p ln

p

1− p

≥ 1

2p
− 1.3,

where −1.3 comes from the minimization of p 7→ ln(1−p)+p ln(p)− p
2 +p ln p

1−p over p ∈ [0, 1].

Case 2: Choosing σ2 = p3/4σ1, DTV(P,Q) ≤ p and DKL(P,Q) ≤ pDKL(A,B) = p(ln σ2
σ1

+
σ2
1

2σ2
2
− 1

2) = p(34 ln p+
1

2p3/2
− 1

2) ≤
1

2
√
p . Thus, DKL(P,Q) ·

√
DTV(P,Q) ≤ 1

2 . On the other hand,
reasoning as above, we have

DKL(P,Q) ≥ ln(1− p) + pDKL(A,B) + p ln
p

1− p

= ln(1− p) + p

(
3

4
ln p+

1

2p3/2
− 1

2

)
+ p ln

p

1− p
,

≥ 1

2
√
p
− 1.22,

where −1.22 comes from the minimization of ln(1− p) + p(34 ln p−
1
2) + p ln p

1−p over p ∈ [0, 1].
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C.5. Proof of empirical Bernstein inequalities (Corollary 14)

To show this corollary we follow Jang et al. (2023, Proposition 4). Abbreviate µ̂θ =
1
n

∑n
i=1 f(θ,Xi),

and so ∆n(θ) + µ̂θ ∈ [0, 1]. Then, we have

lnW∗
n(θ) ≥ max

β∈[−1,1]

n∑
i=1

ln
(
1 + β

(
f(θ,Xi)− (µ̂θ +∆(θ))

))
,

and applying Jensen’s inequality∫
lnW∗

n(θ) dPn ≥ max
β∈[−1,1]

∫ n∑
i=1

ln
(
1 + β

(
f(θ,Xi)− (µ̂θ +∆(θ))

))
dPn . (9)

We relax the above by taking a lower bound of (Fan et al., 2015, Eq. 4.12) which shows that for any
|x| ≤ 1 and |β| ≤ 1,

ln(1 + βx) ≥ βx+
(
ln(1− |β|) + |β|

)
x2 . (10)

Then, combined with the following lemma:

Lemma 24 (Orabona and Jun (2024, Lemma 5)) Let f(β) = aβ+b
(
ln(1−|β|)+ |β|

)
for some

a ∈ R, b ≥ 0. Then, maxβ∈[−1,1] f(β) ≥ a2

(4/3)|a|+2b .

we get a chain of inequalities:∫
lnW∗

n(θ) dPn

(a)

≥ β

∫ n∑
i=1

(
f(θ,Xi)− (µ̂θ +∆n(θ))

)
dPn

+
(
ln(1− |β|) + |β|

) ∫ n∑
i=1

(
f(θ,Xi)− (µ̂θ +∆n(θ))

)2
dPn

= −nβ

∫
∆n(θ) dPn

+
(
ln(1− |β|) + |β|

)∫ n∑
i=1

(f(θ,Xi)− µ̂θ)
2 dPn + n

∫
∆n(θ)

2 dPn


(b)

≥ −nβ

∫
∆n(θ) dPn

+
(
ln(1− |β|) + |β|

)∫ n∑
i=1

(f(θ,Xi)− µ̂θ)
2 dPn + n

(∫
∆n(θ) dPn

)2


(c)

≥
n2
(∫

∆n(θ) dPn

)2
(4/3)n

∣∣∫ ∆n(θ) dPn

∣∣+ 2
∫ ∑n

i=1(f(θ,Xi)− µ̂θ)2 dPn + 2n
(∫

∆(θ) dPn

)2 .
Here, step (a) comes from Eqs. (9) and (10), whereas (b) comes from Jensen’s inequality, and step
(c) is due to application of Lemma 24. At this point, the first result of Corollary 14 comes from the
above combined with the fact that |∆n| ≤ 1 and by using Eq. (5).

Now, to state the second result of Corollary 14 we use a PAC-Bayes bound of Theorem 10 to
have

n2

(∫
∆n(θ) dPn

)2

≤ nCompn(α)

(
4

3

∣∣∣∣∫ ∆n(θ) dPn

∣∣∣∣+ 2V̂ (Pn) + 2

(∫
∆n(θ) dPn

)2
)

.
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Solving the above for
∫
∆n(θ) dPn, using subadditivity of square root, and relaxing some numerical

constants we get∣∣∣∣∫ ∆n(θ) dPn

∣∣∣∣ ≤
√
2Compn(α) V̂ (Pn)

(
√
n− (2/

√
n) Compn(α))+

+
2Compn(α)(

n− 2Compn(α)
)
+

.

The proof of the asymptotic version is immediate from the proof of Corollary 11.

C.6. Proof of Lemma 19

We have that

exp

(∑n
i=1 ci

)2
4n

 = max
β∈[−1/2,1/2]

exp

β
n∑

i=1

ci − β2n


≤ max

β∈[−1/2,1/2]
exp

β
n∑

i=1

ci − β2
∑
i

c2i


≤ max

β∈[−1/2,1/2]
exp

 n∑
i=1

ln(1 + βci)

 ,

where we use the elementary inequality ln(1 + x) ≥ x− x2 for |x| ≤ 1/2.
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