ByteFS: System Support for Memory-Semantic
Solid-State Drives

Shaobo Li*
shaobol2@illinois.edu
University of [llinois Urbana-Champaign

Hao Ren
haor2@illinois.edu
University of Illinois Urbana-Champaign

Abstract

Unlike non-volatile memory that resides on the processor
memory bus, memory-semantic solid-state drives (SSDs) sup-
port both byte and block access granularity via PCIe or CXL
interconnects. They provide scalable memory capacity us-
ing NAND flash at much lower cost, and have different per-
formance characteristics for their dual byte/block interface
respectively, while offering essential memory semantics for
upper-level software. Such a byte-accessible storage device
provides new implications on the software system design.
In this paper, we develop a new file system, named ByteFS,
by rethinking the design primitives of file systems and SSD
firmware to exploit the advantages of both byte and block-
granular data accesses. ByteFS supports byte-granular data
persistence to retain the persistence nature of SSDs. It ex-
tends the core data structure of file systems by enabling dual
byte/block-granular data accesses. To facilitate the support
for byte-granular writes, ByteFS manages the internal DRAM
of SSD firmware in a log-structured manner and enables data
coalescing to reduce the unnecessary I/O traffic to flash chips.
ByteFS also enables coordinated data caching between the
host page cache and SSD cache for best utilizing the precious
memory resource. We implement ByteFS on both a real pro-
grammable SSD and an emulated memory-semantic SSD for
sensitivity study. Compared to state-of-the-art file systems
for non-volatile memory and conventional SSDs, ByteFS out-
performs them by up to 2.7, while preserving the essential
properties of a file system. ByteFS also reduces the write traf-
fic to SSDs by up to 5.1x by alleviating unnecessary writes
caused by both metadata and data updates in file systems.

1 Introduction

Modern computer systems has an increasing demand for
storage-class memory (SCM) [9, 17], as it promises many ad-
vantages such as scalable storage capacity, byte-addressable
data accesses, and data durability. A typical example is non-
volatile memory (NVM), which attracted much attention over
the past decade [29, 35, 44, 47]. However, due to the insuffi-
cient supply of mature products on the market [7], we have
to seek alternative practical memory technologies.

*Co-primary authors.

Yirui Eric Zhou*
yiruiz2@illinois.edu
University of Illinois Urbana-Champaign

Jian Huang
jianh@illinois.edu
University of Illinois Urbana-Champaign

Thanks to the byte-accessibility of the PCle interconnect
(e.g., NVMe and CXL), the commodity flash-based SSDs can
provide byte-addressable data accesses by utilizing the memory-
mapped I/O interface (MMIO) [10, 12, 38]. Therefore, we can
access SSDs with both byte and block granularity. We call
them as memory-semantic SSDs (M-SSD). Unlike NVM de-
vices such as Intel Optane Persistent Memory that use PCM-
like storage medium and reside on the processor memory
bus [42], the M-SSD is PCle attached and built upon the ma-
ture NAND flash technology, which offers unique advantages.
First, it relies solely on the byte-accessibility support of the
existing PCle interface, thus a majority of the commodity
PCle-attached SSDs can be reformed as memory-semantic
SSDs. For instance, Samsung publicized its CXL-based SSDs
built on the commodity NVMe SSDs recently [38]. Second,
its backend storage medium NAND flash has much lower
cost, and its storage capacity can easily scale up to terabytes
per PCle slot [10]. Third, it provides the memory interface
for software systems while preserving compelling storage
properties such as data durability and simple deployment.

However, for decades, systems software like file systems are
used to the generic block interface to access SSDs, resulting in
high I/O amplification [10, 34]. They lack the support for dual
byte and block interface for M-SSDs, causing sub-optimal
performance and increased complexity of data management.
File systems for persistent memory such as PMFS [19] and
NOVA [45] focused on the byte interface, however, they were
designed for NVM devices whose characteristics are funda-
mentally different from M-SSDs. Thus, none of the current file
systems is a natural fit for M-SSDs. The M-SSD provides a set
of unique opportunities and challenges for systems software.

We present ByteFS, an efficient file system for M-SSDs with
software/hardware co-design. ByteFS transparently supports
dual byte/block interface for high-performance data accesses,
while preserving the essential properties of file systems, in-
cluding crash consistency and data recovery. ByteFS extends
the SSD firmware by managing its internal DRAM cache in a
log-structured manner for accommodating the byte-granular
data accesses, and enabling data coalescing to reduce I/O traf-
fic to flash chips. It also enables coordinated data caching be-
tween the host page cache and the internal DRAM of the SSD.

To develop ByteFS, we first conduct a thorough study of
generic Linux file systems to understand the appropriate inter-
face (i.e., byte or block) needed for core filesystem data struc-
tures for their interaction with the M-SSD, and their impact on
I/O amplification. As we expected, some data structures like
inode prefer byte-granular data access, and some structures
like page cache prefer dual byte/block-granular data access
depending on the data access pattern at runtime (see Table 3).
Our study (§3) provides guidelines on developing ByteFS.

ByteFS enables byte-granular persistent writes to reduce
I/O amplification for a majority of data structures. For the
data structures that prefer dual byte and block interfaces, such
as page cache, data block, and data journal, ByteFS employs
different policies to decide the appropriate data access granu-
larity. As for the page cache, ByteFS utilizes the copy-on-write
mechanism to track the writes to a page, and learn their data
locality. ByteFS uses byte-granular writes for hot cachelines,
and block-granular writes for a page with lower data local-
ity. As for the writes to data blocks and data journal, ByteFS
decides the write granularity based on the amount of data
required for the durable writes to the SSD. It employs block-
granular reads for all data structures to exploit the locality in
the host cache and simplify their management.

Although M-SSDs enable the byte interface via PCle/CXL,
the flash chips inside the SSD support only page-granular
accesses due to physical limitations [10, 12], causing extra
I/O amplification. To address this challenge, ByteFS extends
the SSD firmware by managing the internal SSD DRAM in a
log-structured manner at cacheline granularity, and enabling
data coalescing with background log cleaning. This reduces
unnecessary I/O traffic caused by the mismatch of data access
granularity between SSD DRAM (byte-granular) and flash
chips (page-granular). ByteFS develops alightweight indexing
mechanism using skip lists for fastlog lookup, and implements
coordinated data caching between the hostand SSD DRAM. In-
stead of caching flash pages in both SSD DRAM and host page
cache, ByteFS caches flash pages only in the host page cache
for best utilizing the precious SSD DRAM for persistent writes.

ByteFS preserves essential file system properties, including
crash consistency and data recovery. ByteFS develops a low-
overhead transactional mechanism for filesystem operations
using the byte-granular persistent writes and firmware-level
logging. With the write log in the SSD DRAM, ByteFS facili-
tates the enforcement of crash consistency and data recovery.

We implement ByteFS based on the Ext4 file system, and de-
velop a full system prototype on a programmable SSD FPGA
board to validate its functions and efficiency. We extend the
PCle protocol on the FPGA board to support byte-granular
persistent writes, and modify the SSD firmware for the write
log. We also develop an M-SSD emulator for sensitivity analy-
sis. Compared to the file systems developed for NVM, such as
PMFS [19] and NOVA [45], and for block devices, such as Ext4,
ByteFS improves the performance by up to 2.7x. ByteFS also

Table 1. Characteristics of different memory devices. M-SSD
represents the memory-semantic SSD. DRAM and NVM are
measured with single DIMM. SSD and M-SSD use PCle 3.0 x4.

R/W Latency | Seq R‘'W

Memory (cacheline) BW (4KB) $/GB | Persistency
DRAM [4,29] | 100ns 31.8 GB/s 8.6 No
NVM [3, 25] 300/90 ns 6.6/2.3 GB/s 3.6 Yes
SSD [6] N/A 35/25GB/s | 0.22 Yes
M-SSD [10,12] | 4.8/0.6 us 3.5/2.5GB/s | ~0.22 Yes

shows its friendliness to SSDs by reducing the write traffic by
up to 5.1X. In summary, we make the following contributions.

e We conducta characterization study of data access interface
preferred by core data structures of file systems, it provides
guidelines for enabling system software support for M-SSD.

o We develop a new file system ByteFS for memory-semantic
SSDs by supporting adaptive byte and block-granular data
accesses, it significantly reduces the I/O amplification.

o We extend the SSD firmware to manage the SSD DRAM
in a log-structured manner and enable data coalescing to
reduce the I/O traffic caused by the mismatch of access
granularity between SSD DRAM and flash chips.

e Wepresenta coordinated data caching mechanism between
the host page cache and SSD DRAM for best utilizing the
precious SSD DRAM for writes.

o We develop ByteFS with both a real programmable SSD
and a memory-semantic SSD emulator, and demonstrate
its efficiency with various filesystem benchmarks.

2 Background and Motivation

We first discuss the technical background of M-SSD. And then,
we discuss why its system support is highly desirable.

2.1 Memory-Semantic SSDs

Storage devices like SSDs usually use the block interface to
interact with upper-level system software like file systems.
Recently, industry and academia have been exploiting the
byte-addressability of SSDs [10, 26, 38]. Unlike non-volatile
memory (NVM) [13, 15, 24] technologies, memory-semantic
SSDs (M-SSDs) provide the byte interface by leveraging the in-
device DRAM and the PCle memory-mapped interface [14].
By registering the device buffer address with the base address
register (BAR), the BIOS and OS discover and map the device
buffer into the host memory space, and the host can access
the mapped region via load/store instructions [10, 12]. The
in-device DRAM is used as a data buffer to serve byte-granular
requests. Battery-backed DRAM or large capacitors are used
to assist data persistency. The M-SSD still keeps the normal
block interface with conventional NVMe I/O commands, al-
lowing the host to operate on dual byte and block interfaces.

We compare the performance and cost of M-SSDs with
other types of memory devices in Table 1. We measure the

latency and bandwidth with real devices (see the experimen-
tal setup in §5.1). M-SSDs provide a 4.8us read latency when
reading cachelines in the device DRAM and offer a 0.6us write
latency with PCle posted writes. With the new Compute Ex-
press Link (CXL) [22], the latency can be further reduced.
However, it is still slower than NVMs that can achieve near-
DRAM performance. For data accesses not served by the SSD
DRAM, ps-level flash page accesses will result in a high delay.

Although the performance of M-SSDs might be less com-
petitive compared to NVM or DRAM, they offer great cost-
effectiveness. We obtained the lowest prices of these devices
from popular memory vendors in 2024. The NVM price is
derived from the Intel Optane Persistent Memory. Since we
cannot obtain any price of M-SSD on the current market, we es-
timate it would be similar to SSDs, as they are developed upon
commodity SSDs and have similar hardware components in-
cluding the flash controller and flash chips. The cost would
be possibly higher with CXL components, but compared to
DRAM or NVM, M-SSDs are still significantly cheaper with
a cost of around $0.22/GB, making it a cost-effective solution
in building high-performance storage systems.

2.2 System Support for Memory-semantic SSDs

Although M-SSDs show great potential in offering high per-
formance and large capacity at a low cost, they lack system
software support. A straightforward approach is to directly
employ traditional file systems. However, they were designed
for the block I/O interface. They manage underlying storage
devices with fixed-size blocks (e.g., 512 bytes or 4 KB), and
cannot utilize the byte-granular access brought by the M-SSD.
We study the limitations of the block interface in detail in §3.
Apart from the traditional block-based file systems, there
have been many emerging NVM file systems [17, 19, 27,29, 45].
These file systems are all developed for byte-addressable NVM
devices, which commonly leverage memory load/store inter-
face to exploit ultra-low latency accesses. Reducing software
overhead has been a critical design goal for such systems, and
many utilize Direct Access techniques to bypass the host page
cache or the OS kernel. However, naively applying NVM file
systems to M-SSDs is inadequate. The performance charac-
teristics of M-SSDs differ from NVMs (§2.1), as the high PCle
latency and inevitable flash accesses are still the bottleneck.
Therefore, it is hard to fully exploit the performance ben-
efits of M-SSDs with existing file systems, as they all lack
the support for both byte and block interface, and the con-
sideration of the unique performance characteristics. This
motivates us to develop a new system ByteFS for M-SSDs.

3 A Quantitative Study of Block I/O Interface

Before designing ByteFS, to further understand the limita-
tions of the block I/O interface, we conduct a thorough study
of the generic Linux file system Ext4 and F2FS. We profile the
I/0 traffic of the two file systems running Filebench [41] and

Table 2. I/O amplification of using block I/O interface in
conventional file systems Ext4 and F2FS.

Varmail | Fileserver | Webproxy | Webserver | OLTP
T | Write 3.85% 6.21X 1.43% 1.66X 2.17%
Ifl Read 1.21% 1.15% 1.25% 1.71% 1.52%
4] Write 2.14% 1.92% 1.67X 1.06X 1.10x
£ [Read | 1.67x 1.42X 1.35% 118X 1.13x

va Data wmi Deniry = Superblock Journaling

ww Inode Bitmaj Data Pointer Other
100% | —_

80%
60%
40%
20%

Percentage of
Total Traffic

0% AN N N
Extd F2FS | Ext4 F2FS | Ext4 F2FS | Ext4 F2FS
mkdir rmdir creat unlink

(a) Write traffic breakdown on micro-benchmarks.

v Data wmmi Dentry == Superblock Journaling

©100% 1 “ Inode Bitmap Data Pointer Other

80%
60%
40%
20%

0% -~

Percentage of
Total Traffic

| | J / /|
Ext4 F2FS Ext4 F2FS Ext4 F2FS Ext4 F2FS Ext4 F2FS
Varmail Fileserver Webproxy Webserver OLTP

(b) Write traffic breakdown on real applications.

vz Data wm Deniry = Superblock Journaling
ww Inode Bitmap Data Pointer Other

& 100%
80%
60%
40%1
20%

0% -

Extd F2FS | Ext4 F2FS | Ext4 F2FS | Ext4 F2FS
mkdir rmdir creat unlink

Percentage of
Total Traffic

(c) Read traffic breakdown on micro-benchmarks.

va Data wmm Dentry === Superblock
Data Pointer

Journaling

Percentage of
Total Traffic

Extd F2FS | Extd F2FS | Extd F2FS | Extd F2FS | Extd ' F2FS
Varmail Fileserver Webproxy Webserver OLTP

(d) Read traffic breakdown on real applications.
Figure 1. Read and write traffic breakdown of Ext4 and F2FS.

OLTP [18] benchmarks on the server machine described in
§5.1. Unlike previous studies on file system I/O [34], we focus
on the impact of each individual filesystem data structure us-
ing the block interface. We summarize the key data structures
in Table 3 and show the traffic breakdown in Figure 1.

3.1 1I/0O Amplification in File Systems

We first focus on the read/write amplification introduced by
metadata management. We collect the I/O amplification fac-
tor when running diverse workloads in Table 2. As expected,
file system operations result in significant write amplification
(1.1-6.2x), and metadata operations have a large I/O cost in
Ext4 and F2FS. Similarly, the read amplification of Ext4 and
F2FS is 1.1-1.7X. To further understand the impact of each
filesystem data structure, we separate the data structures into
metadata and data, and explain each of them in detail.

3.2 File Metadata Structures

Superblock. Superblock maintains the key properties of a
file system. As shown in Figure 1, the on-disk superblock is

Table 3. The core components in the generic Linux file systems (Ext4 and F2FS) studied in this paper.

s tl?lz::'t:?ll‘e Description Related File Operations Disk Access Frequency Il):t:::gi(ei
Superblock The metadata that defines the File system mount and remount. R:Low, r_efers to the general info of a file system. R: Block
file system. W: Low, infrequent global metadata update. W: Block
Block List Marks free and used blocks in File create, append, and truncate. R: Depends, the structure can be cached in host DRAM. R: Block
the file system. ? ? W: High, when blocks are allocated/freed. W: Byte
Inode List Marks free and used inodes in File create and unlink. R: Depends, the structure can be cached in host DRAM. R: Block
the inode table. W: High, when files are created and deleted. W: Byte
Inode Describes a file system object File/directory create, file rename, R: High, most operations involve file/dir metadata. R: Block
such as a file or a directory. file truncate, file link/unlink, and others.| W: High, most operations involve metadata updates. W: Byte
Data Pointer Indexes the location of the file File read and write. R: High, when the file system reads data from any file. R: Block
data on the storage device. W: High, when the file system appends or truncates file. W: Byte
. Holds child inode information R: Depends, mainly on the file lookup. R: Block
Directory Entry under the directory. File/dir create, rename, and link/unlink. W: Dspends, highzr when having m(r))re dirs and files. W: Byte
Page Cache Transparent cache that exploits File create. read. and write R: High, for data-intensive workloads. R: Block
data locality of applications. ’ ’) W: High, for data-intensive workloads. W: Block/Byte
Data Block File data stored in the file system.| File create, read, and write. 5\:/:I{I-llig;ﬁf(f);rdggétl;{?;f:;;\iljev:x?sl:l?g:;.s. \l;/::l;lloo (:cli//}l?;fttee
Data Journal History of operations executed in| Operation that modifies critical R: Low, mostly accessed during recovery. R: Block
the file system. file system data structures. W: High, most operations that require journaling. W: Block/Byte

rarely accessed in nearly all workloads at runtime, only con-
tributing 0.23% write traffic and 0.02% read traffic on average.
Due to the low access frequency, we can still use the block
I/O interface to simplify its management.

Block/Inode List. Block or inode lists are responsible for
tracking free data blocks and inodes. In Ext4, they are imple-
mented as bitmaps. F2FS [30] uses the segment information
table (SIT) and node address table (NAT) to track them. Our
study with various file operations, such as mkdir, rmdir, and
create, show that bitmap accesses contribute 5.4% of write
traffic on average and up to 25.2% of total read traffic in Ext4,
due to the frequent inode/block allocations. During block/in-
ode updates, only a few bytes in the bitmaps are flipped. This
offers the opportunity to reduce the write traffic with the byte
interface. To minimize the read accesses, we can cache the data
structure in the host DRAM after loading it from the storage.
Inode. File systems use the inode to record the information
of files and directories. The inode traffic contributes to 35%
and 24.4% of the total writes on average in Ext4 and F2FS, as
inodes are heavily involved in all file and directory updates.
Persisting one 128B inode update requires a 4KB write to the
disk, further amplifying the write traffic. Therefore, the byte
interface can greatly reduce the inode write traffic.

For inode reads, loading an entire inode block brings all the
inodes to the host, and they will be cached in the host DRAM.
They contribute to 82% of total reads for metadata-intensive
workloads. For data-intensive applications, it is reduced to
12.4%. Disk accesses can be reduced with data caching in Ext4
and F2FS when accessing files within the same inode block.
Therefore, we can load inodes with the block interface and
exploit the data locality with metadata caching.

Directory Entry. Directory entries (dentries) record the child

directories and files within a directory. In Figure 1, the micro-
benchmarks involve frequent file/directory creation and re-
moval, and dentries contribute to 23% of write traffic on aver-
age. We also observe frequent dentry writes in Varmail and
Fileserver, as they operate on many files. For workloads

with infrequent directory operations, such as Webserver and
OLTP, the dentry write traffic is negligible. Thus, to reduce
write I/O amplification, the byte interface is preferred.

To look up a file or directory under a specific directory, the
file system needs to search among the dentries. On average,
8% of the read traffic is spent on reading dentries, and the I/O
amplification may further increase as we have deeper or wider
directories. Loading the entire dentry structure with the block
interface can avoid frequent reads from the storage device.
Data Pointer. Data pointers record the mappings from the
file offset to the logical address of the storage device. Data
pointers incur up to 26% of the total write traffic and 16% of
the read traffic on F2FS. This is because F2FS performs out-of-
place updates with frequent data pointer updates. To look up
the target block address of the file data, we can read the whole
block of data pointers into the host with the block interface.

In summary, most metadata updates in file systems are
small, so the byte interface is suitable. For their reads, we can
use the block interface to exploit data locality.

3.3 File Data Structures

File Data. File systems allow users to directly access and per-
sist data to the storage bypassing the page cache with Direct
I/O. For each I/O request, we can determine the access in-
terface based on the request size in the POSIX call. When a
large chunk of data needs to be accessed, we can use the block
interface. For small accesses, we use the byte interface.
Page Cache.File systems use page cache to temporarily cache
file data. When a page is not presented in DRAM, the entire
page is brought into the host with the block interface. To re-
duce write I/O amplification, we can persist hot cachelines
within dirty pages through the byte interface. For largely mod-
ified pages, we can write them back via the block interface.
Data Journal. File systems usually employ journaling tech-
niques to prevent metadata/data inconsistency. In Ext4, 30.7%
of the total traffic on average is caused by journaling under the

| Application " §
)
syscalis§

[Vgs]

e === == == ==

Page Cache _CoW 1 ' Metadata H
I ' 1 . - : £
! :]
P i cnat N IS I
I ----- -— -xclR— ----- i """""" 1»_»____' g
) modifed commit update w

readp?ge wrlt?back chunks :
I v v_X v
Block Interface 1l Byte Interface
2 | |

flush TX Log | Log Index I o
FTL \ append M
Log Region || 3
___ £
v =
NAND Flash w

Figure 2. System overview of ByteFS.

ordered mode, as Ext4 performs double writes for critical meta-
data structures. F2FS manages node and data blocks with alog
structure, and has low write amplification. We can use both
byte and block interfaces depending on the journal data size.

In summary, file data may prefer both byte and block inter-
faces depending on the data locality. We should employ a flex-
ible policy for deciding the appropriate interface at runtime.

4 Design and Implementation

Our goal is to develop a file system ByteFS that transparently
supports dual byte and block interface for high-performance
data access to memory-semantic SSDs.

Design Challenges. To achieve this, we need to overcome
the following challenges: (1) ByteFS should minimize the
I/O amplification across the storage software and hardware
stack. However, there still exists an access granularity mis-
match between the byte interface and internal flash chips in
M-SSDs. (2) It is unclear how the file system should support
both byte/block interfaces. ByteFS should provide the flexi-
bility to exploit the benefits from both interfaces. (3) ByteFS
should enforce data consistency with minimum overhead. (4)
ByteFS should preserve the essential filesystem properties.

4.1 System Overview

Figure 2 shows the system overview of ByteFS. First, we dis-
cuss the techniques for enabling the dual interface in M-SSDs
and ensuring persistent writes with the byte interface (§4.2).
Second, we bridge the gap between byte-granular access and
page-granular flash access with a new SSD firmware design.
We develop a log-structured write buffer in the SSD DRAM,
which enables data coalescing for the flash chip accesses. We
maintain an address mapping to speed up the log lookup and
log cleaning process (§4.3). We then describe how ByteFS
supports read and write via the dual interface (§4.4). Third,
we extend the filesystem metadata and data management to
support the dual interface. ByteFS employs an interface selec-
tion mechanism based on the data access patterns (§4.5 and
§4.6). Fourth, ByteFS ensures crash consistency by enforcing

write ordering and atomicity via transactions. ByteFS utilizes
the in-device write log as a redo log and supports lightweight
data consistency and recovery (§4.7). Finally, we present a
few filesystem operation examples in ByteFS (§4.8).

4.2 Enable Byte-granular Data Access/Persistence

The PCle interface uses Base Address Registers (BARs) to ad-
vertise device memory-mappable regions to the host. During
system boot-up, the BIOS and OS check the BARs and set up
the memory-mapped address space for the device. Allmemory
requests to the mapped region are forwarded to the device via
the PCIe root complex. The M-SSD controller is responsible for
handling memory requests. ByteFS leverages the BAR register
to map the entire SSD as a memory region to the host. The host
can access any SSD address with MMIO (byte interface). This
can also be realized with CXL.mem protocol, with which the
host CPU canissue cacheable load/store accesses to the device.
To enable persistency, the M-SSD can leverage battery-
backed DRAM which allows all data in the DRAM to be flushed
to the flash media during a power loss. However, the host CPU
cache may hold dirty cachelines, or a PCle transaction may be
pending. ByteFS uses two steps to ensure a persistent write.
First, it calls c1flush/clwb after a memory-mapped write
request to flush the CPU cache. Second, it issues a read re-
quest with zero byte following the write (write-verify read) to
ensure the posted PCle transactions are completed. Since the
read/write requests are serialized in the root complex, a non-
posted read will enforce the completion of previous writes.

4.3 Manage SSD DRAM as a Log-Structured Memory

Although PClIe or CXL provides byte-granular access to the
SSD, there is still a mismatch of access granularity inside the
SSD. The flash chips are only accessible via flash page granular-
ity due to hardware limitations [10, 12, 21], although the host
can access the SSD at byte granularity. This inevitably incurs
extra flash accesses and consumes SSD DRAM cache space.
To bridge the gap between the byte-granular accesses and
the page-granular flash accesses, ByteFS reorganizes part of
the SSD DRAM cache into a log-structured region at cacheline
granularity. Therefore, all writes via the byte interface can be
directly appended to the log to avoid flash accesses on the crit-
ical path (see Figure 2). For reads, ByteFS implements a coordi-
nated caching mechanism between the host and SSD DRAM.
When inevitable flash accesses are required, we only cache
the loaded pages in the host DRAM, which saves precious SSD
DRAM. When the log utilization exceeds a threshold (85% by
default), a background cleaning procedure coalesces the log
entries and flushes them back to the flash chips.
Index Structure of the Write Log. As shown in Figure 3,
the write log consists of a global log region and an indexing
structure to index the log. The global log region buffers the
data written via the byte interface. It is organized as a circular
buffer (256 MB by default) with head/tail pointers. The written
data is appended at the log tail as a 64B-aligned data entry.

Logical Address

Uy
©. : Partition Table

Partition

"""""""""""""""""""" Skip List |
Nil
Nil

Nil
Tail

Chunk List

LB

00 010......

LPA

Mz

Chunk offset

Global Log Region

Log Head Log Tail

5
£ 000000 0010......

9

Figure 3. Structure of the write log in the M-SSD firmware.

ByteFS | M-SSD Firmware
TxID:A I TxLog v® Commit
TxTable TxID-B | I B @) Flush Flash
Write Log / as

Data @Persist
Chunks D:’D] >

Figure 4. Transaction support with the firmware-level log.

We propose an efficient three-layer skip list to index the
write log. Instead of having a single huge skip list, we break it
into multiple smaller ones to reduce the indexing cost. In the
first layer, we divide the entire SSD address space (e.g., 1TB)
into fixed-size 16 MB partitions. During lookup, ByteFS can
quickly calculate the partition index by dividing the logical
page address (LPA) by the partition size. Then, we find the cor-
responding skip list from the partition table with the partition
index. In the second layer, if a flash page has its data stored in
the global log region, an entry indexed by its LPA will be in the
skip list. Each skip list entry points to an ordered chunk list
in the third layer. The chunk list is ordered by the block offset
in a page for fast lookup. Each chunk entry records the block
offset (1B) in a page, log offset (4B) in the log region, and data
length (4B) of the data entry stored in the global log region.

The skip list offers O(log(n)) lookup, insertion, and dele-
tion time, where n is the number of entries in the skip list. Com-
pared to hash tables, our indexing structure supports arbitrary
chunk sizes and better range lookup performance, as the file
system may issue accesses of various sizes. Our experiments
with an embedded ARM processor show that the average
lookup latency of a fully utilized 256 MB log is 89 ns. The entire
log index takes 21MB of DRAM space. The overheadisless of a
concern, as the flash access latency is at the microsecond scale.
Transaction Support with Firmware-Level Logging. In
ByteFS, all metadata updates are appended to the log region.
Therefore, we can avoid double logging by directly using the
write log as a redo log for metadata updates. This enables
ByteFS to support atomic and crash-consistent updates.

We show ByteFS’s transaction mechanismin Figure 4. When
ByteFS initiates a new transaction, it assigns a unique 4B
transaction ID (TxID) from a monotonically increasing global

Algorithm 1: Write log cleaning.

1 Function LogFlush(list_head):
for node in Traverse(list_head) do
buf =AllocWriteBuffer(node.lpa);
if CheckPartialUpdate(node) then
‘ ReadFlashPage(node.lpa, buf)
for entry in node.chunk_list do
if !entry.committed then
‘ entry = GetLatestVersion(entry);
if entry then
‘ memcpy(entry.log_off, buf + entry.off, entry.size);
if WriteBuf fer.full then
‘ Buffer_Write();

CleanLogRegion();

© % N a A W N

o= g
o = B

-
@

counter. ByteFS maintains a global transaction table (TxTable)
to track all ongoing transactions with their TxIDs. Updates in
atransaction are then encoded with the TxID and persisted in
the write log (© in Figure 4). When all updates are persisted,
ByteFS performs a commit by issuing a custom NVMe com-
mand COMMIT (TxID) with the target TxID. To maintain the
commit order and status in firmware, we employ a 2MB trans-
action log (TxLog) in the SSD DRAM. Upon a COMMIT(TxID),
M-SSD firmware appends a 4B commit entry with TxID into
TxLog (). After the transaction is committed, the M-SSD
firmware will be responsible for propagating the update back
to the flash media via log cleaning. We maintain consistency
by flushing the committed updates based on the commit order
in TxLog (®). TxLog is cleaned up after the log cleaning.
Log Cleaning. Log cleaning serves to release the space of
the log region and persist the updates back to flash chips. We
firstlocate all modified pages by iterating through the second-
layer skip lists (line 2 in Algorithm 1). For each modified page,
we reserve a write buffer and check whether the old flash
page should be loaded in case of partial updates (lines 3-5). We
then traverse all modified blocks recorded in the third-layer
chunk list and merge the latest committed version into the
buffer (lines 6-10). If the newest update of an entry is not
yet committed, we traverse the log region backward to find
the latest committed version. We then write the buffer to the
flash chips ifit is full (lines 11-12). Finally, we clean up the log
region and the corresponding log indexing structure (line 13).
To prevent along cleaning process from blocking normal IO
accesses, we employ double buffering to serve ongoing writes
in a new log region, and flush the old log in the background.

4.4 System Support for Dual Byte/Block Interface

We now describe how ByteFS performs read and write ac-
cesses with the dual byte and block interface.

Read/Write via Byte Interface. ByteFS performs cacheline
reads via the mapped SSD memory address space. The host
CPU issues memory loads to the M-SSD via PCle MMIO. For
eachload, the M-SSD firmware looks up the write log (see §4.3).
If the entry is present in the log, the data is directly returned to

the host. Otherwise, the M-SSD fetches the page from the flash
chips and only returns the requested cacheline to the host.

ByteFS aligns writes to cachelines as we manage the write
log with 64B entries. For a single 64B write, we directly write
the cacheline followed by a c1flush/clwb. To write multiple
cachelines atomically, we wrap them in a filesystem trans-
action. As the data reaches the SSD, the SSD firmware first
appends the data into the write log. It then looks up the skip
list and inserts/updates the chunk entry for the data.
Read/Write via Block Interface. ByteFS follows the normal
block interface to access 4KB blocks with NVMe commands.
Upon an NVMe read, the M-SSD firmware loads the page from
the flash into a transfer buffer in SSD DRAM. Then, it looks up
the skip list using the LPA of the requested flash page. If there
are dirty cachelines in the log, the loaded page is merged with
the latest data entries. Then, the page is returned to the host.

For write requests, 4KB blocks are transferred through PCle
to a write buffer in the FTL layer and then written to flash
media. The SSD firmware scans the skip list for the written
page and invalidates all corresponding entries in the write
log. These log entries can be invalidated right away since
ByteFS ensures that all written-back blocks from the host
page cache are up to date. During later accesses to this page
or log flushing, the invalid log entries will be ignored.

4.5 Manage Metadata Operations in ByteFS

We extend the core metadata structure in ByteFS and cache
them in host DRAM. Upon cache misses, we load the metadata
structure via the block interface. We describe the metadata
structures and their operations in ByteFS as follows.
Inodes. ByteFS maintains the inode as a 128B entry and
groups these entries into 4KB pages. To reduce the write traffic
of inode updates, we split each inode into the upper and lower
regions (64B each). The lower region contains frequently up-
dated information, such as file size, modification times, and ac-
cess rights. The upper region includes others. Therefore, each
inode update takes as low as 64B via the byte interface, which
can be done atomically. For complex operations that involve
multiple metadata changes, ByteFS utilizes the transaction
support (see §4.3) for atomic updates. ByteFS caches inodes
using a radix tree in the host memory. Upon a cache miss,
ByteFS loads the entire inode page via the block interface.
Directory Entries. In ByteFS, each directory holds an ar-
ray of directory entries in its directory blocks. Each entry
includes the inode number (4B) of the child file/directory,
its file type (2B), filename length (2B), and filename (at most
256B). During directory lookups, we prefer to load the entire
directory block once via the block interface, as we need to
retrieve the full list of directory entries to read the associated
inodes. ByteFS caches directory entries by their hashed direc-
tory names [40, 45] using a radix tree. Creating or renaming
a directory involves updating a single directory entry, the

update size varies from 64B to 320B based on the filename
length, and the byte interface is used to perform the updates.
Block/Inode Bitmap. ByteFS maintains the inode and block
allocation status with bitmaps. Each bitmap block is divided
into multiple 64B groups as the basic unit of update. Upon
system boot, ByteFS loads the bitmaps via the block interface.
Similar to Ext4, ByteFS keeps a per-CPU free list for scalability
and uses an extent-based allocation for data file blocks. Allo-
cating new inodes or blocks incurs frequent small-size bitmap
updates, which significantly benefit from the byte interface.
Data Pointers. ByteFS uses Ext4-like extent structure to
index a range of contiguous file blocks with small extent
nodes [33]. Each leaf extent node (16B) includes the file offset
(8B),logical block address (4B), and length (4B). When reading
or overwriting file data, ByteFS searches the extent tree to
find disk pointers, and loads the entire block that contains all
extent nodes. Since ByteFS uses in-place updates for file data,
frequent overwrites to data pointers are less common. But it
uses byte-granular persistent writes for the updates.

4.6 Manage DataI/O in ByteFS

ByteFS supports multiple file data I/O modes as normal file
systems do, including direct I/O mode, buffered I/O mode, and
memory-mapped I/O mode, as well as data journaling.
Direct Data Access. When users open a file with 0_DIRECT
flag, the read and write POSIX calls are performed under the
Direct mode. When the data access size is no greater than
512B, ByteFS directly accesses the data via the byte interface.
Otherwise, ByteFS uses the block interface to handle requests
like conventional file systems. This is because when the write
size is less than 512B, writing in cachelines offers a lower
write latency than persisting an entire 4KB page.

Buffered I/0. In buffered I/O mode, the reads/writes are
absorbed by the host page cache, and the data access size
does not reflect the I/O traffic between the host and SSD. To
select between the byte and block interface upon a dirty page
writeback, ByteFS calculates the modified ratio (R) of this page.

To obtain the modified ratio, ByteFS uses the copy-on-write
(CoW) mechanism in the page cache. When a cached data page
is modified, ByteFS copies the original page to a duplicate
page. Similar to a normal cached page, we track all duplicated
pages with an XArray [43] structure indexed by file offset and
store them in a per-inode struct address_space, where all
cacheable and mappable objects are tracked.

Upon a dirty page writeback (e.g., after an fsync/msync),
ByteFS checks the modified 64B data chunks by XORing the
original page and the duplicated page. ByteFS calculates the
modified ratio by R= % where Njfodified is the number of
dirty cachelines and N, is the total number of cachelines in
thepage.If Risless than é (512B of a 4KB page), we use the byte
interface to persist small accesses and vice versa. ByteFS uses
avx2 [8] instructions available on a majority of CPUs to per-
form 256-bit XOR operations. Based on our experiments on an

| Application | | Application | | Application |
read() open() @ wiite() @ | fsync) @
VFS] [VFS] | VFS]
| I T Ton® Yoor@
;] ;]
' : £ : : Pa Page' ' '
P i - [[Inode] 9e age | [TxTable |
readpage L T—— It Rl ! v Pég_le_) ga_clje_llgm commit

[Block Interface | [Byte Interface | [Block Interface

Byte Interface | [Block Interface | [Byte Interface |

read

& append /\Flush @
Log Region [Log Region | [TxLog |

[NAND Flash | [

NAND Flash | [

NAND Flash |

(a) open and read operation

(b) write operation

(c) fsync operation

Figure 5. The workflow of ByteFS operations.

Intel server CPU (see §5.1), an XOR operation takes 936 CPU
cycles on average and can achieve up to 14 GB/s throughput.
Memory-Mapped I/0. ByteFS allows the user-space pro-
gram to directly access the file data with MMIO via mmap ().
To map file data to a specific memory region, ByteFS leverages
the cached DRAM pages and maps it to user address space.
The interface selection mechanism with buffered I/O can be
applied by performing CoW on the mapped file pages.

Data Journaling. ByteFS provides metadata logging that
offers the same crash consistency guarantee as the ordered
mode in Ext4. In addition, it also provides data journaling. For
small data writes via the byte interface, we follow the same
transaction mechanism in §4.3 to ensure crash consistency.
For large ones written via the block interface, ByteFS com-
bines JBD2 [28] with ByteFS transactions to support data jour-
naling. Within a transaction, JBD2 writes updated data blocks
in a reserved on-disk journal area. When commit, ByteFS
appends a commit entry at the end of the JBD2 journal record
to identify the commit status for data recovery.

4.7 Preserve Essential File System Properties

ByteFS preserves the essential properties of most file systems,
including crash consistency and data recovery.

Crash Consistency. As discussed in §4.3, to ensure con-
sistency, ByteFS leverages transactions to enforce atomicity
and write ordering of metadata and data updates. With the
firmware-level log-structured memory and battery-backed
DRAM in M-SSD, ByteFS accelerates the transaction commits.
Data Recovery. M-SSD firmware can retain the cached con-
tent in the battery-backed SSD DRAM upon system failures.
ByteFS can issue a custom NVMe command RECOVER () to the
M-SSD firmware to start recovery. The M-SSD firmware will
perform a complete scan to check all data entries in the log
region. For each entry, the firmware checks the 4B TxID en-
coded at the end of the entry. If the TxID does not appear in the
TxLog, we discard it as it is uncommitted. Then, the firmware
performs a log flush writing all remaining committed entries
back to the flash chips based on the order of the TxID in the
TxLog. After the firmware finishes the recovery by cleaning up
the log region and TxLog, ByteFS performs recovery on data
journalsifenabled. It scans the journal area for all transactions
with a commit entry and moves the data blocks back in place.

4.8 PutIt All Together

We show the workflow of ByteFS operations in Figure 5. We
walk through examples of opening and reading a 16KB file,
overwriting the first 1KB file chunks, and issuing an f'sync.
Open/Read. An application first opens the target file with
the file path (). ByteFS then performs a file lookup on the
tree structure (@). If a component is not cached in DRAM,
ByteFS uses the block interface to fetch the entire block (§®).
After finding the inode and opening the file, the application
then issues a 16KB read based on the data pointer. File data
is read in blocks and cached in the host page cache (@)
Write. The application then issues write syscall to over-
write the first 1KB file data ({). ByteFS checks the inode
address_space [32] to find cached pages, and a copy-on-write
is performed on the page (). ByteFS allocates a transaction
with TxID,, for atomic updates. The inode is persisted through
the byte interface to the firmware-level write log ().
fsync. When an fsync is issued (@), ByteFS first XORs orig-
inal page and copied page to identify the modified 1KB data
chunk (@). Based on the selection policy, the block inter-
face is selected for the writeback (). Since we already per-
sist the metadata updates, we commit the transaction with
TxCommit(TxID,) after block I/O is completed (@). We will
flush the committed data to flash chips in the background ().

4.9 Implementation Details

ByteFS Implementation. We implemented ByteFS as a ker-
nel file system based on Ext4 with 3.9K lines of code (LoC) in
Linux kernel 5.1. We reorganize the on-disk metadata struc-
ture including superblock, bitmaps, inodes, and directory
entries with 1.3K LoC to support the dual byte/block interface.
To enable CoW, we add new XArray for indexing duplicate
pages and modified the writepage() operation within the
file system address space object [37] with 0.6K LoC.

M-SSD Prototype. To examine the effectiveness of our de-
sign, we build a real M-SSD prototype with an OpenSSD FPGA
board, which has an onboard ARM core, 1TB flash storage with
16 channels, and 1GB DRAM. We modified the SSD firmware
with 1.5K lines of C code. We customize the NVMe protocol
to enable byte-granularity accesses, reserve a 256 MB log re-
gion in the SSD DRAM as the write log, and implement the
three-layer skip list with 0.8K LoC. The log operations and

N 114 kops/s

<
(o]
7]
=

:
3 T @ @ 7 2 @
Ll : : i : :
£ £ E £ £) £
g Lo © © = = S
2 g R 2 g . 5 °N
7 7 N 7 7 %

[@ A A= AN A [el B

NP B EFNPB EFNPB EFNPB EFNPB EFNPB EFNPB EFNPB

Proxy OLTP YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

Figure 6. Overall throughput improvement (normalized to Ext4).

e 3 6.0x] Micro-benchmarks i Macro-benchmarks
£247% 3 % g is s 2
£ hee | £ oM H £
524 0 < omY L b=y =
227 SN & NS SN [N 2
S2 14N i) SN I BN LA I =\ I S
“FlUeN | AN B | B L AN A
EFNPB EFNPB EFNPB EFNPB EFNPB EFNPB EFNPB
create delete mkdir rmdir Varmail Fileserver Webserver
Table 4. System configurations.
Host Machine Configuration
Processor Intel(R) Xeon(R) E5-2683 v3
Memory Size 128 GB
SSD Emulator Configuration
Capacity 32GB R/W Bandwidth 3.5/2.5GB/s
Page Size 4KB Flash R/W Latency 40/60 ps
Channel Count 8 Cacheline R/W Latency ~ 4.8/0.6 us

Table 5. Workloads used in our evaluation.

Workload Description
Microbenchmarks
create File creation, 1M 4KB files, 12 threads
delete File deletion, 1M 4KB files, 12 threads
mkdir Make directories, 1M dirs, 12 threads
rmdir Remove directories, 1M dirs, 12 threads
Applications
Varmail 1M 16KB files, 12 threads
Fileserver 100k 128KB files, 12 threads
Webproxy 1M 16KB files, 12 threads
Webserver 1M 16KB files, 12 threads
OLTP 1.6K 10MB files, 200 threads
YCSB on RocksDB 10M KV pairs, 40M ops, zipfian distribution

transaction support take 0.4K LoC in total. We preserve the
original SSD FTL layer and its core functionalities.

M-SSD Emulation. We also build an M-SSD emulator with
2.1K lines of C code based on the core logic of FEMU [31]. We
dedicate a kernel thread pinned to one CPU core to emulate
the normal FTL thread that operates on the embedded SSD
processor. We incorporate all core FTL functionalities, such as
page allocation, page-level translation, and garbage collection,
to emulate the internal structure of M-SSD. To emulate the
flash media, we reserve a contiguous region of DRAM memory
with memmap boot options and add I/O latency to emulate the
NAND flash latency. Table 4 shows all the parameters in detail.

5 Evaluation

We show that: (1) ByteFS outperforms existing file systems
by up to 2.7X when running filesystem benchmarks and real
applications (§5.2); (2) ByteFS leverages the dual interface to
reduce I/O traffic between host and device by up to 5.1x. Its
log-structured in-device memory and coalescing mechanism
largely reduces flash accesses (§5.3); (3) Its individual com-
ponents are effective (§5.4); (4) It can recover from a crash in
a short time (§5.5); and (5) ByteFS is effective with different
device configurations (§5.6).

5.1 Evaluation Setup

We run ByteFS on a dual-socket, 28-core Intel(R) E5 platform
with a base frequency of 2.7GHz and 128GB memory. Our

SSD platform includes both a real SSD prototype and an SSD
emulator as discussed in §4.9. For emulation, we emulated
SSD with 4KB flash pages and a log region of 256 MB. We list
all core settings in Table 4. We use various workloads includ-
ing file system benchmarks Filebench [41] and real-world
applications YCSB on RocksDB [5], as shown in Table 5. We
compare ByteFS with state-of-the-art file systems, including
Ext4, F2FS, NOVA, and PMFS, running on M-SSDs with SSD
cache managed in page granularity. In figures, Ext4, F2FS,
NOVA, PMFS, and ByteFS are shown as ‘E’, ‘F’, ‘N, ‘P’, and ‘B’.

5.2 Overall Performance Improvements

We evaluate ByteFS with filebench micro-benchmarks, macro-
benchmarks, and YCSB workloads on the real SSD prototype.
We show the throughput improvement in Figure 6.
Micro-benchmarks. ByteFS outperforms Ext4 by 2.5X and
F2FS by 1.48% on average across all micro-benchmarks. On
file creation especially, ByteFS achieves 6.0x and 2.4X per-
formance improvement compared to Ext4 and F2FS. ByteFS
can also obtain 1.2X-1.5X performance speedup on mkdir and
rmdir when compared to F2FS, because ByteFS involves fewer
data movements between host and device to perform file sys-
tem operations with the dual interface. On delete, ByteFS
can achieve similar performance with Ext4 and F2FS, since
delete (i.e., unlink) operations do not require an immediate
sync to the device. NOVA and PMFS perform even worse than
EXT4 and F2FS in most cases since they are not designed for
flash-based SSDs, they purely rely on the byte interface which
fails to exploit the spatial locality with the block interface.
Macro-benchmarks. ByteFS achieves a higher or similar
throughputacross allmacro-benchmarks. For Varmail, ByteFS
outperforms F2FS by 1.9 X, as Varmail frequently creates
small files and performs small synchronous I/Os. ByteFS can
speed up the frequently issued syscalls including create and
fsync by persisting small metadata via the byte interface.

Fileserver is a data-intensive workload that reads and
appends to relatively large files. ByteFS uses block interface
to persist large amounts of data to the disk with high paral-
lelism, while reducing the critical metadata writes caused by
frequent appending with byte interfaces. As a result, ByteFS
achieves over 2.2X throughput improvement compared to
Ext4, and 1.2X improvement compared to F2FS.

Webserver andWebproxy are read-heavy workloads. ByteFS
shows a similar performance compared with Ext4 and F2FS,
as we leverage the block interface and host-side caching to
exploit data locality. ByteFS outperforms Ext4 by 1.3X on

L:;5
9
B e
—~ @©
=434 g
Eoo & 2 g 5
1=) fres) S
25 W
sl BNim R N | m AN B
< EFNPB ' EFNPB ' EFNPB ' EFNPB ' EFNPB ' EFNPB
YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F
(a) Read Average Latency
a4
-
ng' g 2
jaliie)) < =
5814 3 %
) f f
> o 7N | N |
< EFNPB ' EFNPB ' EFNPB '
YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

(c) Write Average Latency

12x|

Normalized
Tail Latency
O RN WU O

" o
%) = =
= o~ n
3 b 8
% 8 g
S B =
7, 7 7
&% il /NE ‘ /NE ‘
EFNPB ' EFNPB ' EFNPB

Normalized
Tail Latency
o = N W

7

AL
EFNPB ' EFNPB ' EFNPB |
YCSB-B YCSB-C YCSB-D

(d) Write 95% Tail Latency

N
164us
Raiasaasal

YCSB-F

Figure 7. Latency of YCSB workloads (normalized to Ext4). YCSB-C does not have write latency as it is read-only.

5 @, data_read data write ==: metadata read metadata_write
8.9x|
4
&3 =
= 3
£ $
[_‘ g
14 a -
0 N X = ;
EFNPB ' EFNPB | EFNPB EFNPB
create delete mkdir rmdir

Figure 8. Host-SSD I/O traffic breakdown with Filebench
Micro-benchmarks (normalized to NOVA).

Webproxy, since Webproxy also involves heavy directory op-
erations, which benefits from the byte interface in ByteFS.

Finally, ByteFS outperforms Ext4 by 4.1X on write-intensive
workload OLTP. It creates over 200 threads creating, append-
ing, and overwriting files with frequent fdatasync. NOVA
and PMFS can use byte interface to directly persist small up-
dates, which reduces sync overhead and scales better under
high contention. ByteFS further outperforms them by reduc-
ing consistency overhead with the in-device write log.
YCSB Workloads. To evaluate ByteFS on real-world applica-
tions, we run YCSB workloads on RocksDB. We report average
latency and 95% tail latency for Read and Update in Figure 7.
ByteFS provides 2.4X better throughput compared to F2FS.
Similarly, ByteFS offers lower average and tail latency. Its ma-
jorbenefit comes from reducing the critical-path write latency,
which also improves read latency as the write requests may
block the read requests in RocksDB. For YCSB-A and YCSB-F
which has a read/write ratio of 50/50, ByteFS improves the
average/tail latency by 2.3%/2.0x for reads and 1.3%/1.6X for
writes compared to F2FS. In workloads with alower write ratio
(i.e., YCSB-Band YCSB-D witha 95/5 read/update ratio), ByteFS
provides relatively less performance improvement over EXT4.
In YCSB-C with 100% read operations, ByteFS achieves sim-
ilar performance as EXT4 or F2FS. It also achieves similar
performance on YCSB-E compared to other baselines, since
it performs range scanning following a uniform distribution
on the entire dataset, and has almost no locality.

5.3 1/O Traffic Breakdown

I/0 Traffic Between Host and SSD. Figure 8 shows the traf-
fic between host and SSD with micro-benchmarks. Compared

10

@®, data_read data_write ==! metadata read metadata_write

EFNPB
OLTP

EFNPB EFNPB EFNPB EFNPB
Varmail Fileserver Webserver Webproxy

Figure 9. Host-SSD I/O traffic breakdown with Filebench
Macro-benchmarks (normalized to Ext4).

to Ext4 and F2FS which only use block interface, ByteFS re-
duces the metadata traffic by up to 25.3x and 17.2x (11.4X and
6.1x on average) with the byte interface. Compared to NOVA
or PMFES, which also use the byte interface, ByteFS can still re-
duce the metadata traffic. This is for two reasons. First, NOVA
and PMFS use out-of-place updates to ensure crash consis-
tency, while ByteFS makes in-place updates of metadata and
reduces consistency overheads with the write log in the SSD
firmware, thus avoiding the double writes on the metadata.
Second, ByteFS reduces metadata reads with block interface
and host-side metadata caching. Compared to NOVA, ByteFS
reduces nearly 43% metadata read traffic on average.

Figure 9 shows the I/O traffic for the macro-benchmarks.
Similar to the micro-benchmarks, ByteFS significantly re-
duces the metadata traffic. In addition, ByteFS also reduces
data traffic with the dynamic block/byte interface selection
and host-side page caching. Varmail and Fileserver com-
bine frequent file creation and deletion operations with heavy
file append operations. Compared to Ext4 and F2FS, ByteFS
reduces the metadata update traffic with the byte interface.
Compared to NOVA and PMFS, ByteFS reduces data read
overhead by adaptively exploiting the block interface. In read-
heavy workloads Webserver and Webproxy, ByteFS reduces
the data traffic by up to 4.7x and 2.7x compared to NOVA and
PMFS. Webproxy also involves heavy directory operations, so
ByteFS reduces metadata traffic compared to Ext4 and F2FS.
In OLTP, ByteFS reduces the data write traffic by 1.6x and
2.2x compared to NOVA and PMFS. Both of them incur extra
write traffic due to their page-granular copy-on-write mech-
anism to maintain crash consistency, while ByteFS employs
the byte-granular in-device write log.

2.0 w@® Flash Read Flash Write
Q : Q m @ =)
& 1.5 3 2 g g
© S S P N
"o | N -
.0 . | 7, [/,
0.0 7 == 2 Wtr=
: EFNPB EFNP EFNPB EFNPB
create delete mkdir rmdir

Figure 10. SSD flash traffic breakdown with Filebench
Micro-benchmarks (normalized to Ext4).

¥4 Flash Read Flash Write

EFNPB EFNPB EFNPB EFNPB
Fileserver Webserver Webproxy OLTP

Figure 11. SSD flash traffic breakdown with Filebench
Macro-benchmarks (normalized to Ext4).

EFNPB
Varmail

ExtA WWN ByteFS-Dual ===t ByteFS-Log

Normalized
Throughput
ocoooorme

ok oo
N

7
e H]

T
Varmail Fileserver Webserver Webproxy

Figure 12. ByteFS perforamce breakdown. ByteFS-Dual:
ByteFS with only dual interface. ByteFS-Log: ByteFS-Dual
with log-structured memory. ByteFS: the full ByteFS design.

SSD Flash Traffic. We now evaluate the effectiveness of the
log-structured memory in the SSD. Figure 10 and Figure 11
show the flash traffic in the SSD. On average, ByteFS reduces
the flash traffic by 2.9%, 2.1X, 3.2X, and 2.2X compared to Ext4,
F2FS, NOVA, and PMFS. ByteFS reduces flash write traffic by
coalescing small writes in the in-device write log. ByteFS
also reduces flash read traffic as it does not need to fetch the
corresponding page from the flash upon a partial write.

Sometimes, ByteFS may incur higher flash traffic than other
file systems. For example, in create and Fileserver, ByteFS
incurs higher flash read traffic than EXT4 and F2FS. In mkdir
and rmdir, ByteFS may incur higher flash write traffic than
NOVA and PMFS. This is caused by the read-modify-write pat-
tern with partial writes during the log-cleaning stage. On the
other hand, NOVA and PMFS use page-granular cache in the
SSD DRAM, so a cached page may absorb more writes when
the locality is good enough. The higher flash traffic in ByteFS
does not affect performance since the log cleaning happens
in the background. Such overhead is completely outweighed
by the performance benefits of the in-device write log.

5.4 Performance Breakdown of ByteFS

To understand how each design component in ByteFS con-
tributes to the overall performance, we evaluate three variants
of ByteFS in Figure 12. Varmail and Fileserver benefit from
both the dual interface and the log-structured write buffer, as
both techniques help reduce the I/O amplification of these two
workloads. Webproxy mostly benefits from the dual interface,
as it involves heavy directory operations. OLTP benefits from

11

=~ ByteFs = F2FS =¥= NOVA

B
L& e\"»o\‘*’ o
OLTP

Normalized
Throughput
cooore
oNbhmON

T I I I
S Q)%Q Q)Q) R
,fa\q'@%\"v\% lq'@ A lw\% N o,\‘b lw\ﬁ»e\ﬁa\ﬁ,\‘b

Varmail Fileserver Webserver Webproxy
Figure 13. Macro benchmark performance under different

flash latency (Read/Write).

. 2.0 voe 64M = 128M
2215
35
EZ10 y
S Eo05
zZE [’

00 PPN NP

R ?\esef"‘\]éose(q\ﬂ ‘o?‘o ot \‘Cﬁ“) ‘{063 {C‘ﬁ \{Cg‘é 4056 *CS?J

Figure 14. Performance impact of the log region size
(normalized to 64MB).

both log-structured memory and flexible interface selection,
as it involves frequent small overwrites.

5.5 Recovery Time of ByteFS

To measure the recovery time of ByteFS after a system crash,
we intentionally power off the system after running YCSB
workloads. ByteFS can recover the system in 4.2 seconds on
average after reboot, with the recovery process described in
§4.7. It takes 0.9 seconds to load the entire SSD DRAM content
and 2.7 seconds to scan the global log region and TxLog to
flush all committed entries into the flash media.

5.6 Sensitivity Analysis

Vary M-SSD Access Latency. We vary the emulator config-
uration with various NAND flash read/write latencies from
low-end to high-end SSDs [2, 16, 46]. As shown in Figure 13,
ByteFS outperforms F2FS and NOVA regardless of flash access
latencies. We also emulate a CXL-based SSD with less cache-
line access latency (175 ns [39]) and high-end flash media
(marked as 3/80%). The benefit of ByteFS is larger with higher
flash write latency, as ByteFS hides the flash write latency by
flushing the in-device write log in the background. With CXL,
both ByteFS and NOVA have better performance in some
workloads as the CXL protocol reduces the access latency of
the byte interface. However, NOVA is still slower than ByteFS
since it does not optimize for the high flash access latency.

Vary SSD DRAM Log Size. As shown in Figure 14, ByteFS
can scale its performance with a larger SSD DRAM. As we in-
crease the write log size, ByteFS can cache and coalesce more
updated entries inside the DRAM before flushing. While a
larger log size might lead to a longer flush time, many work-
loads still benefit from a larger log size, as the log flushing is
done in the background. For some workloads (e.g., OLTP) the
benefits are marginal as they already have good write locality.

6 Related Work

Storage Class Memory. The hardware community has been
focused on developing scalable memory technologies such as

PCM [36], ReRAM [11], and FeRAM [20] to increase the mem-
ory capacity. However, many of them are not available in real
products. Intel released the Optane persistent memory [23]
in 2019, but it was shut down in 2022. This motivates the com-
munity to investigate alternatives. Most recently, research
demonstrated the feasibility of memory-semantic SSDs[1, 12].
ByteFS targets this new type of storage device and enables
the system software support to exploit its unique properties.
Memory-Semantic SSDs. To exploit the byte-addressability
of SSDs, FlatFlash [10] used the SSD as main memory by map-
ping the SSD into the host virtual memory. With the new CXL
protocols, Jung et al. developed an FPGA-based emulator [26]
for mapping the SSD as a memory extension. However, few
of them investigated how the M-SSD should be managed at
the systems software side. ByteFS provides efficient system
software support for M-SSDs. It rethinks the SSD firmware
design to address the fundamental mismatch of data access
granularity between the SSD DRAM and flash chips.

Persistent Memory Systems. To support byte-addressable
persistent memory, prior studies have developed a variety of
file systems [17, 19, 27, 45]. For example, BPFS [17] developed
an optimized file system in OS kernel and optimized shadow
paging technique for ensuring crash consistency. PMFS [19]
optimized the data access to persistent memory via direct
access. NOVA [45] implemented a per-inode log-structured
file system. SplitFs [27] handled data operations entirely in
the user space and processed the metadata operations in Ext4.
Unlike these prior studies, ByteFS develops a file system for M-
SSDs that have fundamentally different device characteristics.

7 Conclusion

We present ByteFS, a new kernel-level file system for memory-
semantic SSDs with dual byte/block interface. It significantly
reduces I/O amplification across the entire storage stack. We
implement ByteFS on both a programmable SSD FPGA board
and an SSD emulator to demonstrate its efficiency.

Acknowledgments

We thank the anonymous reviewers and our shepherd Haris
Volos for their insightful comments and feedback. We thank
the members in the Systems Platform Research Group at Uni-
versity of Illinois Urbana-Champaign for constructive discus-
sions. We also thank Yugqi Xue for proofreading the paper. This
work was partially supported by NSF grants CCF-2107470
and CCF-1919044.

12

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Memory semantic ssd. https://samsungmsl.com/ms-ssd/.

intel Optane SSD 905P 1TB Performance Testing.
https://www.tomshardware.com/reviews/intel-optane-ssd-
905p,5600-2.html, 2021.

Intel® Optane™ Persistent Memory 200 Series Brief.
https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/optane-persistent-memory-
200-series-brief.html, 2021.

Passmark - SK Hynix HMA82GS7CJR8N-VK 16GB - Price Performance
Comparison.
https://www.memorybenchmark.net/ram.php?ram=SK+Hynix+
HMAB82GS7CJR8N-VK+16GB&id=12578, 2021.

RocksDB.

https://github.com/facebook/rocksdb, 2021.

Samsung SSD 970 Pro.
https://www.samsung.com/semiconductor/minisite/ssd/product/
consumer/970pro/, 2021.

Why Intel killed its Optane memory business.
https://www.theregister.com/2022/07/29/intel_optane_memory_
dead/, 2022.

Intel® Instruction Set Extensions Technology.
https://www.intel.com/content/www/us/en/support/articles/
000005779/processors.html, 2024.

What is storage class memory.
https://www.purestorage.com/knowledge/what-is-storage-class-
memory.html, 2024.

Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,
Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. Flatflash: Exploiting
the byte-accessibility of ssds within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 19, page 971-985, New York, NY, USA, 2019.
Association for Computing Machinery.

H. Akinaga and H. Shima. Resistive random access memory (reram)
based on metal oxides. Proceedings of the IEEE, 98(12):2237-2251, Dec
2010.

Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang,
Sangyeun Cho, Dong-Gi Lee, and Jaeheon Jeong. 2b-ssd: The case for
dual, byte- and block-addressable solid-state drives. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
pages 425-438, 2018.

Roberto Bez and Agostino Pirovano. Non-volatile memory tech-
nologies: emerging concepts and new materials. Materials Science in
Semiconductor Processing, 7(4-6):349-355, 2004.

Ravi Budruk, Don Anderson, and Tom Shanley. PCI express system
architecture. Addison-Wesley Professional, 2004.

An Chen. A review of emerging non-volatile memory (nvm)
technologies and applications. Solid-State Electronics, 125:25-38, 2016.
Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han,
Daehyun Kim, Chulseung Lee, Youra Choi, Shine Kim, Dongku
Kang, Geunyeong Yu, et al. A flash memory controller for 15us
ultra-low-latency ssd using high-speed 3d nand flash with 3us read
time. In 2018 IEEE International Solid-State Circuits Conference-(ISSCC),
pages 338-340. IEEE, 2018.

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better /O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP
09, pages 133-146, Big Sky, MT, 2009.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudré-Mauroux. Oltp-bench: An extensible testbed for benchmarking
relational databases. PVLDB, 7(4):277-288, 2013.

(19]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
Software for Persistent Memory. In Proceedings of the 9th European
Conference on Computer Systems, EuroSys ’14, pages 15:1-15:15,
Amsterdam, The Netherlands, 2014.

Ferroelectric RAM.

https://en.wikipedia.org/wiki/Ferroelectric. RAM.

Sujan K. Gonugondla, Mingu Kang, Yongjune Kim, Mark Helm, Sean
Eilert, and Naresh Shanbhag. Energy-efficient deep in-memory
architecture for nand flash memories. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1-5, 2018.

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Compute express link (cxl), 2017.

Intel. 3D XPoint: A Breakthrough in Non-Volatile Memory Technology.
https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html, 2018.

Intel. Intel® optane™ persistent memory. http://www.intel.com/
optanedcpersistentmemory/, 2021.

JosephIzraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R
Dulloor, et al. Basic performance measurements of the intel optane
dc persistent memory module. arXiv preprint arXiv:1903.05714, 2019.
Myoungsoo Jung. Hello bytes, bye blocks: Pcie storage meets compute
express link for memory expansion (cxl-ssd). In Proceedings of the 14th
ACM Workshop on Hot Topics in Storage and File Systems, HotStorage
’22, page 45-51, New York, NY, USA, 2022. Association for Computing
Machinery.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: Reducing software
overhead in file systems for persistent memory. SOSP '19, page 494-508,
New York, NY, USA, 2019. Association for Computing Machinery.
The kernel development community. Journal (jbd2) - The Linux Kernel
documentation.
https://www.kernel.org/doc/html/latest/filesystems/ext4/journal.
html, 2024.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System.
In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 460-477, Shanghai, China, 2017.

Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho.
F2FS: A New File System for Flash Storage. In FAST, pages 273-286, 2015.
Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan
Sundararaman, Matias Bjerling, and Haryadi S. Gunawi. The CASE of
FEMU: Cheap, accurate, scalable and extensible flash emulator. In 16th
USENIX Conference on File and Storage Technologies (FAST 18), pages
83-90, Oakland, CA, February 2018. USENIX Association.

Linux. Linux Page Cache.

https://tldp.org/LDP/Iki/lki-4.html.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux symposium,
volume 2, pages 21-33. Citeseer, 2007.

Jayashree Mohan, Rohan Kadekodi, and Vijay Chidambaram. Analyz-
ing IO amplification in linux file systems. CoRR, abs/1707.08514, 2017.
Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
Scalable high performance main memory system using phase-change
memory technology. In 36th International Symposium on Computer
Architecture (ISCA 2009), June 20-24, 2009, Austin, TX, USA, pages
24-33, 2009.

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam.
Phase-change random access memory: A scalable technology. IBM
Journal of Research and Development, 52(4.5):465-479, July 2008.

13

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Pekka Enberg Richard Gooch. Overview of the Linux Virtual File
System - The Linux Kernel documentation.
https://www.kernel.org/doc/html/latest/filesystems/vfs.html, 2024.
Samsung Semiconductor. Cmm-h (cx] memory module - hybrid):
Samsung’s cxl-based ssd for the memory-centric computing era.
https://semiconductor.samsung.com/us/news-events/tech-
blog/webinar-memory-semantic-ssd/, 2023.

Debendra Das Sharma. Compute express link®: An open industry-
standard interconnect enabling heterogeneous data-centric computing.
In 2022 IEEE Symposium on High-Performance Interconnects (HOTI),
pages 5-12, 2022.

Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang,
and Donald E Porter. How to get more value from your file system
directory cache. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 441-456, 2015.

Vasily Tarasov, et al. Filebench: A flexible framework for file system
benchmarking. The USENIX Magazine, 41(1), 2016.

Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven
Swanson, and Jishen Zhao. Characterizing and modeling non-volatile
memory systems. In Proceedings of 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 20), 2020.
Matthew Wilcox. XArray - The Linux Kernel documentation.
https://www.kernel.org/doc/html/latest/core-api/xarray.html, 2024.
Fangnuo Wu, Mingkai Dong, Gequan Mo, and Haibo Chen. Treesls:
A whole-system persistent microkernel with tree-structured state
checkpoint on nvm. In Proceedings of the 29th Symposium on Operating
Systems Principles (SOSP’23), Koblenz, Germany, 2023.

Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid Volatile/Non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323-338,
Santa Clara, CA, February 2016. USENIX Association.

Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin
yong Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S.
Kim. Overcoming the memory wall with CXL-Enabled SSDs. In 2023
USENIX Annual Technical Conference (USENIX ATC 23), pages 601-617,
Boston, MA, July 2023. USENIX Association.

Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian Zhang, Sudarsun
Kannan, and Sanidhya Kashyap. Enabling high-performance and
secure userspace nvm file systems with the trio architecture. In
Proceedings of the 29th Symposium on Operating Systems Principles
(SOSP’°23), Koblenz, Germany, 2023.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory-Semantic SSDs
	2.2 System Support for Memory-semantic SSDs

	3 A Quantitative Study of Block I/O Interface
	3.1 I/O Amplification in File Systems
	3.2 File Metadata Structures
	3.3 File Data Structures

	4 Design and Implementation
	4.1 System Overview
	4.2 Enable Byte-granular Data Access/Persistence
	4.3 Manage SSD DRAM as a Log-Structured Memory
	4.4 System Support for Dual Byte/Block Interface
	4.5 Manage Metadata Operations in ByteFS
	4.6 Manage Data I/O in ByteFS
	4.7 Preserve Essential File System Properties
	4.8 Put It All Together
	4.9 Implementation Details

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Overall Performance Improvements
	5.3 I/O Traffic Breakdown
	5.4 Performance Breakdown of ByteFS
	5.5 Recovery Time of ByteFS
	5.6 Sensitivity Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

